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Why and how learning density-functional theory?

Density-functional theory (DFT) is:

� a practical electronic-structure computational method, widely used in quantum
chemistry and condensed-matter physics;
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Why and how learning density-functional theory?

Density-functional theory (DFT) is:

� a practical electronic-structure computational method, widely used in quantum
chemistry and condensed-matter physics;

� an exact and elegant reformulation of the quantum many-body problem, which has
led to new ways of thinking in the field.

Classical books:

� R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, 1989.

� R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the

Quantum Many-Body Problem, Springer-Verlag, 1990.

� W. Koch and M. C. Holthausen, A Chemist’s Guide To Density Functional Theory,
Wiley-VCH, 2001.

My lecture notes:

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf

A book chapter:

J. Toulouse, in Density Functional Theory, edited by E. Cancès, G. Friesecke and L. Lin (Springer),

to appear; https://arxiv.org/abs/2103.02645
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Outline

1 Basic density-functional theory
Quantum many-electron problem
Universal density functional
Kohn-Sham method
Generalized Kohn-Sham method

2 Exact constraints for the exchange-correlation functional
Exact expressions for the exchange and correlation functionals
Uniform coordinate scaling
One-orbital spatial regions and self-interaction
Lieb-Oxford lower bound
Frontier orbital energies

3 Usual approximations for the exchange-correlation energy
Local-density approximation
Semilocal approximations
Single-determinant hybrid approximations
Multideterminant hybrid approximations
Dispersion corrections

4 Additional topics in density-functional theory
Time-dependent density-functional theory
Some less usual orbital-dependent exchange-correlation functionals
Fractional electron numbers and frontier orbital energies
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Quantum many-electron problem

� We consider a N-electron system in the Born-Oppenheimer and non-relativistic
approximations.
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Quantum many-electron problem

� We consider a N-electron system in the Born-Oppenheimer and non-relativistic
approximations.

� The electronic Hamiltonian in the position representation is, in atomic units,

H = −1

2

N∑

i=1
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ri +

1

2

N∑

i=1

N∑

j=1
i 6=j

1

|ri − rj |
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i=1

vne(ri )

where vne(ri ) = −
∑

α Zα/|ri − Rα| is the nuclei-electron interaction potential.
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where vne(ri ) = −
∑

α Zα/|ri − Rα| is the nuclei-electron interaction potential.

� Stationary states satisfy the time-independent Schrödinger equation

HΨ(x1, x2, ..., xN) = EΨ(x1, x2, ..., xN)

where Ψ(x1, x2, ..., xN) is a wave function written with space-spin coordinates
xi = (ri , σi ) (with ri ∈ R

3 and σi ∈ {↑, ↓}) which is antisymmetric with respect to the
exchange of two coordinates, and E is the associated energy.
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∑

α Zα/|ri − Rα| is the nuclei-electron interaction potential.

� Stationary states satisfy the time-independent Schrödinger equation

HΨ(x1, x2, ..., xN) = EΨ(x1, x2, ..., xN)

where Ψ(x1, x2, ..., xN) is a wave function written with space-spin coordinates
xi = (ri , σi ) (with ri ∈ R

3 and σi ∈ {↑, ↓}) which is antisymmetric with respect to the
exchange of two coordinates, and E is the associated energy.

� We work on the Hilbert space H =
∧N

L2(R3 × {↑, ↓},C).
� Using Dirac notations (representation-independent formalism):

Ĥ|Ψ〉 = E |Ψ〉 where Ĥ = T̂ + Ŵee + V̂ne

These operators can be conveniently expressed in (real-space) second quantization.
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Wave-function variational principle

� The ground-state electronic energy E0 can be expressed with the wave-function
variational principle

E0 = min
Ψ∈W
〈Ψ|Ĥ|Ψ〉

where the minimization is done over the space of admissible normalized N-electron wave
functions W = {Ψ ∈ ∧N

H1(R3 × {↑, ↓},C) | 〈Ψ|Ψ〉 = 1}.

Remark: If Ĥ does not bind N electrons, then the minimum does not exist but the ground-state

energy can still be defined as an infimum, i.e. E0 = inf
Ψ∈W

〈Ψ|Ĥ|Ψ〉.
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functions W = {Ψ ∈ ∧N

H1(R3 × {↑, ↓},C) | 〈Ψ|Ψ〉 = 1}.

Remark: If Ĥ does not bind N electrons, then the minimum does not exist but the ground-state

energy can still be defined as an infimum, i.e. E0 = inf
Ψ∈W

〈Ψ|Ĥ|Ψ〉.

� DFT is based on a reformulation of this variational theorem in terms of the
one-electron density defined as

n(r) = N

∫

· · ·
∫

|Ψ(x, x2, ..., xN)|2 dσdx2...dxN

which is normalized to the electron number,
∫
n(r)dr = N.

Remark: Integration over a spin coordinate σ means a sum over the two values of σ, i.e.
∫

dσ =
∑

σ∈{↑,↓}.
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The Hohenberg-Kohn theorem

� Consider an electronic system with an arbitrary external local potential v(r) (that
bounds N electrons) in place of vne(r).
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� Consider an electronic system with an arbitrary external local potential v(r) (that
bounds N electrons) in place of vne(r).

� The corresponding ground-state wave function Ψ (or one of them if there are several)
can be obtained by solving the Schrödinger equation, from which the associated
ground-state density n(r) can be deduced. Therefore, one has the mapping:

v(r) −−−−−→ n(r)

� In 1964, Hohenberg and Kohn showed that this mapping can be inverted, i.e. the
ground-state density n(r) determines the potential v(r) up to an arbitrary additive
constant:

n(r) −−−−−−−−−→
Hohenberg-Kohn

v(r) + const
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Proof of the Hohenberg-Kohn theorem (1/2)

This is a two-step proof by contradiction.

Consider two local potentials differing by more than an additive constant:

v1(r) 6= v2(r) + const

We have two Hamiltonians:

Ĥ1 = T̂ + Ŵee + V̂1 with a ground state Ĥ1|Ψ1〉 = E1|Ψ1〉 and ground-state density n1(r)

Ĥ2 = T̂ + Ŵee + V̂2 with a ground state Ĥ2|Ψ2〉 = E2|Ψ2〉 and ground-state density n2(r)
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1 We first show that Ψ1 6= Ψ2:

Assume Ψ1 = Ψ2 = Ψ. Then we have:

(Ĥ1 − Ĥ2)|Ψ〉 = (V̂1 − V̂2)|Ψ〉 = (E1 − E2)|Ψ〉
or, in position representation,

N∑

i=1

[v1(ri )− v2(ri )]Ψ(x1, x2, ..., xN) = (E1 − E2)Ψ(x1, x2, ..., xN)

If Ψ(x1, x2, ..., xN) 6= 0 for at least one fixed set of (σ1, σ2, ..., σN) and“almost”all
(r1, r2, ..., rN), which is true for “reasonably well behaved potentials”, then it implies that
v1(r)− v2(r) = const, in contradiction with the initial hypothesis.
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If Ψ(x1, x2, ..., xN) 6= 0 for at least one fixed set of (σ1, σ2, ..., σN) and“almost”all
(r1, r2, ..., rN), which is true for “reasonably well behaved potentials”, then it implies that
v1(r)− v2(r) = const, in contradiction with the initial hypothesis.

=⇒ Intermediate conclusion: two local potentials differing by more than an
additive constant cannot share the same ground-state wave function.
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Proof of the Hohenberg-Kohn theorem (2/2)

2 We now show than n1 6= n2:

Assume n1 = n2 = n. Then, by the variational theorem, we have:

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2 + V̂1 − V̂2|Ψ2〉 = E2 +

∫

[v1(r)− v2(r)] n(r)dr

The strict inequality comes from the fact that Ψ2 cannot be a ground-state wave
function of Ĥ1, as shown in the first step of the proof.
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function of Ĥ1, as shown in the first step of the proof.

Symmetrically, by exchanging the role of system 1 and 2, we have the strict inequality

E2 < E1 +

∫

[v2(r)− v1(r)] n(r)dr

Adding the two inequalities gives the inconsistent result

E1 + E2 < E1 + E2

=⇒ Conclusion: there cannot exist two local potentials differing by more than an
additive constant which have the same ground-state density.

Remark: This proof does not assume non-degenerate ground states (contrary to the original

Hohenberg-Kohn proof).

10/95



The universal density functional and the variational property

� The Hohenberg-Kohn theorem can be summarized as

n(r) −−−−−→ v(r) −−−−−→ Ĥ −−−−−→ everything

v is a functional of the ground-state density n, i.e. v [n], and all other quantities as well.
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and the total electronic energy functional

E [n] = F [n] +

∫

vne(r)n(r)dr

for the specific external potential vne(r) of the system considered.

� The Hohenberg-Kohn universal functional is only defined for N-electron densities n that
are ground-state densities associated with some local potential, the so-called set of
v-representable densities which we will denote by A.

� Hohenberg and Kohn showed that we have a variational property giving the exact
ground-state energy

E0 = min
n∈A

{

F [n] +

∫

vne(r)n(r)dr

}

The minimum is reached for an exact ground-state density n0(r) of the potential vne(r).11/95



Levy-Lieb constrained-search formulation (1/2)

� In 1979 Levy, and later in 1983 Lieb, proposed to redefine the universal density
functional as

F [n] = min
Ψ∈W
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉

where“Ψ→ n”means that the wave function Ψ is constrained to yield the fixed density
n.
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F [n] = min
Ψ∈W
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉

where“Ψ→ n”means that the wave function Ψ is constrained to yield the fixed density
n.

� This so-called Levy-Lieb functional F [n] does not require the existence of a local
potential associated with the density.

� It is an extension of the Hohenberg-Kohn functional: it is defined on the larger set of
N-electron densities coming from a wave function Ψ ∈ W, the so-called set of
N-representable densities D = {n ∈ L1(R3) | n ≥ 0,

∫
n(r)dr = N,

√
n ∈ H1(R3)}.
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Levy-Lieb constrained-search formulation (2/2)

� The variational property is easily obtained using the constrained-search formulation:

E0 = min
Ψ∈W
〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

x Ψ1
x Ψ2

x Ψ3

x Ψ4

x Ψ5

x Ψ6
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〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

=min
n∈D

min
Ψ∈W
Ψ→n

〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

=min
n∈D

{

min
Ψ∈W
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉+
∫

vne(r)n(r)dr

}

=min
n∈D

{

F [n] +

∫

vne(r)n(r)dr

}

x Ψ1
x Ψ2

x Ψ3

x Ψ4

x Ψ5

x Ψ6

n1

n2 n3

� Hence, in DFT, we replace“min
Ψ

”by“min
n
”which is a tremendous simplification!

However, F [n] = T [n] +Wee[n] is very difficult to approximate, in particular the
kinetic energy part T [n].
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Density-matrix or Lieb density functional

� In 1980 Valone and in 1983 Lieb generalized the constrained-search approach from pure
states to ensemble density matrices Γ̂, resulting in the density-matrix (DM) or Lieb
universal density functional

FDM[n] = min
Γ̂∈DDM

Γ̂→n

Tr[(T̂ + Ŵee)Γ̂]

where the minimization is done over admissible N-electron ensemble density matrices
Γ̂ ∈ DDM = {Γ̂ =

∑

i wi |Ψi 〉〈Ψi |, 0 ≤ wi ≤ 1,
∑

i wi = 1,Ψi ∈ W, 〈Ψi |Ψj〉 = δi,j}
yielding the density n.
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than the Levy-Lieb density functional, i.e. FDM[n] ≤ F [n] , with equality in the absence

of degeneracies.
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� Introducing the ground-state energy E0[v ] as a functional of the external potential v ,
Lieb showed that this functional is the Legendre-Fenchel transform of E0[v ]

FDM[n] = sup
v∈V

(

E0[v ]−
∫

v(r)n(r)dr

)

where the space of potentials is V = L3/2(R3) + L∞(R3).
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v∈V

(

E0[v ]−
∫

v(r)n(r)dr
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where the space of potentials is V = L3/2(R3) + L∞(R3).

� FDM[n] has the mathematical advantage of being convex. However, in the remaining, we
will only use the Levy-Lieb density functional.
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Kohn-Sham (KS) method: decomposition of the universal functional

� In 1965, Kohn and Sham proposed to decompose F [n] as

F [n] = Ts[n] + EHxc[n]
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� Ts[n] is the non-interacting kinetic-energy functional:

Ts[n] = min
Φ∈S
Φ→n
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where the minimization is done over single-determinant wave functions
Φ ∈ S = {Φ = ψ1 ∧ ψ2 ∧ · · · ∧ ψN | ψi ∈ H1(R3 × {↑, ↓},C), 〈ψi |ψj〉 = δi,j} yielding the
fixed density n. The minimizing single-determinant wave function is called the KS wave
function and is denoted by Φ[n].
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� Ts[n] is the non-interacting kinetic-energy functional:
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〈Φ|T̂ |Φ〉 = 〈Φ[n]|T̂ |Φ[n]〉

where the minimization is done over single-determinant wave functions
Φ ∈ S = {Φ = ψ1 ∧ ψ2 ∧ · · · ∧ ψN | ψi ∈ H1(R3 × {↑, ↓},C), 〈ψi |ψj〉 = δi,j} yielding the
fixed density n. The minimizing single-determinant wave function is called the KS wave
function and is denoted by Φ[n].

� The remaining functional EHxc[n] is called the Hartree-exchange-correlation functional.

