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The roots of slow basis-set convergence

� The space of one-electron states H = L2(R3 × {↑, ↓},C) and the space of N-electron

states H =
∧N

H are infinite-dimensional Hilbert spaces.

4/18



The roots of slow basis-set convergence

� The space of one-electron states H = L2(R3 × {↑, ↓},C) and the space of N-electron

states H =
∧N

H are infinite-dimensional Hilbert spaces.

� In practice, we use a finite one-electron basis set B = {χν}ν=1,...,Nbasis to span the

one-electron space H
B = span(B) and the N-electron space HB =

∧N
H

B , and we

must try to approach the complete-basis-set (CBS) limit Nbasis → ∞.

4/18



The roots of slow basis-set convergence

� The space of one-electron states H = L2(R3 × {↑, ↓},C) and the space of N-electron

states H =
∧N

H are infinite-dimensional Hilbert spaces.

� In practice, we use a finite one-electron basis set B = {χν}ν=1,...,Nbasis to span the

one-electron space H
B = span(B) and the N-electron space HB =

∧N
H

B , and we

must try to approach the complete-basis-set (CBS) limit Nbasis → ∞.

� In the molecular electronic Hamiltonian

Ĥ = T̂ + Ŵee + V̂ne

the Coulomb electron-electron interaction Ŵee =
∑

i<j
1/rij is singular as rij → 0,

leading to the electron-electron cusp (derivative discontinuity) in the eigenfunctions

Ψ(rij) = Ψ(0)

[

1 +
1

2
rij + · · ·

]

Kato, CPAM, 1957
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Kato, CPAM, 1957

� This leads to a slow basis-set convergence of energies and many properties due to
short-range correlation
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Slow basis-set convergence of the FCI ground-state energy

� The full-configuration interaction (FCI) ground-state energy in a basis set B is

E
B
FCI = min

Ψ∈WB

〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

where WB = {Ψ ∈ HB | 〈Ψ|Ψ〉 = 1}.
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〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

where WB = {Ψ ∈ HB | 〈Ψ|Ψ〉 = 1}.

� Example of the He atom with the series of basis sets B =“cc-pVXZ”:
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� Systematic but slow basis-set convergence
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Two main strategies to deal with slow basis-set convergence

� Extrapolation of the correlation energy to the CBS limit using an inverse cubic law
in X :

E
X
c = E

CBS
c +

A

X 3

Helgaker, Klopper, Koch, Noga, JCP, 1997
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� Extrapolation of the correlation energy to the CBS limit using an inverse cubic law
in X :

E
X
c = E

CBS
c +

A

X 3

Helgaker, Klopper, Koch, Noga, JCP, 1997

� Explicitly correlated R12/F12 methods consisting in augmenting the two-electron
Hilbert space by geminals of the form:

gi,j(x1, x2) = Q̂12f (r12)Ŝ12 φi (x1) ∧ φj(x2)

where f (r12) is a correlation factor, Ŝ12 is the rational generator ensuring the singlet and
triplet cusp conditions, and Q̂12 is the strong-orthogonality projector

Reviews: Ten-no, Noga, WIREs, 2012; Hättig, Klopper, Köhn, Tew, CR, 2012; Kong, Bischoff,

Valeev, CR, 2012; Shiozaki, Werner, MP, 2013
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Basis-set correction based on DFT (1/2)

� In standard DFT (complete basis set), the exact ground-state energy is expressed as

E0 = min
ρ∈DCBS

{

F [ρ] +

∫

vne(r)ρ(r)dr
}

where DCBS = {ρ | ∃Ψ ∈ WCBS s.t. ρΨ = ρ} is the set of N-representable densities, and
F [ρ] is the Levy-Lieb universal density functional

F [ρ] = min
Ψ∈W

CBS

Ψ→ρ

〈Ψ|T̂ + Ŵee|Ψ〉
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E
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ρ∈DB

{

F [ρ] +

∫

vne(r)ρ(r)dr
}

where DB = {ρ | ∃Ψ ∈ WB s.t. ρΨ = ρ}.

