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Introduction: basis-set correction based on DFT

» A major limitation of wave-function/many-body electronic-structure methods is
their slow convergence with respect to the size of the one-electron basis set 13
due to the difficulty of describing short-range correlation around the electron-electron
cusp
» The two usual main approaches for dealing with this problem are:
» Extrapolation to the complete-basis-set (CBS) limit
» Methods using an explicit correlation factor (QMC, F12, transcorrelated)
» Recently, we introduced an alternative basis-set correction scheme based on DFT:
E = (W5, AW + E%[pys]
Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018, and 8 subsequent papers
» Successfully accelerates the basis convergence for various properties and systems
» The functional E_B[p] is approximated from range-separated DFT

» Here, we rexamine this method more closely for a one-dimensional model
Hamiltonian with delta-potential interactions

» We give a new formulation of the method and we develop an adapted local-density
approximation (LDA) for the basis-set correction functional EB[p] for any basis 5
using a finite uniform electron gas

Traore, Giner, Toulouse, JCP, 2022
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Description of the 1D model system

» We consider the Hamiltonian of N = 2 electrons in a 1D He-like atom (Z = 2) with
delta-potential interactions:

I:I = ?—+ Wee ar \A/ne
1 N N
with T = —§ Z 27 Wee = 6(X1 - XZ) f Vne =S _Zgé(xl)

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004
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Description of the 1D model system

» We consider the Hamiltonian of N = 2 electrons in a 1D He-like atom (Z = 2) with
delta-potential interactions:

I:l = ?—+ Wee ar \A/ne
1 n & o
with T = —5 Z 27 Wee = 6(X1 - XZ) f Vne = _Zgé(xl)

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004
> We work on the two-electron spinless Hilbert space H = £ ® A where £ = (R, C)

» The exact ground-state wave function has the same electron-electron cusp as the 3D
one, i.e. for small interelectronic distances xi2 = x1 — x»

1
Wo(x1, x2) = Wo(x1, x1) (1 4k §|X12| 4k O(X122)>

» In a finite one-electron basis set, we thus expect a slow convergence with the basis
size very similar to the slow convergence observed in 3D quantum systems with the
Coulomb electron-electron interaction
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Exact ground-state energy and Hartree-Fock approximation

» The ground-state energy is
Eo = min (W, AW)
vew

where W = {\u EH| Ve H(R?C), (W, V) = 1} is the set of admissible wave
functions
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Exact ground-state energy and Hartree-Fock approximation

» The ground-state energy is
Eo = min (W, AW)
vew
where W = {\u EH| Ve H(R?C), (W, V) = 1} is the set of admissible wave
functions
» It can accurately be estimated numerically: E; = —3.155390 a.u.

» The model can be solved analytically at the Hartree-Fock (HF) level

» The HF ground-state energy is

Z 1
Er=-Z°+ 5 — 15 = 3083333 au.
» The doubly occupied HF orbital is
eBIxI
d1(x) = 25\/’7m

withB=2-1/2=3/2andy=1/(4Z2-1)=1/7

Nogami, Vallieres, van Dijk, AJP, 1976
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Full-configuration interaction in a basis set

» To have a systematically improvable basis set, we use Hermite functions with a unique
fixed exponent o

Vn e N, f(x) = Ny Ha(vV20x) e

where H, are the Hermite polynomials and Ny is a normalization constant
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» To have a systematically improvable basis set, we use Hermite functions with a unique
fixed exponent o

Vn e N, f(x) = Ny Ha(vV20x) e
where H, are the Hermite polynomials and Ny is a normalization constant

» We add the exact occupied HF orbital ¢; to obtain our basis set

» We now work in the finite-dimensional two-electron Hilbert space H° = A% ® £°
where £% = span(B) is the one-electron Hilbert space spanned by the basis set B

» The full-configuration-interaction (FCI) ground-state energy for this basis set 1 is