� Ts[n] is still defined over the entire set of N-representable densities D because any
N-representable density can be obtained from a single-determinant wave function.
Therefore, the Kohn-Sham decomposition does not introduce any approximation.
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Kohn-Sham (KS) method: variational principle

� The exact ground-state energy can then be expressed as

E0 =min
n∈D

{

F [n] +

∫

vne(r)n(r)dr

}

=min
n∈D

{

min
Φ∈S
Φ→n

〈Φ|T̂ |Φ〉+ EHxc[n] +

∫

vne(r)n(r)dr

}

=min
n∈D

min
Φ∈S
Φ→n

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

=min
Φ∈S

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

and the minimizing single-determinant KS wave function gives an exact ground-state
density n0(r).
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� Hence, in KS DFT, we replace“min
Ψ

”by“min
Φ

”which is still a tremendous

simplification! The advantage of KS DFT over pure DFT is that a major part of the
kinetic energy is treated explicitly with the single-determinant wave function Φ.
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〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

and the minimizing single-determinant KS wave function gives an exact ground-state
density n0(r).

� Hence, in KS DFT, we replace“min
Ψ

”by“min
Φ

”which is still a tremendous

simplification! The advantage of KS DFT over pure DFT is that a major part of the
kinetic energy is treated explicitly with the single-determinant wave function Φ.

� KS DFT is similar to Hartree-Fock (HF)

EHF = min
Φ∈S
〈Φ|T̂ + V̂ne + Ŵee|Φ〉

but in KS DFT the exact ground-state energy and density are in principle obtained!
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Kohn-Sham (KS) method: the Hartree-exchange-correlation functional

� EHxc[n] is decomposed as
EHxc[n] = EH[n] + Exc[n]
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� EH[n] is the Hartree energy functional

EH[n] =
1

2

x n(r1)n(r2)

|r1 − r2|
dr1dr2

representing the classical electrostatic repulsion energy for the charge distribution n(r)
and which is calculated exactly.
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� EHxc[n] is decomposed as
EHxc[n] = EH[n] + Exc[n]

� EH[n] is the Hartree energy functional

EH[n] =
1

2

x n(r1)n(r2)

|r1 − r2|
dr1dr2

representing the classical electrostatic repulsion energy for the charge distribution n(r)
and which is calculated exactly.

� Exc[n] is the exchange-correlation energy functional that remains to approximate.
Assuming Φ[n] is unique (up to a phase factor), this functional is often decomposed as

Exc[n] = Ex[n] + Ec[n]

where Ex[n] is the exchange energy functional

Ex[n] = 〈Φ[n]|Ŵee|Φ[n]〉 − EH[n]

and Ec[n] is the correlation energy functional

Ec[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Φ[n]|T̂ + Ŵee|Φ[n]〉 = Tc[n] + Uc[n]

containing a kinetic contribution Tc[n] = 〈Ψ[n]|T̂ |Ψ[n]〉 − 〈Φ[n]|T̂ |Φ[n]〉
and a potential contribution Uc[n] = 〈Ψ[n]|Ŵee|Ψ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉.
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The Kohn-Sham equations (1/2)

� The single determinant Φ is constructed from a set of N orthonormal occupied
spin-orbitals ψi (x) = ϕi (r)δσi ,σ.
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� The single determinant Φ is constructed from a set of N orthonormal occupied
spin-orbitals ψi (x) = ϕi (r)δσi ,σ.

� The total energy to be minimized is

E [{ϕi}] =
N∑

i=1

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r)

)

ϕi (r)dr + EHxc[n]

and the density is

n(r) =

N∑

i=1

|ϕi (r)|2
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2
∇2 + vne(r)

)

ϕi (r)dr + EHxc[n]

and the density is

n(r) =

N∑

i=1

|ϕi (r)|2

� For minimizing over the orbitals {ϕi} with the constraint of keeping the orbitals
orthonormalized, we introduce the Lagrangian

L[{ϕi}] = E [{ϕi}]−
N∑

i=1

εi

(∫

ϕ∗
i (r)ϕi (r)dr − 1

)

where εi is the Lagrange multiplier associated with the normalization condition of ϕi (r).
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� For minimizing over the orbitals {ϕi} with the constraint of keeping the orbitals
orthonormalized, we introduce the Lagrangian

L[{ϕi}] = E [{ϕi}]−
N∑

i=1

εi

(∫

ϕ∗
i (r)ϕi (r)dr − 1

)

where εi is the Lagrange multiplier associated with the normalization condition of ϕi (r).

� The Lagrangian must be stationary with respect to variations of the orbitals ϕi (r)

δL
δϕ∗

i (r)
= 0
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Interlude: Review on functional derivatives

� For a functional F : f 7→ F [f ] of the function f : x 7→ f (x), an infinitesimal variation δf
of f leads to an infinitesimal variation of F which can be expressed as

δF [f ] =

∫
δF [f ]

δf (x)
δf (x)dx

This defines the functional derivative of F [f ] with respect f (x):
δF [f ]

δf (x)
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dF =
∑

i

∂F

∂fi
dfi

δF [f ]/δf (x) is the analog of ∂F/∂fi for the case of an infinite continuous number of variables.
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δF [f ]/δf (x) is the analog of ∂F/∂fi for the case of an infinite continuous number of variables.

� For a functional F [f ] of a function f [g ](x) which is itself a functional of another
function g(x), we have the chain rule

δF

δg(x)
=

∫
δF

δf (x ′)

δf (x ′)

δg(x)
dx ′
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function g(x), we have the chain rule

δF

δg(x)
=

∫
δF

δf (x ′)

δf (x ′)

δg(x)
dx ′

Remark: It is the analog of the chain rule for a function F (f1, f2, ...) of several variables
fj (g1, g2, ...) which are themselves functions of other variables g1, g2, ...

∂F

∂gi
=

∑

j

∂F

∂fj

∂fj

∂gi
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The Kohn-Sham equations (2/2)

� We find for the functional derivative of the Lagrangian

0 =
δL

δϕ∗
i (r)

=

(

−1

2
∇2 + vne(r)

)

ϕi (r) +
δEHxc[n]

δϕ∗
i (r)

− εiϕi (r)
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=

(

−1

2
∇2 + vne(r)

)

ϕi (r) +
δEHxc[n]

δϕ∗
i (r)

− εiϕi (r)

� We calculate the term δEHxc[n]/δϕ
∗
i (r) using the chain rule

δEHxc[n]

δϕ∗
i (r)

=

∫
δEHxc[n]

δn(r′)

δn(r′)

δϕ∗
i (r)

dr′ = vHxc(r)ϕi (r)

where we have used δn(r′)/δϕ∗
i (r) = ϕi (r)δ(r − r′) and we have introduced

the Hartree-exchange-correlation potential vHxc(r)

vHxc(r) =
δEHxc[n]

δn(r)

which is itself a functional of the density.
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δn(r′)

δϕ∗
i (r)

dr′ = vHxc(r)ϕi (r)

where we have used δn(r′)/δϕ∗
i (r) = ϕi (r)δ(r − r′) and we have introduced

the Hartree-exchange-correlation potential vHxc(r)

vHxc(r) =
δEHxc[n]

δn(r)

which is itself a functional of the density.

� We arrive at the KS equations

(

−1

2
∇2 + vne(r) + vHxc(r)

)

ϕi (r) = εiϕi (r)

The orbitals ϕi (r) are called the KS orbitals and εi are the KS orbital energies.
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The Kohn-Sham equations and the Kohn-Sham Hamiltonian

� The KS orbitals are eigenfunctions of the KS one-electron Hamiltonian

hs = −1

2
∇2 + vs(r)

where vs(r) = vne(r) + vHxc(r) is the KS potential.
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an effective external potential vs(r) ensuring that its ground-state density n(r) is the
same as the exact ground-state density n0(r) of the physical system of N interacting
electrons.
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where vs(r) = vne(r) + vHxc(r) is the KS potential.

� Mathematically, the KS equations are a set of coupled self-consistent equations since the
potential vHxc(r) depends on all the occupied orbitals {ϕi}i=1,...N through the density.

� Physically, hs defines the KS system which is a system of N non-interacting electrons in
an effective external potential vs(r) ensuring that its ground-state density n(r) is the
same as the exact ground-state density n0(r) of the physical system of N interacting
electrons.

� The KS equations also defines virtual KS orbitals {ϕa}a≥N+1.
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The Hartree-exchange-correlation potential

� To define vHxc(r) = δEHxc[n]/δn(r), we have assumed a form of differentiability of
EHxc[n]. This can in fact only hold on a restricted set of densities. This is known as the
v-representability problem.
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� The KS potential is defined only up to an additive constant. For atomic and molecular
ground-state densities, we choose the constant so that the potential vanishes at infinity:

lim|r|→∞ vs(r) = 0

23/95



The Hartree-exchange-correlation potential

� To define vHxc(r) = δEHxc[n]/δn(r), we have assumed a form of differentiability of
EHxc[n]. This can in fact only hold on a restricted set of densities. This is known as the
v-representability problem.

� The KS potential is defined only up to an additive constant. For atomic and molecular
ground-state densities, we choose the constant so that the potential vanishes at infinity:

lim|r|→∞ vs(r) = 0

� Following the decomposition of EHxc[n], the potential vHxc(r) is also decomposed as

vHxc(r) = vH(r) + vxc(r)

with the Hartree potential vH(r) =
δEH[n]

δn(r)
=

∫
n(r′)

|r − r′|dr
′

and the exchange-correlation potential vxc(r) = δExc[n]/δn(r)
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� The KS potential is defined only up to an additive constant. For atomic and molecular
ground-state densities, we choose the constant so that the potential vanishes at infinity:

lim|r|→∞ vs(r) = 0

� Following the decomposition of EHxc[n], the potential vHxc(r) is also decomposed as

vHxc(r) = vH(r) + vxc(r)

with the Hartree potential vH(r) =
δEH[n]

δn(r)
=

∫
n(r′)
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and the exchange-correlation potential vxc(r) = δExc[n]/δn(r)

� The potential vxc(r) can be decomposed as vxc(r) = vx(r) + vc(r)
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and the correlation potential vc(r) = δEc[n]/δn(r)
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vHxc(r) = vH(r) + vxc(r)

with the Hartree potential vH(r) =
δEH[n]

δn(r)
=

∫
n(r′)

|r − r′|dr
′

and the exchange-correlation potential vxc(r) = δExc[n]/δn(r)

� The potential vxc(r) can be decomposed as vxc(r) = vx(r) + vc(r)

with the exchange potential vx(r) = δEx[n]/δn(r)

and the correlation potential vc(r) = δEc[n]/δn(r)

� Remark: Contrary to Hartree-Fock, the KS exchange potential is local.
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Practical calculations in an atomic basis (1/3)

� We consider a basis of M atom-centered functions {χν}, e.g. GTO basis functions.
The orbitals are expanded as

ϕi (r) =

M∑

ν=1

cνi χν(r)
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Practical calculations in an atomic basis (1/3)

� We consider a basis of M atom-centered functions {χν}, e.g. GTO basis functions.
The orbitals are expanded as

ϕi (r) =

M∑

ν=1

cνi χν(r)

� Inserting this expansion in the KS equations

hsϕi (r) = εiϕi (r)

and multiplying on the left by χ∗
µ(r) and integrating over r, we arrive at

the familiar SCF generalized eigenvalue equation

M∑

ν=1

Fµν cνi = εi

M∑

ν=1

Sµν cνi

where Fµν =
∫
χ∗
µ(r)hsχν(r)dr are the elements of the KS Fock matrix and

Sµν =
∫
χ∗
µ(r)χν(r)dr are the elements of the overlap matrix.
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Practical calculations in an atomic basis (2/3)

� The Fock matrix is calculated as Fµν = hµν + Jµν + Vxc,µν
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Practical calculations in an atomic basis (2/3)

� The Fock matrix is calculated as Fµν = hµν + Jµν + Vxc,µν

� hµν are the one-electron integrals: hµν =

∫

χ∗
µ(r)

(

−1

2
∇2 + vne(r)

)

χν(r)dr
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Practical calculations in an atomic basis (2/3)

� The Fock matrix is calculated as Fµν = hµν + Jµν + Vxc,µν

� hµν are the one-electron integrals: hµν =

∫

χ∗
µ(r)

(

−1

2
∇2 + vne(r)

)

χν(r)dr

� Jµν is the Hartree potential matrix:

Jµν =

∫

χ∗
µ(r)vH(r)χν(r)dr =

M∑

λ=1

M∑

γ=1

Pγλ(χµχν |χλχγ)

where (χµχν |χλχγ) =
x χ∗

µ(r1)χν(r1)χ
∗
λ(r2)χγ(r2)

|r1 − r2|
dr1dr2 are the two-electron

integrals (in chemists’ notation) and Pγλ =

N∑

i=1

cγic
∗
λi is the density matrix.
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Practical calculations in an atomic basis (2/3)

� The Fock matrix is calculated as Fµν = hµν + Jµν + Vxc,µν
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µ(r)vH(r)χν(r)dr =

M∑

λ=1

M∑

γ=1

Pγλ(χµχν |χλχγ)

where (χµχν |χλχγ) =
x χ∗

µ(r1)χν(r1)χ
∗
λ(r2)χγ(r2)

|r1 − r2|
dr1dr2 are the two-electron

integrals (in chemists’ notation) and Pγλ =

N∑

i=1

cγic
∗
λi is the density matrix.

� Vxc,µν is the exchange-correlation potential matrix: Vxc,µν =

∫

χ∗
µ(r)vxc(r)χν(r)dr

� The total electronic energy is calculated as

E =

M∑

µ=1

M∑

ν=1

Pνµhµν +
1

2

M∑

µ=1

M∑

ν=1

PνµJµν + Exc

� The density is calculated as n(r) =
M∑

γ=1

M∑

λ=1

Pγλχγ(r)χ
∗
λ(r)

25/95



Practical calculations in an atomic basis (3/3)

� In the simplest approximation, the exchange-correlation energy functional has a local
form

E
local
xc =

∫

f (n(r))dr

where f (n(r)) has a complicated nonlinear dependence on the density n(r).
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Practical calculations in an atomic basis (3/3)

� In the simplest approximation, the exchange-correlation energy functional has a local
form

E
local
xc =

∫

f (n(r))dr

where f (n(r)) has a complicated nonlinear dependence on the density n(r).

