

Basis-set correction based on density-functional theory: Rigorous framework for a one-dimensional model

Julien Toulouse

Laboratoire de Chimie Théorique Sorbonne Université and CNRS, Paris, France Institut Universitaire de France

> Correlation meeting, GDR REST École Polytechnique (Palaiseau) April 2022

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_correlation_meeting_22.pdf

▶ A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set \mathcal{B} due to the difficulty of describing short-range correlation around the electron-electron cusp

- ▶ A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set \mathcal{B} due to the difficulty of describing short-range correlation around the electron-electron cusp
- ▶ The **two usual main approaches** for dealing with this problem are:
 - ► Extrapolation to the complete-basis-set (CBS) limit
 - ▶ Methods using an explicit correlation factor (QMC, F12, transcorrelated)

- ▶ A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set B due to the difficulty of describing short-range correlation around the electron-electron cusp
- ▶ The **two usual main approaches** for dealing with this problem are:
 - Extrapolation to the complete-basis-set (CBS) limit
 - Methods using an explicit correlation factor (QMC, F12, transcorrelated)
- Recently, we introduced an alternative basis-set correction scheme based on DFT:

$$E = \langle \Psi^{\mathcal{B}}, \hat{H}\Psi^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}}[
ho_{\Psi^{\mathcal{B}}}]$$

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018, and 8 subsequent papers

- ▶ Successfully accelerates the basis convergence for various properties and systems
- ullet The functional $ar{\mathcal{E}}^{\mathcal{B}}[
 ho]$ is approximated from range-separated DFT

- ▶ A major limitation of wave-function/many-body electronic-structure methods is their slow convergence with respect to the size of the one-electron basis set B due to the difficulty of describing short-range correlation around the electron-electron cusp
- ▶ The **two usual main approaches** for dealing with this problem are:
 - ► Extrapolation to the complete-basis-set (CBS) limit
 - Methods using an explicit correlation factor (QMC, F12, transcorrelated)
- Recently, we introduced an alternative basis-set correction scheme based on DFT:

$$E = \langle \Psi^{\mathcal{B}}, \hat{H}\Psi^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi^{\mathcal{B}}}]$$

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018, and 8 subsequent papers

- ▶ Successfully accelerates the basis convergence for various properties and systems
- lacktriangleright The functional $ar{\mathcal{E}}^{\mathcal{B}}[
 ho]$ is approximated from range-separated DFT
- ► Here, we rexamine this method more closely for a one-dimensional model Hamiltonian with delta-potential interactions
- We give a new formulation of the method and we develop an adapted local-density approximation (LDA) for the basis-set correction functional $\bar{\mathcal{E}}^{\mathcal{B}}[\rho]$ for any basis \mathcal{B} using a finite uniform electron gas

Outline

One-dimensional model system

2 Basis-set correction theory based on DFT

3 LDA from finite uniform-electron gas

Outline

One-dimensional model system

2 Basis-set correction theory based on DF7

3 LDA from finite uniform-electron gas

▶ We consider the **Hamiltonian** of N = 2 electrons in a **1D** He-like atom (Z = 2) with delta-potential interactions:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

$$\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$$

$$\hat{W}_{\text{ee}} = \delta(x_1 - x_2)$$

$$\hat{\mathcal{T}} = -rac{1}{2}\sum_{i=1}^Nrac{\partial^2}{\partial x_i^2} \ , \qquad \hat{W}_{ ext{ee}} = \delta(x_1-x_2) \ , \qquad \hat{V}_{ ext{ne}} = -Z\sum_{i=1}^N\delta(x_i)$$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

▶ We consider the **Hamiltonian** of N = 2 electrons in a **1D** He-like atom (Z = 2) with delta-potential interactions:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

$$\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$$

$$\hat{T} = -rac{1}{2}\sum_{i=1}^Nrac{\partial^2}{\partial x_i^2}\;, \qquad \hat{W}_{ ext{ee}} = \delta(x_1-x_2)\;, \qquad \hat{V}_{ ext{ne}} = -Z\sum_{i=1}^N\delta(x_i)\;$$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

We work on the two-electron spinless Hilbert space $\mathcal{H} = h \otimes h$ where $h = L^2(\mathbb{R}, \mathbb{C})$

▶ We consider the **Hamiltonian** of N=2 electrons in a **1D** He-like atom (Z=2) with delta-potential interactions:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

$$\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$$

$$\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$$
, $\hat{W}_{\text{ee}} = \delta(x_1 - x_2)$, $\hat{V}_{\text{ne}} = -Z \sum_{i=1}^{N} \delta(x_i)$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

- ▶ We work on the two-electron spinless Hilbert space $\mathcal{H} = h \otimes h$ where $h = L^2(\mathbb{R}, \mathbb{C})$
- ▶ The exact ground-state wave function has the same electron-electron cusp as the 3D one, i.e. for small interelectronic distances $x_{12} = x_1 - x_2$

$$\Psi_0(x_1,x_2) = \Psi_0(x_1,x_1) \left(1 + \frac{1}{2}|x_{12}| + O(x_{12}^2)\right)$$

We consider the **Hamiltonian** of N=2 **electrons** in a **1D He-like atom** (Z=2) with **delta-potential interactions**:

$$\hat{H} = \hat{T} + \hat{W}_{ee} + \hat{V}_{ne}$$

with

$$\hat{T} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$$
, $\hat{W}_{ee} = \delta(x_1 - x_2)$, $\hat{V}_{ne} = -Z \sum_{i=1}^{N} \delta(x_i)$

Rosenthal, JCP, 1971; Herrick, Stillinger, PRA, 1975; Magyar and Burke, PRA, 2004

- ▶ We work on the two-electron spinless Hilbert space $\mathcal{H} = \mathfrak{h} \otimes \mathfrak{h}$ where $\mathfrak{h} = L^2(\mathbb{R}, \mathbb{C})$
- ▶ The exact ground-state wave function has the same **electron-electron cusp** as the 3D one, i.e. for small interelectronic distances $x_{12} = x_1 x_2$

$$\Psi_0(x_1, x_2) = \Psi_0(x_1, x_1) \left(1 + \frac{1}{2}|x_{12}| + O(x_{12}^2)\right)$$

▶ In a finite one-electron basis set, we thus expect a **slow convergence with the basis size** very similar to the slow convergence observed in 3D quantum systems with the Coulomb electron-electron interaction

Exact ground-state energy and Hartree-Fock approximation

➤ The ground-state energy is

$$E_0 = \min_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}\Psi \rangle$$

where $\mathcal{W}=\left\{\Psi\in\mathcal{H}\mid\Psi\in H^1(\mathbb{R}^2,\mathbb{C}),\;\langle\Psi,\Psi\rangle=1\right\}$ is the set of admissible wave functions

Exact ground-state energy and Hartree-Fock approximation

➤ The ground-state energy is

$$E_0 = \min_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}\Psi \rangle$$

where $\mathcal{W} = \left\{ \Psi \in \mathcal{H} \mid \Psi \in H^1(\mathbb{R}^2, \mathbb{C}), \ \langle \Psi, \Psi \rangle = 1 \right\}$ is the set of admissible wave functions

It can accurately be **estimated numerically**: $E_0 = -3.155390$ a.u.