Efey = min (W, AW)
vews
where W* = {\IJ eHE | (W, v) = 1} is the set of wave functions restricted to #*
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Basis convergence of the FCI ground-state energy

» Convergence of Ef as a function of the basis size nmax
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» As in the 3D Coulomb case, we find a slow power-law convergence:

EE, ~ Eo+ f\ with b~ 0.5
— n,
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Review of DFT for the 1D model

» We consider the 1D Hamiltonian still for N = 2 electrons but now for a general
potential v € V = M(R) + L*(R)

Al = T+ Wee + V where V =31 v(x)
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Review of DFT for the 1D model

» We consider the 1D Hamiltonian still for N = 2 electrons but now for a general
potential v € V = M(R) + L*(R)

Al = T+ Wee + V where V =31 v(x)
» The corresponding ground-state energy is
Eo[v] = jnf (W, H[v]V)
» The Levy-Lieb density functional is defined as a constrained-search over wave
functions yielding the one-electron density p
Vo €R, Flp] = wnéwp(w, (T + Wee) W)
where W, = {V e W | py = p}
» It is defined on the set of N-representable densities
R=(p13WeW.ou=0) = {pc 'R 1p20, [ xiox=n. vie H'(®)]
R
» |t gives the exact ground-state energy as
Eo[v] = inf (Flo] + (v, 0))
PER

where (v, p) = [ v(x)p(x)dx 10/21



First variant of basis-set correction (1/2)

» We define the Levy-Lieb density functional restricted to the basis set 13 as

Vo e RE, FPlp] = min (W, (T + Wee)W)
vewp

where W5 = {W € W¥ | py = p}
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vewp

where W5 = {W € W¥ | py = p}
» It is defined on the set of densities representable by a wave function ¥ € W*

RB:{pIHWEWB,pw:p}

» We now decompose the exact Levy-Lieb density functional as
Vo € R®, Flo] = F[o] + E®[o]
where E®[p] is the complementary basis-set correction density functional

» We can obtain an approximate ground-state energy by restricting the minimization to
densities p € RE

Ev] = min (Fle] +(v.0) = min, (W, (T + Wee + )W) + E%[ou])

> As the basis set is increased, EF[v] converges to E;[v] much faster than E5 [v] does
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First variant of basis-set correction (2/2)

» In summary, the first variant of basis-set correction consists in calculating

ESTVI = min, (V. (T + e + V)W) + E[pu])
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First variant of basis-set correction (2/2)

» In summary, the first variant of basis-set correction consists in calculating

ESTVI = min, (V. (T + e + V)W) + E[pu])

» The advantage is that it is a convenient self-consistent formulation and that is easily
extended to response theory (in practice, non-self-consistent approximations can also
be used)

» The limitations are:

» It does not give the exact ground-state energy even with the exact basis-set
correction functional E*[g]

» The basis-set correction functional EB[p] is defined only for densities p € R
= it is not clear how to define a local-density approximation (LDA)
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Second variant of basis-set correction (1/2)

» We define a new Levy-Lieb density functional restricted to the basis set B for all
densities p € R as

wi _ . 5 /B
VpeR, F*[p] = wﬂg;gp(‘lh (T + Wee) V)

where W2 = PPV, PP is the interaction projected onto the Hilbert space H”
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Second variant of basis-set correction (1/2)

» We define a new Levy-Lieb density functional restricted to the basis set B for all
densities p € R as

wi _ . 5 /B
VpeR, F*[p] = g (U (T + Wee)W)
where VAVelZ = PPV PP is the interaction projected onto the Hilbert space H?

