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Why and how learning density-functional theory?

Density-functional theory (DFT) is:

� a practical electronic-structure computational method, widely used in quantum
chemistry and condensed-matter physics;

� an exact and elegant reformulation of the quantum many-body problem, which has
led to new ways of thinking in the field.

Classical books:

� R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, 1989.

� R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the

Quantum Many-Body Problem, Springer-Verlag, 1990.

� W. Koch and M. C. Holthausen, A Chemist’s Guide To Density Functional Theory,
Wiley-VCH, 2001.

My lecture notes:

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf
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The quantum many-electron problem

� We consider a N-electron system in the Born-Oppenheimer and non-relativistic
approximations.

� The electronic Hamiltonian in the position representation is, in atomic units,

H(r1, r2, ..., rN) = −1

2

N∑

i=1

∇2
ri +

1

2

N∑

i=1

N∑

j=1
i 6=j

1

|ri − rj |
+

N∑

i=1

vne(ri )

where vne(ri ) = −
∑

α Zα/|ri − Rα| is the nuclei-electron interaction potential.

� Stationary states satisfy the time-independent Schrödinger equation

H(r1, r2, ..., rN)Ψ(x1, x2, ..., xN) = EΨ(x1, x2, ..., xN)

where Ψ(x1, x2, ..., xN) is a wave function written with space-spin coordinates
xi = (ri , σi ) (with ri ∈ R

3 and σi ∈ {↑,↓}) which is antisymmetric with respect to the
exchange of two coordinates, and E is the associated energy.

� Using Dirac notations (representation-independent formalism):

Ĥ|Ψ〉 = E |Ψ〉 where Ĥ = T̂ + Ŵee + V̂ne

These operators can be conveniently expressed in (real-space) second quantization.

5/81



Wave-function variational principle

� The ground-state electronic energy E0 can be expressed with the wave-function
variational principle

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉

where the minimization is over all N-electron antisymmetric wave functions Ψ,
normalized to unity 〈Ψ|Ψ〉 = 1.

Remark: If Ĥ does not bind N electrons, then the minimum does not exist but the ground-state

energy can still be defined as an infimum, i.e. E0 = inf
Ψ
〈Ψ|Ĥ|Ψ〉.

� DFT is based on a reformulation of this variational theorem in terms of the
one-electron density defined as

n(r) = N

∫

· · ·
∫

|Ψ(x, x2, ..., xN)|2 dσdx2...dxN

which is normalized to the electron number,
∫
n(r)dr = N.

Remark: Integration over a spin coordinate σ means a sum over the two values of σ, i.e.
∫

dσ =
∑

σ=↑,↓.
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The Hohenberg-Kohn theorem

� Consider an electronic system with an arbitrary external local potential v(r) in place of
vne(r).

� The corresponding ground-state wave function Ψ (or one of them if there are several)
can be obtained by solving the Schrödinger equation, from which the associated
ground-state density n(r) can be deduced. Therefore, one has the mapping:

v(r) −−−−−→ n(r)

� In 1964, Hohenberg and Kohn showed that this mapping can be inverted, i.e. the
ground-state density n(r) determines the potential v(r) up to an arbitrary additive
constant:

n(r) −−−−−−−−−→
Hohenberg-Kohn

v(r) + const
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Proof of the Hohenberg-Kohn theorem (1/2)

This is a two-step proof by contradiction.

Consider two local potentials differing by more than an additive constant:

v1(r) 6= v2(r) + const

We have two Hamiltonians:

Ĥ1 = T̂ + Ŵee + V̂1 with a ground state Ĥ1|Ψ1〉 = E1|Ψ1〉 and ground-state density n1(r)

Ĥ2 = T̂ + Ŵee + V̂2 with a ground state Ĥ2|Ψ2〉 = E2|Ψ2〉 and ground-state density n2(r)

1 We first show that Ψ1 6= Ψ2:

Assume Ψ1 = Ψ2 = Ψ. Then we have:

(Ĥ1 − Ĥ2)|Ψ〉 = (V̂1 − V̂2)|Ψ〉 = (E1 − E2)|Ψ〉
or, in position representation,

N∑

i=1

[v1(ri )− v2(ri )]Ψ(x1, x2, ..., xN) = (E1 − E2)Ψ(x1, x2, ..., xN)

If Ψ(x1, x2, ..., xN) 6= 0 for all (r1, r2, ..., rN) and at least one fixed set of (σ1, σ2, ..., σN),
which is “true almost everywhere for reasonably well behaved potentials”, then it implies
that v1(r)− v2(r) = const, in contradiction with the initial hypothesis.

=⇒ Intermediate conclusion: two local potentials differing by more than an
additive constant cannot share the same ground-state wave function.
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Proof of the Hohenberg-Kohn theorem (2/2)

2 We now show than n1 6= n2:

Assume n1 = n2 = n. Then, by the variational theorem, we have:

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2 + V̂1 − V̂2|Ψ2〉 = E2 +

∫

[v1(r)− v2(r)] n(r)dr

The strict inequality comes from the fact that Ψ2 cannot be a ground-state wave
function of Ĥ1, as shown in the first step of the proof.

Symmetrically, by exchanging the role of system 1 and 2, we have the strict inequality

E2 < E1 +

∫

[v2(r)− v1(r)] n(r)dr

Adding the two inequalities gives the inconsistent result

E1 + E2 < E1 + E2

=⇒ Conclusion: there cannot exist two local potentials differing by more than an
additive constant which have the same ground-state density.

Remark: This proof does not assume non-degenerate ground states (contrary to the original

Hohenberg-Kohn proof).
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The universal density functional and the variational property

� The Hohenberg-Kohn theorem can be summarized as

n(r) −−−−−→ v(r) −−−−−→ Ĥ −−−−−→ everything

v is a functional of the ground-state density n, i.e. v [n], and all other quantities as well.

� In particular, a ground-state wave function Ψ for a given potential v(r) is a functional
of n, denoted by Ψ[n]. Hohenberg and Kohn defined the universal density functional

F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉
and the total electronic energy functional

E [n] = F [n] +

∫

vne(r)n(r)dr

for the specific external potential vne(r) of the system considered.

� Hohenberg and Kohn showed that we have a variational property giving the exact
ground-state energy

E0 = min
n

{

F [n] +

∫

vne(r)n(r)dr

}

where the minimization is over N-electron densities n that are ground-state densities
associated with some local potential (referred to as v -representable densities). The
minimum is reached for an exact ground-state density n0(r) of the potential vne(r).
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Levy’s constrained-search formulation

� In 1979 Levy, and later Lieb, proposed to redefine the universal density functional as

F [n] = min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉

where“Ψ→ n”means that the minimization is done over normalized antisymmetric
wave functions Ψ which yield the fixed density n.

Remark: This definition of F [n] does not require the existence of a local potential associated

with the density: it is defined on the larger set of N-electron densities coming from an

antisymmetric wave function (referred to as N-representable densities).

� The variational property is easily obtained using the constrained-search formulation:

E0 =min
Ψ
〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

=min
n

min
Ψ→n
〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

=min
n

{

min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉+

∫

vne(r)n(r)dr

}

=min
n

{

F [n] +

∫

vne(r)n(r)dr

}

×Ψ1
×Ψ2

×Ψ3

×Ψ4

×Ψ5

×Ψ6

n1

n2 n3

� Hence, in DFT, we replace“min
Ψ

”by“min
n
”which is a tremendous simplification!

However, F [n] = T [n] +Wee[n] is very difficult to approximate, in particular the
kinetic energy part T [n].
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Kohn-Sham (KS) method: decomposition of the universal functional

� In 1965, Kohn and Sham proposed to decompose F [n] as

F [n] = Ts[n] + EHxc[n]

� Ts[n] is the non-interacting kinetic-energy functional:

Ts[n] = min
Φ→n
〈Φ|T̂ |Φ〉 = 〈Φ[n]|T̂ |Φ[n]〉

where“Φ→ n”means that the minimization is done over normalized single-determinant
wave functions Φ which yield the fixed density n. The minimizing single-determinant
wave function is called the KS wave function and is denoted by Φ[n].

