

Basis-set correction based on density-functional theory

Julien Toulouse Laboratoire de Chimie Théorique Sorbonne Université and CNRS, Paris, France Institut Universitaire de France

ICQC, Bratislava June 2023

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_icqc_23.pdf

1 Slow basis-set convergence of wave-function theory

2 Basis-set correction based on DFT

3 Benchmarks and extensions

1 Slow basis-set convergence of wave-function theory

The roots of slow basis-set convergence

• The space of one-electron states $\mathfrak{H} = L^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron

states $\mathcal{H} = \bigwedge^{N} \mathfrak{H}$ are infinite-dimensional Hilbert spaces.

- ► The space of one-electron states $\mathfrak{H} = \mathcal{L}^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- ▶ In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,...,N_{\text{basis}}}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = \text{span}(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $N_{\text{basis}} \to \infty$.

- ► The space of one-electron states $\mathfrak{H} = \mathcal{L}^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- ▶ In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,...,N_{\text{basis}}}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = \text{span}(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $N_{\text{basis}} \to \infty$.
- In the molecular electronic Hamiltonian

$$\hat{H} = \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}}$$

the **Coulomb electron-electron interaction** $\hat{W}_{ee} = \sum_{i < j} 1/r_{ij}$ is singular as $r_{ij} \to 0$, leading to the **electron-electron cusp** (derivative discontinuity) in the eigenfunctions

$$\Psi(r_{ij}) = \Psi(0) \left[1 + \frac{1}{2}r_{ij} + \cdots\right]$$

Kato, CPAM, 1957

- ► The space of one-electron states $\mathfrak{H} = \mathcal{L}^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- ▶ In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,...,N_{\text{basis}}}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = \text{span}(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $N_{\text{basis}} \to \infty$.
- In the molecular electronic Hamiltonian

$$\hat{H} = \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}}$$

the **Coulomb electron-electron interaction** $\hat{W}_{ee} = \sum_{i < j} 1/r_{ij}$ is singular as $r_{ij} \to 0$, leading to the **electron-electron cusp** (derivative discontinuity) in the eigenfunctions

$$\Psi(r_{ij}) = \Psi(0) \left[1 + \frac{1}{2}r_{ij} + \cdots \right]$$

Kato, CPAM, 1957

This leads to a slow basis-set convergence of energies and many properties due to short-range correlation

Slow basis-set convergence of the FCI ground-state energy

▶ The full-configuration interaction (FCI) ground-state energy in a basis set B is

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi
angle$$

where $\mathcal{W}^{\mathcal{B}} = \{ \Psi \in \mathcal{H}^{\mathcal{B}} \mid \langle \Psi | \Psi \rangle = 1 \}.$

Slow basis-set convergence of the FCI ground-state energy

► The full-configuration interaction (FCI) ground-state energy in a basis set B is

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} + \hat{\mathcal{V}}_{\mathsf{ne}} | \Psi
angle$$

where $\mathcal{W}^{\mathcal{B}} = \{ \Psi \in \mathcal{H}^{\mathcal{B}} \mid \langle \Psi | \Psi \rangle = 1 \}.$

Example of the He atom with the series of basis sets B = "cc-pVXZ":

Systematic but slow basis-set convergence

Two main strategies to deal with slow basis-set convergence

• Extrapolation of the correlation energy to the CBS limit using an inverse cubic law in X:

$$E_{\rm c}^{\rm X} = E_{\rm c}^{\rm CBS} + \frac{A}{X^3}$$

Helgaker, Klopper, Koch, Noga, JCP, 1997

Two main strategies to deal with slow basis-set convergence

Extrapolation of the correlation energy to the CBS limit using an inverse cubic law in X:

$$E_{\rm c}^{\rm X} = E_{\rm c}^{\rm CBS} + \frac{A}{X^3}$$

Helgaker, Klopper, Koch, Noga, JCP, 1997

Explicitly correlated R12/F12 methods consisting in augmenting the two-electron Hilbert space by geminals of the form:

$$g_{i,j}(\mathbf{x}_1,\mathbf{x}_2) = \hat{Q}_{12}f(r_{12})\hat{S}_{12} \phi_i(\mathbf{x}_1) \wedge \phi_j(\mathbf{x}_2)$$

where $f(r_{12})$ is a correlation factor, \hat{S}_{12} is the rational generator ensuring the singlet and triplet cusp conditions, and \hat{Q}_{12} is the strong-orthogonality projector