» We now decompose the exact Levy-Lieb density functional as
Vo € R, Flo] = F**[o] + Eilo]

cwB

where Ef:[p] is the complementary Hartree-exchange-correlation basis-set

correction density functional

» We can obtain the exact ground-state energy as

Eolv] = inf (Flo] + (v.p)) = jnf (¥, (T + Wl + )W) + Etiilpou])
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Second variant of basis-set correction (2/2)

» In summary, in the second variant of basis-set correction, we have

Bolvl = jof (W, (T + Wl + V)W) + Eilow])
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» In summary, in the second variant of basis-set correction, we have

Eolv] = jnf ((w,(?+ We + V)w) + ch[pw])

» [t gives the exact ground-state energy and the functional EHXC[p] is defined for p € R
» But the disadvantage is that the minimization is over general wave functions ¥ € W

» After finding the minimizing wave function W4® we have the non-variational
expression

Eo[v] = (W5°, (T + Wee + V)W5") + Eggd[l)wgl%]
> Here, E¥54[0] is the complementary correlation (md) contribution to the functional
Edmalel = (Vo] (T + Wee)We]) — (W™"[p], (T + Wee) W [o])
where W([p] is the wave function minimizing (W, (T + Wee)W) and W*5[p] is the wave
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Second variant of basis-set correction (2/2)

» In summary, in the second variant of basis-set correction, we have

Eolv] = jnf ((w,(?+ We + V)w) + ch[pw])

» [t gives the exact ground-state energy and the functional EHXC[p] is defined for p € R
» But the disadvantage is that the minimization is over general wave functions ¥ € W

» After finding the minimizing wave function W4® we have the non-variational
expression

Eo[v] = (W5°, (T + Wee + V)W5") + Eggd[l)wgl%]
> Here, E¥54[0] is the complementary correlation (md) contribution to the functional

E*4lo] = (Wlal, (T + Wee)Wol) — (W*2[o], (T + Wee)W*“[o])

where W([p] is the wave function minimizing (W, (T + Wee)W) and W*5[p] is the wave
function minimizing (W, (T + W2)w)

» In practice, we will use approximations for \IJEVB and EWBd[p]

14/21
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» To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval
Q. = (—a/2,a/2) with periodic boundary conditions

> The two-electron Hilbert space is Ha = i, ® h; where fi, = L?(Q2,, C) and the set of
admissible wave functions is W, = {V € H, | ¥ € H(Q2,C), (W, W), = 1}
» The corresponding Levy-Lieb density functional is
Vp € Ra, Falp] = W?Vivr;p(\ll, (T + Wee) W),

where W, ={V eW,, py =p}and Ra={p| IV €W, pv = p}

» A finite UEG with N = 2 electrons is defined by considering the uniform density
Ounif : X — po = N/a. The energy per particle of this finite UEG is

Fa uni
EUEG,N:Q(po): [ﬁ/ f]

» Falpunif] corresponds to the ground-state energy of the two-electron Hamiltonian with

zero potential /:IUEG =T+ Wee with periodic boundary conditions on €,

» We can extend this to any N and the energy per particle of the infinite UEG is

evec(po) = Alinw €uveg,n(po) but we may as well use the finite UEG for N =2

Gill, Loos, TCA, 2012
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1D finite UEG for second variant of basis-set correction

» In the second variant of basis-set correction, the Levy-Lieb density functional is
Vo € Ra, B5lo] = min (W, (T + W), = (5[], (T + W)W [o))a,
a.p
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» In the second variant of basis-set correction, the Levy-Lieb density functional is
Vo € Ra, B5lo] = min (W, (T + W), = (5[], (T + W)W [o))a,
a.p

» A finite UEG with N = 2 electrons is defined by inserting the uniform density
Ounif : X — po = N/a. Then, \UWB[punif] is the ground-state wave function of the
two-electron Hamiltonian

AEs = T+ WE+ U™ with U8 =SV v"B(x)
where v"5 is the potential imposing the uniform density puni

» According to Lieb’s convex-conjugation approach, the potential V"B is calculated as

V'8 = argmax (ng[v] — (v, punif)a)
VEVa

where EY5[v] = Jnf (v, (T + WE+ V)W), and Vi = Mper(22) 4+ L¥(2,)
€EWa
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1D finite UEG for second variant of basis-set correction