Remark: Introducing a single-determinant wave function is not an approximation because any

N-representable density n can be obtained from a single-determinant wave function.

� The remaining functional EHxc[n] is called the Hartree-exchange-correlation functional.
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Kohn-Sham (KS) method: variational principle

� The exact ground-state energy can then be expressed as

E0 =min
n

{

F [n] +

∫

vne(r)n(r)dr

}

=min
n

{

min
Φ→n
〈Φ|T̂ |Φ〉+ EHxc[n] +

∫

vne(r)n(r)dr

}

=min
n

min
Φ→n

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

=min
Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

and the minimizing single-determinant KS wave function gives an exact ground-state
density n0(r).

� Hence, in KS DFT, we replace“min
Ψ

”by“min
Φ

”which is still a tremendous

simplification! The advantage of KS DFT over pure DFT is that a major part of the
kinetic energy is treated explicitly with the single-determinant wave function Φ.

� KS DFT is similar to Hartree-Fock (HF)

EHF = min
Φ
〈Φ|T̂ + V̂ne + Ŵee|Φ〉

but in KS DFT the exact ground-state energy and density are in principle obtained!
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Kohn-Sham (KS) method: the Hartree-exchange-correlation functional

� EHxc[n] is decomposed as
EHxc[n] = EH[n] + Exc[n]

� EH[n] is the Hartree energy functional

EH[n] =
1

2

x n(r1)n(r2)

|r1 − r2|
dr1dr2

representing the classical electrostatic repulsion energy for the charge distribution n(r)
and which is calculated exactly.

� Exc[n] is the exchange-correlation energy functional that remains to approximate.
This functional is often decomposed as

Exc[n] = Ex[n] + Ec[n]

where Ex[n] is the exchange energy functional

Ex[n] = 〈Φ[n]|Ŵee|Φ[n]〉 − EH[n]

and Ec[n] is the correlation energy functional

Ec[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Φ[n]|T̂ + Ŵee|Φ[n]〉 = Tc[n] + Uc[n]

containing a kinetic contribution Tc[n] = 〈Ψ[n]|T̂ |Ψ[n]〉 − 〈Φ[n]|T̂ |Φ[n]〉
and a potential contribution Uc[n] = 〈Ψ[n]|Ŵee|Ψ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉.
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The Kohn-Sham equations (1/2)

� The single determinant Φ is constructed from a set of N orthonormal occupied
spin-orbitals ψi (x) = φi (r)δσi ,σ.

� The total energy to be minimized is

E [{φi}] =
N∑

i=1

∫

φ∗
i (r)

(

−1

2
∇2 + vne(r)

)

φi (r)dr + EHxc[n]

and the density is

n(r) =

N∑

i=1

|φi (r)|2

� For minimizing over the orbitals {φi} with the constraint of keeping the orbitals
orthonormalized, we introduce the Lagrangian

L[{φi}] = E [{φi}]−
N∑

i=1

εi

(∫

φ∗
i (r)φi (r)dr − 1

)

where εi is the Lagrange multiplier associated with the normalization condition of φi (r).

� The Lagrangian must be stationary with respect to variations of the orbitals φi (r)

δL
δφ∗

i (r)
= 0
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Interlude: Review on functional calculus

� For a functional F [f ] of the function f (x), an infinitesimal variation δf of f leads to an
infinitesimal variation of F which can be expressed as

δF [f ] =

∫
δF [f ]

δf (x)
δf (x)dx

This defines the functional derivative of F [f ] with respect f (x):
δF [f ]

δf (x)
Remark: For a function F (f1, f2, ...) of several variables f1, f2, ..., we have

dF =
∑

i

∂F

∂fi
dfi

δF [f ]/δf (x) is the analog of ∂F/∂fi for the case of an infinite continuous number of variables.

� For a functional F [f ] of a function f [g ](x) which is itself a functional of another
function g(x), we have the chain rule

δF

δg(x)
=

∫
δF

δf (x ′)

δf (x ′)

δg(x)
dx ′

Remark: It is the analog of the chain rule for a function F (f1, f2, ...) of several variables
fj (g1, g2, ...) which are themselves functions of other variables g1, g2, ...

∂F

∂gi
=

∑

j

∂F

∂fj

∂fj

∂gi
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The Kohn-Sham equations (2/2)

� We find for the functional derivative of the Lagrangian

0 =
δL

δφ∗
i (r)

=

(

−1

2
∇2 + vne(r)

)

φi (r) +
δEHxc[n]

δφ∗
i (r)

− εiφi (r)

� We calculate the term δEHxc[n]/δφ
∗
i (r) using the chain rule

δEHxc[n]

δφ∗
i (r)

=

∫
δEHxc[n]

δn(r′)

δn(r′)

δφ∗
i (r)

dr′ = vHxc(r)φi (r)

where we have used δn(r′)/δφ∗
i (r) = φi (r)δ(r − r′) and we have introduced

the Hartree-exchange-correlation potential vHxc(r)

vHxc(r) =
δEHxc[n]

δn(r)

which is itself a functional of the density.

� We arrive at the KS equations

(

−1

2
∇2 + vne(r) + vHxc(r)

)

φi (r) = εiφi (r)

The orbitals φi (r) are called the KS orbitals and εi are the KS orbital energies.
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The Kohn-Sham equations and the Kohn-Sham Hamiltonian

� The KS orbitals are eigenfunctions of the KS one-electron Hamiltonian

hs(r) = −1

2
∇2 + vs(r)

where vs(r) = vne(r) + vHxc(r) is the KS potential.

� Mathematically, the KS equations are a set of coupled self-consistent equations since the
potential vHxc(r) depends on all the occupied orbitals {φi (r)} through the density.

� Physically, hs(r) defines the KS system which is a system of N non-interacting electrons
in an effective external potential vs(r) ensuring that its ground-state density n(r) is the
same as the exact ground-state density n0(r) of the physical system of N interacting
electrons.

� The KS equations also defines virtual KS orbitals {φa(r)} which together with the
occupied KS orbitals form a complete basis since hs(r) is a self-adjoint operator.

20/81



The Hartree-exchange-correlation potential

� Remark: The existence of the functional derivative vHxc(r) = δEHxc[n]/δn(r) has been assumed.

This is in fact not true for all densities but only for vs-representable densities, i.e. densities that

are the ground-state densities of a non-interacting system with some local potential.

� Remark: The KS potential is defined only up to an additive constant. For finite systems, we

choose the constant so that the potential vanishes at infinity: lim|r|→∞ vs(r) = 0

� Following the decomposition of EHxc[n], the potential vHxc(r) is also decomposed as

vHxc(r) = vH(r) + vxc(r)

with the Hartree potential vH(r) =
δEH[n]

δn(r)
=

∫
n(r′)

|r − r′|dr
′

and the exchange-correlation potential vxc(r) = δExc[n]/δn(r)

� The potential vxc(r) can be decomposed as vxc(r) = vx(r) + vc(r)

with the exchange potential vx(r) = δEx[n]/δn(r)

and the correlation potential vc(r) = δEc[n]/δn(r)

� Remark: Contrary to Hartree-Fock, the KS exchange potential is local.
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Practical calculations in an atomic basis (1/3)

� We consider a basis of M atom-centered functions {χν(r)}, e.g. GTO basis functions.
The orbitals are expanded as

φi (r) =

M∑

ν=1

cνi χν(r)

� Inserting this expansion in the KS equations

hs(r)φi (r) = εiφi (r)

and multiplying on the left by χ∗
µ(r) and integrating over r, we arrive at

the familiar SCF generalized eigenvalue equation

M∑

ν=1

Fµν cνi = εi

M∑

ν=1

Sµν cνi

where Fµν =
∫
χ∗
µ(r)hs(r)χν(r)dr are the elements of the KS Fock matrix and

Sµν =
∫
χ∗
µ(r)χν(r)dr are the elements of the overlap matrix.
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Practical calculations in an atomic basis (2/3)

� The Fock matrix is calculated as Fµν = hµν + Jµν + Vxc,µν

� hµν are the one-electron integrals: hµν =

∫

χ∗
µ(r)

(

−1

2
∇2 + vne(r)

)

χν(r)dr

� Jµν is the Hartree potential matrix:

Jµν =

∫

χ∗
µ(r)vH(r)χν(r)dr =

M∑

λ=1

M∑

γ=1

Pγλ(χµχν |χλχγ)

where (χµχν |χλχγ) =
x χ∗

µ(r1)χν(r1)χ
∗
λ(r2)χγ(r2)

|r1 − r2|
dr1dr2 are the two-electron

integrals (in chemists’ notation) and Pγλ =

N∑

i=1

cγic
∗
λi is the density matrix.