Exact ground-state energy and Hartree-Fock approximation

► The ground-state energy is

$$E_0 = \min_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H} \Psi \rangle$$

where $\mathcal{W} = \left\{ \Psi \in \mathcal{H} \mid \Psi \in H^1(\mathbb{R}^2, \mathbb{C}), \ \langle \Psi, \Psi \rangle = 1 \right\}$ is the set of admissible wave functions

- ▶ It can accurately be **estimated numerically**: $E_0 = -3.155390$ a.u.
- ▶ The model can be solved analytically at the Hartree-Fock (HF) level
 - The HF ground-state energy is

$$E_{HF} = -Z^2 + \frac{Z}{2} - \frac{1}{12} = -3.083333...$$
 a.u.

The doubly occupied HF orbital is

$$\phi_1(x) = 2\beta\sqrt{\gamma} \frac{e^{-\beta|x|}}{1 - \gamma e^{-2\beta|x|}}$$

with
$$\beta = Z - 1/2 = 3/2$$
 and $\gamma = 1/(4Z - 1) = 1/7$

Nogami, Vallières, van Dijk, AJP, 1976

To have a systematically improvable basis set, we use **Hermite functions** with a unique fixed exponent α

$$\forall n \in \mathbb{N}, \ f_n^{\alpha}(x) = N_n^{\alpha} \ H_n(\sqrt{2\alpha}x) \ e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

 To have a systematically improvable basis set, we use Hermite functions with a unique fixed exponent α

$$\forall n \in \mathbb{N}, \ f_n^{\alpha}(x) = N_n^{\alpha} \ H_n(\sqrt{2\alpha}x) \ e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

 \blacktriangleright We add the exact occupied HF orbital ϕ_1 to obtain our **basis set**

$$\mathcal{B} = \left\{\phi_1\right\} \cup \left\{f_n^{\alpha}\right\}_{n=0,\dots,n_{\mathsf{max}}}$$

 To have a systematically improvable basis set, we use Hermite functions with a unique fixed exponent α

$$\forall n \in \mathbb{N}, \ f_n^{\alpha}(x) = N_n^{\alpha} \ H_n(\sqrt{2\alpha}x) \ e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

 \blacktriangleright We add the exact occupied HF orbital ϕ_1 to obtain our **basis set**

$$\mathcal{B} = \left\{\phi_1\right\} \cup \left\{f_n^{\alpha}\right\}_{n=0,\dots,n_{\mathsf{max}}}$$

We now work in the **finite-dimensional two-electron Hilbert space** $\mathcal{H}^{\mathcal{B}} = h^{\mathcal{B}} \otimes h^{\mathcal{B}}$ where $h^{\mathcal{B}} = \operatorname{span}(\mathcal{B})$ is the one-electron Hilbert space spanned by the basis set \mathcal{B}

To have a systematically improvable basis set, we use **Hermite functions** with a unique fixed exponent α

$$\forall n \in \mathbb{N}, \ f_n^{\alpha}(x) = N_n^{\alpha} \ H_n(\sqrt{2\alpha}x) \ e^{-\alpha x^2}$$

where H_n are the Hermite polynomials and N_n^{α} is a normalization constant

 \blacktriangleright We add the exact occupied HF orbital ϕ_1 to obtain our **basis set**

$$\mathcal{B} = \left\{\phi_1
ight\} \cup \left\{f_n^{lpha}
ight\}_{n=0,...,n_{\mathsf{max}}}$$

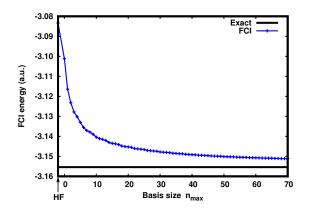
- ▶ We now work in the **finite-dimensional two-electron Hilbert space** $\mathcal{H}^{\mathcal{B}} = \mathbf{h}^{\mathcal{B}} \otimes \mathbf{h}^{\mathcal{B}}$ where $\mathbf{h}^{\mathcal{B}} = \operatorname{span}(\mathcal{B})$ is the one-electron Hilbert space spanned by the basis set \mathcal{B}
- ightharpoonup The full-configuration-interaction (FCI) ground-state energy for this basis set ${\cal B}$ is

$$\textit{E}_{\text{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi, \hat{H} \Psi \rangle$$

where $\mathcal{W}^\mathcal{B} = \left\{ \Psi \in \mathcal{H}^\mathcal{B} \mid \langle \Psi, \Psi \rangle = 1 \right\}$ is the set of wave functions restricted to $\mathcal{H}^\mathcal{B}$

Basis convergence of the FCI ground-state energy

▶ Convergence of $E_{\text{FCI}}^{\mathcal{B}}$ as a function of the basis size n_{max}



▶ As in the 3D Coulomb case, we find a **slow power-law convergence**:

$$E_{\text{FCI}}^{\mathcal{B}} \underset{n_{\text{max}} \to \infty}{\sim} E_0 + \frac{A}{n_{\text{max}}^b}$$
 with $b \approx 0.5$

Outline

One-dimensional model system

2 Basis-set correction theory based on DFT

3 LDA from finite uniform-electron gas

▶ We consider the 1D Hamiltonian still for N=2 electrons but now for a **general** potential $v \in \mathcal{V} = M(\mathbb{R}) + L^{\infty}(\mathbb{R})$

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

▶ We consider the 1D Hamiltonian still for N=2 electrons but now for a **general** potential $v \in \mathcal{V} = M(\mathbb{R}) + L^{\infty}(\mathbb{R})$

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

► The corresponding **ground-state energy** is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v] \Psi \rangle$$