» In the second variant of basis-set correction, the Levy-Lieb density functional is
Vo € Ra, B5lo] = min (W, (T + W), = (5[], (T + W)W [o))a,
a.p

» A finite UEG with N = 2 electrons is defined by inserting the uniform density
Ounif : X — po = N/a. Then, \UWB[pumf] is the ground-state wave function of the
two-electron Hamiltonian

PRE = T+ WE4 U™ with "6 = 3w
where v"5 is the potential imposing the uniform density puni

» According to Lieb’s convex-conjugation approach, the potential V"B is calculated as

V'8 = argmax (ng[v] — (v, punif)a)
VEVa

where EY5[v] = Jnf (v, (T + WE+ V)W), and Vi = Mper(22) 4+ L¥(2,)
€EWa

> From W"5[p,i], we calculate the complementary correlation energy per particle

E!,”r'ﬁd [Punif]

Egﬁd,N:Q(Po) = N
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Complementary correlation energy per particle

» Complementary correlation energy per particle of the finite 1D UEG é‘gﬁd,,\,ﬂ(p) as

a function of p for basis sets B of the 1D He-like atom of increasing sizes Nmax:

Complementary correlation energy per particle of the UEG (a.u.)
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» As Nmax increases, é‘gl,f]dl,\,zz(p) becomes smaller and must eventually vanish in the limit

Nmax — OO
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FCI with LDA-based basis-set correction

» Recall that in the second variant of basis-set correction, the exact ground-state
energy can be written as

Eo = (W5°, AWE®) + Elnalowys]
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» Recall that in the second variant of basis-set correction, the exact ground-state
energy can be written as

Eo = (W5°, AWE®) + Elnalowys]

» For the functional E%,[o], we use the LDA from our 1D finite UEG calculations for

the basis set B

E™E, onlo] = / P(X)E B ¢ wea(P(x))dx
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» For the functional E%,[o], we use the LDA from our 1D finite UEG calculations for

the basis set B

E™E, onlo] = / P(X)E B ¢ wea(P(x))dx

> We approximate the wave function W%? by the FCI ground-state wave function W5,
in the basis set B
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FCI with LDA-based basis-set correction

» Recall that in the second variant of basis-set correction, the exact ground-state
energy can be written as

Eo = (W5, Avg®) + Eggd[ngB]

» For the functional E%,[o], we use the LDA from our 1D finite UEG calculations for

the basis set B
Exfasonlel = [ p(x)eRan-2(p())dx
> We approximate the wave function W%? by the FCI ground-state wave function W5,
in the basis set B
» We thus finally the FCI energy with a LDA-based basis-set correction
Eféiiion = (WEa, AVE) + Elna.on lows ]
and EFWg+LDA correctly converges to Eq in the complete-basis-set limit
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Basis convergence of the FCI4+-LDA energy of the 1D He-like atom

» FCI and FCI4LDA ground-state energies of the 1D He-like atom as a function of
the basis size Nmax :

EXact e

FCl —w—
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T T T T T T
-3.1560 |-
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. L L L L L
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Energy (a.u.)
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» The LDA-based basis-set correction efficiently accelerates the basis convergence of
the FCI ground-state energy
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Summary and outlook

» Summary:
» The 1D model with delta-potential interactions captures the essence of the
basis-set convergence problem
» Two variants of basis-set corrections based on DFT have been rigorously
developed
» The LDA for the basis-set correction functional has been constructed from a
finite uniform-electron gas

D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113, 2022

» Outlook:
» Linear-response theory for basis-set correction of excitation energies in a 1D
model
Extension to a relativistic 1D model
Density-functional approximations for the first variant of basis-set correction in
the 1D model
Extension of the work on the 1D model to 3D molecular systems
Extension to solids?

www.lct. jussieu.fr/pagesperso/toulouse/presentations/presentation_correlation_meeting_22.pdf
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