� Vxc,µν is the exchange-correlation potential matrix: Vxc,µν =

∫

χ∗
µ(r)vxc(r)χν(r)dr

� The total electronic energy is calculated as

E =

M∑

µ=1

M∑

ν=1

Pνµhµν +
1

2

M∑

µ=1

M∑

ν=1

PνµJµν + Exc

� The density is calculated as n(r) =
M∑

γ=1

M∑

λ=1

Pγλχγ(r)χ
∗
λ(r)
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Practical calculations in an atomic basis (3/3)

� In the simplest approximation, the exchange-correlation energy functional has a local
form

E
local
xc =

∫

f (n(r))dr

where f (n(r)) has a complicated nonlinear dependence on the density n(r).

� For example, in the local-density approximation (LDA), the exchange energy is

E
LDA
x = cx

∫

n(r)4/3dr

where cx is a constant, and the exchange potential is

v
LDA
x (r) =

4

3
cxn(r)

1/3

� Therefore, the integrals cannot be calculated analytically, but are instead evaluated by
numerical integration on a grid

Vxc,µν ≈
∑

k

wk χ
∗
µ(rk)vxc(rk)χν(rk) and E

local
xc ≈

∑

k

wk f (n(rk))

where rk and wk are quadrature points and weights. For polyatomic molecules, the
multicenter numerical integration scheme of Becke (1988) is generally used.

24/81



Extension to spin density-functional theory (1/2)

� For dealing with an external magnetic field, DFT has been extended from the total
density to spin-resolved densities (von Barth and Hedin, 1972)

nσ(r) = N

∫

· · ·
∫

|Ψ(rσ, x2, ..., xN)|2 dx2...dxN with σ = ↑ or ↓

� Without external magnetic fields, this is in principle not necessary, even for open-shell
systems. However, in practice, the dependence on the spin densities allows one to
construct more accurate approximate exchange-correlation functionals and is
therefore almost always used for open-shell systems.

� The universal density functional is now defined as

F [n↑, n↓] = min
Ψ→n↑,n↓

〈Ψ|T̂ + Ŵee|Ψ〉

where the search is over normalized antisymmetric wave functions Ψ which yield fixed
spin densities integrating to the numbers of σ-spin electrons, i.e.

∫
nσ(r)dr = Nσ.

� A KS method is obtained by decomposing F [n↑, n↓] as

F [n↑, n↓] = Ts[n↑, n↓] + EH[n] + Exc[n↑, n↓]

where Ts[n↑, n↓] is defined with a constrained search over spin-unrestricted Slater
determinants Φ

Ts[n↑, n↓] = min
Φ→n↑,n↓

〈Φ|T̂ |Φ〉
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Extension to spin density-functional theory (2/2)

� Writing the spatial orbitals of the spin-unrestricted determinant as φiσ(r) (with indices
explicitly including spin now), we have now the spin-dependent KS equations

(

−1

2
∇2 + vne(r) + vH(r) + vxc,σ(r)

)

φiσ(r) = εiσφiσ(r)

with the spin-dependent exchange-correlation potentials

vxc,σ(r) =
δExc[n↑, n↓]

δnσ(r)

and the spin densities

nσ(r) =

Nσ∑

i=1

|φiσ(r)|2

� The spin-dependent exchange functional Ex[n↑, n↓] can be obtained from the
spin-independent exchange functional Ex[n] with the spin-scaling relation

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓])

Therefore, any approximation for the spin-independent exchange functional Ex[n] can be
easily extended to an approximation for the spin-dependent exchange functional
Ex[n↑, n↓]. Unfortunately, there is no such relation for the correlation functional.

26/81



Outline

1 Basic density-functional theory
The quantum many-electron problem
The universal density functional
The Kohn-Sham method

2 More advanced topics in density-functional theory
Exact expressions for the exchange and correlation functionals
Fractional electron numbers and frontier orbital energies

3 Usual approximations for the exchange-correlation energy
The local-density approximation
Semilocal approximations
Hybrid and double-hybrid approximations
Range-separated hybrid and double-hybrid approximations
Semiempirical dispersion corrections

4 Additional topics in density-functional theory
Time-dependent density-functional theory
Some less usual orbital-dependent exchange-correlation functionals
Uniform coordinate scaling

27/81



Outline

2 More advanced topics in density-functional theory
Exact expressions for the exchange and correlation functionals
The exchange and correlation holes
The adiabatic connection

Fractional electron numbers and frontier orbital energies
Quantum mechanics with fractional electron numbers
Density-functional theory with fractional electron numbers
The HOMO energy and the ionization energy
The LUMO energy, the electron affinity, and the derivative discontinuity
Fundamental gap

28/81



The exchange-correlation hole

� The pair density associated with the wave function Ψ[n] is

n2(r1, r2) = N(N − 1)

∫

· · ·
∫

|Ψ[n](x1, x2, ..., xN)|2 dσ1dσ2dx3...dxN

which is a functional of the density. It is normalized to the number of electron pairs:s
n2(r1, r2)dr1dr2 = N(N − 1). It is proportional to the probability density of finding

two electrons at positions (r1, r2) with all the other electrons anywhere.

� It can be used to express the electron-electron interaction energy

〈Ψ[n]|Ŵee|Ψ[n]〉 = 1

2

x n2(r1, r2)

|r1 − r2|
dr1dr2

� Mirroring the decomposition of EHxc[n], the pair density can be decomposed as

n2(r1, r2) = n(r1)n(r2) + n2,xc(r1, r2)
︸ ︷︷ ︸
independent
electrons

︸ ︷︷ ︸
exchange and

correlation effects

� We also introduce the exchange-correlation hole nxc(r1, r2) by

n2,xc(r1, r2) = n(r1)nxc(r1, r2)

It can be interpreted as the modification due to exchange and correlation effects of the
conditional probability of finding an electron at r2 knowing that one has been found at r1.

� We have the exact constraints: nxc(r1, r2) ≥ −n(r2) and
∫
nxc(r1, r2)dr2 = −1
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The exchange hole

� Similarly, we define the KS pair density associated with the KS single determinant Φ[n]

n2,KS(r1, r2) = N(N − 1)

∫

· · ·
∫

|Φ[n](x1, x2, ..., xN)|2 dσ1dσ2dx3...dxN

� It can be decomposed as

n2,KS(r1, r2) = n(r1)n(r2) + n2,x(r1, r2)

and we introduce the exchange hole nx(r1, r2) by

n2,x(r1, r2) = n(r1)nx(r1, r2)

nx(r1, r2)

0
r1

r2

which satisfies the exact constraints:

nx(r1, r2) ≥ −n(r2) and
∫
nx(r1, r2)dr2 = −1 and nx(r1, r2) ≤ 0

� The exchange energy functional is the electrostatic interaction energy between an
electron and its exchange hole:

Ex[n] =
1

2

x n(r1)nx(r1, r2)

|r1 − r2|
dr1dr2 =

∫

n(r1)εx[n](r1)dr1

where εx[n](r1) is the exchange energy per particle. In approximate exchange density
functionals, the quantity εx[n](r1) is usually what is approximated.
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The correlation hole

� The correlation hole is defined as the difference

nc(r1, r2) = nxc(r1, r2)− nx(r1, r2)

nc(r1, r2)

0
r1

r2

and satisfies the sum rule
∫

nc(r1, r2)dr2 = 0

which implies that the correlation hole has negative and positive contributions.

� The potential contribution to the correlation energy can be written in terms of the
correlation hole

Uc[n] =
1

2

x n(r1)nc(r1, r2)

|r1 − r2|
dr1dr2

But in order to express the total correlation energy Ec[n] = Tc[n] + Uc[n] in a similar
form, we need to introduce the adiabatic-connection formalism.
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The adiabatic connection (1/3)

� The idea of the adiabatic connection is to have a continuous path between the
non-interacting KS system and the physical system while keeping the ground-state
density constant.