▶ We consider the 1D Hamiltonian still for N=2 electrons but now for a **general** potential $v \in \mathcal{V} = M(\mathbb{R}) + L^{\infty}(\mathbb{R})$

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

► The corresponding ground-state energy is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v] \Psi \rangle$$

The **Levy-Lieb density functional** is defined as a constrained-search over wave functions yielding the one-electron density ρ

$$orall
ho \in \mathcal{R}$$
, $F[
ho] = \min_{\Psi \in \mathcal{W}_
ho} \langle \Psi$, $(\hat{\mathcal{T}} + \hat{\mathcal{W}}_{
m ee})\Psi
angle$

where
$$W_{\rho} = \{ \Psi \in \mathcal{W} \mid \rho_{\Psi} = \rho \}$$

▶ We consider the 1D Hamiltonian still for N=2 electrons but now for a **general** potential $v \in \mathcal{V} = M(\mathbb{R}) + L^{\infty}(\mathbb{R})$

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

► The corresponding ground-state energy is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v] \Psi \rangle$$

The **Levy-Lieb density functional** is defined as a constrained-search over wave functions yielding the one-electron density ρ

$$orall
ho \in \mathcal{R}, \,\, F[
ho] = \min_{\Psi \in \mathcal{W}_
ho} \langle \Psi, ig(\hat{\mathcal{T}} + \hat{\mathcal{W}}_{
m ee} ig) \Psi
angle$$

where
$$\mathcal{W}_{\rho} = \{ \Psi \in \mathcal{W} \mid \rho_{\Psi} = \rho \}$$

▶ It is defined on the set of *N*-representable densities

$$\mathcal{R} = \{ \rho \mid \exists \ \Psi \in \mathcal{W}, \, \rho_{\Psi} = \rho \} = \left\{ \rho \in L^{1}(\mathbb{R}) \mid \rho \geq 0, \, \int_{\mathbb{R}} \rho(x) dx = N, \, \sqrt{\rho} \in H^{1}(\mathbb{R}) \right\}$$

 \blacktriangleright We consider the 1D Hamiltonian still for N=2 electrons but now for a **general** potential $v \in \mathcal{V} = M(\mathbb{R}) + L^{\infty}(\mathbb{R})$

$$\hat{H}[v] = \hat{T} + \hat{W}_{ee} + \hat{V}$$
 where $\hat{V} = \sum_{i=1}^{N} v(x_i)$

The corresponding **ground-state energy** is

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \langle \Psi, \hat{H}[v]\Psi \rangle$$

 $\forall \rho \in \mathcal{R}, \ F[\rho] = \min_{\Psi \in \mathcal{W}_0} \langle \Psi, (\hat{T} + \hat{W}_{ee})\Psi \rangle$

The Levy-Lieb density functional is defined as a constrained-search over wave functions yielding the one-electron density ρ

where
$$\mathcal{W}_{
ho} = \{\Psi \in \mathcal{W} \mid
ho_{\Psi} =
ho\}$$

It is defined on the set of N-representable densities

$$\mathcal{R} = \{ \rho \mid \exists \; \Psi \in \mathcal{W}, \, \rho_{\Psi} = \rho \} = \left\{ \rho \in L^{1}(\mathbb{R}) \mid \rho \geq 0, \; \int_{\mathbb{R}} \rho(x) dx = N, \; \sqrt{\rho} \in H^{1}(\mathbb{R}) \right\}$$

It gives the exact ground-state energy as

where $(v, \rho) = \int_{\mathbb{D}} v(x)\rho(x)dx$

lackbox We define the Levy-Lieb density functional restricted to the basis set ${\cal B}$ as

$$orall
ho \in \mathcal{R}^{\mathcal{B}}, \; F^{\mathcal{B}}[
ho] = \min_{oldsymbol{\Psi} \in \mathcal{W}^{\mathcal{B}}_{
ho}} \langle oldsymbol{\Psi}, (\hat{\mathcal{T}} + \hat{W}_{
m ee}) oldsymbol{\Psi}
angle$$

where
$$\mathcal{W}^{\mathcal{B}}_{\rho} = \left\{ \Psi \in \mathcal{W}^{\mathcal{B}} \mid \rho_{\Psi} = \rho \right\}$$

lacktriangle We define the Levy-Lieb density functional restricted to the basis set ${\cal B}$ as

$$orall
ho \in \mathcal{R}^{\mathcal{B}}, \; F^{\mathcal{B}}[
ho] = \min_{oldsymbol{\Psi} \in \mathcal{W}^{\mathcal{B}}_{
ho}} \langle oldsymbol{\Psi}, ig(\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}}ig)oldsymbol{\Psi}
angle$$

where $\mathcal{W}^\mathcal{B}_
ho = \left\{ \Psi \in \mathcal{W}^\mathcal{B} \mid
ho_\Psi =
ho
ight\}$

lacksquare It is defined on the set of **densities representable by a wave function** $\Psi \in \mathcal{W}^\mathcal{B}$

$$\mathcal{R}^{\mathcal{B}} = \left\{
ho \mid \exists \; \Psi \in \mathcal{W}^{\mathcal{B}},
ho_{\Psi} =
ho
ight\}$$

ightharpoonup We define the Levy-Lieb density functional restricted to the basis set ${\cal B}$ as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ F^{\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}_{\rho}} \langle \Psi, (\hat{T} + \hat{W}_{ee})\Psi \rangle$$

where
$$\mathcal{W}^\mathcal{B}_
ho = \left\{ \Psi \in \mathcal{W}^\mathcal{B} \mid
ho_\Psi =
ho
ight\}$$

▶ It is defined on the set of **densities representable by a wave function** $\Psi \in \mathcal{W}^{\mathcal{B}}$

$$\mathcal{R}^{\mathcal{B}} = \left\{ \rho \mid \exists \; \Psi \in \mathcal{W}^{\mathcal{B}}, \rho_{\Psi} = \rho \right\}$$

▶ We now **decompose** the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ F[\rho] = F^{\mathcal{B}}[\rho] + \bar{E}^{\mathcal{B}}[\rho]$$

where $\bar{\mathcal{E}}^{\mathcal{B}}[
ho]$ is the **complementary basis-set correction density functional**

lacktriangle We define the Levy-Lieb density functional restricted to the basis set ${\cal B}$ as

$$orall
ho \in \mathcal{R}^{\mathcal{B}}, \; F^{\mathcal{B}}[
ho] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}_{
ho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{
m ee})\Psi
angle$$

where $\mathcal{W}^\mathcal{B}_
ho = \left\{ \Psi \in \mathcal{W}^\mathcal{B} \mid
ho_\Psi =
ho
ight\}$

