

Basis-set correction based on density-functional theory

Julien Toulouse

Laboratoire de Chimie Théorique Sorbonne Université and CNRS, Paris, France Institut Universitaire de France

DFT 2024, Paris

 ${\tt www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_dft_24.pdf}$

1 Slow basis-set convergence of wave-function theory

2 Basis-set correction based on DFT

1 Slow basis-set convergence of wave-function theory

2 Basis-set correction based on DFT

The roots of slow basis-set convergence

- The space of one-electron states $\mathfrak{H}=L^2(\mathbb{R}^3\times\{\uparrow,\downarrow\},\mathbb{C})$ and the space of *N*-electron states $\mathcal{H}=\bigwedge^N\mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,\dots,N_{\text{basis}}}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = \text{span}(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $N_{\text{basis}} \to \infty$.
- ▶ In the molecular electronic Hamiltonian

$$\hat{H} = \hat{T} + \hat{W}_{\text{ee}} + \hat{V}_{\text{ne}}$$

the Coulomb electron-electron interaction $\hat{W}_{\text{ee}} = \sum_{i < j} 1/r_{ij}$ is singular as $r_{ij} \to 0$, leading to the electron-electron cusp (derivative discontinuity) in the eigenfunctions

$$\Psi(r_{ij}) = \Psi(0) \left[1 + \frac{1}{2} r_{ij} + \cdots \right]$$

Kato, CPAM, 1957

► This leads to a slow basis-set convergence of energies and many properties due to short-range correlation

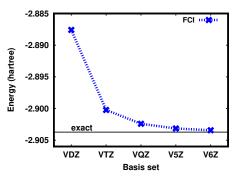
Slow basis-set convergence of the FCI ground-state energy

lacktriangle The **full-configuration interaction (FCI)** ground-state energy in a basis set ${\cal B}$ is

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi | \hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi
angle$$

where $\mathcal{W}^\mathcal{B} = \{\Psi \in \mathcal{H}^\mathcal{B} \mid \langle \Psi | \Psi \rangle = 1\}.$

▶ Example of the He atom with the series of basis sets $\mathcal{B} = \text{``cc-pV}XZ''$:



Systematic but slow basis-set convergence

Two main strategies to deal with slow basis-set convergence

Extrapolation of the correlation energy to the CBS limit using an inverse cubic law in X:

$$E_{\rm c}^{\rm X}=E_{\rm c}^{\rm CBS}+\frac{A}{X^3}$$

Helgaker, Klopper, Koch, Noga, JCP, 1997

► Explicitly correlated R12/F12 methods consisting in augmenting the two-electron Hilbert space by geminals of the form:

$$g_{i,j}(\mathbf{x}_1,\mathbf{x}_2) = \hat{Q}_{12}f(r_{12})\hat{S}_{12} \phi_i(\mathbf{x}_1) \wedge \phi_j(\mathbf{x}_2)$$

where $f(r_{12})$ is a correlation factor, \hat{S}_{12} is the rational generator ensuring the singlet and triplet cusp conditions, and \hat{Q}_{12} is the strong-orthogonality projector

Reviews: Ten-no, Noga, WIREs, 2012; Hättig, Klopper, Köhn, Tew, CR, 2012; Kong, Bischoff, Valeev, CR, 2012; Shiozaki, Werner, MP, 2013

1 Slow basis-set convergence of wave-function theory

2 Basis-set correction based on DFT

Basis-set correction based on DFT (1/2)

In standard DFT (complete basis set), the exact ground-state energy is expressed as

$$E_0 = \min_{
ho \in \mathcal{D}^{ extsf{CBS}}} \Bigl\{ F[
ho] + \int \! v_{ ext{ne}}(\mathbf{r})
ho(\mathbf{r}) \mathrm{d}\mathbf{r} \Bigr\}$$

where $\mathcal{D}^{\text{CBS}} = \{ \rho \mid \exists \Psi \in \mathcal{W}^{\text{CBS}} \text{ s.t. } \rho_{\Psi} = \rho \}$ is the set of *N*-representable densities, and $F[\rho]$ is the **Levy-Lieb universal density functional**

$$F[
ho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathsf{CBS}} \ \Psi
ightarrow
ho}} \langle \Psi | \hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} | \Psi
angle$$

For an **incomplete basis set** \mathcal{B} , we can define an approximation to the ground-state energy by **restriction to densities representable in** \mathcal{B}

$$E_0^{\mathcal{B}} = \min_{
ho \in \mathcal{D}^{\mathcal{B}}} \Big\{ F[
ho] + \int \! v_{\mathsf{ne}}(\mathbf{r})
ho(\mathbf{r}) \mathrm{d}\mathbf{r} \Big\}$$

where $\mathcal{D}^{\mathcal{B}} = \{ \rho \mid \exists \Psi \in \mathcal{W}^{\mathcal{B}} \text{ s.t. } \rho_{\Psi} = \rho \}.$