Reviews: Ten-no, Noga, WIREs, 2012; Hättig, Klopper, Köhn, Tew, CR, 2012; Kong, Bischoff, Valeev, CR, 2012; Shiozaki, Werner, MP, 2013

1 Slow basis-set convergence of wave-function theory

2 Basis-set correction based on DFT

▶ In standard DFT (complete basis set), the exact ground-state energy is expressed as

$$E_{0} = \min_{\rho \in \mathcal{D}^{CBS}} \left\{ F[\rho] + \int v_{ne}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} \right\}$$

where $\mathcal{D}^{CBS} = \{\rho \mid \exists \Psi \in \mathcal{W}^{CBS} \text{ s.t. } \rho_{\Psi} = \rho\}$ is the set of *N*-representable densities, and $F[\rho]$ is the Levy-Lieb universal density functional

$$\mathcal{F}[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathsf{CBS}} \\ \Psi \to \rho}} \langle \Psi | \, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi \rangle$$

In standard DFT (complete basis set), the exact ground-state energy is expressed as

$$E_{0} = \min_{\rho \in \mathcal{D}^{CBS}} \left\{ F[\rho] + \int v_{ne}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} \right\}$$

where $\mathcal{D}^{CBS} = \{\rho \mid \exists \Psi \in \mathcal{W}^{CBS} \text{ s.t. } \rho_{\Psi} = \rho\}$ is the set of *N*-representable densities, and $F[\rho]$ is the Levy-Lieb universal density functional

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathsf{CBS}} \\ \Psi \to \rho}} \langle \Psi | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi \rangle$$

► For an **incomplete basis set** B, we can define an approximation to the ground-state energy by **restriction to densities representable in** B

$$E_0^{\mathcal{B}} = \min_{\rho \in \mathcal{D}^{\mathcal{B}}} \left\{ F[\rho] + \int v_{\mathsf{ne}}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} \right\}$$

where $\mathcal{D}^{\mathcal{B}} = \{ \rho \mid \exists \Psi \in \mathcal{W}^{\mathcal{B}} \text{ s.t. } \rho_{\Psi} = \rho \}.$

▶ In standard DFT (complete basis set), the exact ground-state energy is expressed as

$$E_{0} = \min_{\rho \in \mathcal{D}^{\mathsf{CBS}}} \left\{ F[\rho] + \int v_{\mathsf{ne}}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} \right\}$$

where $\mathcal{D}^{CBS} = \{\rho \mid \exists \Psi \in \mathcal{W}^{CBS} \text{ s.t. } \rho_{\Psi} = \rho\}$ is the set of *N*-representable densities, and $F[\rho]$ is the Levy-Lieb universal density functional

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathsf{CBS}} \\ \Psi \to \rho}} \langle \Psi | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi \rangle$$

► For an **incomplete basis set** B, we can define an approximation to the ground-state energy by **restriction to densities representable in** B

$$E_0^{\mathcal{B}} = \min_{\rho \in \mathcal{D}^{\mathcal{B}}} \left\{ F[\rho] + \int v_{\mathsf{ne}}(\mathbf{r})\rho(\mathbf{r})\mathsf{d}\mathbf{r} \right\}$$

where $\mathcal{D}^{\mathcal{B}} = \{ \rho \mid \exists \Psi \in \mathcal{W}^{\mathcal{B}} \text{ s.t. } \rho_{\Psi} = \rho \}.$

▶ The restriction to densities representable in *B* is much weaker than the restriction to wave functions representable in *B*, so we expect

$$E_{\text{FCI}}^{\mathcal{B}} \gg E_0^{\mathcal{B}} \gtrsim E_0$$

• We then decompose the universal density functional $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle + \overline{E}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• We then **decompose the universal density functional** $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} | \Psi \rangle + \overline{\mathcal{E}}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• The energy $E_0^{\mathcal{B}}$ can then be obtained self-consistently as

$$E_{0}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi \rangle + \bar{\mathcal{E}}^{\mathcal{B}} [\rho_{\Psi}] \right\}$$

• We then **decompose the universal density functional** $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{\text{ee}} | \Psi \rangle + \overline{E}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• The energy $E_0^{\mathcal{B}}$ can then be obtained **self-consistently** as

$$E_{0}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{ee} + \hat{V}_{ne} | \Psi \rangle + \overline{E}^{\mathcal{B}} [\rho_{\Psi}] \right\}$$