▶ It is defined on the set of **densities representable by a wave function** $\Psi \in \mathcal{W}^{\mathcal{B}}$

$$\mathcal{R}^{\mathcal{B}} = \left\{
ho \mid \exists \; \Psi \in \mathcal{W}^{\mathcal{B}},
ho_{\Psi} =
ho
ight\}$$

▶ We now **decompose** the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ F[\rho] = F^{\mathcal{B}}[\rho] + \bar{E}^{\mathcal{B}}[\rho]$$

where $\bar{\mathcal{E}}^{\mathcal{B}}[
ho]$ is the complementary basis-set correction density functional

▶ We can obtain an **approximate ground-state energy** by restricting the minimization to densities $\rho \in \mathcal{R}^{\mathcal{B}}$

$$E_0^{\mathcal{B}}[v] = \min_{\rho \in \mathcal{R}^{\mathcal{B}}} \left(F[\rho] + (v, \rho) \right) = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{T} + \hat{W}_{ee} + \hat{V})\Psi \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

 \blacktriangleright We define the **Levy-Lieb density functional restricted to the basis set** $\mathcal B$ as

$$orall
ho \in \mathcal{R}^{\mathcal{B}}, \ F^{\mathcal{B}}[
ho] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}_{
ho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{
m ee})\Psi
angle$$

where $\mathcal{W}_{\rho}^{\mathcal{B}} = \{ \Psi \in \mathcal{W}^{\mathcal{B}} \mid \rho_{\Psi} = \rho \}$

It is defined on the set of **densities representable by a wave function** $\Psi \in \mathcal{W}^{\mathcal{B}}$ $\mathcal{R}^{\mathcal{B}} = \left\{
ho \mid \exists \; \Psi \in \mathcal{W}^{\mathcal{B}},
ho_{\Psi} =
ho
ight\}$

We now **decompose** the exact Levy-Lieb density functional as
$$\forall \rho \in \mathcal{R}^{\mathcal{B}}, \ F[\rho] = F^{\mathcal{B}}[\rho] + \bar{E}^{\mathcal{B}}[\rho]$$

where $\bar{\mathcal{E}}^{\mathcal{B}}[\rho]$ is the complementary basis-set correction density functional

We can obtain an **approximate ground-state energy** by restricting the minimization to densities
$$\rho \in \mathcal{R}^{\mathcal{B}}$$

$$E_0^{\mathcal{B}}[v] = \min_{\rho \in \mathcal{R}^{\mathcal{B}}} \left(F[\rho] + (v, \rho) \right) = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{T} + \hat{W}_{ee} + \hat{V})\Psi \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

As the basis set is increased, $E_0^{\mathcal{B}}[v]$ converges to $E_0[v]$ much faster than $E_{\text{FCI}}^{\mathcal{B}}[v]$ does

In summary, the first variant of basis-set correction consists in calculating

$$E_0^{\mathcal{B}}[v] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} + \hat{\mathcal{V}}) \Psi \rangle + \bar{\mathcal{E}}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

In summary, the first variant of basis-set correction consists in calculating

$$E_0^{\mathcal{B}}[v] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} + \hat{\mathcal{V}}) \Psi \rangle + \bar{E}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

 The advantage is that it is a convenient self-consistent formulation and that is easily extended to response theory (in practice, non-self-consistent approximations can also be used)

▶ In summary, the first variant of basis-set correction consists in calculating

$$E_0^{\mathcal{B}}[v] = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee} + \hat{\mathcal{V}}) \Psi \rangle + \bar{\mathcal{E}}^{\mathcal{B}}[\rho_{\Psi}] \right)$$

- ► The advantage is that it is a convenient self-consistent formulation and that is easily extended to response theory (in practice, non-self-consistent approximations can also be used)
- ► The **limitations** are:
 - ▶ It does not give the exact ground-state energy even with the exact basis-set correction functional $\bar{E}^{\mathcal{B}}[\rho]$
 - The basis-set correction functional $\bar{E}^{\mathcal{B}}[\rho]$ is defined only for densities $\rho \in \mathcal{R}^{\mathcal{B}}$ \Longrightarrow it is not clear how to define a local-density approximation (LDA)

Second variant of basis-set correction (1/2)

We define a new **Levy-Lieb density functional restricted to the basis set** $\mathcal B$ for all densities $\rho \in \mathcal R$ as

$$orall
ho \in \mathcal{R}, \,\, \mathit{F}^{\mathsf{w}\mathcal{B}}[
ho] = \min_{\Psi \in \mathcal{W}_{
ho}} \langle \Psi, (\hat{\mathit{T}} + \hat{\mathit{W}}^{\mathcal{B}}_{\mathsf{ee}}) \Psi
angle$$

where
$$\hat{W}^{\mathcal{B}}_{ee} = \hat{\mathcal{P}}^{\mathcal{B}} \hat{W}_{ee} \hat{\mathcal{P}}^{\mathcal{B}}$$
 is the interaction projected onto the Hilbert space $\mathcal{H}^{\mathcal{B}}$

Second variant of basis-set correction (1/2)

▶ We define a new **Levy-Lieb density functional restricted to the basis set** $\mathcal B$ for all densities $\rho \in \mathcal R$ as

$$orall
ho \in \mathcal{R}, \,\, \mathit{F}^{\scriptscriptstyle{\mathsf{W}\mathcal{B}}}[
ho] = \min_{\Psi \in \mathcal{W}_{
ho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}^{\mathcal{B}}_{\mathsf{ee}}) \Psi
angle$$

where $\hat{W}^{\mathcal{B}}_{ee}=\hat{\mathcal{P}}^{\mathcal{B}}\hat{W}_{ee}\hat{\mathcal{P}}^{\mathcal{B}}$ is the interaction projected onto the Hilbert space $\mathcal{H}^{\mathcal{B}}$

▶ We now **decompose** the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}, \ F[\rho] = F^{\mathsf{w}\mathcal{B}}[\rho] + \bar{E}^{\mathsf{w}\mathcal{B}}_{\mathsf{Hxc}}[\rho]$$

where $\bar{E}_{\rm Hxc}^{\rm wB}[\rho]$ is the complementary Hartree-exchange-correlation basis-set correction density functional

Second variant of basis-set correction (1/2)