▶ The restriction to densities representable in \mathcal{B} is much weaker than the restriction to wave functions representable in \mathcal{B} , so we expect

$$E_{\text{FCI}}^{\mathcal{B}} \gg E_0^{\mathcal{B}} \gtrsim E_0$$

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018

Basis-set correction based on DFT (2/2)

▶ We then decompose the universal density functional $F[\rho]$ as

$$F[
ho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \ \Psi
ightarrow
ho}} \langle \Psi | \hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} | \Psi
angle + ar{\mathcal{E}}^{\mathcal{B}} [
ho]$$

where $\vec{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

▶ The energy $E_0^{\mathcal{B}}$ can then be obtained **self-consistently** as

$$E_0^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi \rangle + \bar{E}^{\mathcal{B}} [\rho_{\Psi}] \right\}$$

▶ We will consider a **non-self-consistent approximation** using the FCI wave function:

$$E_{ extsf{FCI+DFT}}^{\mathcal{B}} \, = \, \langle \Psi_{ extsf{FCI}}^{\mathcal{B}} | \, \hat{T} + \hat{W}_{ extsf{ee}} + \hat{V}_{ extsf{ne}} | \Psi_{ extsf{FCI}}^{\mathcal{B}}
angle + ar{ar{\mathcal{E}}}^{\mathcal{B}} [
ho_{\Psi_{ extsf{FCI}}^{\mathcal{B}}}]$$

We can also add the DFT basis-set correction to any approximate wave-function theory (WFT) method: $E_{\text{WFT+DFT}}^{\mathcal{B}} = E_{\text{WFT}}^{\mathcal{B}} + \bar{E}^{\mathcal{B}}[\rho_{\psi\mathcal{B}_{--}}]$

The complementary basis-set correction functional $\bar{E}^{\mathcal{B}}[\rho]$

 \blacktriangleright We start by defining an **electron-electron interaction projected in the basis set** $\mathcal B$

$$w_{\mathsf{ee}}^{\mathcal{B}}(\mathbf{r}_1,\mathbf{r}_2)$$

We fit this projected interaction by the long-range interaction used in range-separated DFT:

$$w_{\mathrm{ee}}^{\mathcal{B}}(\mathbf{r}_{1},\mathbf{r}_{2}) pprox rac{\mathrm{erf}(\mu^{\mathcal{B}}(\mathbf{r}_{1})r_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

- The obtained $\mu^{\mathcal{B}}(\mathbf{r})$ is a local measure of the incompleteness of the basis set \mathcal{B} .
- ► We then approximate the basis-set correction functional by a **short-range PBE correlation functional** previously developed for range-separated DFT:

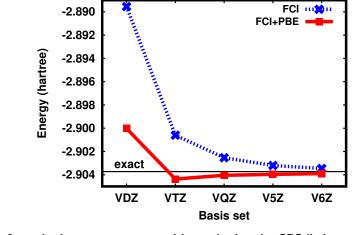
$$\underline{\bar{\textbf{\textit{E}}}}_{\mathsf{PBE}}^{\mathcal{B}}[\rho] = \int \mathsf{e}_{\mathsf{c}}^{\mathsf{srPBE}}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \mu^{\mathcal{B}}(\mathbf{r})) \; \mathsf{d}\mathbf{r}$$

ightharpoonup This approximate basis-set correction functional contains the physics of the electron-electron cusp, automatically adapts to each basis set \mathcal{B} , and correctly vanishes in the CBS limit

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018 Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019

Convergence of the total energy with respect to the basis set

Example of the He atom with the series of basis sets $\mathcal{B} = \text{``cc-pV}XZ''$:



▶ Much faster basis-set convergence without altering the CBS limit

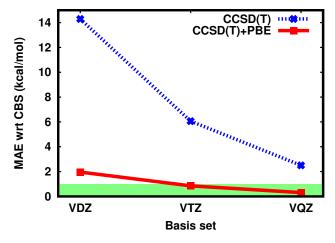
Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018 Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019

1 Slow basis-set convergence of wave-function theory

2 Basis-set correction based on DFT

Benchmark on atomization energies of small molecules

► Atomization energies of 55 small molecules (G2 set) with cc-pVXZ basis sets:

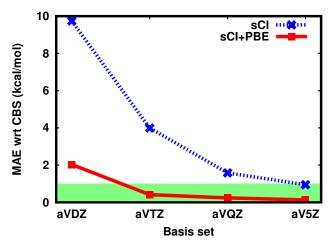


► MAE wrt CBS is below 1 kcal/mol already with the triple-zeta basis set

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019

Benchmark on dissociation energies of transition metal monoxides

Dissociation energies of transition metal monoxides (ScO, TiO, VO, CrO, MnO, FeO, CuO) with selected CI calculations with aug-cc-pVXZ basis sets and pseudopotentials:



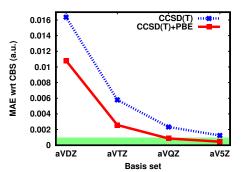
► MAE wrt CBS is below 1 kcal/mol already with the triple-zeta basis set

Benchmark on dipole moments of small molecules

lacktriangle Calculation of the **dipole moment** by response to an electric field \mathcal{E} :

$$E_0^{\mathcal{B}}(\mathcal{E}) = E_{\mathsf{WFT}}^{\mathcal{B}}(\mathcal{E}) + \left. \overline{\mathbf{E}}^{\mathcal{B}} [\rho_{\Psi_{\mathsf{WFT}}^{\mathcal{B}}(\mathcal{E})}] \right. \implies \left. d_0^{\mathcal{B}} = - \left. \frac{\mathsf{d}E_0^{\mathcal{B}}(\mathcal{E})}{\mathsf{d}\mathcal{E}} \right|_{\mathcal{E}=0}$$

▶ Dipole moments of 14 small molecules with aug-cc-pVXZ basis sets:

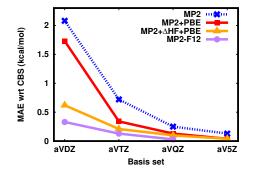


► The basis-set correction also accelerates the convergence of dipole moments, albeit to a lesser extent

Giner, Traore, Pradines, Toulouse, JCP, 2021; Traore, Toulouse, Giner, JCP, 2022

Density-fitting implementation and benchmark on reaction energies

- Implementation in MOLPRO with density-fitting calculation of the local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$ with scaling $O(N_{\text{occ}}N_{\text{basis}}N_{\text{fit}}N_{\text{grid}})$
- ▶ **51 reaction energies** (FH51 set) with aug-cc-pV(X+d)Z basis sets:



- ▶ The HF basis-set correction (\triangle HF) is important for small basis sets
- ▶ MP2-F12 is more accurate, especially for the double-zeta basis set

Heßelmann, Werner, Knowles, Giner, Reinhardt, Toulouse, JCC, 2024 (see also Mester, Kállay, JCTC, 2023)

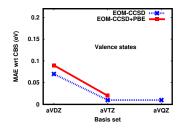
Benchmark on excitation energies

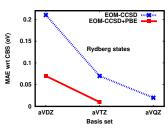
The self-consistent formulation leads to an **effective Hamiltonian with a DFT** basis-set correction potential:

$$E_0^{\mathcal{B}} \; = \; \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{H} | \Psi \rangle + \bar{\boldsymbol{\mathcal{E}}}^{\mathcal{B}} [\rho_{\Psi}] \right\} \; \Longrightarrow \; \left(\hat{H} + \frac{\mathbf{\hat{\nabla}}^{\mathcal{B}}}{\mathbf{\hat{V}}} [\rho_{\Psi^{\mathcal{B}}}] \right) | \Psi^{\mathcal{B}} \rangle = \mathcal{E}^{\mathcal{B}} | \Psi^{\mathcal{B}} \rangle$$

and excitation energies are obtained with EOM-CCSD applied to this effective Hamiltonian.

▶ 28 excitation energies of small molecules with aug-cc-pVXZ basis sets:



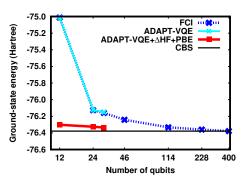


The basis-set correction accelerates the convergence of the Rydberg excitations energies but not the valence ones.

Traore, Toulouse, Giner, Faraday Discussions, 2024

DFT basis-set correction to the rescue of quantum computing

- ▶ In quantum computing, there is a strong limitation on the size of the basis set since it corresponds to the number of qubits.
- ► Ground-state energy of H₂O with ADAPT-VQE emulated calculations:



▶ The basis-set correction helps the convergence of quantum-computing calculations.

Traore, Adjoua, Feniou, Lygatsika, Maday, Posenitski, Hammernik, Peruzzo, Toulouse, Giner, Piquemal, arXiv 2405.11567, 2024

Conclusions

- Summary:
 - ▶ DFT basis-set correction which automatically adapts to each basis set
 - based on pre-existing short-range correlation functional
 - accelerates basis-set convergence of energies and properties
 - implemented in QUANTUM PACKAGE and MOLPRO

Outlook:

- ▶ Analysis of the exact basis-set correction functional
- Construction of better approximations to it

Contributors to this work:

Paris: O. Adjoua, R. Assaraf, C. Feniou, A. Ferté, E. Giner, J.-P. Piquemal, B.

Pradines, P. Reinhardt, A. Savin, D. Traore

Toulouse: P.-F. Loos, A. Scemama

Cornell: Y. Yao, T. Anderson, C. Umrigar

Molpro team: A. Heßelmann, P. Knowles, H.-J. Werner

 $\verb|www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_dft_24.pdf|$