� For this, we introduce a Hamiltonian depending on a coupling constant λ which
switches on the electron-electron interaction

Ĥ
λ = T̂ + λŴee + V̂

λ

where V̂ λ is the external local potential imposing that the ground-state density is the
same as the ground-state density of the physical system for all λ, i.e. nλ(r) = n0(r), ∀λ.

� By varying λ, we connect the KS non-interacting system (λ = 0) to the physical
interacting system (λ = 1):

Ĥ
λ=0

︸ ︷︷ ︸
KS non-interacting

system

0≤λ≤1←−−−−−−−−−→ Ĥ
λ=1

︸ ︷︷ ︸
Physical interacting

system

� We define a universal functional for each value of the parameter λ

F
λ[n] = min

Ψ→n
〈Ψ|T̂ + λŴee|Ψ〉 = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉
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The adiabatic connection (2/3)

� The functional Fλ[n] can be decomposed as

F
λ[n] = Ts[n] + E

λ
H [n] + E

λ
x [n] + E

λ
c [n]

� Eλ
H [n] and Eλ

x [n] are the Hartree and exchange functionals associated with the
interaction λŴee and are simply linear in λ

E
λ
H [n] = λEH[n] and E

λ
x [n] = λEx[n]

� The correlation functional Eλ
c [n] is nonlinear in λ

E
λ
c [n] = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉 − 〈Φ[n]|T̂ + λŴee|Φ[n]〉

� We can get rid of T̂ by taking the derivative with respect to λ and using the
Hellmann-Feynman theorem for the wave function Ψλ[n]

∂Eλ
c [n]

∂λ
= 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉
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The adiabatic connection (3/3)

� Reintegrating over λ from 0 to 1, and using Eλ=1
c [n] = Ec[n] and Eλ=0

c [n] = 0, we arrive
at the adiabatic-connection formula

Ec[n] =

∫ 1

0

dλ 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉

� Introducing the correlation hole nλ
c (r1, r2) associated with the wave function Ψλ[n], the

adiabatic-connection formula can also be written as

Ec[n] =
1

2

∫ 1

0

dλ
x n(r1)n

λ
c (r1, r2)

|r1 − r2|
dr1dr2

� Introducing the λ-integrated correlation hole n̄c(r1, r2) =
∫ 1

0
dλ nλ

c (r1, r2), we finally write

Ec[n] =
1

2

x n(r1)n̄c(r1, r2)

|r1 − r2|
dr1dr2 =

∫

n(r1)εc[n](r1)dr1

where εc[n](r1) is the correlation energy per particle, which is the quantity usually
approximated in practice.
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Quantum mechanics with fractional electron numbers (1/2)

� The ground-state energy of a system with a fractional number of electrons
N = N − 1 + f (where N is an integer and 0 ≤ f ≤ 1) can be defined as

E
N−1+f
0 = min

Γ̂
Tr

[

Γ̂
(

T̂ + Ŵee + V̂ne

)]

where the minimization is over ensemble density matrices Γ̂ of the form

Γ̂ = (1− f ) |ΨN−1〉〈ΨN−1|+ f |ΨN〉〈ΨN |

where f is fixed, and ΨN−1 and ΨN are (N − 1)- and N-electron normalized wave
functions to be varied.

� The minimizing ensemble density matrix is

Γ̂0 = (1− f ) |ΨN−1
0 〉〈ΨN−1

0 |+ f |ΨN
0 〉〈ΨN

0 |

where ΨN−1
0 and ΨN

0 are the (N − 1)- and N-electron ground-state wave functions.

� The ground-state energy is linear in f between the integer numbers N − 1 and N

E
N−1+f
0 = (1− f ) EN−1

0 + f E
N
0

where EN−1
0 and EN

0 are the (N − 1)- and N-electron ground-state energies.

� Similarly, between the integer electron numbers N and N + 1, we have

E
N+f
0 = (1− f ) EN

0 + f E
N+1
0
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Quantum mechanics with fractional electron numbers (2/2)

� The ground-state energy is a continuous piecewise
linear function of the fractional electron number N .

EN
0

N
N − 1 N N + 1

EN+1
0

EN
0

EN−1
0

−IN

−AN

� The derivative of EN
0 with respect to N defines the

electronic chemical potential

µ =
∂EN

0

∂N
� Taking the derivative with respect to N corresponds to taking the derivative with

respect to f , we find for N − 1 < N < N
(
∂EN

0

∂N

)

N−1<N<N

= E
N
0 − E

N−1
0 = −IN

where IN is the ionization energy of the N electron system.

� Similarly for N < N < N + 1
(
∂EN

0

∂N

)

N<N<N+1

= E
N+1
0 − E

N
0 = −AN

where AN is the electron affinity of the N electron system.

� The electronic chemical potential µ has thus a discontinuity at the integer electron
number N. So, the plot of EN

0 with respect to N is made of a series of straight lines
between integer electron numbers, with derivative discontinuities at each integer. 37/81



DFT with fractional electron numbers (1/2)

� The universal density functional F [n] is extended to densities integrating to a fractional
electron number,

∫
n(r)dr = N = N − 1 + f , as

F [n] = min
Γ̂→n

Tr
[

Γ̂
(

T̂ + Ŵee

)]

� As usual, to set up a KS method, F [n] is decomposed as

F [n] = Ts[n] + EHxc[n]

where Ts[n] = min
Γ̂s→n

Tr[Γ̂sT̂ ] is the KS non-interacting kinetic-energy functional and the

minimization is over ensemble non-interacting density matrices Γ̂s of the form

Γ̂s = (1− f ) |ΦN−1,f 〉〈ΦN−1,f |+ f |ΦN,f 〉〈ΦN,f |

where ΦN−1,f and ΦN,f are (N − 1)- and N-electron single-determinant wave functions,
constructed from a common set of orbitals {φi} depending on the fixed f .

� The exact ground-state energy can then be expressed as

E
N−1+f
0 = min

Γ̂s

{

Tr
[

Γ̂s

(

T̂ + V̂ne

)]

+ EHxc[nΓ̂s ]
}
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DFT with fractional electron numbers (2/2)

� The total energy can be written in terms of orbital occupation numbers ni

E
N−1+f =

N∑

i=1

ni

∫

φ∗
i (r)

(

−1

2
∇2 + vne(r)

)

φi (r)dr + EHxc[n]

with the density n(r) =
∑N

i=1 ni |φi (r)|2 and the occupation numbers ni = 1
for i ≤ N−1 and nN = f for the HOMO (ignoring degeneracy for simplicity).

εi

� The orbitals satisfy standard-looking KS equations
(

−1

2
∇2 + vs(r)

)

φi (r) = εiφi (r) with vs(r) = vne(r) +
δEHxc[n]

δn(r)

with the important difference that we can now fix the arbitrary constant in vs(r).
This is because we can now allow variations of n(r) changing N , i.e.

∫
δn(r)dr 6= 0

δEHxc[n] =

∫ (
δEHxc[n]

δn(r)
+ const

)

δn(r)dr

making the constant no longer arbitrary. This unambiguously fixes the values of the KS
orbital energies εi .

� Janak’s theorem (1978): After optimizing the orbitals with fixed occupation numbers,
we have

∂EN

∂ni
= εi for occupied orbitals
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The HOMO energy and the ionization energy

� For clarity in the discussion, we will now explicitly indicate the dependence on the
electron number N .

� Janak’s theorem applied to the HOMO for N = N − δ where δ → 0+ gives
(
∂EN

0

∂N

)

N−δ

= εN−δ
H ≡ εNH

where εNH is the HOMO energy of the N-electron system (defined as the left side of
discontinuity).

