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Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018, and 8 subsequent papers
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� Successfully accelerates the basis convergence for various properties and systems

� The functional ĒB[ρ] is approximated from range-separated DFT

=⇒ see Emmanuel Giner’s talk on Tuesday

� Here, we rexamine this method more closely for a one-dimensional model

Hamiltonian with delta-potential interactions

� We give a new formulation of the method and we develop an adapted local-density

approximation (LDA) for the basis-set correction functional ĒB[ρ] for any basis B
using a finite uniform electron gas Traore, Giner, Toulouse, JCP, 2022
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Description of the 1D model system

� We consider the Hamiltonian of N = 2 electrons in a 1D He-like atom (Z = 2) with
delta-potential interactions:

Ĥ = T̂ + Ŵee + V̂ne

with T̂ = −1
2

N
∑

i=1

∂2

∂x2
i

, Ŵee = δ(x1 − x2) , V̂ne = −Z
N
∑

i=1

δ(xi)

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004
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Ĥ = T̂ + Ŵee + V̂ne
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� We work on the two-electron spinless Hilbert space H = h ⊗ h where h = L2(R,C)

� The exact ground-state wave function has the same electron-electron cusp as the 3D

one, i.e. for small interelectronic distances x12 = x1 − x2

Ψ0(x1, x2) = Ψ0(x1, x1)

(

1+
1

2
|x12|+O(x212)

)

� In a finite one-electron basis set, we thus expect a slow convergence with the basis

size very similar to the slow convergence observed in 3D quantum systems with the

Coulomb electron-electron interaction
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Exact ground-state energy and Hartree-Fock approximation

� The ground-state energy is

E0 = min
Ψ∈W
〈Ψ, ĤΨ〉

where W =
{

Ψ ∈ H | Ψ ∈ H1(R2,C), 〈Ψ,Ψ〉 = 1
}

is the set of admissible wave

functions
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where W =
{

Ψ ∈ H | Ψ ∈ H1(R2,C), 〈Ψ,Ψ〉 = 1
}

is the set of admissible wave

functions

� It can accurately be estimated numerically: E0 = −3.155390 a.u.

� The model can be solved analytically at the Hartree-Fock (HF) level

� The HF ground-state energy is

EHF = −Z 2 +
Z

2
− 1
12

= −3.083333... a.u.

� The doubly occupied HF orbital is

φ1(x) = 2β
√
γ

e
−β|x |

1− γ e−2β|x |

with β = Z − 1/2 = 3/2 and γ = 1/(4Z − 1) = 1/7
Nogami, Vallìeres, van Dijk, AJP, 1976
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Full-configuration interaction in a basis set

� To have a systematically improvable basis set, we use Hermite functions with a unique

fixed exponent α

∀n ∈ N, f αn (x) = Nαn Hn(
√
2αx) e−αx

2

where Hn are the Hermite polynomials and N
α
n is a normalization constant
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{

φ1

}

∪
{

f
α
n

}

n=0,...,nmax

� We now work in the finite-dimensional two-electron Hilbert space HB = h
B ⊗ h

B

where h
B = span(B) is the one-electron Hilbert space spanned by the basis set B

� The full-configuration-interaction (FCI) ground-state energy for this basis set B is

E
B
FCI = min

Ψ∈WB
〈Ψ, ĤΨ〉

where WB =
{

Ψ ∈ HB | 〈Ψ,Ψ〉 = 1
}

is the set of wave functions restricted to HB
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Basis convergence of the FCI ground-state energy

� Convergence of EBFCI as a function of the basis size nmax
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� As in the 3D Coulomb case, we find a slow power-law convergence:

E
B
FCI ∼

nmax→∞
E0 +

A

nbmax
with b ≈ 0.5
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Review of DFT for the 1D model

� We consider the 1D Hamiltonian still for N = 2 electrons but now for a general

potential v ∈ V = M(R) + L∞(R)

Ĥ[v ] = T̂ + Ŵee + V̂ where V̂ =
∑

N

i=1 v(xi )

10/21



Review of DFT for the 1D model

� We consider the 1D Hamiltonian still for N = 2 electrons but now for a general

potential v ∈ V = M(R) + L∞(R)
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Ĥ[v ] = T̂ + Ŵee + V̂ where V̂ =
∑

