

Basis-set correction based on density-functional theory: Rigorous framework for a one-dimensional model

Julien Toulouse Laboratoire de Chimie Théorique Sorbonne Université and CNRS, Paris, France Institut Universitaire de France

QMMWS3 workshop IPAM, UCLA, Los Angeles May 2022

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_losangeles_22.pdf

► A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set B due to the difficulty of describing short-range correlation around the electron-electron cusp

- ► A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set B due to the difficulty of describing short-range correlation around the electron-electron cusp
- ► The **two usual main approaches** for dealing with this problem are:
 - Extrapolation to the complete-basis-set (CBS) limit
 - ▶ Methods using an explicit correlation factor (QMC, F12, transcorrelated)

- ► A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set B due to the difficulty of describing short-range correlation around the electron-electron cusp
- ► The two usual main approaches for dealing with this problem are:
 - Extrapolation to the complete-basis-set (CBS) limit
 - ▶ Methods using an explicit correlation factor (QMC, F12, transcorrelated)
- Recently, we introduced an alternative basis-set correction scheme based on DFT:

$$E = \langle \Psi^{\mathcal{B}}, \hat{H}\Psi^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi^{\mathcal{B}}}]$$

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018, and 8 subsequent papers

- ► Successfully accelerates the basis convergence for various properties and systems
- ▶ The functional $\bar{E}^{\mathcal{B}}[\rho]$ is approximated from range-separated DFT

⇒ see Emmanuel Giner's talk on Tuesday

- ► A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set *B* due to the difficulty of describing short-range correlation around the electron-electron cusp
- ► The two usual main approaches for dealing with this problem are:
 - Extrapolation to the complete-basis-set (CBS) limit
 - ▶ Methods using an explicit correlation factor (QMC, F12, transcorrelated)
- Recently, we introduced an alternative basis-set correction scheme based on DFT:

$$E = \langle \Psi^{\mathcal{B}}, \hat{H}\Psi^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi^{\mathcal{B}}}]$$

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018, and 8 subsequent papers

- ► Successfully accelerates the basis convergence for various properties and systems
- ▶ The functional $\bar{E}^{\mathcal{B}}[\rho]$ is approximated from range-separated DFT

⇒ see Emmanuel Giner's talk on Tuesday

- ► Here, we rexamine this method more closely for a one-dimensional model Hamiltonian with delta-potential interactions
- ► We give a new formulation of the method and we develop an adapted local-density approximation (LDA) for the basis-set correction functional $\bar{E}^{B}[\rho]$ for any basis \mathcal{B} using a finite uniform electron gas Traore, Giner, Toulouse, JCP, 2022

1 One-dimensional model system

Basis-set correction theory based on DFT

3 LDA from finite uniform-electron gas

1 One-dimensional model system

3 LDA from finite uniform-electron gas

▶ We consider the Hamiltonian of N = 2 electrons in a 1D He-like atom (Z = 2) with delta-potential interactions:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

with $\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$, $\hat{W}_{ee} = \delta(x_i)$

$$(x_1 - x_2)$$
, $\hat{V}_{ne} = -Z \sum_{i=1}^N \delta(x_i)$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

▶ We consider the Hamiltonian of *N* = 2 electrons in a **1D** He-like atom (*Z* = 2) with delta-potential interactions:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

with $\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$, $\hat{W}_{ee} = \delta(x_1 - x_2)$, $\hat{V}_{ne} = -Z \sum_{i=1}^{N} \delta(x_i)$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

▶ We work on the two-electron spinless Hilbert space $\mathcal{H} = h \otimes h$ where $h = L^2(\mathbb{R}, \mathbb{C})$

► We consider the Hamiltonian of N = 2 electrons in a 1D He-like atom (Z = 2) with delta-potential interactions:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

with $\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$, $\hat{W}_{ee} = \delta(x_1 - x_2)$, $\hat{V}_{ne} = -Z \sum_{i=1}^{N} \delta(x_i)$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

- ▶ We work on the two-electron spinless Hilbert space $\mathcal{H} = h \otimes h$ where $h = L^2(\mathbb{R}, \mathbb{C})$
- ► The exact ground-state wave function has the same electron-electron cusp as the 3D one, i.e. for small interelectronic distances x₁₂ = x₁ x₂

$$\Psi_0(x_1, x_2) = \Psi_0(x_1, x_1) \left(1 + \frac{1}{2} |x_{12}| + O(x_{12}^2) \right)$$

▶ We consider the Hamiltonian of *N* = 2 electrons in a **1D** He-like atom (*Z* = 2) with delta-potential interactions:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

with $\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$, $\hat{W}_{ee} = \delta(x_1 - x_2)$, $\hat{V}_{ne} = -Z \sum_{i=1}^{N} \delta(x_i)$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

- ▶ We work on the two-electron spinless Hilbert space $\mathcal{H} = h \otimes h$ where $h = L^2(\mathbb{R}, \mathbb{C})$
- ► The exact ground-state wave function has the same electron-electron cusp as the 3D one, i.e. for small interelectronic distances x₁₂ = x₁ x₂

$$\Psi_0(x_1, x_2) = \Psi_0(x_1, x_1) \left(1 + \frac{1}{2} |x_{12}| + O(x_{12}^2) \right)$$