� For example, in the local-density approximation (LDA), the exchange energy is

E
LDA
x = Cx

∫

n(r)4/3dr

where Cx is a constant, and the exchange potential is

v
LDA
x (r) =

4

3
Cxn(r)

1/3
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where Cx is a constant, and the exchange potential is

v
LDA
x (r) =

4

3
Cxn(r)

1/3

� Therefore, the integrals cannot be calculated analytically, but are instead evaluated by
numerical integration on a grid

Vxc,µν ≈
∑

k

wk χ
∗
µ(rk)vxc(rk)χν(rk) and E

local
xc ≈

∑

k

wk f (n(rk))

where rk and wk are quadrature points and weights. For molecules, the multicenter
numerical integration scheme of Becke (1988) is generally used.
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Extension to spin density-functional theory (1/2)

� For dealing with an external magnetic field, DFT has been extended from the total
density to spin-resolved densities (von Barth and Hedin, 1972)

nσ(r) = N

∫

· · ·
∫

|Ψ(rσ, x2, ..., xN)|2 dx2...dxN with σ ∈ {↑, ↓}

which integrate to the numbers of σ-spin electrons, i.e.
∫
nσ(r)dr = Nσ.
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� For dealing with an external magnetic field, DFT has been extended from the total
density to spin-resolved densities (von Barth and Hedin, 1972)

nσ(r) = N

∫

· · ·
∫

|Ψ(rσ, x2, ..., xN)|2 dx2...dxN with σ ∈ {↑, ↓}

which integrate to the numbers of σ-spin electrons, i.e.
∫
nσ(r)dr = Nσ.

� Without magnetic fields, this is in principle not necessary. In practice, the dependence
on the spin densities allows one to construct more accurate approximate
exchange-correlation functionals for open-shell systems.
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on the spin densities allows one to construct more accurate approximate
exchange-correlation functionals for open-shell systems.

� The universal density functional is now defined as

F [n↑, n↓] = min
Ψ∈W

Ψ→n↑,n↓

〈Ψ|T̂ + Ŵee|Ψ〉

where the search is over wave functions Ψ ∈ W with N = N↑ + N↓ electrons and which
yield fixed spin densities.
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on the spin densities allows one to construct more accurate approximate
exchange-correlation functionals for open-shell systems.

� The universal density functional is now defined as

F [n↑, n↓] = min
Ψ∈W

Ψ→n↑,n↓

〈Ψ|T̂ + Ŵee|Ψ〉

where the search is over wave functions Ψ ∈ W with N = N↑ + N↓ electrons and which
yield fixed spin densities.

� A KS method is obtained by decomposing F [n↑, n↓] as

F [n↑, n↓] = Ts[n↑, n↓] + EH[n] + Exc[n↑, n↓]

where Ts[n↑, n↓] is defined with a constrained search over (spin-unrestricted) Slater
determinants Φ

Ts[n↑, n↓] = min
Φ∈S

Φ→n↑,n↓

〈Φ|T̂ |Φ〉
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Extension to spin density-functional theory (2/2)

� The exact ground-state energy is expressed as

E0 = min
Φ∈S

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + Exc[n↑,Φ, n↓,Φ]
}
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Extension to spin density-functional theory (2/2)

� The exact ground-state energy is expressed as

E0 = min
Φ∈S

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + Exc[n↑,Φ, n↓,Φ]
}

� Writing the spatial orbitals of the determinant as ϕiσ(r) (with indices explicitly including
spin now), we have now the spin-dependent KS equations

(

−1

2
∇2 + vne(r) + vH(r) + vxc,σ(r)

)

ϕiσ(r) = εiσϕiσ(r)

with the spin-dependent exchange-correlation potential and density

vxc,σ(r) =
δExc[n↑, n↓]

δnσ(r)
and nσ(r) =

Nσ∑

i=1

|ϕiσ(r)|2
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Extension to spin density-functional theory (2/2)

� The exact ground-state energy is expressed as

E0 = min
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(

−1

2
∇2 + vne(r) + vH(r) + vxc,σ(r)

)

ϕiσ(r) = εiσϕiσ(r)

with the spin-dependent exchange-correlation potential and density

vxc,σ(r) =
δExc[n↑, n↓]

δnσ(r)
and nσ(r) =

Nσ∑

i=1

|ϕiσ(r)|2

� The spin-dependent exchange functional Ex[n↑, n↓] can be obtained from the
spin-independent exchange functional Ex[n] with the spin-scaling relation

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓])

Therefore, any approximation for the spin-independent exchange functional Ex[n] can be
easily extended to an approximation for the spin-dependent exchange functional
Ex[n↑, n↓]. Unfortunately, there is no such relation for the correlation functional.
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Outline

1 Basic density-functional theory
Quantum many-electron problem
Universal density functional
The Hohenberg-Kohn theorem
Levy-Lieb constrained-search formulation
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Kohn-Sham method
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The Kohn-Sham equations
Practical calculations in an atomic basis
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Generalized Kohn-Sham method
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Generalized Kohn-Sham method

� An important extension of the KS method is the generalized Kohn-Sham (GKS)
method (1996) in which the universal density functional F [n] is decomposed as

F [n] = min
Φ∈S
Φ→n

{

〈Φ|T̂ |Φ〉+ EH[nΦ] + S [Φ]
}

+ S̄ [n]

where S [Φ] is any (reasonable) functional of a single-determinant wave function Φ ∈ S
and S̄ [n] is the complementary density functional. E.g., in hybrids, S [Φ] = aEHF

x [Φ].
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where S [Φ] is any (reasonable) functional of a single-determinant wave function Φ ∈ S
and S̄ [n] is the complementary density functional. E.g., in hybrids, S [Φ] = aEHF

x [Φ].

� Defining the GKS exchange-correlation functional, E S
xc[Φ] = S [Φ] + S̄ [nΦ] , we can

express the exact ground-state energy as

E0 = min
Φ∈S

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + E
S
xc[Φ]

}

and any minimizing single-determinant wave function gives a ground-state density n0(r).
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E0 = min
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{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + E
S
xc[Φ]

}

and any minimizing single-determinant wave function gives a ground-state density n0(r).

� The corresponding GKS equations are
(

−1

2
∇2 + vne(r) + vH(r) + vS̄(r)

)

ϕiσ(r) +
δS [Φ]

δϕ∗
iσ(r)

= εiσϕiσ(r)

where vS̄(r) = δS̄ [n]/δn(r) is a local potential and δS [Φ]/δϕ∗
iσ(r) generates a

one-electron (possibly nonlocal) operator.
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)
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= εiσϕiσ(r)

where vS̄(r) = δS̄ [n]/δn(r) is a local potential and δS [Φ]/δϕ∗
iσ(r) generates a

one-electron (possibly nonlocal) operator.

� The GKS method gives much more freedom than the KS method (which corresponds
to the special case S [Φ] = 0). 30/95
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The exchange-correlation hole

� The pair density associated with the wave function Ψ[n] is

n2(r1, r2) = N(N − 1)

∫

· · ·
∫

|Ψ[n](x1, x2, ..., xN)|2 dσ1dσ2dx3...dxN

which is a functional of the density. It is normalized to the number of electron pairs:
s

n2(r1, r2)dr1dr2 = N(N − 1). It is proportional to the probability density of finding
two electrons at positions (r1, r2) with all the other electrons anywhere.
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s

n2(r1, r2)dr1dr2 = N(N − 1). It is proportional to the probability density of finding
two electrons at positions (r1, r2) with all the other electrons anywhere.

� It can be used to express the electron-electron interaction energy

〈Ψ[n]|Ŵee|Ψ[n]〉 = 1
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x n2(r1, r2)

|r1 − r2|
dr1dr2
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〈Ψ[n]|Ŵee|Ψ[n]〉 = 1
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x n2(r1, r2)

|r1 − r2|
dr1dr2

� Mirroring the decomposition of EHxc[n], the pair density can be decomposed as

n2(r1, r2) = n(r1)n(r2) + n2,xc(r1, r2)
︸ ︷︷ ︸
independent
electrons

︸ ︷︷ ︸
exchange and

correlation effects
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� We also introduce the exchange-correlation hole nxc(r1, r2) by

n2,xc(r1, r2) = n(r1)nxc(r1, r2)

It can be interpreted as the modification due to exchange and correlation effects of the
conditional probability of finding an electron at r2 knowing that one has been found at r1.
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� We also introduce the exchange-correlation hole nxc(r1, r2) by

n2,xc(r1, r2) = n(r1)nxc(r1, r2)

It can be interpreted as the modification due to exchange and correlation effects of the
conditional probability of finding an electron at r2 knowing that one has been found at r1.

� We have the exact constraints: nxc(r1, r2) ≥ −n(r2) and
∫
nxc(r1, r2)dr2 = −1
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The exchange hole

� Similarly, we define the KS pair density associated with the KS single determinant Φ[n]

n2,KS(r1, r2) = N(N − 1)

∫

· · ·
∫

|Φ[n](x1, x2, ..., xN)|2 dσ1dσ2dx3...dxN
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The exchange hole
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∫

· · ·
∫

|Φ[n](x1, x2, ..., xN)|2 dσ1dσ2dx3...dxN

� It can be decomposed as

n2,KS(r1, r2) = n(r1)n(r2) + n2,x(r1, r2)

and we introduce the exchange hole nx(r1, r2) by

n2,x(r1, r2) = n(r1)nx(r1, r2)

nx(r1, r2)

0
r1

r2

which satisfies the exact constraints:

nx(r1, r2) ≥ −n(r2) and
∫
nx(r1, r2)dr2 = −1 and nx(r1, r2) ≤ 0
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and we introduce the exchange hole nx(r1, r2) by

n2,x(r1, r2) = n(r1)nx(r1, r2)

nx(r1, r2)

0
r1

r2

which satisfies the exact constraints:

nx(r1, r2) ≥ −n(r2) and
∫
nx(r1, r2)dr2 = −1 and nx(r1, r2) ≤ 0

� The exchange energy functional is the electrostatic interaction energy between an
electron and its exchange hole:

Ex[n] =
1

2

x n(r1)nx(r1, r2)

|r1 − r2|
dr1dr2 =

∫

n(r1)εx[n](r1)dr1

where εx[n](r1) is the exchange energy per particle. In approximate exchange density
functionals, the quantity εx[n](r1) is usually what is approximated.
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The correlation hole

� The correlation hole is defined as the difference

nc(r1, r2) = nxc(r1, r2)− nx(r1, r2)

nc(r1, r2)

0
r1

r2

and satisfies the sum rule
∫

nc(r1, r2)dr2 = 0

which implies that the correlation hole has negative and positive contributions.

35/95



The correlation hole

� The correlation hole is defined as the difference

nc(r1, r2) = nxc(r1, r2)− nx(r1, r2)

nc(r1, r2)

0
r1

r2

and satisfies the sum rule
∫

nc(r1, r2)dr2 = 0

which implies that the correlation hole has negative and positive contributions.

� The potential contribution to the correlation energy can be written in terms of the
correlation hole

Uc[n] =
1

2

x n(r1)nc(r1, r2)

|r1 − r2|
dr1dr2

But in order to express the total correlation energy Ec[n] = Tc[n] + Uc[n] in a similar
form, we need to introduce the adiabatic-connection formalism.
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The adiabatic connection (1/3)

� The idea of the adiabatic connection is to have a continuous path between the
non-interacting KS system and the physical system while keeping the ground-state
density constant.
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� The idea of the adiabatic connection is to have a continuous path between the
non-interacting KS system and the physical system while keeping the ground-state
density constant.

� For this, we introduce a Hamiltonian depending on a coupling constant λ which
switches on the electron-electron interaction

Ĥ
λ = T̂ + λŴee + V̂

λ

where V̂ λ is the external local potential imposing that the ground-state density is the
same as the ground-state density of the physical system for all λ, i.e. nλ(r) = n0(r), ∀λ.
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where V̂ λ is the external local potential imposing that the ground-state density is the
same as the ground-state density of the physical system for all λ, i.e. nλ(r) = n0(r), ∀λ.