▶ We define a new **Levy-Lieb density functional restricted to the basis set** $\mathcal B$ for all densities $\rho \in \mathcal R$ as

$$orall
ho \in \mathcal{R}, \,\, \mathit{F}^{\scriptscriptstyle{\mathsf{W}\mathcal{B}}}[
ho] = \min_{\Psi \in \mathcal{W}_{
ho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}^{\scriptscriptstyle{\mathcal{B}}}_{\mathsf{ee}}) \Psi
angle$$

where $\hat{W}^{\mathcal{B}}_{ee}=\hat{\mathcal{P}}^{\mathcal{B}}\hat{W}_{ee}\hat{\mathcal{P}}^{\mathcal{B}}$ is the interaction projected onto the Hilbert space $\mathcal{H}^{\mathcal{B}}$

▶ We now **decompose** the exact Levy-Lieb density functional as

$$\forall \rho \in \mathcal{R}, \ F[\rho] = F^{\mathsf{w}\mathcal{B}}[\rho] + \bar{E}^{\mathsf{w}\mathcal{B}}_{\mathsf{Hxc}}[\rho]$$

where $\bar{E}_{\rm Hxc}^{\rm wB}[\rho]$ is the complementary Hartree-exchange-correlation basis-set correction density functional

▶ We can obtain the **exact ground-state energy** as

$$E_0[v] = \inf_{\rho \in \mathcal{R}} \left(F[\rho] + (v, \rho) \right) = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{T} + \hat{W}_{ee}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{WB}}[\rho_{\Psi}] \right)$$

▶ In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}}^\mathcal{B} + \hat{\mathcal{V}}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{wB}}[\rho_{\Psi}] \right)$$

▶ In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi}] \right)$$

It gives the exact ground-state energy and the functional $ar{E}^{wB}_{ ext{Hxc}}[
ho]$ is defined for $ho\in\mathcal{R}$

▶ In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\text{ee}}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{\mathcal{E}}_{\text{Hxc}}^{\mathcal{WB}}[\rho_{\Psi}] \right)$$

- It gives the exact ground-state energy and the functional $ar{E}_{\mathsf{Hxc}}^{\mathsf{wB}}[
 ho]$ is defined for $ho\in\mathcal{R}$
- lacktriangle But the disadvantage is that the minimization is over **general wave functions** $\Psi \in \mathcal{W}$

▶ In summary, in the second variant of basis-set correction, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}}^{\mathcal{B}} + \hat{\mathcal{V}}) \Psi \rangle + \bar{\mathcal{E}}_{\mathsf{Hxc}}^{w\mathcal{B}}[\rho_{\Psi}] \right)$$

- ▶ It gives the exact ground-state energy and the functional $\bar{E}^{wB}_{Hxc}[
 ho]$ is defined for $ho \in \mathcal{R}$
- lacktriangle But the disadvantage is that the minimization is over **general wave functions** $\Psi \in \mathcal{W}$
- ▶ After finding the minimizing wave function Ψ_0^{wB} , we have the **non-variational** expression

$$E_0[v] = \langle \Psi_0^{w\mathcal{B}}, (\hat{T} + \hat{\mathcal{W}}_{ee} + \hat{V})\Psi_0^{w\mathcal{B}} \rangle + \bar{E}_{c,md}^{w\mathcal{B}}[\rho_{\Psi_0^{w\mathcal{B}}}]$$

▶ In summary, in the **second variant of basis-set correction**, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{T} + \hat{W}_{\text{ee}}^{\mathcal{B}} + \hat{V})\Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{wB}}[\rho_{\Psi}] \right)$$

- ▶ It gives the exact ground-state energy and the functional $\bar{E}_{Hxc}^{wB}[\rho]$ is defined for $\rho \in \mathcal{R}$
- lacktriangledown But the disadvantage is that the minimization is over **general wave functions** $\Psi \in \mathcal{W}$
- ▶ After finding the minimizing wave function Ψ_0^{wB} , we have the **non-variational** expression

$$E_0[v] = \langle \Psi_0^{\mathrm{w}\mathcal{B}}, (\hat{T} + \hat{W}_{\mathrm{ee}} + \hat{V})\Psi_0^{\mathrm{w}\mathcal{B}} \rangle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathrm{w}\mathcal{B}}[\rho_{\Psi_0^{\mathrm{w}\mathcal{B}}}]$$

ightharpoonup Here, $\bar{\mathcal{E}}_{c,md}^{wB}[
ho]$ is the **complementary correlation (md)** contribution to the functional

$$ar{\mathcal{E}}_{\mathsf{c},\mathsf{md}}^{\mathsf{w}\mathcal{B}}[
ho] = \langle \Psi[
ho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}})\Psi[
ho]
angle - \langle \Psi^{\mathsf{w}\mathcal{B}}[
ho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}})\Psi^{\mathsf{w}\mathcal{B}}[
ho]
angle$$

where $\Psi[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee})\Psi \rangle$ and $\Psi^{w\mathcal{B}}[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee}^{\mathcal{B}})\Psi \rangle$

expression

▶ In summary, in the **second variant of basis-set correction**, we have

$$E_0[v] = \inf_{\Psi \in \mathcal{W}} \left(\langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathrm{ee}}^{\mathcal{B}} + \hat{V}) \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\mathsf{wB}}[\rho_{\Psi}] \right)$$

lacktriangle It gives the exact ground-state energy and the functional $ar{\mathcal{E}}_{ ext{Hxc}}^{ ext{WB}}[
ho]$ is defined for $ho\in\mathcal{R}$

lacktriangle But the disadvantage is that the minimization is over **general wave functions** $\Psi \in \mathcal{W}$

After finding the minimizing wave function Ψ_0^{WB} , we have the **non-variational**

$$E_0[v] = \langle \Psi_0^{\mathsf{w}\mathcal{B}}, (\hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V})\Psi_0^{\mathsf{w}\mathcal{B}} \rangle + \bar{E}_{\mathsf{c,md}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi_0^{\mathsf{w}\mathcal{B}}}]$$

▶ Here, $\bar{E}_{c,md}^{wB}[\rho]$ is the **complementary correlation (md)** contribution to the functional

$$ar{\mathcal{E}}_{\mathsf{c.md}}^{\mathsf{w}\mathcal{B}}[
ho] = \langle \Psi[
ho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}})\Psi[
ho] \rangle - \langle \Psi^{\mathsf{w}\mathcal{B}}[
ho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}})\Psi^{\mathsf{w}\mathcal{B}}[
ho]
angle$$

where $\Psi[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee})\Psi \rangle$ and $\Psi^{\text{w}\mathcal{B}}[\rho]$ is the wave function minimizing $\langle \Psi, (\hat{T} + \hat{W}_{ee}^{\mathcal{B}})\Psi \rangle$