► In a finite one-electron basis set, we thus expect a slow convergence with the basis size very similar to the slow convergence observed in 3D quantum systems with the Coulomb electron-electron interaction

Exact ground-state energy and Hartree-Fock approximation

► The ground-state energy is

$$E_0 = \min_{\Psi \in \mathcal{W}} \langle \Psi, \, \hat{H} \Psi
angle$$

where $\mathcal{W} = \left\{ \Psi \in \mathcal{H} \mid \Psi \in H^1(\mathbb{R}^2, \mathbb{C}), \ \langle \Psi, \Psi \rangle = 1 \right\}$ is the set of admissible wave functions

Exact ground-state energy and Hartree-Fock approximation

The ground-state energy is

$$E_0 = \min_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H} \Psi
angle$$

where $\mathcal{W} = \left\{ \Psi \in \mathcal{H} \mid \Psi \in H^1(\mathbb{R}^2, \mathbb{C}), \langle \Psi, \Psi \rangle = 1 \right\}$ is the set of admissible wave functions

▶ It can accurately be **estimated numerically**: $E_0 = -3.155390$ a.u.

Exact ground-state energy and Hartree-Fock approximation

The ground-state energy is

$$E_0 = \min_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H} \Psi \rangle$$

where $\mathcal{W} = \left\{ \Psi \in \mathcal{H} \mid \Psi \in H^1(\mathbb{R}^2, \mathbb{C}), \langle \Psi, \Psi \rangle = 1 \right\}$ is the set of admissible wave functions

► It can accurately be **estimated numerically**: $E_0 = -3.155390$ a.u.

► The model can be solved analytically at the Hartree-Fock (HF) level

The HF ground-state energy is

$$E_{\rm HF} = -Z^2 + \frac{Z}{2} - \frac{1}{12} = -3.083333...$$
 a.u.

The doubly occupied HF orbital is

$$\phi_1(x) = 2\beta \sqrt{\gamma} \frac{e^{-\beta|x|}}{1 - \gamma \ e^{-2\beta|x|}}$$

with $\beta = Z - 1/2 = 3/2$ and $\gamma = 1/(4Z - 1) = 1/7$

Nogami, Vallières, van Dijk, AJP, 1976

> To have a systematically improvable basis set, we use **Hermite functions** with a unique fixed exponent α

$$\forall n \in \mathbb{N}, f_n^{\alpha}(x) = N_n^{\alpha} H_n(\sqrt{2\alpha}x) e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

To have a systematically improvable basis set, we use Hermite functions with a unique fixed exponent α

$$\forall n \in \mathbb{N}, f_n^{\alpha}(x) = N_n^{\alpha} H_n(\sqrt{2\alpha}x) e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

• We add the exact occupied HF orbital ϕ_1 to obtain our **basis set**

$$\mathcal{B} = \left\{ \phi_1 \right\} \cup \left\{ f_n^{\alpha} \right\}_{n=0,\dots,n_{\max}}$$

To have a systematically improvable basis set, we use Hermite functions with a unique fixed exponent α

$$\forall n \in \mathbb{N}, f_n^{\alpha}(x) = N_n^{\alpha} H_n(\sqrt{2\alpha}x) e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

• We add the exact occupied HF orbital ϕ_1 to obtain our **basis set**

$$\mathcal{B} = \left\{\phi_1\right\} \cup \left\{f_n^{\alpha}\right\}_{n=0,\dots,n_{\max}}$$

We now work in the finite-dimensional two-electron Hilbert space H^B = h^B ⊗ h^B where h^B = span(B) is the one-electron Hilbert space spanned by the basis set B

To have a systematically improvable basis set, we use Hermite functions with a unique fixed exponent α

$$\forall n \in \mathbb{N}, f_n^{\alpha}(x) = N_n^{\alpha} H_n(\sqrt{2\alpha}x) e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

• We add the exact occupied HF orbital ϕ_1 to obtain our **basis set**

$$\mathcal{B} = \left\{\phi_1\right\} \cup \left\{f_n^{\alpha}\right\}_{n=0,\dots,n_{\max}}$$

- We now work in the finite-dimensional two-electron Hilbert space H^B = h^B ⊗ h^B where h^B = span(B) is the one-electron Hilbert space spanned by the basis set B
- > The full-configuration-interaction (FCI) ground-state energy for this basis set \mathcal{B} is

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi, \hat{H}\Psi
angle$$

where $\mathcal{W}^{\mathcal{B}} = \left\{ \Psi \in \mathcal{H}^{\mathcal{B}} \mid \langle \Psi, \Psi \rangle = 1 \right\}$ is the set of wave functions restricted to $\mathcal{H}^{\mathcal{B}}$

Basis convergence of the FCI ground-state energy

• **Convergence** of $E_{FCI}^{\mathcal{B}}$ as a function of the **basis size** n_{max}

> As in the 3D Coulomb case, we find a **slow power-law convergence**:

$$E_{\text{FCI}}^{\mathcal{B}} \underset{n_{\max} \to \infty}{\sim} E_0 + \frac{A}{n_{\max}^b} \quad \text{with } b \approx 0.5$$