▶ We will consider a **non-self-consistent approximation** using the FCI wave function:

$$E_{\mathsf{FCI+DFT}}^{\mathcal{B}} = \langle \Psi_{\mathsf{FCI}}^{\mathcal{B}} | \hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi_{\mathsf{FCI}}^{\mathcal{B}} \rangle + \bar{\mathcal{E}}^{\mathcal{B}} [\rho_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}]$$

• We then **decompose the universal density functional** $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{\text{ee}} | \Psi \rangle + \overline{E}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• The energy $E_0^{\mathcal{B}}$ can then be obtained self-consistently as

$$E_{0}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{ee} + \hat{V}_{ne} | \Psi \rangle + \overline{E}^{\mathcal{B}} [\rho_{\Psi}] \right\}$$

▶ We will consider a **non-self-consistent approximation** using the FCI wave function:

$$E_{\rm FCI+DFT}^{\mathcal{B}} = \langle \Psi_{\rm FCI}^{\mathcal{B}} | \hat{T} + \hat{W}_{\rm ee} + \hat{V}_{\rm ne} | \Psi_{\rm FCI}^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}} [\rho_{\Psi_{\rm FCI}^{\mathcal{B}}}]$$

► We can also add the DFT basis-set correction to any approximate wave-function theory (WFT) method:

$$\Xi^{\mathcal{B}}_{\mathsf{WFT}+\mathsf{DFT}} = E^{\mathcal{B}}_{\mathsf{WFT}} + \overline{E}^{\mathcal{B}}[\rho_{\Psi^{\mathcal{B}}_{\mathsf{WFT}}}]$$

▶ We start by defining an electron-electron interaction projected in the basis set B

 $w_{ee}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2)$

▶ We start by defining an electron-electron interaction projected in the basis set B

 $w_{ee}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2)$

► We fit this projected interaction by the long-range interaction used in range-separated DFT:

$$w_{\text{ee}}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2) pprox rac{ ext{erf}(\mu^{\mathcal{B}}(\mathbf{r}_1)r_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

▶ We start by defining an electron-electron interaction projected in the basis set B

 $w_{ee}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2)$

► We fit this projected interaction by the long-range interaction used in range-separated DFT:

$$w_{\text{ee}}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2) pprox rac{ ext{erf}(\mu^{\mathcal{B}}(\mathbf{r}_1)r_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

• The obtained $\mu^{\mathcal{B}}(\mathbf{r})$ is a local measure of the incompleteness of the basis set \mathcal{B} .

▶ We start by defining an electron-electron interaction projected in the basis set B

```
w_{ee}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2)
```

► We fit this projected interaction by the long-range interaction used in range-separated DFT:

$$w_{\text{ee}}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2) pprox rac{ ext{erf}(\mu^{\mathcal{B}}(\mathbf{r}_1)r_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

- The obtained $\mu^{\mathcal{B}}(\mathbf{r})$ is a local measure of the incompleteness of the basis set \mathcal{B} .
- We then approximate the basis-set correction functional by a short-range PBE correlation functional previously developed for range-separated DFT:

$$\overline{E}_{\mathsf{PBE}}^{\mathcal{B}}[\rho] = \int e_{\mathsf{c}}^{\mathsf{srPBE}}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \mu^{\mathcal{B}}(\mathbf{r})) \, \mathsf{d}\mathbf{r}$$

▶ We start by defining an electron-electron interaction projected in the basis set B

```
w_{ee}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2)
```

► We fit this projected interaction by the long-range interaction used in range-separated DFT:

$$w_{\text{ee}}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2) pprox rac{ ext{erf}(\mu^{\mathcal{B}}(\mathbf{r}_1)r_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

- The obtained $\mu^{\mathcal{B}}(\mathbf{r})$ is a local measure of the incompleteness of the basis set \mathcal{B} .
- We then approximate the basis-set correction functional by a short-range PBE correlation functional previously developed for range-separated DFT:

$$ar{\mathcal{E}}_{\mathsf{PBE}}^{\mathcal{B}}[
ho] = \int \mathsf{e}_{\mathsf{c}}^{\mathsf{srPBE}}(
ho(\mathbf{r}),
abla
ho(\mathbf{r}), \mu^{\mathcal{B}}(\mathbf{r})) \,\mathsf{d}\mathbf{r}$$