In practice, we will use **approximations** for Ψ_0^{wB} and $\bar{\mathcal{E}}_{c,md}^{wB}[
ho]$

Outline

1 One-dimensional model system

2 Basis-set correction theory based on DF7

3 LDA from finite uniform-electron gas

To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions

- To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- ► The two-electron Hilbert space is $\mathcal{H}_a = f_a \otimes f_a$ where $f_a = L^2(\Omega_a, \mathbb{C})$ and the set of admissible wave functions is $\mathcal{W}_a = \{\Psi \in \mathcal{H}_a \mid \Psi \in \mathcal{H}^1_{\text{per}}(\Omega_a^2, \mathbb{C}), \langle \Psi, \Psi \rangle_a = 1\}$

- To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- ► The two-electron Hilbert space is $\mathcal{H}_a = f_a \otimes f_a$ where $f_a = L^2(\Omega_a, \mathbb{C})$ and the set of admissible wave functions is $\mathcal{W}_a = \{\Psi \in \mathcal{H}_a \mid \Psi \in H^1_{\text{per}}(\Omega^2_a, \mathbb{C}), \langle \Psi, \Psi \rangle_a = 1\}$
- The corresponding Levy-Lieb density functional is

$$orall
ho \in \mathcal{R}_{\scriptscriptstyle a}$$
, $F_{\scriptscriptstyle a}[
ho] = \min_{\Psi \in \mathcal{W}_{a,
ho}} \langle \Psi$, $(\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\scriptscriptstyle ext{ee}})\Psi
angle_{\scriptscriptstyle a}$

where
$$\mathcal{W}_{a,\rho}=\{\Psi\in\mathcal{W}_a,\; \rho_\Psi=\rho\}$$
 and $\mathcal{R}_a=\{\rho\mid \exists\; \Psi\in\mathcal{W}_a, \rho_\Psi=\rho\}$

- To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- ► The two-electron Hilbert space is $\mathcal{H}_a = f_a \otimes f_a$ where $f_a = L^2(\Omega_a, \mathbb{C})$ and the set of admissible wave functions is $\mathcal{W}_a = \{\Psi \in \mathcal{H}_a \mid \Psi \in H^1_{\text{per}}(\Omega^2_a, \mathbb{C}), \langle \Psi, \Psi \rangle_a = 1\}$
- The corresponding Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{\textit{a}}, \ \textit{F}_{\textit{a}}[\rho] = \min_{\Psi \in \mathcal{W}_{\textit{a},\rho}} \langle \Psi, \big(\, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\text{ee}} \big) \Psi \rangle_{\textit{a}}$$

where $W_{a,\rho} = \{ \Psi \in W_a, \ \rho_{\Psi} = \rho \}$ and $\mathcal{R}_a = \{ \rho \mid \exists \ \Psi \in W_a, \rho_{\Psi} = \rho \}$

▶ A **finite UEG** with N=2 electrons is defined by considering the **uniform density** $\rho_{\text{unif}}: x \mapsto \rho_0 = N/a$. The **energy per particle** of this finite UEG is

$$\varepsilon_{\mathsf{UEG},N=2}(\rho_0) = \frac{F_a[\rho_{\mathsf{unif}}]}{N}$$

- To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions
- ► The two-electron Hilbert space is $\mathcal{H}_a = f_a \otimes f_a$ where $f_a = L^2(\Omega_a, \mathbb{C})$ and the set of admissible wave functions is $\mathcal{W}_a = \{\Psi \in \mathcal{H}_a \mid \Psi \in H^1_{\text{per}}(\Omega^2_a, \mathbb{C}), \langle \Psi, \Psi \rangle_a = 1\}$
- ▶ The corresponding Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{\textit{a}}, \ \textit{F}_{\textit{a}}[\rho] = \min_{\Psi \in \mathcal{W}_{\textit{a},\rho}} \langle \Psi, \big(\, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\text{ee}} \big) \Psi \rangle_{\textit{a}}$$

where $W_{a,\rho} = \{ \Psi \in \mathcal{W}_a, \ \rho_{\Psi} = \rho \}$ and $\mathcal{R}_a = \{ \rho \mid \exists \ \Psi \in \mathcal{W}_a, \rho_{\Psi} = \rho \}$

▶ A **finite UEG** with N = 2 electrons is defined by considering the **uniform density** $\rho_{\text{unif}} : x \mapsto \rho_0 = N/a$. The **energy per particle** of this finite UEG is

$$\varepsilon_{\mathsf{UEG},N=2}(\rho_0) = \frac{F_a[\rho_{\mathsf{unif}}]}{N}$$

 $F_a[
ho_{unif}]$ corresponds to the ground-state energy of the two-electron Hamiltonian with zero potential $\hat{H}_{UEG} = \hat{T} + \hat{W}_{ee}$ with periodic boundary conditions on Ω_a

To define a 1D uniform-electron gas (UEG), we generalize DFT to a finite interval $\Omega_a = (-a/2, a/2)$ with periodic boundary conditions

- ► The two-electron Hilbert space is $\mathcal{H}_a = f_a \otimes f_a$ where $f_a = L^2(\Omega_a, \mathbb{C})$ and the set of admissible wave functions is $\mathcal{W}_a = \{\Psi \in \mathcal{H}_a \mid \Psi \in \mathcal{H}_{per}^1(\Omega_a^2, \mathbb{C}), \langle \Psi, \Psi \rangle_a = 1\}$
 - The corresponding **Levy-Lieb density functional** is $\forall \rho \in \mathcal{R}_a, \ F_a[\rho] = \min_{\Psi \in \mathcal{W}_{a,n}} \langle \Psi, (\hat{T} + \hat{W}_{ee}) \Psi \rangle_a$

$$\Psi \in \mathcal{W}_{a,\rho}$$

where $W_{a,\rho} = \{ \Psi \in W_a, \ \rho_{\Psi} = \rho \}$ and $\mathcal{R}_a = \{ \rho \mid \exists \ \Psi \in W_a, \rho_{\Psi} = \rho \}$