Basis-set correction theory based on DFT

3 LDA from finite uniform-electron gas

We consider the 1D Hamiltonian still for N = 2 electrons but now for a general potential v ∈ V = M(ℝ) + L[∞](ℝ)

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

We consider the 1D Hamiltonian still for N = 2 electrons but now for a general potential v ∈ V = M(ℝ) + L[∞](ℝ)

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

► The corresponding ground-state energy is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v] \Psi
angle$$

We consider the 1D Hamiltonian still for N = 2 electrons but now for a general potential v ∈ V = M(ℝ) + L[∞](ℝ)

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

The corresponding ground-state energy is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v] \Psi
angle$$

The Levy-Lieb density functional is defined as a constrained-search over wave functions yielding the one-electron density ρ

$$\forall
ho \in \mathcal{R}, \ F[
ho] = \min_{\Psi \in \mathcal{W}_{
ho}} \langle \Psi, (\hat{T} + \hat{W}_{
m ee}) \Psi
angle$$

where $\mathcal{W}_{\rho} = \{ \Psi \in \mathcal{W} \mid \rho_{\Psi} = \rho \}$

We consider the 1D Hamiltonian still for N = 2 electrons but now for a general potential v ∈ V = M(ℝ) + L[∞](ℝ)

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

The corresponding ground-state energy is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v] \Psi
angle$$

The Levy-Lieb density functional is defined as a constrained-search over wave functions yielding the one-electron density ρ

$$\forall
ho \in \mathcal{R}, \ F[
ho] = \min_{\Psi \in \mathcal{W}_{
ho}} \langle \Psi, (\hat{T} + \hat{W}_{
m ee})\Psi
angle$$

where $\mathcal{W}_{\rho} = \{ \Psi \in \mathcal{W} \mid \rho_{\Psi} = \rho \}$

▶ It is defined on the set of *N*-representable densities

$$\mathcal{R} = \{ \rho \mid \exists \Psi \in \mathcal{W}, \rho_{\Psi} = \rho \} = \left\{ \rho \in L^1(\mathbb{R}) \mid \rho \ge 0, \ \int_{\mathbb{R}} \rho(x) dx = N, \ \sqrt{\rho} \in H^1(\mathbb{R}) \right\}$$

We consider the 1D Hamiltonian still for N = 2 electrons but now for a general potential v ∈ V = M(ℝ) + L[∞](ℝ)

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

The corresponding ground-state energy is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v] \Psi
angle$$

The Levy-Lieb density functional is defined as a constrained-search over wave functions yielding the one-electron density ρ

$$\forall
ho \in \mathcal{R}, \ F[
ho] = \min_{\Psi \in \mathcal{W}_{
ho}} \langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{
m ee}) \Psi
angle$$

where $\mathcal{W}_{\rho} = \{ \Psi \in \mathcal{W} \mid \rho_{\Psi} = \rho \}$

It is defined on the set of N-representable densities

$$\mathcal{R} = \{ \rho \mid \exists \Psi \in \mathcal{W}, \rho_{\Psi} = \rho \} = \left\{ \rho \in L^{1}(\mathbb{R}) \mid \rho \geq 0, \ \int_{\mathbb{R}} \rho(x) dx = N, \ \sqrt{\rho} \in H^{1}(\mathbb{R}) \right\}$$

It gives the exact ground-state energy as

$$E_0[v] = \inf_{\rho \in \mathcal{R}} \left(F[\rho] + (v, \rho) \right)$$

where $(v, \rho) = \int_{\mathbb{R}} v(x)\rho(x) dx$

 \blacktriangleright We define the Levy-Lieb density functional restricted to the basis set ${\cal B}$ as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ \mathcal{F}^{\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}^{\mathcal{B}}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee})\Psi \rangle$$

where $\mathcal{W}_{\rho}^{\mathcal{B}} = \left\{ \Psi \in \mathcal{W}^{\mathcal{B}} \mid \rho_{\Psi} = \rho \right\}$

 \blacktriangleright We define the Levy-Lieb density functional restricted to the basis set ${\cal B}$ as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ \mathcal{F}^{\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}^{\mathcal{B}}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\text{ee}}) \Psi \rangle$$

where $\mathcal{W}^{\mathcal{B}}_{\rho} = \left\{ \Psi \in \mathcal{W}^{\mathcal{B}} \mid \rho_{\Psi} = \rho \right\}$

▶ It is defined on the set of **densities representable by a wave function** $\Psi \in \mathcal{W}^{\mathcal{B}}$

$$\mathcal{R}^{\mathcal{B}} = \left\{
ho \mid \exists \ \Psi \in \mathcal{W}^{\mathcal{B}},
ho_{\Psi} =
ho
ight\}$$

 \blacktriangleright We define the Levy-Lieb density functional restricted to the basis set ${\cal B}$ as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ \mathcal{F}^{\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}^{\mathcal{B}}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee})\Psi \rangle$$

where $\mathcal{W}^{\mathcal{B}}_{\rho} = \left\{ \Psi \in \mathcal{W}^{\mathcal{B}} \mid \rho_{\Psi} = \rho \right\}$

▶ It is defined on the set of **densities representable by a wave function** $\Psi \in \mathcal{W}^{\mathcal{B}}$

$$\mathcal{R}^{\mathcal{B}} = \left\{
ho \mid \exists \ \Psi \in \mathcal{W}^{\mathcal{B}},
ho_{\Psi} =
ho
ight\}$$