� This implies the KS HOMO energy is the opposite of the exact ionization energy

εNH = −IN

� Combining this result with the known asymptotic behavior of the exact ground-state
density (for finite systems)

n
N(r) ∼

r→∞
e
−2
√

2IN r

it can be shown that it implies that the KS potential vN
s (r) ≡ vN−δ

s (r) (defined as the
limit from the left side) vanishes asymptotically

lim
r→∞

v
N
s (r) = 0
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The LUMO energy, the electron affinity, the derivative discontinuity (1/2)

� Janak’s theorem applied to the HOMO but now for N = N + δ where δ → 0+ gives
(
∂EN

0

∂N

)

N+δ

= εN+δ
H = −AN

where εN+δ
H is the HOMO energy from the right side of the discontinuity.

Remark: ∂EN
0 /∂N is constant for all N < N < N + 1, so: εN+δ

H = εN+1−δ
H ≡ εN+1

H

� One may think that εN+δ
H is equal to the LUMO energy of the N-electron system εNL

εN+δ
H

?
= εNL ≡ εN−δ

L
but this is WRONG!

εi

εN−δ

L
?
=

N − δ

εN+δ

H

N + δ

� Let us compare εN+δ
H and εN−δ

L :

εN+δ
H =

∫

φN+δ
H (r)∗

(

−1

2
∇2 + v

N+δ
s (r)

)

φN+δ
H (r)dr

εN−δ
L =

∫

φN−δ
L (r)∗

(

−1

2
∇2 + v

N−δ
s (r)

)

φN−δ
L (r)dr

� The density is continuous at the integer N, i.e. nN+δ(r) = nN−δ(r), but this only
imposes that vN+δ

s (r) and vN−δ
s (r) be equal up to an additive constant (according to

the Hohenberg-Kohn theorem). 41/81



The LUMO energy, the electron affinity, the derivative discontinuity (2/2)

� Indeed, it turns out that vN+δ
s (r) and vN−δ

s (r) do differ by a uniform constant ∆N
xc

v
N+δ
s (r)− v

N−δ
s (r) = ∆N

xc

� The orbitals are continuous at the integer N, so φN+δ
H (r) = φN−δ

L (r), and we find

εN+δ
H = εN−δ

L +∆N
xc

� In conclusion, the KS LUMO energy is not the opposite of the exact electron affinity

εNL = −AN −∆N
xc

due to the discontinuity ∆N
xc in the KS potential.

� Such a discontinuity can only come from the exchange-correlation part of the potential
vN
xc (r) since vne(r) is independent from N and the Hartree potential
vN
H (r) =

∫
nN (r′)/|r − r′|dr′ is a continuous function of N . So, we have

∆N
xc = v

N+δ
xc (r)− v

N−δ
xc (r) =

(
δExc[n]

δn(r)

)

N+δ

−
(
δExc[n]

δn(r)

)

N−δ

i.e. ∆N
xc is the derivative discontinuity in the exchange-correlation energy functional

Exc[n].
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Kohn-Sham frontier orbital energies: Graphical summary

εi

−IN

−AN

εN−δ
H

εN−δ
L

∆N
xc

εN+δ
H−1

εN+δ
H

εN+1
H = −AN = −IN+1

N ≡ N − δ N + δ N + 1
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Fundamental gap

� The fundamental gap of the N-electron system is defined as

E
N
gap = IN − AN

� In KS DFT, it thus be expressed as

E
N
gap = εNL − εNH +∆N

xc

︸ ︷︷ ︸
KS gap

So the KS gap is not equal to the exact fundamental gap of the system, the
difference coming from the derivative discontinuity ∆N

xc.

� The derivative discontinuity ∆N
xc can represent an important contribution to the

fundamental gap. In the special case of open-shell systems, we have εNL = εNH , and thus
if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely
given by ∆N

xc.
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The local-density approximation

� In the local-density approximation (LDA), introduced by Kohn and Sham (1965), the
exchange-correlation functional is approximated as

E
LDA
xc [n] =

∫

n(r)εunifxc (n(r))dr

where εunifxc (n) is the exchange-correlation energy per particle of the infinite uniform
electron gas (UEG) with the density n.

� The exchange energy per particle of the UEG can be calculated analytically

εunifx (n) = cx n
1/3 Dirac (1930) and Slater (1951)

� For the correlation energy per particle εunifc (n) of the UEG, there are some parametrized
functions of n fitted to QMC data and imposing the high- and low-density expansions
(using the Wigner-Seitz radius rs = (3/(4πn))1/3)

εunifc =
rs→0

A ln rs + B + C rs ln rs + O(rs) high-density limit or
weak-correlation limit

εunifc =
rs→∞

a

rs
+

b

r
3/2
s

+ O

(
1

r 2s

)

low-density limit or
strong-correlation limit

The two most used parametrizations are VWN and PW92. Generalization to spin
densities εunifc (n↑, n↓) is sometimes referred to as local-spin-density (LSD) approximation.
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The gradient-expansion approximation

� The next logical step beyond the LDA is the gradient-expansion approximation (GEA)
which consists in a systematic expansion of Exc[n] in terms of the gradients of n(r).

� To derive the GEA, one starts from the uniform electron gas, introduce a weak and
slowly-varying external potential v(r), and expand the exchange-correlation energy in
terms of the gradients of the density. Alternatively, one can perform a semiclassical
expansion of the exact Exc[n].

� At second order, the GEA has the form

E
GEA
xc [n] = E

LDA
xc [n] +

∫

Cxc(n(r)) n(r)
4/3

( ∇n(r)
n(r)4/3

)2

dr

where Cxc(n) = Cx + Cc(n) are known coefficients.

� We use the reduced density gradient |∇n|/n4/3 which is a dimensionless quantity.

� The GEA should improve over the LDA provided that the reduced density gradient is
small. Unfortunately, for real molecular systems, the reduced density gradient can be
large in some regions of space, and the GEA turns out to be a worse approximation than
the LDA.
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Generalized-gradient approximations (1/4)

� The failure of the GEA lead to the development of generalized-gradient
approximations (GGAs), started in the 1980s, of the generic form

E
GGA
xc [n] =

∫

f (n(r),∇n(r))dr

� The GGAs provide a big improvement over LDA for molecular systems.

� The GGAs are often called semilocal approximations, which means that they involve a
single integral on r using“semilocal information” through ∇n(r).

� For simplicity, we consider here only the spin-independent form, but in practice GGA
functionals are more generally formulated in terms of spin densities and their gradients

E
GGA
xc [n] =

∫

f (n↑(r), n↓(r),∇n↑(r),∇n↓(r))dr

� (Too) Many GGA functionals have been proposed. We will review some of the most
widely used ones.
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Generalized-gradient approximations (2/4)

� Becke 88 (B88 or B) exchange functional

E
B
x [n] = E

LDA
x [n] +

∫

n(r)4/3 f

( |∇n(r)|
n(r)4/3

)

dr

� Function f chosen so as to satisfy the exact asymptotic behavior of the exchange
energy per particle:

εx(r) ∼
r→∞

− 1

2r

� It contains an empirical parameter fitted to Hartree-Fock exchange energies of
rare-gas atoms.

� Lee-Yang-Parr (LYP) correlation functional (1988)

� One of the rare functionals not constructed starting from LDA.

� It originates from the Colle-Salvetti (1975) correlation-energy approximation
depending on the curvature of Hartree-Fock hole and containing four parameters
fitted to Helium data.

� LYP introduced a further approximation to retain dependence on only n, ∇n, ∇2n.

� The density Laplacian ∇2n can be exactly eliminated by an integration by parts.
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Generalized-gradient approximations (3/4)

� Perdew-Wang 91 (PW91) exchange-correlation functional

� It is based on a model of exchange and correlation holes from which we express the
exchange and correlation energies per particle:

εx(r1) =
1

2

∫
nx(r1, r2)

|r1 − r2|
dr2 and εc(r1) =

1

2

∫
n̄c(r1, r2)

|r1 − r2|
dr2

� It starts from the GEA model of these holes and removes the unrealistic long-range
parts of these holes to restore important conditions satisfied by the LDA.

� For the GEA exchange hole: the spurious positive parts are removed to enforce
nx(r1, r2) ≤ 0 and a cutoff in |r1 − r2| is applied to enforce

∫

nx(r1, r2)dr2 = −1.

� For the GEA correlation hole: a cutoff is applied to enforce
∫

n̄c(r1, r2)dr2 = 0.