N

i=1 v(xi )

� The corresponding ground-state energy is

E0[v ] = inf
Ψ∈W
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{

ρ ∈ L1(R) | ρ ≥ 0,
∫

R

ρ(x)dx = N,
√
ρ ∈ H1(R)

}

� It gives the exact ground-state energy as

E0[v ] = inf
ρ∈R

(F [ρ] + (v , ρ))

where (v , ρ) =
∫
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v(x)ρ(x)dx
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First variant of basis-set correction (1/2)

� We define the Levy-Lieb density functional restricted to the basis set B as

∀ρ ∈ RB, FB[ρ] = min
Ψ∈WBρ

〈Ψ, (T̂ + Ŵee)Ψ〉

where WB
ρ =

{

Ψ ∈ WB | ρΨ = ρ
}
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where WB
ρ =

{

Ψ ∈ WB | ρΨ = ρ
}

� It is defined on the set of densities representable by a wave function Ψ ∈ WB

RB =
{

ρ | ∃ Ψ ∈ WB, ρΨ = ρ
}

� We now decompose the exact Levy-Lieb density functional as

∀ρ ∈ RB, F [ρ] = FB[ρ] + ĒB[ρ]
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B
FCI[v ] does

11/21



First variant of basis-set correction (2/2)

� In summary, the first variant of basis-set correction consists in calculating

E
B
0 [v ] = min

Ψ∈WB

(

〈Ψ, (T̂ + Ŵee + V̂ )Ψ〉+ ĒB[ρΨ]
)
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E
B
0 [v ] = min

Ψ∈WB

(

〈Ψ, (T̂ + Ŵee + V̂ )Ψ〉+ ĒB[ρΨ]
)

� The advantage is that it is a convenient self-consistent formulation and that is easily

extended to response theory (in practice, non-self-consistent approximations can also

be used)

� The limitations are:

� It does not give the exact ground-state energy even with the exact basis-set

correction functional ĒB[ρ]

� The basis-set correction functional ĒB[ρ] is defined only for densities ρ ∈ RB
=⇒ it is not clear how to define a local-density approximation (LDA)
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Second variant of basis-set correction (1/2)

� We define a new Levy-Lieb density functional restricted to the basis set B for all
densities ρ ∈ R as

∀ρ ∈ R, FwB[ρ] = min
Ψ∈Wρ

〈Ψ, (T̂ + Ŵ B
ee)Ψ〉

where Ŵ B
ee = P̂

B
ŴeeP̂

B is the interaction projected onto the Hilbert space HB
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Second variant of basis-set correction (2/2)

� In summary, in the second variant of basis-set correction, we have

E0[v ] = inf
Ψ∈W

(

〈Ψ, (T̂ + Ŵ B
ee + V̂ )Ψ〉+ ĒwBHxc[ρΨ]

)
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0 〉+ ĒwBc,md[ρΨwB0 ]

14/21



Second variant of basis-set correction (2/2)

� In summary, in the second variant of basis-set correction, we have

E0[v ] = inf
Ψ∈W

(

〈Ψ, (T̂ + Ŵ B
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� After finding the minimizing wave function ΨwB0 , we have the non-variational

expression

E0[v ] = 〈ΨwB0 , (T̂ + Ŵee + V̂ )Ψ
wB
0 〉+ ĒwBc,md[ρΨwB0 ]

� Here, ĒwBc,md[ρ] is the complementary correlation (md) contribution to the functional

Ē
wB
c,md[ρ] = 〈Ψ[ρ], (T̂ + Ŵee)Ψ[ρ]〉 − 〈ΨwB[ρ], (T̂ + Ŵee)Ψ

wB[ρ]〉

where Ψ[ρ] is the wave function minimizing 〈Ψ, (T̂ + Ŵee)Ψ〉 and ΨwB[ρ] is the wave
function minimizing 〈Ψ, (T̂ + Ŵ B

ee)Ψ〉

� In practice, we will use approximations for ΨwB0 and Ē
wB
c,md[ρ]
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1D uniform-electron gas