We now decompose the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ F[\rho] = F^{\mathcal{B}}[\rho] + \overline{E}^{\mathcal{B}}[\rho]$$

where $\bar{E}^{\mathcal{B}}[\rho]$ is the complementary basis-set correction density functional

▶ We define the Levy-Lieb density functional restricted to the basis set B as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ \mathcal{F}^{\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}^{\mathcal{B}}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee})\Psi \rangle$$

where $\mathcal{W}^{\mathcal{B}}_{\rho} = \left\{ \Psi \in \mathcal{W}^{\mathcal{B}} \mid \rho_{\Psi} = \rho \right\}$

► It is defined on the set of **densities representable by a wave function** $\Psi \in \mathcal{W}^{\mathcal{B}}$

$$\mathcal{R}^{\mathcal{B}} = \left\{
ho \mid \exists \ \Psi \in \mathcal{W}^{\mathcal{B}},
ho_{\Psi} =
ho
ight\}$$

We now decompose the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ F[\rho] = F^{\mathcal{B}}[\rho] + \overline{E}^{\mathcal{B}}[\rho]$$

where $\bar{E}^{\mathcal{B}}[\rho]$ is the complementary basis-set correction density functional

We can obtain an approximate ground-state energy by restricting the minimization to densities ρ ∈ R^B

$$E_0^{\mathcal{B}}[v] = \min_{\rho \in \mathcal{R}^{\mathcal{B}}} \left(F[\rho] + (v, \rho) \right) = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{T} + \hat{W}_{ee} + \hat{V}) \Psi \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

▶ We define the Levy-Lieb density functional restricted to the basis set B as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ \mathcal{F}^{\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}^{\mathcal{B}}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee})\Psi \rangle$$

where $\mathcal{W}^{\mathcal{B}}_{\rho} = \left\{ \Psi \in \mathcal{W}^{\mathcal{B}} \mid \rho_{\Psi} = \rho \right\}$

▶ It is defined on the set of **densities representable by a wave function** $\Psi \in W^{\mathcal{B}}$

$$\mathcal{R}^{\mathcal{B}} = \left\{
ho \mid \exists \ \Psi \in \mathcal{W}^{\mathcal{B}},
ho_{\Psi} =
ho
ight\}$$

We now decompose the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ F[\rho] = F^{\mathcal{B}}[\rho] + \overline{E}^{\mathcal{B}}[\rho]$$

where $\bar{E}^{\mathcal{B}}[\rho]$ is the complementary basis-set correction density functional

We can obtain an approximate ground-state energy by restricting the minimization to densities ρ ∈ R^B

$$E_0^{\mathcal{B}}[v] = \min_{\rho \in \mathcal{R}^{\mathcal{B}}} \left(\mathcal{F}[\rho] + (v, \rho) \right) = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} + \hat{V}) \Psi \rangle + \bar{\mathcal{E}}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

► As the basis set is increased, $E_0^{\mathcal{B}}[v]$ converges to $E_0[v]$ much faster than $E_{\mathsf{FCI}}^{\mathcal{B}}[v]$ does

In summary, the first variant of basis-set correction consists in calculating

$$E_0^{\mathcal{B}}[v] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} + \hat{\mathcal{V}}) \Psi \rangle + \bar{\mathcal{E}}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

In summary, the first variant of basis-set correction consists in calculating

$$E_0^{\mathcal{B}}[v] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{T} + \hat{W}_{ee} + \hat{V})\Psi \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

The advantage is that it is a convenient self-consistent formulation and that is easily extended to response theory (in practice, non-self-consistent approximations can also be used)

In summary, the first variant of basis-set correction consists in calculating

$$E_0^{\mathcal{B}}[v] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{T} + \hat{W}_{ee} + \hat{V})\Psi \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

- The advantage is that it is a convenient self-consistent formulation and that is easily extended to response theory (in practice, non-self-consistent approximations can also be used)
- The limitations are:
 - ► It does not give the exact ground-state energy even with the exact basis-set correction functional \(\bar{E}^B[\rho]\)
 - ► The basis-set correction functional $\bar{E}^{\mathcal{B}}[\rho]$ is defined only for densities $\rho \in \mathcal{R}^{\mathcal{B}}$ ⇒ it is not clear how to define a local-density approximation (LDA)

We define a new Levy-Lieb density functional restricted to the basis set B for all densities ρ ∈ R as

$$\forall \rho \in \mathcal{R}, \,\, F^{\mathsf{w}\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}^{\mathcal{B}}_{\mathsf{ee}}) \Psi \rangle$$

where $\hat{W}_{ee}^{\mathcal{B}} = \hat{P}^{\mathcal{B}} \hat{W}_{ee} \hat{P}^{\mathcal{B}}$ is the interaction projected onto the Hilbert space $\mathcal{H}^{\mathcal{B}}$