A **finite UEG** with N=2 electrons is defined by considering the **uniform density** $\rho_{\text{unif}}: x \mapsto \rho_0 = N/a$. The **energy per particle** of this finite UEG is

$$arepsilon_{\mathsf{UEG},N=2}(
ho_0) = rac{F_{\mathsf{a}}[
ho_{\mathsf{unif}}]}{N}$$

- $F_a[
 ho_{
 m unif}]$ corresponds to the ground-state energy of the two-electron Hamiltonian with zero potential $\hat{H}_{
 m UEG}=\hat{T}+\hat{W}_{
 m ee}$ with periodic boundary conditions on Ω_a
- We can extend this to any N and the energy per particle of the **infinite UEG** is $\varepsilon_{\mathsf{UEG}}(\rho_0) = \lim_{N \to \infty} \varepsilon_{\mathsf{UEG},N}(\rho_0)$ but we may as well use the finite UEG for N=2

Gill, Loos, TCA, 2012

▶ In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{\text{a}}, \ F_{\text{a}}^{\text{wB}}[\rho] = \min_{\Psi \in \mathcal{W}_{\text{a},\rho}} \langle \Psi, (\, \hat{T} + \hat{\mathcal{W}}_{\text{ee}}^{\mathcal{B}}) \Psi \rangle_{\text{a}} = \langle \Psi^{\text{wB}}[\rho], (\, \hat{T} + \hat{\mathcal{W}}_{\text{ee}}^{\mathcal{B}}) \Psi^{\text{wB}}[\rho] \rangle_{\text{a}},$$

▶ In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ \textit{F}_{a}^{\textit{wB}}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}}) \Psi \rangle_{a} = \langle \Psi^{\textit{wB}}[\rho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}}) \Psi^{\textit{wB}}[\rho] \rangle_{a},$$

A **finite UEG** with N=2 electrons is defined by inserting the **uniform density** $\rho_{\text{unif}}: x \mapsto \rho_0 = N/a$. Then, $\Psi^{\text{wB}}[\rho_{\text{unif}}]$ is the ground-state wave function of the two-electron Hamiltonian

$$\hat{H}_{\text{UEG}}^{\text{wB}} = \hat{T} + \hat{W}_{\text{ee}}^{\mathcal{B}} + \hat{V}^{\text{wB}}$$
 with $\hat{V}^{\text{wB}} = \sum_{i=1}^{N} v^{\text{wB}}(x_i)$

where v^{wB} is the **potential imposing the uniform density** ρ_{unif}

▶ In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ F_{a}^{\text{w}\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\text{ee}}^{\mathcal{B}})\Psi \rangle_{a} = \langle \Psi^{\text{w}\mathcal{B}}[\rho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\text{ee}}^{\mathcal{B}})\Psi^{\text{w}\mathcal{B}}[\rho] \rangle_{a},$$

A **finite UEG** with N=2 electrons is defined by inserting the **uniform density** $\rho_{\text{unif}}: x \mapsto \rho_0 = N/a$. Then, $\Psi^{\text{wB}}[\rho_{\text{unif}}]$ is the ground-state wave function of the two-electron Hamiltonian

$$\hat{H}_{\text{UEG}}^{\text{wB}} = \hat{T} + \hat{W}_{\text{ee}}^{\mathcal{B}} + \hat{V}^{\text{wB}}$$
 with $\hat{V}^{\text{wB}} = \sum_{i=1}^{N} v^{\text{wB}}(x_i)$

where v^{wB} is the **potential imposing the uniform density** ρ_{unif}

ightharpoonup According to **Lieb's convex-conjugation approach**, the potential v^{wB} is calculated as

$$\begin{split} v^{\text{w}\mathcal{B}} &= \underset{v \in \mathcal{V}_{\mathcal{J}}}{\operatorname{argmax}} \left(E_{0,a}^{\text{w}\mathcal{B}}[v] - (v, \rho_{\text{unif}})_{a} \right) \\ \text{where } E_{0,a}^{\text{w}\mathcal{B}}[v] &= \inf_{\Psi \in \mathcal{W}_{\mathcal{S}}} \langle \Psi, (\hat{\mathcal{T}} + \hat{W}_{\text{ee}}^{\mathcal{B}} + \hat{V}) \Psi \rangle_{a} \text{ and } \mathcal{V}_{a} = M_{\text{per}}(\Omega_{a}) + \mathcal{L}^{\infty}(\Omega_{a}) \end{split}$$

▶ In the second variant of basis-set correction, the Levy-Lieb density functional is

$$\forall \rho \in \mathcal{R}_{a}, \ F_{a}^{w\mathcal{B}}[\rho] = \min_{\Psi \in \mathcal{W}_{a,\rho}} \langle \Psi, (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}})\Psi \rangle_{a} = \langle \Psi^{w\mathcal{B}}[\rho], (\hat{\mathcal{T}} + \hat{\mathcal{W}}_{ee}^{\mathcal{B}})\Psi^{w\mathcal{B}}[\rho] \rangle_{a},$$

A **finite UEG** with N=2 electrons is defined by inserting the **uniform density** $\rho_{\text{unif}}: x \mapsto \rho_0 = N/a$. Then, $\Psi^{\text{wB}}[\rho_{\text{unif}}]$ is the ground-state wave function of the two-electron Hamiltonian

$$\hat{H}_{\mathsf{UEG}}^{\mathsf{wB}} = \hat{T} + \hat{W}_{\mathsf{ee}}^{\mathcal{B}} + \hat{V}^{\mathsf{wB}}$$
 with $\hat{V}^{\mathsf{wB}} = \sum_{i=1}^{N} v^{\mathsf{wB}}(x_i)$

where v^{wB} is the **potential imposing the uniform density** ρ_{unif}

According to **Lieb's convex-conjugation approach**, the potential v^{wB} is calculated as

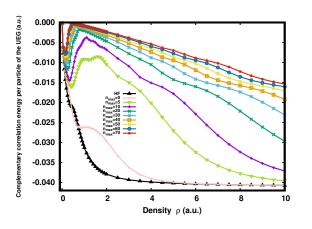
$$\begin{aligned} v^{\text{w}\mathcal{B}} &= \underset{v \in \mathcal{V}_{a}}{\operatorname{argmax}} \left(E_{0,a}^{\text{w}\mathcal{B}}[v] - (v, \rho_{\text{unif}})_{a} \right) \\ \text{where } E_{0,a}^{\text{w}\mathcal{B}}[v] &= \inf_{\mathbf{u} \in \mathcal{W}_{a}} \langle \Psi, (\hat{\mathcal{T}} + \hat{W}_{\text{ee}}^{\mathcal{B}} + \hat{V})\Psi \rangle_{a} \text{ and } \mathcal{V}_{a} = M_{\text{per}}(\Omega_{a}) + L^{\infty}(\Omega_{a}) \end{aligned}$$