� By varying λ, we connect the KS non-interacting system (λ = 0) to the physical
interacting system (λ = 1):

Ĥ
λ=0

︸ ︷︷ ︸
KS non-interacting

system

0≤λ≤1←−−−−−−−−−→ Ĥ
λ=1

︸ ︷︷ ︸
Physical interacting

system
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Ĥ
λ=0

︸ ︷︷ ︸
KS non-interacting

system

0≤λ≤1←−−−−−−−−−→ Ĥ
λ=1
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Physical interacting

system

� We define a universal functional for each value of the parameter λ

F
λ[n] = min

Ψ∈W
Ψ→n

〈Ψ|T̂ + λŴee|Ψ〉 = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉
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The adiabatic connection (2/3)

� The functional Fλ[n] can be decomposed as

F
λ[n] = Ts[n] + E

λ
H [n] + E

λ
x [n] + E

λ
c [n]
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x [n] are the Hartree and exchange functionals associated with the
interaction λŴee and are simply linear in λ

E
λ
H [n] = λEH[n] and E

λ
x [n] = λEx[n]
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λ
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� The correlation functional Eλ
c [n] is nonlinear in λ

E
λ
c [n] = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉 − 〈Φ[n]|T̂ + λŴee|Φ[n]〉

� We can get rid of T̂ by taking the derivative with respect to λ and using the
Hellmann-Feynman theorem for the wave function Ψλ[n]

∂Eλ
c [n]

∂λ
= 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉
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The adiabatic connection (3/3)

� Reintegrating over λ from 0 to 1, and using Eλ=1
c [n] = Ec[n] and Eλ=0

c [n] = 0 (assuming
no degeneracies at λ = 0), we arrive at the adiabatic-connection formula

Ec[n] =

∫ 1

0

dλ 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉
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� Introducing the correlation hole nλ
c (r1, r2) associated with the wave function Ψλ[n], the

adiabatic-connection formula can also be written as

Ec[n] =
1

2

∫ 1

0

dλ
x n(r1)n

λ
c (r1, r2)

|r1 − r2|
dr1dr2
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� Introducing the correlation hole nλ
c (r1, r2) associated with the wave function Ψλ[n], the

adiabatic-connection formula can also be written as

Ec[n] =
1

2

∫ 1

0

dλ
x n(r1)n

λ
c (r1, r2)

|r1 − r2|
dr1dr2

� Introducing the λ-integrated correlation hole n̄c(r1, r2) =
∫ 1

0
dλ nλ

c (r1, r2), we finally write

Ec[n] =
1

2

x n(r1)n̄c(r1, r2)

|r1 − r2|
dr1dr2 =

∫

n(r1)εc[n](r1)dr1

where εc[n](r1) is the correlation energy per particle, which is the quantity usually
approximated in practice.
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Uniform coordinate scaling (1/2)

� We consider a norm-preserving uniform coordinate scaling in the N-electron wave
function along the adiabatic connection Ψλ[n] (ignoring untouched spin variables)

Ψλ
γ [n](r1, ..., rN) = γ3N/2Ψλ[n](γr1, ..., γrN)

where γ > 0 is a scaling factor.
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function along the adiabatic connection Ψλ[n] (ignoring untouched spin variables)

Ψλ
γ [n](r1, ..., rN) = γ3N/2Ψλ[n](γr1, ..., γrN)

where γ > 0 is a scaling factor.

� The scaled wave function Ψλ
γ [n] yields the scaled density

nγ(r) = γ3
n(γr) (with

∫
nγ(r)dr =

∫
n(r)dr = N)

and minimizes 〈Ψ|T̂ + λγŴee|Ψ〉 since it can be shown that

〈Ψλ
γ [n]|T̂ + λγŴee|Ψλ

γ [n]〉 = γ2〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉
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γ [n] = Ψλγ [nγ ] or, equivalently, Ψλ/γ

γ [n] = Ψλ[nγ ]
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and minimizes 〈Ψ|T̂ + λγŴee|Ψ〉 since it can be shown that

〈Ψλ
γ [n]|T̂ + λγŴee|Ψλ

γ [n]〉 = γ2〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉

� We thus conclude

Ψλ
γ [n] = Ψλγ [nγ ] or, equivalently, Ψλ/γ

γ [n] = Ψλ[nγ ]

� and for the universal density functional

F
λγ [nγ ] = γ2

F
λ[n] or, equivalently, F

λ[nγ ] = γ2
F

λ/γ [n]
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Uniform coordinate scaling (2/2)

� At λ = 0, we find the scaling relation of the KS single-determinant wave function

Φ[nγ ] = Φγ [n]
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Uniform coordinate scaling (2/2)

� At λ = 0, we find the scaling relation of the KS single-determinant wave function

Φ[nγ ] = Φγ [n]

� This directly leads to the scaling relations for Ts[n], EH[n], and Ex[n]

Ts[nγ ] = γ2
Ts[n] and EH[nγ ] = γEH[n] and Ex[nγ ] = γEx[n]

� However, Ec[n] has the more complicated scaling (as F [n])

E
λ
c [nγ ] = γ2

E
λ/γ
c [n]

and, in particular for λ = 1,

Ec[nγ ] = γ2
E

1/γ
c [n]
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High- and low-density limits

� In the high-density limit (γ →∞), the correlation functional goes to a constant, for
nondegenerate KS systems,

lim
γ→∞

Ec[nγ ] = E
GL2
c [n]

where EGL2
c [n] is the second-order Görling-Levy (GL2) correlation energy.

� This is also called the weak-correlation limit since Ec[n] ≪ Ex [n].

� Atomic and molecular systems are often close to the high-density limit. E.g., for the
ground-state density of He, Ec[n] = −0.0421 a.u. and limγ→∞ Ec[nγ ] = −0.0467 a.u..
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� In the high-density limit (γ →∞), the correlation functional goes to a constant, for
nondegenerate KS systems,

lim
γ→∞

Ec[nγ ] = E
GL2
c [n]

where EGL2
c [n] is the second-order Görling-Levy (GL2) correlation energy.

� This is also called the weak-correlation limit since Ec[n] ≪ Ex [n].

� Atomic and molecular systems are often close to the high-density limit. E.g., for the
ground-state density of He, Ec[n] = −0.0421 a.u. and limγ→∞ Ec[nγ ] = −0.0467 a.u..

� In the low-density limit (γ → 0), the Hartree-exchange-correlation functional goes to
zero linearly in γ

EHxc[nγ ] ∼
γ→0

γ W
SCE
ee [n]

where W
SCE
ee [n] = inf

Ψ∈W
Ψ→n

〈Ψ|Ŵee|Ψ〉 is the strictly-correlated-electron (SCE) functional.

� This limit corresponds to a Wigner crystallization.

� This is also called the strong-correlation limit because Ec[n] ∼ Ex [n].

� Calculation of W SCE
ee [n] is computationally involved but has been done for a few systems

(Seidl, Gori-Giorgi, ...).
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One-orbital spatial regions and self-interaction

� For one-electron densities n1e(r) = |ϕ1(r)|2 where ϕ1 is the unique occupied KS orbital,
we have

Ex[n1e] = −EH[n1e] and Ec[n1e] = 0
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� For one-electron densities n1e(r) = |ϕ1(r)|2 where ϕ1 is the unique occupied KS orbital,
we have

Ex[n1e] = −EH[n1e] and Ec[n1e] = 0

� For opposite-spin two-electron densities n
↑↓
2e (r) = 2|ϕ1(r)|2 where ϕ1 is the unique

doubly occupied KS orbital, we have

Ex[n
↑↓
2e ] = −

1

2
EH[n

↑↓
2e ]
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doubly occupied KS orbital, we have
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↑↓
2e ] = −

1

2
EH[n

↑↓
2e ]

� For systems with more electrons, similar relations apply locally in one-orbital spatial
regions, i.e. in regions where only one occupied KS orbital is not zero. This situation
can be approximately realized in chemical systems (unpair electron in a radical, and
electron pair in a single covalent bond, in a lone pair, or in a core orbital).
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2e (r) = 2|ϕ1(r)|2 where ϕ1 is the unique

doubly occupied KS orbital, we have

Ex[n
↑↓
2e ] = −

1

2
EH[n

↑↓
2e ]

� For systems with more electrons, similar relations apply locally in one-orbital spatial
regions, i.e. in regions where only one occupied KS orbital is not zero. This situation
can be approximately realized in chemical systems (unpair electron in a radical, and
electron pair in a single covalent bond, in a lone pair, or in a core orbital).

� If approximate exchange and correlation density functionals do not satisfy these
constraints, we say that they introduce a self-interaction error.
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Lieb-Oxford lower bound

� Lieb and Oxford derived a useful lower bound which can be expressed as

Ex[n] ≥ Exc[n] ≥ −CLO

∫

n(r)4/3dr

where the optimal (i.e., smallest) constant CLO (independent of the electron number N)
has been narrowed to 1.4442 ≤ CLO ≤ 1.5765.

� This bound is approached in the low-density limit.

� For one-electron densities and opposite-spin two-electron densities, specific tigher
bounds (i.e., with smaller CLO) are known.
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The HOMO energy and the ionization energy

� For clarity, we will explicitly indicate the dependence on the electron number N in this
section.

� For finite systems, the exact ground-state density of a N-electron system decays
exponentially for r = |r| → ∞ with an exponent related to the ionization energy
IN = EN−1

0 − EN
0

n
N(r) ∝

r→∞
e
−2
√

2IN r
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� Choosing the constant in the KS potential so that it goes to zero at infinity, i.e.
lim|r|→∞ vN

s (r) = 0, it can be shown the density calculated from the KS orbitals decays
exponentially with an exponent related to the HOMO energy εNH

n
N(r) =
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|ϕi (r)|2 ∝
r→∞

e
−2
√

−2εN
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� This implies that the KS HOMO energy is the opposite of the exact ionization
energy

εNH = −IN
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� Choosing the constant in the KS potential so that it goes to zero at infinity, i.e.
lim|r|→∞ vN

s (r) = 0, it can be shown the density calculated from the KS orbitals decays
exponentially with an exponent related to the HOMO energy εNH
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N(r) =
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� This implies that the KS HOMO energy is the opposite of the exact ionization
energy

εNH = −IN

� It is similar to Koopmans’ theorem for HF, except that here it is exact (no neglect of
correlation or orbital relaxation).
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The LUMO energy, the electron affinity, the derivative discontinuity

� Contrary to what one could have expected, the KS LUMO energy εNL is not the
opposite of the exact electron affinity AN = EN

0 − EN+1
0 but instead

εNL = −AN −∆N
xc

where ∆N
xc ≥ 0 is a constant.
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� Contrary to what one could have expected, the KS LUMO energy εNL is not the
opposite of the exact electron affinity AN = EN

0 − EN+1
0 but instead

εNL = −AN −∆N
xc

where ∆N
xc ≥ 0 is a constant.

� For the (N + 1)-electron system (with the same external potential vne), we have

εN+1
H = −IN+1 = −AN , so it means that

∆N
xc = εN+1

H − εNL
i.e., the constant ∆N

xc corresponds to the“jump”of the LUMO energy of the
N-electron system upon adding an electron so that the HOMO energy of the
(N + 1)-electron system correctly gives −IN+1.
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H = −IN+1 = −AN , so it means that

∆N
xc = εN+1

H − εNL
i.e., the constant ∆N

xc corresponds to the“jump”of the LUMO energy of the
N-electron system upon adding an electron so that the HOMO energy of the
(N + 1)-electron system correctly gives −IN+1.

� In the extension of DFT to fractional electron numbers, it can be shown that the
constant ∆N

xc corresponds to the uniform jump that the exchange-correlation
potential makes when going from N − δ electrons to N + δ electrons with δ → 0+

∆N
xc = v

N+δ
xc (r)− v

N−δ
xc (r) =

(
δExc[n]

δn(r)

)

N+δ

−
(
δExc[n]

δn(r)

)

N−δ

i.e. ∆N
xc is the derivative discontinuity in the exchange-correlation energy functional

Exc[n].
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Kohn-Sham frontier orbital energies: Graphical summary
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H = −AN = −IN+1

N N + 1

50/95



Fundamental gap

� The fundamental gap of the N-electron system is defined as

E
N
gap = IN − AN
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KS gap

So the KS gap is not equal to the exact fundamental gap of the system, the
difference coming from the derivative discontinuity ∆N

xc.

� The derivative discontinuity ∆N
xc can represent an important contribution to the

fundamental gap. In the special case of open-shell systems, we have εNL = εNH , and thus
if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely
given by ∆N

xc.
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Local-density approximation

� In the local-density approximation (LDA), introduced by Kohn and Sham (1965), the
exchange-correlation functional is approximated as

E
LDA
xc [n] =

∫

n(r)εUEGxc (n(r))dr

where εUEGxc (n) is the exchange-correlation energy per particle of the infinite uniform
electron gas (UEG) with the density n.
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� In the local-density approximation (LDA), introduced by Kohn and Sham (1965), the
exchange-correlation functional is approximated as

E
LDA
xc [n] =

∫

n(r)εUEGxc (n(r))dr

where εUEGxc (n) is the exchange-correlation energy per particle of the infinite uniform
electron gas (UEG) with the density n.

� The exchange energy per particle of the UEG can be calculated analytically

εUEGx (n) = Cx n
1/3 Dirac (1930) and Slater (1951)

� For the correlation energy per particle εUEGc (n) of the UEG, there are some parametrized
functions of n fitted to QMC data and imposing the high- and low-density expansions
(using the Wigner-Seitz radius rs = (3/(4πn))1/3)

εUEGc =
rs→0

A ln rs + B + C rs ln rs + O(rs) high-density limit or
weak-correlation limit

εUEGc =
rs→∞

a

rs
+

b

r
3/2
s

+
c

r 2s
+ O

(
1

r
5/2
s

)

low-density limit or
strong-correlation limit

The two most used parametrizations are VWN and PW92. Generalization to spin
densities εUEGc (n↑, n↓) is sometimes referred to as local-spin-density (LSD) approximation.
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The gradient-expansion approximation

� The next logical step beyond the LDA is the gradient-expansion approximation (GEA)
which consists in a systematic expansion of Exc[n] in terms of the gradients of n(r).
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slowly-varying external potential v(r), and expand the exchange-correlation energy in
terms of the gradients of the density. Alternatively, one can perform a semiclassical
expansion of the exact Exc[n].

� At second order, the GEA has the form

E
GEA
xc [n] = E

LDA
xc [n] +

∫

n(r)4/3 C (2)
xc (n(r))

( ∇n(r)
n(r)4/3

)2

dr

where C
(2)
xc (n) = C

(2)
x + C

(2)
c (n) are known coefficients.
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� To derive the GEA, one starts from the uniform electron gas, introduce a weak and
slowly-varying external potential v(r), and expand the exchange-correlation energy in
terms of the gradients of the density. Alternatively, one can perform a semiclassical
expansion of the exact Exc[n].

� At second order, the GEA has the form

E
GEA
xc [n] = E

LDA
xc [n] +

∫

n(r)4/3 C (2)
xc (n(r))

( ∇n(r)
n(r)4/3

)2

dr

where C
(2)
xc (n) = C

(2)
x + C

(2)
c (n) are known coefficients.