We define a new Levy-Lieb density functional restricted to the basis set B for all densities ρ ∈ R as

$$\forall \rho \in \mathcal{R}, \ F^{\mathsf{w}\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}^{\mathcal{B}}_{\mathsf{ee}}) \Psi \rangle$$

where $\hat{W}_{ee}^{\mathcal{B}} = \hat{P}^{\mathcal{B}} \hat{W}_{ee} \hat{P}^{\mathcal{B}}$ is the interaction projected onto the Hilbert space $\mathcal{H}^{\mathcal{B}}$

We now decompose the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}, \ F[\rho] = F^{\mathsf{w}\mathcal{B}}[\rho] + \bar{E}_{\mathsf{Hxc}}^{\mathsf{w}\mathcal{B}}[\rho]$$

where $\bar{E}_{Hxc}^{wB}[\rho]$ is the complementary Hartree-exchange-correlation basis-set correction density functional

We define a new Levy-Lieb density functional restricted to the basis set B for all densities *ρ* ∈ *R* as

$$\forall \rho \in \mathcal{R}, \ F^{\mathsf{w}\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{\rho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}^{\mathcal{B}}_{\mathsf{ee}}) \Psi \rangle$$

where $\hat{W}_{ee}^{\mathcal{B}} = \hat{P}^{\mathcal{B}} \hat{W}_{ee} \hat{P}^{\mathcal{B}}$ is the interaction projected onto the Hilbert space $\mathcal{H}^{\mathcal{B}}$

We now decompose the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}, \ F[\rho] = F^{\mathsf{w}\mathcal{B}}[\rho] + \bar{E}^{\mathsf{w}\mathcal{B}}_{\mathsf{Hxc}}[\rho]$$

where $\bar{E}^{w\mathcal{B}}_{Hxc}[\rho]$ is the complementary Hartree-exchange-correlation basis-set correction density functional

We can obtain the exact ground-state energy as

$$E_{0}[v] = \inf_{\rho \in \mathcal{R}} \left(F[\rho] + (v, \rho) \right) = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{E}_{Hxc}^{w\mathcal{B}}[\rho_{\Psi}] \right)$$

▶ In summary, in the second variant of basis-set correction, we have

$$E_0[\mathbf{v}] = \inf_{\mathbf{\Psi} \in \mathcal{W}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} + \hat{\mathcal{V}}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{wB}}[\rho_{\Psi}] \right)$$

▶ In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} + \hat{V}) \Psi
angle + ar{\mathcal{E}}_{\mathsf{Hxc}}^{\mathsf{wB}}[
ho_{\Psi}]
ight)$$

▶ It gives the exact ground-state energy and the functional $\bar{E}_{Hxc}^{wB}[\rho]$ is defined for $\rho \in \mathcal{R}$

► In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} + \hat{\mathcal{V}}) \Psi
angle + ar{\mathcal{E}}_{\mathsf{Hxc}}^{\mathsf{w}\mathcal{B}}[
ho_{\Psi}]
ight)$$

- ▶ It gives the exact ground-state energy and the functional $\bar{E}_{Hxc}^{wB}[\rho]$ is defined for $\rho \in \mathcal{R}$
- ▶ But the disadvantage is that the minimization is over general wave functions $\Psi \in \mathcal{W}$

► In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi}] \right)$$

- ▶ It gives the exact ground-state energy and the functional $\bar{E}_{Hxc}^{wB}[\rho]$ is defined for $\rho \in \mathcal{R}$
- ▶ But the disadvantage is that the minimization is over general wave functions $\Psi \in \mathcal{W}$
- After finding the minimizing wave function Ψ^{wB}₀, we have the non-variational expression

$$E_0[v] = \langle \Psi_0^{\mathsf{wB}}, (\hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}) \Psi_0^{\mathsf{wB}} \rangle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{wB}}[\rho_{\Psi_0^{\mathsf{wB}}}]$$

► In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi}] \right)$$

- ▶ It gives the exact ground-state energy and the functional $\bar{E}_{Hxc}^{wB}[\rho]$ is defined for $\rho \in \mathcal{R}$
- But the disadvantage is that the minimization is over general wave functions $\Psi \in \mathcal{W}$
- After finding the minimizing wave function Ψ^{wB}₀, we have the non-variational expression

$$E_0[v] = \langle \Psi_0^{\mathsf{wB}}, (\hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}) \Psi_0^{\mathsf{wB}}
angle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{wB}}[
ho_{\Psi_0^{\mathsf{wB}}}]$$

► Here, $\bar{E}_{c,md}^{wB}[\rho]$ is the **complementary correlation (md)** contribution to the functional

$$\bar{E}_{c,md}^{w\mathcal{B}}[\rho] = \langle \Psi[\rho], (\hat{T} + \hat{W}_{ee})\Psi[\rho] \rangle - \langle \Psi^{w\mathcal{B}}[\rho], (\hat{T} + \hat{W}_{ee})\Psi^{w\mathcal{B}}[\rho] \rangle$$

where $\Psi[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee})\Psi \rangle$ and $\Psi^{wB}[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee}^{B})\Psi \rangle$

► In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi}] \right)$$

- ▶ It gives the exact ground-state energy and the functional $\bar{E}_{Hxc}^{wB}[\rho]$ is defined for $\rho \in \mathcal{R}$
- But the disadvantage is that the minimization is over general wave functions $\Psi \in \mathcal{W}$
- After finding the minimizing wave function Ψ^{wB}₀, we have the non-variational expression

$$E_0[v] = \langle \Psi_0^{\mathsf{wB}}, (\hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}) \Psi_0^{\mathsf{wB}}
angle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{wB}}[
ho_{\Psi_0^{\mathsf{wB}}}]$$