� The exchange and correlation energies per particle calculated from these numerical
holes are then fitted to functions of n and |∇n| chosen to satisfy a number of
exact conditions.
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Generalized-gradient approximations (4/4)

� Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional (1996)

This is a simplification of the PW91 functional: εx and εc are simpler functions of n and
s = |∇n|/n4/3 enforcing fewer exact conditions and with no fitted parameters.

For correlation, the conditions imposed are:

� High-density limit: εc −−−→
rs→0

const (cancellation of diverging term A ln rs from LDA).

� Second-order GEA expansion: εc ∼
s→0

εLDAc + Cc s2 (with Cc only in rs → 0 limit).

� Large reduced-density-gradient limit: εc −−−−→
s→∞

0 (exchange dominates).

For exchange, the conditions imposed are:

� Second-order GEA expansion: εx ∼
s→0

εLDAx + Cx s2 (with only approximate Cx ≈ −Cc).

� Lieb-Oxford bound: Ex ≥ −C
∫

n(r)4/3dr

More precisely, it was chosen to impose the sufficient local condition εx(r) ≥ −C n(r)1/3

and to reach the bound in the s → ∞ limit.
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Meta-generalized-gradient approximations (1/2)

� The meta-generalized-gradient approximations (meta-GGAs) are of the generic form

E
meta-GGA
xc =

∫

f (n(r),∇n(r),∇2
n(r), τ(r))dr

where ∇2n(r) is the Laplacian of the density and τ(r) is the non-interacting positive
kinetic energy density

τ(r) =
1

2

N∑

i=1

|∇φi (r)|2

� Usually, n and τ are taken as independent variables, i.e. Emeta-GGA
xc [n, τ ].

This tacitly implies a slight extension of the usual KS method.

� Nowadays, ∇2n(r) is rarely used to construct meta-GGAs because it contains similar
information than τ(r).

� The meta-GGAs are considered as part of the family of semilocal approximations.

� The meta-GGAs provide a modest improvement over GGAs.
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Meta-generalized-gradient approximations (2/2)

� Motivations for introducing the variable τ(r):

� Short-range expansion of the exchange hole (for closed-shell systems):

nx(r, r
′) = −

n(r)

2
−

1

3

(

∇2n(r)− 4τ(r) +
|∇n(r)|2

2n(r)

)

|r − r′|2 + · · ·

Thus τ(r) is needed to describe the curvature of the exchange hole.

� τ(r) can be used as an indicator of spatial regions of single-orbital character (regions
containing one or two electrons in a single orbital).
This is done by comparing τ(r) with the von Weizsäcker kinetic energy density

τW(r) =
|∇n(r)|2

8n(r)

which is exact for one and two electrons in a single orbital.

� In practice, τ(r) is used through the variables

� τ(r)/τW(r)

� or, α(r) = (τ(r)− τW(r))/τunif(r) where τunif(r) = c n(r)5/3

� Examples of meta-GGAs: TPSS (2003) and SCAN (2015).
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Hybrid approximations

� In 1993, Becke proposed to mix Hartree-Fock (HF) exchange with GGA functionals in
a three-parameter hybrid (3H) approximation

E
3H
xc = a E

HF
x + b E

GGA
x + (1− a− b) E LDA

x + c E
GGA
c + (1− c) E LDA

c

where a, b, and c are empirical parameters. Example: B3LYP (a = 0.20)

� EHF
x [{φi}] depends on the occupied orbitals. The orbitals are optimized using a nonlocal

HF exchange potential vHF
x,σ(r, r

′) instead of a local one. This is a slight extension of the
usual KS method, referred to as generalized Kohn-Sham.

� Adding a fraction of HF exchange decreases the self-interaction error, which tends to
favor too much delocalized electron densities (problems with dissociation of charged
fragments, reaction barriers, radicals,...).

� In 1996, Becke proposed a simpler one-parameter hybrid (1H) approximation

E
1H
xc = a E

HF
x + (1− a) EDFA

x + E
DFA
c

where EDFA
x and EDFA

c can be any semilocal density-functional approximations (DFAs).

� The optimal a is often around 0.25. Example: PBE0 = HF/PBE hybrid with a = 0.25.

� A strategy is to use flexible EDFA
x and EDFA

c in a hybrid approximation and optimize
many parameters on molecular properties.
Example: B97 (13 parameters) and M06 (36 parameters).
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Double-hybrid approximations

� In 2006, Grimme introduced a two-parameter double-hybrid (2DH) approximation

E
2DH
xc = ax E

HF
x + (1− ax) E

DFA
x + (1− ac)E

DFA
c + acE

MP2
c

where the MP2-like correlation energy EMP2
c is added a posteriori with the previously

calculated orbitals. Example: B2-PLYP (ax = 0.53 and ac = 0.27).

� The presence of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal
HF exchange.

� In 2011, Sharkas, Toulouse, and Savin provided a rigorous reformulation using the
adiabatic-connection formalism, leading to a one-parameter double-hybrid (1DH)
approximation

E
1DH
xc = λ E

HF
x + (1− λ) EDFA

x + (1− λ2)EDFA
c + λ2

E
MP2
c

� Double-hybrid approximations are examples of correlation functionals depending on
virtual orbitals. Another example is the random-phase approximation (RPA).
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Range-separated hybrid approximations

� Based on ideas of Savin (1996), Hirao and coworkers (2001) proposed a long-range
correction (LC) scheme

E
LC
xc = E

lr,HF
x + E

sr,DFA
x + E

DFA
c

where

� E lr,HF
x is the HF exchange energy for the long-range electron-electron interaction

erf(µr12)
r12

replacing the Coulomb interaction 1
r12

,

� E sr,DFA
x is a semilocal DFA exchange energy for the complement short-range

electron-electron interaction,

� the range-separation parameter µ (also sometimes denoted as ω) is often taken as
µ ≈ 0.3− 0.5 bohr−1.

Example: LC-ωPBE

� In 2004, Yanai, Tew, and Handy introduced a more flexible decomposition called the
Coulomb-attenuating method (CAM)

E
CAM
xc = a E

sr,HF
x + b E

lr,HF
x + (1− a) E sr,DFA

x + (1− b) E lr,DFA
x + E

DFA
c

Examples: CAM-B3LYP, ωB97X
A special case: HSE (b = 0)
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Range-separated double-hybrid approximations

� In 2005, Ángyán, Gerber, Savin, and Toulouse introduced a range-separated
double-hybrid (RSDH) approximation

E
RSDH
xc = E

lr,HF
x + E

sr,DFA
x + E

sr,DFA
c + E

lr,MP2
c

� This is a well-defined approximation to a rigorous multideterminant extension of KS DFT
called “range-separated DFT”.

� Semilocal DFAs are more accurate if limited to short-range interactions.

� Long-range MP2 is qualitatively correct for London dispersion interactions.

� Long-range MP2 has a fast convergence with the basis size.

� Extensions of this scheme to a more flexible CAM decomposition have also been
proposed.
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Semiempirical dispersion corrections

� To explicitly account for London dispersion interactions, it has been proposed in the
2000s to add to the standard approximate functionals a semiempirical dispersion
correction of the form

Edisp = −s
∑

α<β

f (Rαβ)
C

αβ
6

R6
αβ

where

� Rαβ is the distance between a pair of atoms,

� Cαβ
6 is the dispersion coefficient between these atoms,

� f (Rαβ) is a damping function which tends to 1 at large Rαβ and tends to 0 at small Rαβ ,

� s is a scaling parameter that can be adjusted for each approximate functional.

� This approach was named“DFT-D”by Grimme.

� The dispersion coefficients Cαβ
6 are empirically obtained from tabulated data.

� The most recent versions also includes Cαβ
8 two-body terms and C

αβγ
9 three-body terms.