� We use the reduced density gradient |∇n|/n4/3 which is a dimensionless quantity.

� The GEA should improve over the LDA provided that the reduced density gradient is
small. Unfortunately, for real molecular systems, the reduced density gradient can be
large in some regions of space, and the GEA turns out to be a worse approximation than
the LDA.
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Generalized-gradient approximations (1/4)

� The failure of the GEA lead to the development of generalized-gradient
approximations (GGAs), started in the 1980s, of the generic form

E
GGA
xc [n] =

∫

e
GGA
xc (n(r),∇n(r))dr
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� The GGAs provide a big improvement over LDA for molecular systems.

� The GGAs are often called semilocal approximations, which means that they involve a
single integral on r using“semilocal information” through ∇n(r).

� For simplicity, we consider here only the spin-independent form, but in practice GGA
functionals are more generally formulated in terms of spin densities and their gradients

E
GGA
xc [n] =

∫
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� The failure of the GEA lead to the development of generalized-gradient
approximations (GGAs), started in the 1980s, of the generic form

E
GGA
xc [n] =

∫

e
GGA
xc (n(r),∇n(r))dr

� The GGAs provide a big improvement over LDA for molecular systems.

� The GGAs are often called semilocal approximations, which means that they involve a
single integral on r using“semilocal information” through ∇n(r).

� For simplicity, we consider here only the spin-independent form, but in practice GGA
functionals are more generally formulated in terms of spin densities and their gradients

E
GGA
xc [n] =

∫

e
GGA
xc (n↑(r), n↓(r),∇n↑(r),∇n↓(r))dr

� (Too) Many GGA functionals have been proposed. We will review some of the most
widely used ones.
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Generalized-gradient approximations (2/4)

� Becke 88 (B88 or B) exchange functional

E
B
x [n] = E

LDA
x [n] +

∫

n(r)4/3 f

( |∇n(r)|
n(r)4/3

)

dr

� This form ensures the fulfilment of the scaling relation EB
x [nγ ] = γEB

x [n].

� Function f chosen so as to satisfy the exact asymptotic behavior of the exchange
energy per particle:

εx(r) ∼
r→∞

− 1

2r

� It contains an empirical parameter fitted to Hartree-Fock exchange energies of
rare-gas atoms.
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x [nγ ] = γEB

x [n].

� Function f chosen so as to satisfy the exact asymptotic behavior of the exchange
energy per particle:

εx(r) ∼
r→∞

− 1

2r

� It contains an empirical parameter fitted to Hartree-Fock exchange energies of
rare-gas atoms.

� Lee-Yang-Parr (LYP) correlation functional (1988)

� One of the rare functionals not constructed starting from LDA.

� It originates from the Colle-Salvetti (1975) correlation-energy approximation
depending on the curvature of Hartree-Fock hole and containing four parameters
fitted to Helium data.

� LYP introduced a further approximation to retain dependence on only n, ∇n, ∇2n.

� The density Laplacian ∇2n can be exactly eliminated by an integration by parts.
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Generalized-gradient approximations (3/4)

� Perdew-Wang 91 (PW91) exchange-correlation functional

� It is based on a model of exchange and correlation holes from which we express the
exchange and correlation energies per particle:

εx(r1) =
1

2

∫
nx(r1, r2)

|r1 − r2|
dr2 and εc(r1) =

1

2

∫
n̄c(r1, r2)

|r1 − r2|
dr2

� It starts from the GEA model of these holes and removes the unrealistic long-range
parts of these holes to restore important conditions satisfied by the LDA.

� For the GEA exchange hole: the spurious positive parts are removed to enforce
nx(r1, r2) ≤ 0 and a cutoff in |r1 − r2| is applied to enforce

∫

nx(r1, r2)dr2 = −1.

� For the GEA correlation hole: a cutoff is applied to enforce
∫

n̄c(r1, r2)dr2 = 0.

� The exchange and correlation energies per particle calculated from these numerical
holes are then fitted to functions of n and |∇n| chosen to satisfy a number of
exact conditions.
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Generalized-gradient approximations (4/4)

� Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional (1996)

This is a simplification of the PW91 functional: εx and εc are simpler functions of n and
|∇n| enforcing fewer exact conditions and with no fitted parameters.

For exchange, the conditions imposed are:

� Second-order GEA expansion: εx ∼
s→0

εLDAx + n1/3C
(2)
x s2 where s = |∇n|/n4/3 (with only

approximate C
(2)
x ≈ −C

(2)
c ).

� A local version of Lieb-Oxford bound, Ex ≥ −CLO

∫

n(r)4/3dr. It was chosen to reach the
bound in the s → ∞ limit.

For correlation, the conditions imposed are:

� High-density limit: εc −−−→
rs→0

const (cancellation of diverging term A ln rs from LDA).

� Second-order GEA expansion: εc ∼
s→0

εLDAc + n1/3C
(2)
c s2 (with C

(2)
c only in rs → 0 limit).

� Large reduced-density-gradient limit: εc −−−−→
s→∞

0 (exchange dominates).
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Meta-generalized-gradient approximations (1/2)

� The meta-generalized-gradient approximations (mGGAs) are of the generic form

E
mGGA
xc [n, τ ] =

∫

e
mGGA
xc (n(r),∇n(r),∇2

n(r), τ(r))dr

where ∇2n(r) is the Laplacian of the density and τ(r) is the non-interacting positive
kinetic energy density

τ(r) =
1

2

N∑

i=1

|∇ϕi (r)|2

which, as we will see, contains useful information.
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61/95



Meta-generalized-gradient approximations (1/2)

� The meta-generalized-gradient approximations (mGGAs) are of the generic form

E
mGGA
xc [n, τ ] =

∫

e
mGGA
xc (n(r),∇n(r),∇2

n(r), τ(r))dr

where ∇2n(r) is the Laplacian of the density and τ(r) is the non-interacting positive
kinetic energy density

τ(r) =
1

2

N∑

i=1

|∇ϕi (r)|2

which, as we will see, contains useful information.

� A mGGA can be either considered as an implicit functional of the density in the KS
method, i.e. Exc[n] = EmGGA

xc [n, τΦ[n]], or more commonly as an explicit functional of a
single-determinant Φ in the GKS method, i.e. E S

xc[Φ] = EmGGA
xc [nΦ, τΦ].

� In the GKS method, a mGGA functional generates a non-multiplicative potential. But
don’t worry, this is allowed in GKS!

� Nowadays, ∇2n(r) is rarely used to construct mGGAs because it contains similar
information than τ(r).

� The mGGAs are considered as part of the family of semilocal approximations.

61/95



Meta-generalized-gradient approximations (1/2)

� The meta-generalized-gradient approximations (mGGAs) are of the generic form

E
mGGA
xc [n, τ ] =

∫

e
mGGA
xc (n(r),∇n(r),∇2

n(r), τ(r))dr

where ∇2n(r) is the Laplacian of the density and τ(r) is the non-interacting positive
kinetic energy density

τ(r) =
1

2

N∑

i=1

|∇ϕi (r)|2

which, as we will see, contains useful information.

� A mGGA can be either considered as an implicit functional of the density in the KS
method, i.e. Exc[n] = EmGGA

xc [n, τΦ[n]], or more commonly as an explicit functional of a
single-determinant Φ in the GKS method, i.e. E S

xc[Φ] = EmGGA
xc [nΦ, τΦ].

� In the GKS method, a mGGA functional generates a non-multiplicative potential. But
don’t worry, this is allowed in GKS!

� Nowadays, ∇2n(r) is rarely used to construct mGGAs because it contains similar
information than τ(r).

� The mGGAs are considered as part of the family of semilocal approximations.

� The mGGAs provide a modest improvement over GGAs.
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Meta-generalized-gradient approximations (2/2)

� Motivations for introducing the variable τ(r):

� Short-range expansion of the spherically average exchange hole (for closed-shell systems):

ñx(r1, r12) = −
n(r1)

2
−

1

3

(

1

4
∇2n(r1)− 4τ(r1) +

|∇n(r1)|2

8n(r1)

)

r212 + O(r412)

Thus τ(r) is needed to describe the curvature of the exchange hole.
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� τ(r) can be used as an indicator of one-orbital spatial regions (regions containing one or
two electrons in a single orbital).
This is done by comparing τ(r) with the von Weizsäcker kinetic energy density

τW(r) =
|∇n(r)|2

8n(r)

which is the exact τ(r) for one and two electrons in a single orbital.
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which is the exact τ(r) for one and two electrons in a single orbital.

� In practice, τ(r) is often used through the variables

� z(r) = τW(r)/τ(r)

� α(r) = (τ(r)− τW(r))/τUEG(r) where τUEG(r) = c n(r)5/3
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� τ(r) can be used as an indicator of one-orbital spatial regions (regions containing one or
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This is done by comparing τ(r) with the von Weizsäcker kinetic energy density

τW(r) =
|∇n(r)|2

8n(r)

which is the exact τ(r) for one and two electrons in a single orbital.

� In practice, τ(r) is often used through the variables

� z(r) = τW(r)/τ(r)

� α(r) = (τ(r)− τW(r))/τUEG(r) where τUEG(r) = c n(r)5/3

� Examples of mGGAs: TPSS (2003), M06-L (2006), and SCAN (2015).
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Hybrid approximations

� In 1993, Becke proposed to mix Hartree-Fock (HF) exchange with GGA functionals in
a three-parameter hybrid (3H) approximation

E
3H
xc [Φ] = a E

HF
x [Φ] + b E

GGA
x [nΦ] + (1− a− b) E LDA

x [nΦ] + c E
GGA
c [nΦ] + (1− c) E LDA

c [nΦ]

where a, b, and c are empirical parameters. Example: B3LYP (a = 0.20)
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� In 1996, Becke proposed a simpler one-parameter hybrid (1H) approximation
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1H
xc [Φ] = a E

HF
x [Φ] + (1− a) EDFA

x [nΦ] + E
DFA
c [nΦ]

where EDFA
x and EDFA

c can be any semilocal density-functional approximations (DFAs).

� The optimal a is often around 0.25. Example: PBE0 = HF/PBE hybrid with a = 0.25.

� A strategy is to use flexible EDFA
x and EDFA

c in a hybrid approximation and optimize
many parameters on molecular properties.
Example: B97 (13 parameters) and M06 and M06-2X (36 parameters).
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Range-separated hybrid approximations

� Based on ideas of Savin (1996), Hirao and coworkers (2001) proposed a long-range
correction (LC) scheme

E
LC
xc [Φ] = E

lr,HF
x [Φ] + E

sr,DFA
x [nΦ] + E

DFA
c [nΦ]

where

� E lr,HF
x [Φ] is the HF exchange energy for the long-range electron-electron interaction

erf(µr12)
r12

replacing the Coulomb interaction 1
r12

,

� E sr,DFA
x [n] is a semilocal DFA exchange energy for the complement short-range

electron-electron interaction (semilocal DFAs are more accurate if limited to short-range
interactions),

� the range-separation parameter µ (also sometimes denoted as ω) is often taken as
µ ≈ 0.3− 0.5 bohr−1.

Example: LC-ωPBE

65/95



Range-separated hybrid approximations

� Based on ideas of Savin (1996), Hirao and coworkers (2001) proposed a long-range
correction (LC) scheme

E
LC
xc [Φ] = E

lr,HF
x [Φ] + E

sr,DFA
x [nΦ] + E

DFA
c [nΦ]

where

� E lr,HF
x [Φ] is the HF exchange energy for the long-range electron-electron interaction

erf(µr12)
r12

replacing the Coulomb interaction 1
r12

,

� E sr,DFA
x [n] is a semilocal DFA exchange energy for the complement short-range

electron-electron interaction (semilocal DFAs are more accurate if limited to short-range
interactions),

� the range-separation parameter µ (also sometimes denoted as ω) is often taken as
µ ≈ 0.3− 0.5 bohr−1.

Example: LC-ωPBE

� In 2004, Yanai, Tew, and Handy introduced a more flexible decomposition called the
Coulomb-attenuating method (CAM)

E
CAM
xc [Φ] = a E

sr,HF
x [Φ] + b E

lr,HF
x [Φ] + (1− a) E sr,DFA

x [nΦ] + (1− b) E lr,DFA
x [nΦ] + E

DFA
c [nΦ]

Examples: CAM-B3LYP, ωB97X
A special case: HSE (b = 0)
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Double-hybrid approximations

� In 2006, Grimme introduced a two-parameter double-hybrid (2DH) approximation

E
2DH
xc = ax E

HF
x [Φ] + (1− ax) E

DFA
x [nΦ] + (1− ac)E

DFA
c [nΦ] + acE

MP2
c

where the MP2-like correlation energy EMP2
c is added a posteriori with the previously

calculated orbitals. Example: B2-PLYP (ax = 0.53 and ac = 0.27).
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� The presence of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal
HF exchange.

� In 2011, Sharkas, Toulouse, and Savin showed that double hybrids can be understood as
approximations of a multideterminant extension of the KS method based on the
adiabatic-connection formalism in which the exact ground-state energy is written as

E0 = min
Ψ∈W

{

〈Ψ|T̂ + V̂ne + λŴee|Ψ〉+ Ē
λ
Hxc[nΨ]

}

where Ēλ
Hxc[n] = (1− λ)EH[n] + (1− λ)Ex[n] + Ēλ

c [n] and Ēλ
c [n] = Ec[n]− λ2Ec[n1/λ].
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{

〈Ψ|T̂ + V̂ne + λŴee|Ψ〉+ Ē
λ
Hxc[nΨ]

}

where Ēλ
Hxc[n] = (1− λ)EH[n] + (1− λ)Ex[n] + Ēλ

c [n] and Ēλ
c [n] = Ec[n]− λ2Ec[n1/λ].