► Here, $\bar{E}_{c,md}^{wB}[\rho]$ is the **complementary correlation (md)** contribution to the functional

$$\bar{\mathcal{E}}_{c,md}^{w\mathcal{B}}[\rho] = \langle \Psi[\rho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee})\Psi[\rho] \rangle - \langle \Psi^{w\mathcal{B}}[\rho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee})\Psi^{w\mathcal{B}}[\rho] \rangle$$

where $\Psi[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee})\Psi \rangle$ and $\Psi^{wB}[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee}^{B})\Psi \rangle$

• In practice, we will use **approximations** for Ψ_0^{wB} and $\bar{E}_{c,md}^{wB}[\rho]$

3 LDA from finite uniform-electron gas

► To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions

- ► To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- The two-electron Hilbert space is H_a = h_a ⊗ h_a where h_a = L²(Ω_a, ℂ) and the set of admissible wave functions is W_a = {Ψ ∈ H_a | Ψ ∈ H¹_{per}(Ω²_a, ℂ), ⟨Ψ,Ψ⟩_a = 1}

- ► To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- The two-electron Hilbert space is H_a = h_a ⊗ h_a where h_a = L²(Ω_a, C) and the set of admissible wave functions is W_a = {Ψ ∈ H_a | Ψ ∈ H¹_{per}(Ω²_a, C), ⟨Ψ,Ψ⟩_a = 1}
- The corresponding Levy-Lieb density functional is

$$orall
ho \in \mathcal{R}_{a}, \ F_{a}[
ho] = \min_{\Psi \in \mathcal{W}_{a,
ho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ ext{ee}})\Psi
angle_{a}$$

where $\mathcal{W}_{a,\rho} = \{ \Psi \in \mathcal{W}_a, \ \rho_{\Psi} = \rho \}$ and $\mathcal{R}_a = \{ \rho \mid \exists \ \Psi \in \mathcal{W}_a, \rho_{\Psi} = \rho \}$

- ► To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- The two-electron Hilbert space is H_a = h_a ⊗ h_a where h_a = L²(Ω_a, C) and the set of admissible wave functions is W_a = {Ψ ∈ H_a | Ψ ∈ H¹_{per}(Ω²_a, C), ⟨Ψ,Ψ⟩_a = 1}
- The corresponding Levy-Lieb density functional is

$$orall
ho \in \mathcal{R}_{a}, \ F_{a}[
ho] = \min_{\Psi \in \mathcal{W}_{a,
ho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathrm{ee}})\Psi
angle_{a}$$

where $\mathcal{W}_{a,\rho} = \{ \Psi \in \mathcal{W}_a, \ \rho_{\Psi} = \rho \}$ and $\mathcal{R}_a = \{ \rho \mid \exists \ \Psi \in \mathcal{W}_a, \rho_{\Psi} = \rho \}$

► A finite UEG with N = 2 electrons is defined by considering the uniform density $\rho_{unif} : x \mapsto \rho_0 = N/a$. The energy per particle of this finite UEG is

$$\varepsilon_{\text{UEG},N=2}(\rho_0) = rac{F_{a}[
ho_{\text{unif}}]}{N}$$

- ► To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- The two-electron Hilbert space is H_a = h_a ⊗ h_a where h_a = L²(Ω_a, C) and the set of admissible wave functions is W_a = {Ψ ∈ H_a | Ψ ∈ H¹_{per}(Ω²_a, C), ⟨Ψ,Ψ⟩_a = 1}
- The corresponding Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ F_{a}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{T} + \hat{W}_{ee})\Psi \rangle_{a}$$

where $\mathcal{W}_{a,\rho} = \{ \Psi \in \mathcal{W}_a, \ \rho_{\Psi} = \rho \}$ and $\mathcal{R}_a = \{ \rho \mid \exists \ \Psi \in \mathcal{W}_a, \rho_{\Psi} = \rho \}$

► A finite UEG with N = 2 electrons is defined by considering the uniform density $\rho_{unif} : x \mapsto \rho_0 = N/a$. The energy per particle of this finite UEG is

$$\varepsilon_{\text{UEG},N=2}(
ho_0) = rac{F_a[
ho_{\text{unif}}]}{N}$$

► $F_a[\rho_{unif}]$ corresponds to the ground-state energy of the two-electron Hamiltonian with zero potential $\hat{H}_{UEG} = \hat{T} + \hat{W}_{ee}$ with periodic boundary conditions on Ω_a

- ► To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- The two-electron Hilbert space is H_a = h_a ⊗ h_a where h_a = L²(Ω_a, C) and the set of admissible wave functions is W_a = {Ψ ∈ H_a | Ψ ∈ H¹_{per}(Ω²_a, C), ⟨Ψ,Ψ⟩_a = 1}
- The corresponding Levy-Lieb density functional is

$$orall
ho \in \mathcal{R}_{a}, \ F_{a}[
ho] = \min_{\Psi \in \mathcal{W}_{a,
ho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathrm{ee}})\Psi
angle_{a}$$

where $\mathcal{W}_{a,\rho} = \{ \Psi \in \mathcal{W}_a, \ \rho_{\Psi} = \rho \}$ and $\mathcal{R}_a = \{ \rho \mid \exists \ \Psi \in \mathcal{W}_a, \rho_{\Psi} = \rho \}$