► This approximate basis-set correction functional contains the physics of the electron-electron cusp, automatically adapts to each basis set *B*, and correctly vanishes in the CBS limit

Convergence of the total energy with respect to the basis set

• Example of the He atom with the series of basis sets $\mathcal{B} = \text{``cc-pVXZ'':}$

Much faster basis-set convergence without altering the CBS limit

3 Benchmarks and extensions

Benchmark on atomization energies of small molecules

► Atomization energies of 55 small molecules (G2 set) with cc-pVXZ basis sets:

MAE wrt CBS is below 1 kcal/mol already with the triple-zeta basis set

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019

Benchmark on dissociation energies of transition metal monoxides

Dissociation energies of transition metal monoxides (ScO, TiO, VO, CrO, MnO, FeO, CuO) with selected CI calculations with aug-cc-pVXZ basis sets and pseudopotentials:

MAE wrt CBS is below 1 kcal/mol already with the triple-zeta basis set

Yao, Giner, Anderson, Toulouse, Umrigar, JCP, 2021

Benchmark on dipole moments of small molecules

• Calculation of the **dipole moment** by response to an electric field \mathcal{E} :

$$E_0^{\mathcal{B}}(\mathcal{E}) = E_{\mathsf{WFT}}^{\mathcal{B}}(\mathcal{E}) + \overline{E}^{\mathcal{B}}[\rho_{\Psi_{\mathsf{WFT}}^{\mathcal{B}}(\mathcal{E})}] \implies d_0^{\mathcal{B}} = -\left.\frac{\mathsf{d}E_0^{\mathcal{B}}(\mathcal{E})}{\mathsf{d}\mathcal{E}}\right|_{\mathcal{E}=0}$$

Dipole moments of 14 small molecules with aug-cc-pVXZ basis sets:

The basis-set correction also accelerates the convergence of dipole moments, albeit to a lesser extent

Giner, Traore, Pradines, Toulouse, JCP, 2021; Traore, Toulouse, Giner, JCP, 2022

Extension to many-body Green-function theory

Extension to many-body Green-function theory for GW calculations:

$$E_0^{\mathcal{B}} = \sup_{G^{\mathcal{B}}} \left\{ \Omega^{\mathcal{B}}[G^{\mathcal{B}}] + \bar{E}^{\mathcal{B}}[\rho_{G^{\mathcal{B}}}] \right\} \implies (G^{\mathcal{B}})^{-1} = (G_0^{\mathcal{B}})^{-1} - \Sigma_{\mathsf{Hxc}}^{\mathcal{B}}[G^{\mathcal{B}}] - \bar{V}^{\mathcal{B}}[\rho_{G^{\mathcal{B}}}]$$

▶ IPs of 20 small molecules by the G₀W₀ method with cc-pVXZ basis sets:

The basis-set correction also accelerates the convergence of G₀W₀

Loos, Pradines, Scemama, Giner, Toulouse, JCTC, 2020

Density-fitting implementation and benchmark on reaction energies

- Implementation in MOLPRO with density-fitting calculation of the local range-separation parameter μ^B(r) with scaling O(N_{occ}N_{basis}N_{fit}N_{grid})
- ▶ 51 reaction energies (FH51 set) with aug-cc-pV(X+d)Z basis sets:

- ▶ The CABS single-excitation correction is important for small basis sets
- MP2-F12 is more accurate, especially for the double-zeta basis set

Heßelmann, Werner, Knowles, Giner, Reinhardt, Toulouse, work in progress

Conclusions

Summary:

- ▶ DFT basis-set correction which automatically adapts to each basis set
- based on pre-existing short-range correlation functional
- accelerates basis-set convergence of energies and properties
- implemented in QUANTUM PACKAGE and MOLPRO

Outlook:

- ► Construction of a more rigorous basis-set correction functional
- Extension to linear-response theory

Contributors to this work:

Paris: R. Assaraf, A. Ferté, E. Giner, B. Pradines, P. Reinhardt, A. Savin, D. Traore
Toulouse: P.-F. Loos, A. Scemama
Cornell: Y. Yao, T. Anderson, C. Umrigar
Molpro team: A. Heßelmann, P. Knowles, H.-J. Werner

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_icqc_23.pdf