� To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval

Ωa = (−a/2, a/2) with periodic boundary conditions
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� A finite UEG with N = 2 electrons is defined by considering the uniform density
ρunif : x 7→ ρ0 = N/a. The energy per particle of this finite UEG is

εUEG,N=2(ρ0) =
Fa[ρunif]

N

� Fa[ρunif] corresponds to the ground-state energy of the two-electron Hamiltonian with

zero potential ĤUEG = T̂ + Ŵee with periodic boundary conditions on Ωa

� We can extend this to any N and the energy per particle of the infinite UEG is

εUEG(ρ0) = lim
N→∞

εUEG,N(ρ0) but we may as well use the finite UEG for N = 2
Gill, Loos, TCA, 2012
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1D finite UEG for second variant of basis-set correction

� In the second variant of basis-set correction, the Levy-Lieb density functional is

∀ρ ∈ Ra, FwBa [ρ] = min
Ψ∈Wa,ρ

〈Ψ, (T̂ + Ŵ B
ee)Ψ〉a = 〈ΨwB[ρ], (T̂ + Ŵ B

ee)Ψ
wB[ρ]〉a,
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ee + V̂
wB with V̂ wB =

∑

N

i=1 v
wB(xi )

where vwB is the potential imposing the uniform density ρunif

17/21



1D finite UEG for second variant of basis-set correction

� In the second variant of basis-set correction, the Levy-Lieb density functional is

∀ρ ∈ Ra, FwBa [ρ] = min
Ψ∈Wa,ρ

〈Ψ, (T̂ + Ŵ B
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v∈Va

(

E
wB
0,a [v ]− (v , ρunif)a

)

where EwB0,a [v ] = inf
Ψ∈Wa

〈Ψ, (T̂ + Ŵ B
ee + V̂ )Ψ〉a and Va = Mper(Ωa) + L∞(Ωa)

� From ΨwB[ρunif], we calculate the complementary correlation energy per particle

ε̄wBc,md,N=2(ρ0) =
Ē
wB
c,md[ρunif]

N
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Complementary correlation energy per particle

� Complementary correlation energy per particle of the finite 1D UEG ε̄wBc,md,N=2(ρ) as
a function of ρ for basis sets B of the 1D He-like atom of increasing sizes nmax:
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� As nmax increases, ε̄
wB
c,md,N=2(ρ) becomes smaller and must eventually vanish in the limit

nmax →∞
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FCI with LDA-based basis-set correction

� Recall that in the second variant of basis-set correction, the exact ground-state

energy can be written as

E0 = 〈ΨwB0 , ĤΨwB0 〉+ ĒwBc,md[ρΨwB0 ]
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the basis set B

Ē
wB
c,md,LDA[ρ] =

∫

R

ρ(x)ε̄wBc,md,N=2(ρ(x))dx

� We approximate the wave function ΨwB0 by the FCI ground-state wave function ΨBFCI
in the basis set B

� We thus finally the FCI energy with a LDA-based basis-set correction

E
wB
FCI+LDA = 〈ΨBFCI, ĤΨBFCI〉+ ĒwBc,md,LDA[ρΨB

FCI
]

and EwBFCI+LDA correctly converges to E0 in the complete-basis-set limit
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Basis convergence of the FCI+LDA energy of the 1D He-like atom

� FCI and FCI+LDA ground-state energies of the 1D He-like atom as a function of

the basis size nmax :
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� The LDA-based basis-set correction efficiently accelerates the basis convergence of

the FCI ground-state energy
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Summary and outlook

� Summary:

� The 1D model with delta-potential interactions captures the essence of the

basis-set convergence problem

� Two variants of basis-set corrections based on DFT have been rigorously

developed

� The LDA for the basis-set correction functional has been constructed from a

finite uniform-electron gas

D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113, 2022

� Outlook:

� Linear-response theory for basis-set correction of excitation energies in a 1D

model

� Extension to a relativistic 1D model

� Density-functional approximations for the first variant of basis-set correction in

the 1D model

� Extension of the work on the 1D model to 3D molecular systems

� Extension to solids?

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation˙losangeles˙22.pdf
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