► A finite UEG with N = 2 electrons is defined by considering the uniform density $\rho_{unif} : x \mapsto \rho_0 = N/a$. The energy per particle of this finite UEG is

$$\varepsilon_{\text{UEG},N=2}(\rho_0) = rac{F_a[
ho_{\text{unif}}]}{N}$$

- ► $F_a[\rho_{unif}]$ corresponds to the ground-state energy of the two-electron Hamiltonian with zero potential $\hat{H}_{UEG} = \hat{T} + \hat{W}_{ee}$ with periodic boundary conditions on Ω_a
- ► We can extend this to any *N* and the energy per particle of the **infinite UEG** is $\varepsilon_{\text{UEG}}(\rho_0) = \lim_{N \to \infty} \varepsilon_{\text{UEG},N}(\rho_0)$ **but we may as well use the finite UEG for** N = 2Gill. Loos. TCA, 2012

> In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ F_{a}^{\mathsf{w}\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}}^{\mathcal{B}})\Psi \rangle_{a} = \langle \Psi^{\mathsf{w}\mathcal{B}}[\rho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}}^{\mathcal{B}})\Psi^{\mathsf{w}\mathcal{B}}[\rho] \rangle_{a},$$

> In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ F_{a}^{\mathsf{w}\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{\mathsf{ee}}^{\mathcal{B}})\Psi \rangle_{a} = \langle \Psi^{\mathsf{w}\mathcal{B}}[\rho], (\hat{T} + \hat{\mathcal{W}}_{\mathsf{ee}}^{\mathcal{B}})\Psi^{\mathsf{w}\mathcal{B}}[\rho] \rangle_{a},$$

• A finite UEG with N = 2 electrons is defined by inserting the uniform density $\rho_{\text{unif}} : x \mapsto \rho_0 = N/a$. Then, $\Psi^{\text{wB}}[\rho_{\text{unif}}]$ is the ground-state wave function of the two-electron Hamiltonian

$$\hat{H}_{UEG}^{wB} = \hat{T} + \hat{W}_{ee}^{B} + \hat{V}^{wB}$$
 with $\hat{V}^{wB} = \sum_{i=1}^{N} v^{wB}(x_i)$

where v^{wB} is the potential imposing the uniform density ρ_{unif}

In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ F_{a}^{w\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}})\Psi \rangle_{a} = \langle \Psi^{w\mathcal{B}}[\rho], (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}})\Psi^{w\mathcal{B}}[\rho] \rangle_{a},$$

► A finite UEG with N = 2 electrons is defined by inserting the uniform density $\rho_{unif} : x \mapsto \rho_0 = N/a$. Then, $\Psi^{wB}[\rho_{unif}]$ is the ground-state wave function of the two-electron Hamiltonian

$$\hat{H}_{UEG}^{wB} = \hat{T} + \hat{W}_{ee}^{B} + \hat{V}^{wB} \qquad \text{with } \hat{V}^{wB} = \sum_{i=1}^{N} v^{wB}(x_i)$$

where v^{wB} is the potential imposing the uniform density ρ_{unif}

According to Lieb's convex-conjugation approach, the potential v^{wB} is calculated as

$$v^{\mathsf{w}\mathcal{B}} = \operatorname*{argmax}_{v \in \mathcal{V}_a} \left(E_{0,a}^{\mathsf{w}\mathcal{B}}[v] - (v, \rho_{\mathsf{unif}})_a \right)$$

where $E_{0,a}^{\mathsf{w}\mathcal{B}}[v] = \inf_{\Psi \in \mathcal{W}_a} \langle \Psi, (\hat{T} + \hat{W}_{\mathsf{ee}}^{\mathcal{B}} + \hat{V})\Psi \rangle_a$ and $\mathcal{V}_a = M_{\mathsf{per}}(\Omega_a) + L^{\infty}(\Omega_a)$

In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ F_{a}^{w\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}})\Psi \rangle_{a} = \langle \Psi^{w\mathcal{B}}[\rho], (\hat{T} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}})\Psi^{w\mathcal{B}}[\rho] \rangle_{a},$$

• A finite UEG with N = 2 electrons is defined by inserting the uniform density $\rho_{unif} : x \mapsto \rho_0 = N/a$. Then, $\Psi^{wB}[\rho_{unif}]$ is the ground-state wave function of the two-electron Hamiltonian

$$\hat{H}_{UEG}^{wB} = \hat{T} + \hat{W}_{ee}^{B} + \hat{V}^{wB} \qquad \text{with } \hat{V}^{wB} = \sum_{i=1}^{N} v^{wB}(x_i)$$

where v^{wB} is the potential imposing the uniform density ρ_{unif}

According to Lieb's convex-conjugation approach, the potential v^{wB} is calculated as

$$v^{w\mathcal{B}} = \underset{v \in \mathcal{V}_{a}}{\operatorname{argmax}} \left(E_{0,a}^{w\mathcal{B}}[v] - (v, \rho_{\text{unif}})_{a} \right)$$

where $E_{0,a}^{w\mathcal{B}}[v] = \underset{\Psi \in \mathcal{W}_{a}}{\inf} \langle \Psi, (\hat{T} + \hat{W}_{\text{ee}}^{\mathcal{B}} + \hat{V})\Psi \rangle_{a} \text{ and } \mathcal{V}_{a} = M_{\text{per}}(\Omega_{a}) + L^{\infty}(\Omega_{a})$