� At second order of a non-linear Møller-Plesset-like perturbation theory, and using
Ec[n1/λ] ≈ Ec[n], we obtain a one-parameter double-hybrid (1DH) approximation

E1DH
xc [Φ] = λ EHF

x [Φ] + (1− λ) EDFA
x [nΦ] + (1− λ2)EDFA

c [nΦ] + λ2EMP2
c

� The multideterminant extension of the KS method can also be used to rigorously combine
wave-function methods such as MCSCF with DFT.
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Range-separated double-hybrid approximations

� In 1996, Savin introduced the range-separated multideterminant extension of the KS
scheme in which the exact ground-state energy is written as

E0 = min
Ψ∈W

{

〈Ψ|T̂ + V̂ne + Ŵ
lr
ee|Ψ〉+ Ē

sr
Hxc[nΨ]

}

where Ŵ lr
ee is the long-range electron-electron operator for the pair potential

erf(µr12)/r12 and Ē sr
Hxc[n] is the complementary short-range density functional.
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Hxc[n] is the complementary short-range density functional.

� The approach can be used to rigorously combine any wave-function method with DFT.

� In 2005, Ángyán, Gerber, Savin, and Toulouse introduced a range-separated
double-hybrid (RSDH) approximation (also called RSH+MP2)

E
RSDH
xc = E

lr,HF
x [Φ] + E

sr,DFA
x [nΦ] + E

sr,DFA
c [nΦ] + E

lr,MP2
c

� Obtained as second order of a non-linear Møller-Plesset-like perturbation theory.

� Long-range MP2 is qualitatively correct for London dispersion interactions.

� Long-range MP2 has a fast convergence with the one-electron basis size.
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� Obtained as second order of a non-linear Møller-Plesset-like perturbation theory.

� Long-range MP2 is qualitatively correct for London dispersion interactions.

� Long-range MP2 has a fast convergence with the one-electron basis size.

� Extensions of this scheme to a more flexible CAM decomposition have also been
proposed.
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Semiempirical dispersion corrections

� To explicitly account for London dispersion interactions, it has been proposed in the
2000s to add to the standard approximate functionals a semiempirical dispersion
correction of the form

Edisp = −s
∑

α<β

f (Rαβ)
C

αβ
6

R6
αβ

where
� Rαβ is the distance between a pair of atoms,

� Cαβ
6 is the dispersion coefficient between these atoms,

� f (Rαβ) is a damping function which tends to 1 at large Rαβ and tends to 0 at small Rαβ ,

� s is a scaling parameter that can be adjusted for each approximate functional.
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6 are empirically obtained from tabulated data.

� The most recent versions also includes Cαβ
8 two-body terms and C

αβγ
9 three-body terms.

� This approach was named“DFT-D”by Grimme. Examples of DFT-D functionals:
PBE-D, B97-D, B3LYP-D, ωB97X-D, B2PLYP-D.

� There are also various proposals to make the determination of dispersion coefficients less
empirical, e.g. Becke and Johnson (2007), Tkatchenko and Scheffler (2009), Sato and
Nakai (2010).
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Nonlocal van der Waals density functionals

� Another approach to describe dispersion interactions is to add to the standard
approximate functionals a nonlocal van der Waals density functional of the form

E
nl
c [n] =

1

2

x

n(r1)n(r2)φ(r1, r2)dr1dr2

where φ(r1, r2) is a correlation kernel.

� Two main families of such nonlocal correlation functionals exist: the“van der Waals
density functionals” (vdW-DF) of Langreth, Lundqvist and coworkers and the
Vydrov-Van Voorhis (VV) functionals.

� For example, the VV10 nonlocal correlation functional (2010) uses a theory-based kernel
φ(r1, r2) with two adjustable parameters.

� Nonlocal van der Waals density functionals are less empirical but more computationally
expensive than semiempirical dispersion corrections.

� Examples of functionals using VV10: ωB97X-V and ωB97M-V.
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4 Additional topics in density-functional theory
Time-dependent density-functional theory
Some less usual orbital-dependent exchange-correlation functionals
Exact exchange
Görling-Levy perturbation theory
Adiabatic-connection fluctuation-dissipation approach

Fractional electron numbers and frontier orbital energies
Quantum mechanics with fractional electron numbers
Density-functional theory with fractional electron numbers
The HOMO energy and the ionization energy
The LUMO energy, the electron affinity, and the derivative discontinuity
Fundamental gap
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Time-dependent density-functional theory (TDDFT)

� Consider the time-dependent electronic Schrödinger equation with an external
time-dependent potential V̂ (t)

i
∂|Ψ(t)〉
∂t

=
(

T̂ + Ŵee + V̂ (t)
)

|Ψ(t)〉
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time-dependent potential V̂ (t)

i
∂|Ψ(t)〉
∂t

=
(

T̂ + Ŵee + V̂ (t)
)

|Ψ(t)〉

� Similarly to the Hohenberg-Kohn theorem, Runge and Gross (1984) showed that, for a
given initial wave function Ψ(0), the time-dependent density n(r, t) determines the
time-dependent potential v(r, t) up to an arbitrary additive time function:

n(r, t) −−−−−−→
Runge-Gross

v(r, t) + c(t)
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time-dependent potential v(r, t) up to an arbitrary additive time function:

n(r, t) −−−−−−→
Runge-Gross

v(r, t) + c(t)

� We can thus set up a time-dependent non-interacting KS system

i
∂ϕi(r, t)

∂t
=

(

−1

2
∇2 + vs(r, t)

)

ϕi (r, t)

where the time-dependent KS potential vs(r, t) = v(r, t) + vHxc(r, t) reproduces the
evolution of the exact density as n(r, t) =

∑N
i=1 |ϕi (r, t)|2.
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(

−1

2
∇2 + vs(r, t)
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where the time-dependent KS potential vs(r, t) = v(r, t) + vHxc(r, t) reproduces the
evolution of the exact density as n(r, t) =

∑N
i=1 |ϕi (r, t)|2.

� Remark: Runge and Gross also established a TDDFT variational theorem, but it was later shown

to violate causality. Several different possible solutions to this problem have then been proposed.
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Linear-response TDDFT

� Let us consider a time-periodic potential of frequency ω. In Fourier space, a variation of
the KS potential vs(r1, ω) caused by a variation of the density n(r2, ω) can be written as

δvs(r1, ω)

δn(r2, ω)
=
δv(r1, ω)

δn(r2, ω)
+
δvHxc(r1, ω)

δn(r2, ω)
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� Let us consider a time-periodic potential of frequency ω. In Fourier space, a variation of
the KS potential vs(r1, ω) caused by a variation of the density n(r2, ω) can be written as

δvs(r1, ω)

δn(r2, ω)
=
δv(r1, ω)

δn(r2, ω)
+
δvHxc(r1, ω)

δn(r2, ω)

� This can be rewritten as

χ−1
s (r1, r2, ω) = χ−1(r1, r2, ω) + fHxc(r1, r2, ω)

where

� χs(r1, r2, ω) = δn(r1, ω)/δvs(r2, ω) is the KS non-interacting linear-response function

� χ(r1, r2, ω) = δn(r1, ω)/δv(r2, ω) is the interacting linear-response function

� fHxc(r1, r2, ω) = δvHxc(r1, ω)/δn(r2, ω) is the Hartree-exchange-correlation kernel
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� χ(r1, r2, ω) = δn(r1, ω)/δv(r2, ω) is the interacting linear-response function

� fHxc(r1, r2, ω) = δvHxc(r1, ω)/δn(r2, ω) is the Hartree-exchange-correlation kernel

� The interacting linear-response function χ(r1, r2, ω) is thus found from the Dyson-like
response equation

χ−1(r1, r2, ω) = χ−1
s (r1, r2, ω)− fHxc(r1, r2, ω)

or, equivalently,

χ(r1, r2, ω) = χs(r1, r2, ω) +
x

dr3dr4 χs(r1, r3, ω) fHxc(r3, r4, ω) χ(r4, r2, ω)

75/95



Excitation energies from linear-response TDDFT

� The KS linear-response function has poles at the KS (de-)excitation energies

χs(r1, r2, ω) =
∑

σ∈{↑,↓}

occ∑

i

vir∑

a

[
ϕ∗

iσ(r1)ϕaσ(r1)ϕ
∗
aσ(r2)ϕiσ(r2)

ω − (εa − εi ) + i0+
− ϕ∗

aσ(r1)ϕiσ(r1)ϕ
∗
iσ(r2)ϕaσ(r2)

ω + (εa − εi ) + i0+

]
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� Similarly, χ(r1, r2, ω) has poles at the exact excitation energies ωn = En − E0.
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∗
iσ(r2)ϕaσ(r2)

ω + (εa − εi ) + i0+

]

� Similarly, χ(r1, r2, ω) has poles at the exact excitation energies ωn = En − E0.

� Writing χ−1(ω) = χ−1
s (ω)− fHxc(ω) in the spin-orbital tensor-product basis {ψ∗

i ψa, ψ
∗
aψi}

χ
−1(ω) = −

[(
A(ω) B(ω)

B(−ω)∗ A(−ω)∗
)

− ω
(

1 0
0 −1

)]

where the matrices A(ω) and B(ω) are

[A(ω)]ia,jb = (εa − εi )δijδab + 〈aj |fHxc(ω)|ib〉

[B(ω)]ia,jb = 〈ab|fHxc(ω)|ij〉
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[A(ω)]ia,jb = (εa − εi )δijδab + 〈aj |fHxc(ω)|ib〉

[B(ω)]ia,jb = 〈ab|fHxc(ω)|ij〉

� The excitation energies ωn can be calculated from the generalized eigenvalue equation
(

A(ωn) B(ωn)
B(−ωn)

∗ A(−ωn)
∗

)(
Xn

Yn

)

= ωn

(
1 0
0 −1

)(
Xn

Yn

)
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The Hartree-exchange-correlation kernel

� In linear-response TDDFT, the key quantity to be approximated is the
Hartree-exchange-correlation kernel

fHxc(r1, r2, ω) =
δvHxc(r1, ω)

δn(r2, ω)
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where the Hartree kernel is simply fH(r1, r2) = 1/|r1 − r2|.
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fHxc(r1, r2, ω) = fH(r1, r2) + fxc(r1, r2, ω)

where the Hartree kernel is simply fH(r1, r2) = 1/|r1 − r2|.
� In almost all TDDFT calculations, the frequency dependence of fxc is neglected, which is

called the adiabatic approximation

fxc(r1, r2, ω) ≈ δvxc(r1)

δn(r2)
=

δExc[n]

δn(r1)δn(r2)

with the notorious consequence that only single-electron excitations are taken into
account (double excitations and higher are missing).
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� In almost all TDDFT calculations, the frequency dependence of fxc is neglected, which is

called the adiabatic approximation

fxc(r1, r2, ω) ≈ δvxc(r1)

δn(r2)
=

δExc[n]

δn(r1)δn(r2)

with the notorious consequence that only single-electron excitations are taken into
account (double excitations and higher are missing).

� To describe nonlocal excitations, such as charge-transfer excitations, range-separated
hybrid approximations are often used. The kernel has then the expression

fxc = f
lr,HF
x + f

sr,DFA
x + f

DFA
c

where f lr,HFx is the long-range HF exchange kernel.
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Outline

4 Additional topics in density-functional theory
Time-dependent density-functional theory
Some less usual orbital-dependent exchange-correlation functionals
Exact exchange
Görling-Levy perturbation theory
Adiabatic-connection fluctuation-dissipation approach

Fractional electron numbers and frontier orbital energies
Quantum mechanics with fractional electron numbers
Density-functional theory with fractional electron numbers
The HOMO energy and the ionization energy
The LUMO energy, the electron affinity, and the derivative discontinuity
Fundamental gap
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Orbital-dependent exchange-correlation functionals

� We discuss here some exchange-correlation energy functionals depending explicitly on
the KS orbitals and KS orbital energies: Exc[{ϕp}, {εp}]

� Since the KS orbitals and KS orbital energies are implicit functionals of the density, i.e.
ϕp[n](r) and εp[n], these exchange-correlation expressions are implicit functionals of
the density.

� In fact, the (range-separated) hybrid and double-hybrid approximations that we have
seen already are sometimes considered to belong to this family, but they are more
commonly considered within the GKS method, i.e. the orbitals are obtained with a
nonlocal potential.

� Here, we are concerned with orbital-dependent exchange-correlation energy functionals

within the KS method, i.e. with orbitals obtained with a local potential: vxc(r) =
δExc

δn(r)

� Then, the calculation of the potential vxc(r) requires the optimized-effective-potential
(OEP) method, which tends to be computationally involved.
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Exact exchange

� The exact exchange (EXX) energy functional is

Ex = −1

2

∑

σ∈{↑,↓}

Nσ∑

i=1

Nσ∑

j=1

x ϕ∗
iσ(r1)ϕjσ(r1)ϕ

∗
jσ(r2)ϕiσ(r2)

|r1 − r2|
dr1dr2

It has exactly the same form as the HF exchange energy, but the orbitals used in this
expression are different.
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∑

σ∈{↑,↓}

Nσ∑

i=1

Nσ∑

j=1

x ϕ∗
iσ(r1)ϕjσ(r1)ϕ

∗
jσ(r2)ϕiσ(r2)

|r1 − r2|
dr1dr2

It has exactly the same form as the HF exchange energy, but the orbitals used in this
expression are different.

� The associated EXX potential vx(r) is calculated using the chain rule via the total KS
potential vs(r)

δEx

δvs(r)
=

∫
δEx

δn(r′)

δn(r′)

δvs(r)
dr′
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� The associated EXX potential vx(r) is calculated using the chain rule via the total KS
potential vs(r)

δEx

δvs(r)
=

∫
δEx

δn(r′)

δn(r′)

δvs(r)
dr′

� Introducing the non-interacting KS static linear-response function
χs(r

′, r) = δn(r′)/δvs(r), we find the OEP equation for the EXX potential
∫

vx(r
′)χs(r

′, r)dr′ =
δEx

δvs(r)

Explicit expressions in terms of the orbitals can be derived for δEx/δvs(r) and χs(r
′, r).
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expression are different.