� The restriction to densities representable in B is much weaker than the restriction
to wave functions representable in B, so we expect

E
B
FCI ≫ E

B
0 & E0

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018
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Basis-set correction based on DFT (2/2)

� We then decompose the universal density functional F [ρ] as

F [ρ] = min
Ψ∈W

B

Ψ→ρ

〈Ψ|T̂ + Ŵee|Ψ〉+ Ē
B[ρ]

where ĒB[n] is a complementary density functional correcting for the basis-set
restriction on the wave function.

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018
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Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018
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The complementary basis-set correction functional ĒB[ρ]

� We start by defining an electron-electron interaction projected in the basis set B

w
B
ee(r1, r2)

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019
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Ē
B
PBE[ρ] =

∫

e
srPBE
c (ρ(r),∇ρ(r), µB(r)) dr

� This approximate basis-set correction functional contains the physics of the
electron-electron cusp, automatically adapts to each basis set B, and correctly
vanishes in the CBS limit

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018
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Convergence of the total energy with respect to the basis set

� Example of the He atom with the series of basis sets B =“cc-pVXZ”:
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� Much faster basis-set convergence without altering the CBS limit

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019
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Benchmark on atomization energies of small molecules

� Atomization energies of 55 small molecules (G2 set) with cc-pVXZ basis sets:
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� MAE wrt CBS is below 1 kcal/mol already with the triple-zeta basis set

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019
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Benchmark on dissociation energies of transition metal monoxides

� Dissociation energies of transition metal monoxides (ScO, TiO, VO, CrO, MnO, FeO,
CuO) with selected CI calculations with aug-cc-pVXZ basis sets and pseudopotentials:
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� MAE wrt CBS is below 1 kcal/mol already with the triple-zeta basis set

Yao, Giner, Anderson, Toulouse, Umrigar, JCP, 2021
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Benchmark on dipole moments of small molecules

� Calculation of the dipole moment by response to an electric field E :

E
B
0 (E) = E
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WFT(E) + Ē

B[ρΨB
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(E)] =⇒ d

B
0 = −

dEB
0 (E)
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∣
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E=0

� Dipole moments of 14 small molecules with aug-cc-pVXZ basis sets:
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� The basis-set correction also accelerates the convergence of dipole moments,
albeit to a lesser extent

Giner, Traore, Pradines, Toulouse, JCP, 2021; Traore, Toulouse, Giner, JCP, 2022
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Extension to many-body Green-function theory

� Extension to many-body Green-function theory for GW calculations:

E
B
0 = stat

GB

{

ΩB[GB] + Ē
B[ρGB ]

}

=⇒ (GB)−1 = (GB
0 )−1 − ΣB

Hxc[G
B]− V̄

B[ρGB ]

� IPs of 20 small molecules by the G0W0 method with cc-pVXZ basis sets:
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� The basis-set correction also accelerates the convergence of G0W0

Loos, Pradines, Scemama, Giner, Toulouse, JCTC, 2020
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Density-fitting implementation and benchmark on reaction energies

� Implementation in MOLPRO with density-fitting calculation of the local
range-separation parameter µB(r) with scaling O(NoccNbasisNfitNgrid)

� 51 reaction energies (FH51 set) with aug-cc-pV(X+d)Z basis sets:
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� The CABS single-excitation correction is important for small basis sets

� MP2-F12 is more accurate, especially for the double-zeta basis set

Heßelmann, Werner, Knowles, Giner, Reinhardt, Toulouse, work in progress

17/18



Conclusions

� Summary:

� DFT basis-set correction which automatically adapts to each basis set

� based on pre-existing short-range correlation functional

� accelerates basis-set convergence of energies and properties

� implemented in QUANTUM PACKAGE and MOLPRO

� Outlook:

� Construction of a more rigorous basis-set correction functional

� Extension to linear-response theory

� Contributors to this work:

Paris: R. Assaraf, A. Ferté, E. Giner, B. Pradines, P. Reinhardt, A. Savin, D. Traore
Toulouse: P.-F. Loos, A. Scemama
Cornell: Y. Yao, T. Anderson, C. Umrigar
Molpro team: A. Heßelmann, P. Knowles, H.-J. Werner

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_icqc_23.pdf

18/18

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_icqc_23.pdf

	Slow basis-set convergence of wave-function theory
	Basis-set correction based on DFT
	Benchmarks and extensions
	