� There are also various proposals to make the determination of dispersion coefficients less
empirical, e.g. Becke and Johnson (2007), Tkatchenko and Scheffler (2009), Sato and
Nakai (2010).
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Time-dependent density-functional theory (TDDFT)

� Consider the time-dependent electronic Schrödinger equation with an external
time-dependent potential V̂ (t)

i
∂|Ψ(t)〉
∂t

=
(

T̂ + Ŵee + V̂ (t)
)

|Ψ(t)〉

� Similarly to the Hohenberg-Kohn theorem, Runge and Gross (1984) showed that, for a
given initial wave function Ψ(0), the time-dependent density n(r, t) determines the
time-dependent potential v(r, t) up to an arbitrary additive time function:

n(r, t) −−−−−−→
Runge-Gross

v(r, t) + c(t)

� We can thus set up a time-dependent non-interacting KS system

i
∂φi (r, t)

∂t
=

(

−1

2
∇2 + vs(r, t)

)

φi (r, t)

where the time-dependent KS potential vs(r, t) = v(r, t) + vHxc(r, t) reproduces the
evolution of the exact density as n(r, t) =

∑N
i=1 |φi (r, t)|2.

� Remark: Runge and Gross also established a TDDFT variational theorem, but it was later shown

to violate causality. Several different possible solutions to this problem have then been proposed.
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Linear-response TDDFT

� Let us consider a time-periodic potential of frequency ω. In Fourier space, a variation of
the KS potential vs(r1, ω) caused by a variation of the density n(r2, ω) can be written as

δvs(r1, ω)

δn(r2, ω)
=
δv(r1, ω)

δn(r2, ω)
+
δvHxc(r1, ω)

δn(r2, ω)

� This can be rewritten as

χ−1
s (r1, r2, ω) = χ−1(r1, r2, ω) + fHxc(r1, r2, ω)

where
� χs(r1, r2, ω) = δn(r1, ω)/δvs(r2, ω) is the KS non-interacting linear-response function

� χ(r1, r2, ω) = δn(r1, ω)/δv(r2, ω) is the interacting linear-response function

� fHxc(r1, r2, ω) = δvHxc(r1, ω)/δn(r2, ω) is the Hartree-exchange-correlation kernel

� The interacting linear-response function χ(r1, r2, ω) is thus found from the Dyson-like
response equation

χ−1(r1, r2, ω) = χ−1
s (r1, r2, ω)− fHxc(r1, r2, ω)

or, equivalently,

χ(r1, r2, ω) = χs(r1, r2, ω) +
x

dr3dr4 χs(r1, r3, ω) fHxc(r3, r4, ω) χ(r4, r2, ω)
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Excitation energies from linear-response TDDFT

� The KS linear-response function has poles at the KS (de-)excitation energies

χs(r1, r2, ω) =
∑

σ=↑,↓

occ∑

i

vir∑

a

[
φ∗
iσ(r1)φaσ(r1)φ

∗
aσ(r2)φiσ(r2)

ω − (εa − εi ) + i0+
− φ∗

aσ(r1)φiσ(r1)φ
∗
iσ(r2)φaσ(r2)

ω + (εa − εi ) + i0+

]

� Similarly, χ(r1, r2, ω) has poles at the exact excitation energies ωn = En − E0.

� Writing χ−1(ω) = χ−1
s (ω)− fHxc(ω) in the spin-orbital tensor product basis {ψ∗

i ψa, ψ
∗
aψi}

χ
−1(ω) = −

[(
A(ω) B(ω)

B(−ω)∗ A(−ω)∗
)

− ω
(

1 0
0 −1

)]

where the matrices A(ω) and B(ω) are

[A(ω)]ia,jb = (εa − εi )δijδab + 〈aj |fHxc(ω)|ib〉

[B(ω)]ia,jb = 〈ab|fHxc(ω)|ij〉

� The excitation energies ωn can be calculated from the generalized eigenvalue equation
(

A(ωn) B(ωn)
B(−ωn)

∗ A(−ωn)
∗

)(
Xn

Yn

)

= ωn

(
1 0
0 −1

)(
Xn

Yn

)
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The Hartree-exchange-correlation kernel

� In linear-response TDDFT, the key quantity to be approximated is the
Hartree-exchange-correlation kernel

fHxc(r1, r2, ω) =
δvHxc(r1, ω)

δn(r2, ω)

� It can be decomposed as

fHxc(r1, r2, ω) = fH(r1, r2) + fxc(r1, r2, ω)

where the Hartree kernel is simply fH(r1, r2) = 1/|r1 − r2|.
� In almost all TDDFT calculations, the frequency dependence of fxc is neglected, which is

called the adiabatic approximation

fxc(r1, r2, ω) ≈ δvxc(r1)

δn(r2)
=

δExc[n]

δn(r1)δn(r2)

with the notorious consequence that only single-electron excitations are taken into
account (double excitations and higher are missing).

� To describe nonlocal excitations, such as charge-transfer excitations, range-separated
hybrid approximations are often used. The kernel has then the expression

fxc = f
lr,HF
x + f

sr,DFA
x + f

DFA
c

where f lr,HFx is the long-range HF exchange kernel.
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Orbital-dependent exchange-correlation functionals

� We discuss here some exchange-correlation energy functionals depending explicitly on
the KS orbitals and KS orbital energies: Exc[{φp, εp}]

� Since the KS orbitals and KS orbital energies are implicit functionals of the density, i.e.
φp[n](r) and εp[n], these exchange-correlation expressions are implicit functionals of
the density.

� In fact, the hybrid, double-hybrid, and range-separated approximations that we have
seen already belong to this family, with the caveat that the orbitals are usually obtained
with a nonlocal potential.

� Here, we are concerned with orbital-dependent exchange-correlation energy functionals

with orbitals obtained with a local potential: vxc(r) =
δExc

δn(r)

� Then, the calculation of the potential vxc(r) requires the optimized-effective-potential
(OEP) method, which tends to be computationally involved (at least for molecules).
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Exact exchange

� The exact exchange (EXX) energy functional is

Ex = −1

2

∑

σ=↑,↓

Nσ∑

i=1

Nσ∑

j=1

x φ∗
iσ(r1)φjσ(r1)φ

∗
jσ(r2)φiσ(r2)

|r1 − r2|
dr1dr2

It has exactly the same form as the HF exchange energy, but the orbitals used in this
expression are different.

� The associated EXX potential vx(r) is calculated using the chain rule via the total KS
potential vs(r)

δEx

δvs(r)
=

∫
δEx

δn(r′)

δn(r′)

δvs(r)
dr′

� Introducing the non-interacting KS static linear-response function
χs(r

′, r) = δn(r′)/δvs(r), we find the OEP equation for the EXX potential
∫

vx(r
′)χs(r

′, r)dr′ =
δEx

δvs(r)

Explicit expressions in terms of the orbitals can be derived for δEx/δvs(r) and χs(r
′, r).

� The EXX occupied orbitals are very similar the HF ones, but the EXX virtual orbitals are
much less diffuse than the HF ones (vx(r) ∼

r→∞
−1/r for all orbitals, contrary to HF).

72/81



Görling-Levy perturbation theory (1/2)

� In 1993, Görling and Levy developed a perturbation theory in terms of the coupling
constant λ of the adiabatic connection.

� The Hamiltonian along the adiabatic connection (keeping the density constant) is

Ĥ
λ = T̂ + λŴee + V̂

λ = Ĥs + λ(Ŵee − V̂Hx)− λ2
V̂

(2)
c − · · ·

where we have used V̂ λ = V̂s − λV̂Hx − V̂ λ
c = V̂s − λV̂Hx − λ2V̂

(2)
c − · · ·

� At λ = 0, we have the KS non-interacting reference Hamiltonian Ĥs = T̂ + V̂s

Ĥs|Φn〉 = En|Φn〉

where Φ0 ≡ Φ is the ground-state KS determinant.

� The ground-state wave function Ψλ of Ĥλ is expanded in powers of λ

|Ψλ〉 = |Φ〉+ λ|Ψ(1)〉+ · · · with |Ψ(1)〉 = −
∑

n 6=0

〈Φn|Ŵee − V̂Hx|Φ〉
En − E0

|Φn〉

assuming a nondegenerate KS system.
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Görling-Levy perturbation theory (2/2)

� The correlation energy is then expanded in powers of λ

E
λ
c = 〈Ψλ|T̂ + λŴee|Ψλ〉 − 〈Φ|T̂ + λŴee|Φ〉 = E

(0)
c + λE (1)

c + λ2
E

(2)
c + · · ·

where the zeroth- and first-order terms vanish: E
(0)
c = 0 and E

(1)
c = (∂Eλ

c /∂λ)λ=0 = 0

� The second-order term is the second-order Görling-Levy (GL2) correlation energy

E
GL2
c ≡ E

(2)
c = 〈Φ|Ŵee|Ψ(1)〉 = 〈Φ|Ŵee − V̂Hx|Ψ(1)〉

where we have used 〈Φ|V̂Hx|Ψ(1)〉 = 0 since it is the derivative with respect to λ at
λ = 0 of 〈Ψλ|V̂Hx|Ψλ〉 =

∫
vHx(r)n(r)dr which does not depend on λ.