� The associated EXX potential vx(r) is calculated using the chain rule via the total KS
potential vs(r)

δEx

δvs(r)
=

∫
δEx

δn(r′)

δn(r′)

δvs(r)
dr′

� Introducing the non-interacting KS static linear-response function
χs(r

′, r) = δn(r′)/δvs(r), we find the OEP equation for the EXX potential
∫

vx(r
′)χs(r

′, r)dr′ =
δEx

δvs(r)

Explicit expressions in terms of the orbitals can be derived for δEx/δvs(r) and χs(r
′, r).

� The EXX occupied orbitals are very similar the HF ones, but the EXX virtual orbitals are
much less diffuse than the HF ones (vx(r) ∼

r→∞
−1/r for all orbitals, contrary to HF).
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Görling-Levy perturbation theory (1/2)

� In 1993, Görling and Levy developed a perturbation theory in terms of the coupling
constant λ of the adiabatic connection.
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Görling-Levy perturbation theory (1/2)

� In 1993, Görling and Levy developed a perturbation theory in terms of the coupling
constant λ of the adiabatic connection.

� The Hamiltonian along the adiabatic connection (keeping the density constant) is

Ĥ
λ = T̂ + λŴee + V̂

λ = Ĥs + λ(Ŵee − V̂Hx)− λ2
V̂

(2)
c − · · ·

where we have used V̂ λ = V̂s − λV̂Hx − V̂ λ
c = V̂s − λV̂Hx − λ2V̂

(2)
c − · · ·
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� At λ = 0, we have the KS non-interacting reference Hamiltonian Ĥs = T̂ + V̂s

Ĥs|Φn〉 = En|Φn〉

where Φ0 ≡ Φ is the ground-state KS determinant.
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where we have used V̂ λ = V̂s − λV̂Hx − V̂ λ
c = V̂s − λV̂Hx − λ2V̂

(2)
c − · · ·

� At λ = 0, we have the KS non-interacting reference Hamiltonian Ĥs = T̂ + V̂s

Ĥs|Φn〉 = En|Φn〉

where Φ0 ≡ Φ is the ground-state KS determinant.

� The ground-state wave function Ψλ of Ĥλ is expanded in powers of λ

|Ψλ〉 = |Φ〉+ λ|Ψ(1)〉+ · · · with |Ψ(1)〉 = −
∑

n 6=0

〈Φn|Ŵee − V̂Hx|Φ〉
En − E0

|Φn〉

assuming a nondegenerate KS ground state.

81/95



Görling-Levy perturbation theory (2/2)

� The correlation energy is then expanded in powers of λ

E
λ
c = 〈Ψλ|T̂ + λŴee|Ψλ〉 − 〈Φ|T̂ + λŴee|Φ〉 = E

(0)
c + λE (1)

c + λ2
E

(2)
c + · · ·

where the zeroth- and first-order terms vanish: E
(0)
c = 0 and E

(1)
c = (∂Eλ

c /∂λ)λ=0 = 0
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� The correlation energy is then expanded in powers of λ
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c = 〈Ψλ|T̂ + λŴee|Ψλ〉 − 〈Φ|T̂ + λŴee|Φ〉 = E

(0)
c + λE (1)

c + λ2
E

(2)
c + · · ·

where the zeroth- and first-order terms vanish: E
(0)
c = 0 and E

(1)
c = (∂Eλ

c /∂λ)λ=0 = 0

� The second-order term is the second-order Görling-Levy (GL2) correlation energy

E
GL2
c ≡ E

(2)
c = 〈Φ|Ŵee|Ψ(1)〉 = 〈Φ|Ŵee − V̂Hx|Ψ(1)〉

where we have used 〈Φ|V̂Hx|Ψ(1)〉 = 0 since it is the derivative with respect to λ at
λ = 0 of 〈Ψλ|V̂Hx|Ψλ〉 =

∫
vHx(r)n(r)dr which does not depend on λ.
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λ = 0 of 〈Ψλ|V̂Hx|Ψλ〉 =

∫
vHx(r)n(r)dr which does not depend on λ.

� The GL2 correlation energy is thus

E
GL2
c = −

∑

n 6=0

|〈Φ|Ŵee − V̂Hx|Φn〉|2
En − E0

= E
MP2
c + E

S
c

with a double-excitation MP2-like term EMP2
c and single-excitation term E S

c

E
MP2
c = −1

4

occ∑

i,j

vir∑

a,b

|〈ij ||ab〉|2
εa + εb − εi − εj

and E
S
c = −

occ∑

i

vir∑

a

|〈i |V̂ HF
x − V̂x|a〉|2
εa − εi
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� In practice, results are often disappointing! It is preferable to go beyond second order
with the random-phase approximation.
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Adiabatic-connection fluctuation-dissipation approach (1/2)

� The adiabatic-connection formula for the correlation energy is

Ec =
1

2

∫ 1

0

dλ
x nλ

2,c(r1, r2)

|r1 − r2|
dr1dr2
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� The adiabatic-connection formula for the correlation energy is

Ec =
1

2

∫ 1

0

dλ
x nλ

2,c(r1, r2)

|r1 − r2|
dr1dr2

� The correlation part of the pair density can be written

n
λ
2,c(r1, r2) = 〈Ψλ|n̂2(r1, r2)|Ψλ〉 − 〈Φ|n̂2(r1, r2)|Φ〉

where n̂2(r1, r2) is the pair-density operator.
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2,c(r1, r2) = 〈Ψλ|n̂2(r1, r2)|Ψλ〉 − 〈Φ|n̂2(r1, r2)|Φ〉

where n̂2(r1, r2) is the pair-density operator.

� We use the expression of the pair-density operator in terms of the density operator n̂(r)

n̂2(r1, r2) = n̂(r1)n̂(r2)− δ(r1 − r2)n̂(r1)

and the fact that the density is constant along the adiabatic connection

〈Ψλ|n̂(r1)|Ψλ〉 = 〈Φ|n̂(r1)|Φ〉
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and the fact that the density is constant along the adiabatic connection

〈Ψλ|n̂(r1)|Ψλ〉 = 〈Φ|n̂(r1)|Φ〉

� We thus see that the correlation pair density can be written as

n
λ
2,c(r1, r2) = 〈Ψλ|n̂(r1)n̂(r2)|Ψλ〉 − 〈Φ|n̂(r1)n̂(r2)|Φ〉
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Adiabatic-connection fluctuation-dissipation approach (2/2)

� Let us consider the linear-response function along the adiabatic connection

χλ(r1, r2, ω) =
∑

n 6=0

〈Ψλ|n̂(r1)|Ψλ
n 〉〈Ψλ

n |n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψ

λ|n̂(r2)|Ψλ
n 〉〈Ψλ

n |n̂(r1)|Ψλ〉
ω + ωλ

n + i0+

where the sum is over all eigenstates Ψλ
n of the Hamiltonian Ĥλ, i.e. Ĥλ|Ψλ

n 〉 = Eλ
n |Ψλ

n 〉,
except the ground state Ψλ ≡ Ψλ

0 , and ω
λ
n = Eλ

n − Eλ
0 are the excitation energies.
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� Let us consider the linear-response function along the adiabatic connection

χλ(r1, r2, ω) =
∑

n 6=0

〈Ψλ|n̂(r1)|Ψλ
n 〉〈Ψλ

n |n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψ

λ|n̂(r2)|Ψλ
n 〉〈Ψλ

n |n̂(r1)|Ψλ〉
ω + ωλ

n + i0+

where the sum is over all eigenstates Ψλ
n of the Hamiltonian Ĥλ, i.e. Ĥλ|Ψλ

n 〉 = Eλ
n |Ψλ

n 〉,
except the ground state Ψλ ≡ Ψλ

0 , and ω
λ
n = Eλ

n − Eλ
0 are the excitation energies.

� By contour integrating χλ(r1, r2, ω) around the right half ω-complex plane, we arrive at
the fluctuation-dissipation theorem

n
λ
2,c(r1, r2) = −

∫ +∞

−∞

dω

2π
[χλ(r1, r2, iω)− χs(r1, r2, iω)]

which relates ground-state correlations in the time-independent system nλ
2,c(r1, r2) to the

linear response of the system χλ(r1, r2, ω) due to a time-dependent external perturbation.
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λ
2,c(r1, r2) = −

∫ +∞

−∞
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[χλ(r1, r2, iω)− χs(r1, r2, iω)]

which relates ground-state correlations in the time-independent system nλ
2,c(r1, r2) to the

linear response of the system χλ(r1, r2, ω) due to a time-dependent external perturbation.

� We thus have the adiabatic-connection fluctuation-dissipation (ACFD) formula for
the correlation energy

Ec = −1

2

∫ 1

0

dλ

∫ +∞

−∞

dω

2π

x χλ(r1, r2, iω)− χs(r1, r2, iω)

|r1 − r2|
dr1dr2
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Random-phase approximation

� The ACFD formula involves χλ(r1, r2, iω) which can be obtained from linear-response
TDDFT

χλ(r1, r2, ω) = χs(r1, r2, ω) +
x

dr3dr4 χs(r1, r3, ω) f
λ
Hxc(r3, r4, ω) χλ(r4, r2, ω)
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χλ(r1, r2, ω) = χs(r1, r2, ω) +
x

dr3dr4 χs(r1, r3, ω) f
λ
Hxc(r3, r4, ω) χλ(r4, r2, ω)

� The simplest approximation is the (direct) random-phase approximation (RPA)

f
λ
Hxc(r1, r2, ω) ≈ f

λ
H (r1, r2) = λwee(r1, r2)

where wee(r1, r2) = 1/|r1 − r2| is the Coulomb interaction.
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TDDFT

χλ(r1, r2, ω) = χs(r1, r2, ω) +
x

dr3dr4 χs(r1, r3, ω) f
λ
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f
λ
Hxc(r1, r2, ω) ≈ f

λ
H (r1, r2) = λwee(r1, r2)

where wee(r1, r2) = 1/|r1 − r2| is the Coulomb interaction.

� By iterating the TDDFT response equation, we find the RPA linear-response function

χ
RPA
λ (ω) = χs(ω) + λ χs(ω)weeχs(ω) + λ2

χs(ω)weeχs(ω)weeχs(ω) + · · ·
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where wee(r1, r2) = 1/|r1 − r2| is the Coulomb interaction.

� By iterating the TDDFT response equation, we find the RPA linear-response function

χ
RPA
λ (ω) = χs(ω) + λ χs(ω)weeχs(ω) + λ2

χs(ω)weeχs(ω)weeχs(ω) + · · ·

� Finally, the (direct) RPA correlation energy is

E
RPA
c = −1

2

∫ 1

0

dλ

∫ +∞

−∞

dω

2π
Tr
[

wee

(

λχs(iω)weeχs(iω) + λ2
χs(iω)weeχs(iω)weeχs(iω) + · · ·

)]

which can be exactly summed.
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c = −1
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∫ 1

0

dλ

∫ +∞

−∞

dω

2π
Tr
[

wee

(

λχs(iω)weeχs(iω) + λ2
χs(iω)weeχs(iω)weeχs(iω) + · · ·

)]

which can be exactly summed.

� The (direct) RPA correlation energy corresponds to the sum of all direct ring diagrams.
It accounts for long-range van der Waals dispersion interactions. However, it shows large
self-interaction errors, which can be overcome by adding exchange diagrams.
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Outline

4 Additional topics in density-functional theory
Time-dependent density-functional theory
Some less usual orbital-dependent exchange-correlation functionals
Exact exchange
Görling-Levy perturbation theory
Adiabatic-connection fluctuation-dissipation approach

Fractional electron numbers and frontier orbital energies
Quantum mechanics with fractional electron numbers
Density-functional theory with fractional electron numbers
The HOMO energy and the ionization energy
The LUMO energy, the electron affinity, and the derivative discontinuity
Fundamental gap
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Quantum mechanics with fractional electron numbers (1/2)

� The ground-state energy of a system with a fractional number of electrons
N = N − 1 + f (where N is an integer and 0 ≤ f ≤ 1) can be defined as

E
N−1+f
0 = min

Γ̂∈DN−1+f
DM

Tr
[(

T̂ + Ŵee + V̂ne

)

Γ̂
]

where the minimization is over ensemble density matrices Γ̂ in the set

DN−1+f
DM =

{

Γ̂ = (1− f )|ΨN−1〉〈ΨN−1|+ f |ΨN〉〈ΨN |, ΨN−1 ∈ WN−1,ΨN ∈ WN
}

where f is fixed, and ΨN−1 and ΨN are arbitrary wave functions in the (N − 1)- and
N-electron admissible wave-function sets WN−1 and WN , respectively.
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{

Γ̂ = (1− f )|ΨN−1〉〈ΨN−1|+ f |ΨN〉〈ΨN |, ΨN−1 ∈ WN−1,ΨN ∈ WN
}

where f is fixed, and ΨN−1 and ΨN are arbitrary wave functions in the (N − 1)- and
N-electron admissible wave-function sets WN−1 and WN , respectively.

� The minimizing ensemble density matrix is

Γ̂0 = (1− f ) |ΨN−1
0 〉〈ΨN−1

0 |+ f |ΨN
0 〉〈ΨN

0 |

where ΨN−1
0 and ΨN

0 are the (N − 1)- and N-electron ground-state wave functions.
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where f is fixed, and ΨN−1 and ΨN are arbitrary wave functions in the (N − 1)- and
N-electron admissible wave-function sets WN−1 and WN , respectively.