From $\Psi^{wB}[\rho_{unif}]$, we calculate the complementary correlation energy per particle

$$\bar{\varepsilon}_{c,md,N=2}^{w\mathcal{B}}(\rho_0) = \frac{\bar{E}_{c,md}^{w\mathcal{B}}[\rho_{unif}]}{N}$$

Complementary correlation energy per particle

Complementary correlation energy per particle of the finite 1D UEG ε_{c,md,N=2}^{wB}(ρ) as a function of ρ for basis sets B of the 1D He-like atom of increasing sizes n_{max}:

► As n_{\max} increases, $\vec{\epsilon}_{c,md,N=2}^{wB}(\rho)$ becomes smaller and must eventually vanish in the limit $n_{\max} \to \infty$

$$E_0 = \langle \Psi_0^{\mathsf{w}\mathcal{B}}, \hat{H}\Psi_0^{\mathsf{w}\mathcal{B}} \rangle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi_0^{\mathsf{w}\mathcal{B}}}]$$

$$E_0 = \langle \Psi_0^{\mathsf{w}\mathcal{B}}, \hat{H}\Psi_0^{\mathsf{w}\mathcal{B}} \rangle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi_0^{\mathsf{w}\mathcal{B}}}]$$

For the functional *E*^{wB}_{c,md}[ρ], we use the LDA from our 1D finite UEG calculations for the basis set B

$$\bar{E}_{c,md,LDA}^{w\mathcal{B}}[\rho] = \int_{\mathbb{R}} \rho(x) \bar{\varepsilon}_{c,md,N=2}^{w\mathcal{B}}(\rho(x)) dx$$

$$E_0 = \langle \Psi_0^{\mathsf{w}\mathcal{B}}, \hat{H}\Psi_0^{\mathsf{w}\mathcal{B}} \rangle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi_0^{\mathsf{w}\mathcal{B}}}]$$

For the functional *E*^{wB}_{c,md}[ρ], we use the LDA from our 1D finite UEG calculations for the basis set B

$$\bar{E}_{\mathrm{c},\mathrm{md},\mathrm{LDA}}^{\mathrm{w}\mathcal{B}}[\rho] = \int_{\mathbb{R}} \rho(x) \bar{\varepsilon}_{\mathrm{c},\mathrm{md},N=2}^{\mathrm{w}\mathcal{B}}(\rho(x)) \mathrm{d}x$$

We approximate the wave function Ψ^{wB}₀ by the FCI ground-state wave function Ψ^B_{FCI} in the basis set B

$$E_0 = \langle \Psi_0^{\mathsf{w}\mathcal{B}}, \hat{H}\Psi_0^{\mathsf{w}\mathcal{B}} \rangle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi_0^{\mathsf{w}\mathcal{B}}}]$$

For the functional *E*^{wB}_{c,md}[ρ], we use the LDA from our 1D finite UEG calculations for the basis set B

$$\bar{E}_{c,md,LDA}^{w\mathcal{B}}[\rho] = \int_{\mathbb{R}} \rho(x) \bar{\varepsilon}_{c,md,N=2}^{w\mathcal{B}}(\rho(x)) dx$$

- We approximate the wave function Ψ^{wB}₀ by the FCI ground-state wave function Ψ^B_{FCI} in the basis set B
- ▶ We thus finally the FCI energy with a LDA-based basis-set correction

$$E_{\rm FCI+LDA}^{\rm wB} = \langle \Psi_{\rm FCI}^{\cal B}, \hat{H}\Psi_{\rm FCI}^{\cal B} \rangle + \bar{E}_{\rm c,md,LDA}^{\rm wB} [\rho_{\Psi_{\rm ECI}^{\cal B}}]$$

and $E_{\mathsf{FCI+LDA}}^{\mathsf{wB}}$ correctly converges to E_0 in the complete-basis-set limit

Basis convergence of the FCI+LDA energy of the 1D He-like atom

FCI and FCI+LDA ground-state energies of the 1D He-like atom as a function of the basis size n_{max} :

The LDA-based basis-set correction efficiently accelerates the basis convergence of the FCI ground-state energy

Summary and outlook

Summary:

- The 1D model with delta-potential interactions captures the essence of the basis-set convergence problem
- Two variants of basis-set corrections based on DFT have been rigorously developed
- The LDA for the basis-set correction functional has been constructed from a finite uniform-electron gas

D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113, 2022

Outlook:

- Linear-response theory for basis-set correction of excitation energies in a 1D model
- Extension to a relativistic 1D model
- Density-functional approximations for the first variant of basis-set correction in the 1D model
- ► Extension of the work on the 1D model to 3D molecular systems
- Extension to solids?

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_losangeles_22.pdf