� The GL2 correlation energy is thus

E
GL2
c = −

∑

n 6=0

|〈Φ|Ŵee − V̂Hx|Φn〉|2
En − E0

= E
MP2
c + E

S
c

with a double-excitation MP2-like term EMP2
c and single-excitation term E S

c

E
MP2
c = −1

4

occ∑

i,j

vir∑

a,b

|〈ij ||ab〉|2
εa + εb − εi − εj

and E
S
c = −

occ∑

i

vir∑

a

|〈i |V̂ HF
x − V̂x|a〉|2
εa − εi

� In practice, results are often disappointing! It is preferable to go beyond second order
with the random-phase approximation.
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Adiabatic-connection fluctuation-dissipation approach (1/2)

� The adiabatic-connection formula for the correlation energy is

Ec =
1

2

∫ 1

0

dλ
x nλ

2,c(r1, r2)

|r1 − r2|
dr1dr2

� The correlation part of the pair density can be written

n
λ
2,c(r1, r2) = 〈Ψλ|n̂2(r1, r2)|Ψλ〉 − 〈Φ|n̂2(r1, r2)|Φ〉

where n̂2(r1, r2) is the pair-density operator.

� We use the expression of the pair-density operator in terms of the density operator n̂(r)

n̂2(r1, r2) = n̂(r1)n̂(r2)− δ(r1 − r2)n̂(r1)

and the fact that the density is constant along the adiabatic connection

〈Ψλ|n̂(r1)|Ψλ〉 = 〈Φ|n̂(r1)|Φ〉

� We thus see that the correlation pair density can be written as

n
λ
2,c(r1, r2) = 〈Ψλ|n̂(r1)n̂(r2)|Ψλ〉 − 〈Φ|n̂(r1)n̂(r2)|Φ〉
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Adiabatic-connection fluctuation-dissipation approach (2/2)

� Let us consider the linear-response function along the adiabatic connection

χλ(r1, r2, ω) =
∑

n 6=0

〈Ψλ|n̂(r1)|Ψλ
n 〉〈Ψλ

n |n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψ

λ|n̂(r2)|Ψλ
n 〉〈Ψλ

n |n̂(r1)|Ψλ〉
ω + ωλ

n + i0+

where the sum is over all eigenstates Ψλ
n of the Hamiltonian Ĥλ, i.e. Ĥλ|Ψλ

n 〉 = Eλ
n |Ψλ

n 〉,
except the ground state Ψλ ≡ Ψλ

0 , and ω
λ
n = Eλ

n − Eλ
0 are the excitation energies.

� By contour integrating χλ(r1, r2, ω) around the right half ω-complex plane, we arrive at
the fluctuation-dissipation theorem

n
λ
2,c(r1, r2) = −

∫ +∞

−∞

dω

2π
[χλ(r1, r2, iω)− χs(r1, r2, iω)]

which relates ground-state correlations in the time-independent system nλ
2,c(r1, r2) to the

linear response of the system due to a time-dependent external perturbation χλ(r1, r2, ω).

� We thus have the adiabatic-connection fluctuation-dissipation (ACFD) formula for
the correlation energy

Ec = −1

2

∫ 1

0

dλ

∫ +∞

−∞

dω

2π

x χλ(r1, r2, iω)− χs(r1, r2, iω)

|r1 − r2|
dr1dr2
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Random-phase approximation

� The ACFD formula involves χλ(r1, r2, iω) which can be obtained from linear-response
TDDFT

χλ(r1, r2, ω) = χs(r1, r2, ω) +
x

dr3dr4 χs(r1, r3, ω) f
λ
Hxc(r3, r4, ω) χλ(r4, r2, ω)

� The simplest approximation is the (direct) random-phase approximation (RPA)

f
λ
Hxc(r1, r2, ω) ≈ f

λ
H (r1, r2) = λwee(r1, r2)

where wee(r1, r2) = 1/|r1 − r2| is the Coulomb interaction.

� By iterating the TDDFT response equation, we find the RPA linear-response function

χ
RPA
λ (ω) = χs(ω) + λ χs(ω)weeχs(ω) + λ2

χs(ω)weeχs(ω)weeχs(ω) + · · ·

� Finally, the (direct) RPA correlation energy is

E
RPA
c = −1

2

∫ 1

0

dλ

∫ +∞

−∞

dω

2π
Tr
[

wee

(

λ χs(ω)weeχs(ω) + λ2
χs(ω)weeχs(ω)weeχs(ω) + · · ·

)]

which can be exactly summed.

� The (direct) RPA correlation energy corresponds to the sum of all direct ring diagrams.
It accounts for long-range van der Waals dispersion interactions. However, it shows large
self-interaction errors, which can be overcome by adding exchange diagrams.
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Uniform coordinate scaling (1/2)

� We consider a norm-preserving uniform coordinate scaling in the N-electron wave
function along the adiabatic connection Ψλ[n] (ignoring untouched spin variables)

Ψλ
γ [n](r1, ..., rN) = γ3N/2Ψλ[n](γr1, ..., γrN)

where γ > 0 is a scaling factor.

� The scaled wave function Ψλ
γ [n] yields the scaled density

nγ(r) = γ3
n(γr) (with

∫
nγ(r)dr =

∫
n(r)dr = N)

and minimizes 〈Ψ|T̂ + λγŴee|Ψ〉 since
〈Ψλ

γ [n]|T̂ + λγŴee|Ψλ
γ [n]〉 = γ2〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉

� We thus conclude

Ψλ
γ [n] = Ψλγ [nγ ] or, equivalently, Ψλ/γ

γ [n] = Ψλ[nγ ]

� and for the universal density functional

F
λγ [nγ ] = γ2

F
λ[n] or, equivalently, F

λ[nγ ] = γ2
F

λ/γ [n]
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Uniform coordinate scaling (2/2)

� At λ = 0, we find the scaling relation of the KS single-determinant wave function

Φ[nγ ] = Φγ [n]

� This directly leads to the scaling relations for Ts[n], EH[n], and Ex[n]

Ts[nγ ] = γ2
Ts[n] and EH[nγ ] = γEH[n] and Ex[nγ ] = γEx[n]

� However, Ec[n] has the more complicated scaling (as F [n])

E
λ
c [nγ ] = γ2

E
λ/γ
c [n]

and, in particular for λ = 1,

Ec[nγ ] = γ2
E

1/γ
c [n]
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High- and low-density limits

� The high-density limit of the correlation functional is, for nondegenerate KS systems,

lim
γ→∞

Ec[nγ ] = E
GL2
c [n]

where EGL2
c [n] is the second-order Görling-Levy (GL2) correlation energy.

� This is also called the weak-correlation limit since Ec[n] ≪ Ex [n].

� LDA does not satisfy this condition: εunifc (rs/γ) ∼
γ→∞

A ln(rs/γ) → −∞.

GGAs such as PBE are constructed to cancel out this divergence.

� Atomic and molecular systems are often close to the high-density limit.

� The low-density limit of the correlation functional is

Ec[nγ ] ∼
γ→0

γ W
SCE
ee [n]

where W
SCE
ee [n] = min

Ψ→n
〈Ψ|Ŵee|Ψ〉 is the strictly-correlated-electron (SCE) functional.

� This is also called the strong-correlation limit since Ec[n] ∼ Ex [n].

� Calculation of W SCE
ee [n] is computationally involved but has been done for a few systems

(Seidl, Gori-Giorgi, ...).

� In the uniform-electron gas, this limit corresponds to the Wigner crystallization.
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