� The minimizing ensemble density matrix is

Γ̂0 = (1− f ) |ΨN−1
0 〉〈ΨN−1

0 |+ f |ΨN
0 〉〈ΨN

0 |

where ΨN−1
0 and ΨN

0 are the (N − 1)- and N-electron ground-state wave functions.

� The ground-state energy is linear in f between the integer numbers N − 1 and N

E
N−1+f
0 = (1− f ) EN−1

0 + f E
N
0

where EN−1
0 and EN

0 are the (N − 1)- and N-electron ground-state energies.

� Similarly, between the integer electron numbers N and N + 1, we have

E
N+f
0 = (1− f ) EN

0 + f E
N+1
0
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Quantum mechanics with fractional electron numbers (2/2)

� The ground-state energy is a continuous piecewise
linear function of the fractional electron number N .

EN
0

N
N − 1 N N + 1

EN+1
0

EN
0

EN−1
0
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Quantum mechanics with fractional electron numbers (2/2)

� The ground-state energy is a continuous piecewise
linear function of the fractional electron number N .

EN
0

N
N − 1 N N + 1

EN+1
0

EN
0

EN−1
0

� The derivative of EN
0 with respect to N defines the

electronic chemical potential

µ =
∂EN

0

∂N
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Quantum mechanics with fractional electron numbers (2/2)

� The ground-state energy is a continuous piecewise
linear function of the fractional electron number N .

EN
0

N
N − 1 N N + 1

EN+1
0

EN
0

EN−1
0

−IN� The derivative of EN
0 with respect to N defines the

electronic chemical potential

µ =
∂EN

0

∂N
� Taking the derivative with respect to N corresponds to taking the derivative with

respect to f , we find for N − 1 < N < N
(
∂EN

0

∂N

)

N−1<N<N

= E
N
0 − E

N−1
0 = −IN

where IN is the ionization energy of the N-electron system.
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0 = −AN

where AN is the electron affinity of the N-electron system.
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Quantum mechanics with fractional electron numbers (2/2)

� The ground-state energy is a continuous piecewise
linear function of the fractional electron number N .

EN
0

N
N − 1 N N + 1

EN+1
0

EN
0

EN−1
0

−IN

−AN

� The derivative of EN
0 with respect to N defines the

electronic chemical potential

µ =
∂EN

0

∂N
� Taking the derivative with respect to N corresponds to taking the derivative with

respect to f , we find for N − 1 < N < N
(
∂EN

0

∂N

)

N−1<N<N

= E
N
0 − E

N−1
0 = −IN

where IN is the ionization energy of the N-electron system.

� Similarly for N < N < N + 1
(
∂EN

0

∂N

)

N<N<N+1

= E
N+1
0 − E

N
0 = −AN

where AN is the electron affinity of the N-electron system.

� The electronic chemical potential µ has thus a discontinuity at the integer electron
number N. So, the plot of EN

0 with respect to N is made of a series of straight lines
between integer electron numbers, with derivative discontinuities at each integer. 88/95



DFT with fractional electron numbers (1/2)

� The universal density functional F [n] is extended to densities integrating to a fractional
electron number,

∫
n(r)dr = N = N − 1 + f , as

F [n] = min
Γ̂∈DN−1+f

DM

Γ̂→n

Tr
[(

T̂ + Ŵee

)

Γ̂
]
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� The universal density functional F [n] is extended to densities integrating to a fractional
electron number,

∫
n(r)dr = N = N − 1 + f , as

F [n] = min
Γ̂∈DN−1+f

DM

Γ̂→n

Tr
[(

T̂ + Ŵee

)

Γ̂
]

� To set up a KS method, we introduce the decomposition F [n] = Ts[n] + EHxc[n] where

Ts[n] = min
Γ̂s∈DN−1+f

DM,s

Γ̂s→n

Tr[T̂ Γ̂s]

is the KS non-interacting kinetic-energy functional and the minimization is over
ensemble non-interacting density matrices Γ̂s in the set

DN−1+f
DM,s =

{

Γ̂s = (1− f ) |ΦN−1,f 〉〈ΦN−1,f |+ f |ΦN,f 〉〈ΦN,f |
}

where ΦN−1,f and ΦN,f are (N − 1)- and N-electron single-determinant wave functions,
constructed from a common set of orbitals {ϕi} depending on the fixed f .
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� To set up a KS method, we introduce the decomposition F [n] = Ts[n] + EHxc[n] where

Ts[n] = min
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is the KS non-interacting kinetic-energy functional and the minimization is over
ensemble non-interacting density matrices Γ̂s in the set

DN−1+f
DM,s =

{

Γ̂s = (1− f ) |ΦN−1,f 〉〈ΦN−1,f |+ f |ΦN,f 〉〈ΦN,f |
}

where ΦN−1,f and ΦN,f are (N − 1)- and N-electron single-determinant wave functions,
constructed from a common set of orbitals {ϕi} depending on the fixed f .

� The exact ground-state energy can then be expressed as

E
N−1+f
0 = min

Γ̂s∈DN−1+f
DM,s

{

Tr
[(

T̂ + V̂ne

)

Γ̂s

]

+ EHxc[nΓ̂s ]
}
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DFT with fractional electron numbers (2/2)

� The total energy can be written in terms of orbital occupation numbers ni

E
N−1+f =

N∑

i=1

ni

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r)

)

ϕi (r)dr + EHxc[n]

with the density n(r) =
∑N

i=1 ni |ϕi (r)|2 and the occupation numbers ni = 1
for i ≤ N−1 and nN = f for the HOMO (ignoring degeneracy for simplicity).

εi
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DFT with fractional electron numbers (2/2)

� The total energy can be written in terms of orbital occupation numbers ni

E
N−1+f =

N∑

i=1

ni

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r)

)

ϕi (r)dr + EHxc[n]

with the density n(r) =
∑N

i=1 ni |ϕi (r)|2 and the occupation numbers ni = 1
for i ≤ N−1 and nN = f for the HOMO (ignoring degeneracy for simplicity).

εi

� The orbitals satisfy standard-looking KS equations
(

−1

2
∇2 + vs(r)

)

ϕi (r) = εiϕi (r) with vs(r) = vne(r) +
δEHxc[n]

δn(r)

with the important difference that we can now fix the arbitrary constant in vs(r).
This is because we can now allow variations of n(r) changing N , i.e.

∫
δn(r)dr 6= 0

δEHxc[n] =

∫ (
δEHxc[n]

δn(r)
+ const

)

δn(r)dr

making the constant no longer arbitrary. This unambiguously fixes the values of the KS
orbital energies εi .
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� The orbitals satisfy standard-looking KS equations
(

−1

2
∇2 + vs(r)

)

ϕi (r) = εiϕi (r) with vs(r) = vne(r) +
δEHxc[n]

δn(r)

with the important difference that we can now fix the arbitrary constant in vs(r).
This is because we can now allow variations of n(r) changing N , i.e.

∫
δn(r)dr 6= 0

δEHxc[n] =

∫ (
δEHxc[n]

δn(r)
+ const

)

δn(r)dr

making the constant no longer arbitrary. This unambiguously fixes the values of the KS
orbital energies εi .

� Janak’s theorem (1978): After optimizing the orbitals with fixed occupation numbers,
we have

∂EN

∂ni
= εi for occupied orbitals
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The HOMO energy and the ionization energy

� For clarity in the discussion, we will now explicitly indicate the dependence on the
electron number N .
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� Janak’s theorem applied to the HOMO for N = N − δ where δ → 0+ gives
(
∂EN

0

∂N

)

N−δ

= εN−δ
H ≡ εNH

where εNH is the HOMO energy of the N-electron system (defined as the left side of
discontinuity).
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� For clarity in the discussion, we will now explicitly indicate the dependence on the
electron number N .

� Janak’s theorem applied to the HOMO for N = N − δ where δ → 0+ gives
(
∂EN

0

∂N

)

N−δ

= εN−δ
H ≡ εNH

where εNH is the HOMO energy of the N-electron system (defined as the left side of
discontinuity).

� This implies that the KS HOMO energy is the opposite of the exact ionization
energy

εNH = −IN

� Combining this result with the known asymptotic behavior of the exact ground-state
density (for finite systems)

n
N(r) ∼

r→∞
e
−2
√

2IN r

it can be shown that it implies that the KS potential vN
s (r) ≡ vN−δ

s (r) (defined as the
limit from the left side) vanishes asymptotically

lim
r→∞

v
N
s (r) = 0
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The LUMO energy, the electron affinity, the derivative discontinuity (1/2)

� Janak’s theorem applied to the HOMO but now for N = N + δ where δ → 0+ gives
(
∂EN

0

∂N

)

N+δ

= εN+δ
H = −AN

where εN+δ
H is the HOMO energy from the right side of the discontinuity.

Remark: ∂EN
0 /∂N is constant for all N < N < N + 1, so: εN+δ

H = εN+1−δ
H ≡ εN+1

H
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(
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0
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)

N+δ

= εN+δ
H = −AN

where εN+δ
H is the HOMO energy from the right side of the discontinuity.

Remark: ∂EN
0 /∂N is constant for all N < N < N + 1, so: εN+δ

H = εN+1−δ
H ≡ εN+1

H

� One may think that εN+δ
H is equal to the LUMO energy of the N-electron system εNL

εN+δ
H

?
= εNL ≡ εN−δ

L

εi

εN−δ

L
?
=

N − δ

εN+δ

H

N + δ
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� One may think that εN+δ
H is equal to the LUMO energy of the N-electron system εNL
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=
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H = εN+1−δ
H ≡ εN+1

H

� One may think that εN+δ
H is equal to the LUMO energy of the N-electron system εNL

εN+δ
H

?
= εNL ≡ εN−δ

L
but this is WRONG!

εi

εN−δ

L
?
=

N − δ

εN+δ

H

N + δ

� Let us compare εN+δ
H and εN−δ

L :

εN+δ
H =

∫

ϕN+δ
H (r)∗

(

−1

2
∇2 + v

N+δ
s (r)

)

ϕN+δ
H (r)dr

εN−δ
L =

∫

ϕN−δ
L (r)∗

(

−1

2
∇2 + v

N−δ
s (r)

)

ϕN−δ
L (r)dr
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The LUMO energy, the electron affinity, the derivative discontinuity (1/2)
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� Let us compare εN+δ
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εN+δ
H =

∫
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H (r)∗

(

−1

2
∇2 + v

N+δ
s (r)

)

ϕN+δ
H (r)dr
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L =

∫

ϕN−δ
L (r)∗

(

−1

2
∇2 + v

N−δ
s (r)

)

ϕN−δ
L (r)dr

� The density is continuous at the integer N, i.e. nN+δ(r) = nN−δ(r), but this only
imposes that vN+δ

s (r) and vN−δ
s (r) be equal up to an additive constant (according to

the Hohenberg-Kohn theorem).
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The LUMO energy, the electron affinity, the derivative discontinuity (2/2)

� Indeed, it turns out that vN+δ
s (r) and vN−δ

s (r) do differ by a uniform constant ∆N
xc

v
N+δ
s (r)− v

N−δ
s (r) = ∆N

xc
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� In conclusion, the KS LUMO energy is not the opposite of the exact electron affinity

εNL = −AN −∆N
xc

due to the discontinuity ∆N
xc in the KS potential.

93/95



The LUMO energy, the electron affinity, the derivative discontinuity (2/2)

� Indeed, it turns out that vN+δ
s (r) and vN−δ

s (r) do differ by a uniform constant ∆N
xc

v
N+δ
s (r)− v

N−δ
s (r) = ∆N

xc

� The orbitals are continuous at the integer N, so ϕN+δ
H (r) = ϕN−δ

L (r), and we find

εN+δ
H = εN−δ

L +∆N
xc

� In conclusion, the KS LUMO energy is not the opposite of the exact electron affinity

εNL = −AN −∆N
xc

due to the discontinuity ∆N
xc in the KS potential.

� Such a discontinuity can only come from the exchange-correlation part of the potential
vN
xc (r) since vne(r) is independent from N and the Hartree potential
vN
H (r) =

∫
nN (r′)/|r − r′|dr′ is a continuous function of N . So, we have

∆N
xc = v

N+δ
xc (r)− v

N−δ
xc (r) =

(
δExc[n]

δn(r)

)

N+δ

−
(
δExc[n]

δn(r)

)

N−δ

i.e. ∆N
xc is the derivative discontinuity in the exchange-correlation energy functional

Exc[n].
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Kohn-Sham frontier orbital energies: Graphical summary

εi

−IN

−AN

εN−δ
H

εN−δ
L

∆N
xc

εN+δ
H−1

εN+δ
H

εN+1
H = −AN = −IN+1

N ≡ N − δ N + δ N + 1
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Fundamental gap

� The fundamental gap of the N-electron system is defined as

E
N
gap = IN − AN
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Fundamental gap

� The fundamental gap of the N-electron system is defined as

E
N
gap = IN − AN

� In KS DFT, it thus be expressed as

E
N
gap = εNL − εNH +∆N

xc

︸ ︷︷ ︸
KS gap

So the KS gap is not equal to the exact fundamental gap of the system, the
difference coming from the derivative discontinuity ∆N

xc.

95/95



Fundamental gap

� The fundamental gap of the N-electron system is defined as

E
N
gap = IN − AN

� In KS DFT, it thus be expressed as

E
N
gap = εNL − εNH +∆N

xc

︸ ︷︷ ︸
KS gap

So the KS gap is not equal to the exact fundamental gap of the system, the
difference coming from the derivative discontinuity ∆N

xc.

� The derivative discontinuity ∆N
xc can represent an important contribution to the

fundamental gap. In the special case of open-shell systems, we have εNL = εNH , and thus
if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely
given by ∆N

xc.
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