From $\Psi^{wB}[\rho_{unif}]$, we calculate the **complementary correlation energy per particle**

$$ar{arepsilon}_{\mathsf{c,md},\mathcal{N}=2}^{\mathsf{wB}}(
ho_0) = rac{ar{E}_{\mathsf{c,md}}^{\mathsf{wB}}[
ho_{\mathsf{unif}}]}{\mathcal{N}}$$

Complementary correlation energy per particle

► Complementary correlation energy per particle of the finite 1D UEG $\bar{\mathcal{E}}_{c,md,N=2}^{WB}(\rho)$ as a function of ρ for basis sets \mathcal{B} of the 1D He-like atom of increasing sizes n_{max} :



As n_{\max} increases, $\bar{\varepsilon}_{c, md, N=2}^{\mathcal{WB}}(\rho)$ becomes smaller and must eventually vanish in the limit $n_{\max} \to \infty$

 Recall that in the second variant of basis-set correction, the exact ground-state energy can be written as

$$E_0 = \langle \Psi_0^{\mathsf{w}\mathcal{B}}, \hat{H}\Psi_0^{\mathsf{w}\mathcal{B}} \rangle + \bar{E}_{\mathsf{c},\mathsf{md}}^{\mathsf{w}\mathcal{B}}[\rho_{\Psi_0^{\mathsf{w}\mathcal{B}}}]$$

 Recall that in the second variant of basis-set correction, the exact ground-state energy can be written as

$$E_0 = \langle \Psi_0^{\text{wB}}, \hat{H}\Psi_0^{\text{wB}} \rangle + \bar{E}_{c,md}^{\text{wB}} [\rho_{\Psi_0^{\text{wB}}}]$$

▶ For the functional $\bar{E}_{c,md}^{wB}[\rho]$, we use the **LDA** from our 1D finite UEG calculations for the basis set \mathcal{B}

$$\bar{E}_{\mathsf{c},\mathsf{md},\mathsf{LDA}}^{\mathsf{wB}}[\rho] = \int_{\mathbb{R}} \rho(x) \bar{\varepsilon}_{\mathsf{c},\mathsf{md},N=2}^{\mathsf{wB}}(\rho(x)) \mathrm{d}x$$

▶ Recall that in the **second variant of basis-set correction**, the exact ground-state energy can be written as

$$E_0 = \langle \Psi_0^{\text{wB}}, \hat{H}\Psi_0^{\text{wB}} \rangle + \bar{E}_{c,md}^{\text{wB}} [\rho_{\Psi_0^{\text{wB}}}]$$

▶ For the functional $\bar{E}_{c,md}^{wB}[\rho]$, we use the **LDA** from our 1D finite UEG calculations for the basis set \mathcal{B}

$$\bar{\mathcal{E}}_{\mathsf{c},\mathsf{md},\mathsf{LDA}}^{\mathsf{w}\mathcal{B}}[\rho] = \int_{\mathbb{R}} \rho(x) \bar{\mathcal{E}}_{\mathsf{c},\mathsf{md},N=2}^{\mathsf{w}\mathcal{B}}(\rho(x)) \mathrm{d}x$$

▶ We approximate the wave function $Ψ_0^{wB}$ by the **FCI ground-state wave function** $Ψ_{FCI}^{B}$ in the basis set B

► Recall that in the **second variant of basis-set correction**, the exact ground-state energy can be written as

$$E_0 = \langle \Psi_0^{\text{wB}}, \hat{H}\Psi_0^{\text{wB}} \rangle + \bar{E}_{c,md}^{\text{wB}}[\rho_{\Psi_0^{\text{wB}}}]$$

▶ For the functional $\bar{E}_{c,md}^{wB}[\rho]$, we use the **LDA** from our 1D finite UEG calculations for the basis set \mathcal{B}

$$\bar{E}_{\mathsf{c},\mathsf{md},\mathsf{LDA}}^{\mathsf{w}\mathcal{B}}[\rho] = \int_{\mathbb{R}} \rho(\mathsf{x}) \bar{\varepsilon}_{\mathsf{c},\mathsf{md},\mathsf{N}=2}^{\mathsf{w}\mathcal{B}}(\rho(\mathsf{x})) \mathsf{d}\mathsf{x}$$

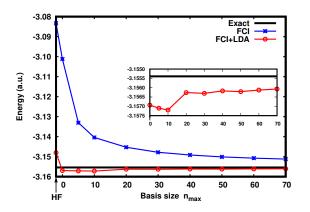
- ▶ We approximate the wave function $\Psi_0^{\mathcal{WB}}$ by the **FCI ground-state wave function** $\Psi_{\mathsf{FCI}}^{\mathcal{B}}$ in the basis set \mathcal{B}
- ▶ We thus finally the FCI energy with a LDA-based basis-set correction

$$E_{ extsf{FCI}+ extsf{LDA}}^{ extsf{wB}} = \langle \Psi_{ extsf{FCI}}^{\mathcal{B}}, \hat{\mathcal{H}}\Psi_{ extsf{FCI}}^{\mathcal{B}}
angle + ar{\mathcal{E}}_{ extsf{c,md,LDA}}^{ extsf{wB}} [
ho_{\Psi_{ extsf{FCI}}^{\mathcal{B}}}]$$

and $E_{\text{FCI+LDA}}^{\text{wB}}$ correctly converges to E_0 in the complete-basis-set limit

Basis convergence of the FCI+LDA energy of the 1D He-like atom

FCI and FCI+LDA ground-state energies of the 1D He-like atom as a function of the basis size n_{max} :



► The LDA-based basis-set correction efficiently accelerates the basis convergence of the FCI ground-state energy

Summary and outlook

Summary:

- The 1D model with delta-potential interactions captures the essence of the basis-set convergence problem
- Two variants of basis-set corrections based on DFT have been rigorously developed
- ► The LDA for the basis-set correction functional has been constructed from a finite uniform-electron gas

D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113, 2022

Outlook:

- Linear-response theory for basis-set correction of excitation energies in a 1D model
- Extension to a relativistic 1D model
- Density-functional approximations for the first variant of basis-set correction in the 1D model
- ▶ Extension of the work on the 1D model to 3D molecular systems
- Extension to solids?