
IRP programming paradigm

and its implementation in Fortran
for quantum Monte Carlo

Roland Assaraf and Julien Toulouse
Université Pierre & Marie Curie and CNRS, Paris, France

CECAM discussion meeting, IDRIS, Orsay
March 2015



Quantum Monte Carlo program CHAMP

Scientific features

VMC and DMC electronic-structure calculations of atoms, molecules,
periodic solids, model systems.

All-electron and pseudopotential calculations. Several types of basis
functions.

General multideterminant Jastrow-Slater wave functions.

Wave-function optimization for ground and excited states.

Calculations of energies and other properties.

Implementation features

About 140 000 source lines of code.

Parallelization by MPI. Scalability ≈ 100% tested up to 4096 cores on
IBM Blue Gene. Almost no inter-core communications.

Initialy written in standard imperative Fortran by C. Umrigar and C.
Filippi. Progressively transformed in IRP by J. Toulouse.

2/9



IRP?

A programming paradigm invented par François Colonna (LCT, Paris)
which aims at producing programs of low complexity.

It was given different names over the years:

Open Structured Interfaceable Programming Environment (OSIPE),
1994.
Deductive Object Programming, 2006.
Implicit Reference to Parameters (IRP), 2009.

- F. Colonna, L.-H. Jolly, R. A. Poirier, J. G. Ángyán, and G. Jansen,
Comp. Phys. Comm. 81, 293 (1994).
- F. Colonna, arxiv.org/abs/cs/0601035v1 (2006).

- A. Scemama, arxiv.org/abs/0909.5012v1 (2009).

Here we describe a Fortran implementation mainly developed
by Roland Assaraf for the program QMCMOL, and later adapted for CHAMP.
See notes: http://www.lct.jussieu.fr/pagesperso/toulouse/recherche/champ.pdf

3/9

http://www.lct.jussieu.fr/pagesperso/toulouse/recherche/champ.pdf


Basic IRP concepts and ideas

Objects

A computer program produces objects, which in our case are Fortran
variables (scalar/array) containing quantities that we are after.

For example, psi may be an object containing the value of a wave
function evaluated at some electron coordinates.

This object psi is constructed from other objects, for example from the
objects jastrow and determinant.

The later objects are themselves constructed from yet other objects.
And so on.

4/9



Basic IRP concepts and ideas

Objects

A computer program produces objects, which in our case are Fortran
variables (scalar/array) containing quantities that we are after.

For example, psi may be an object containing the value of a wave
function evaluated at some electron coordinates.

This object psi is constructed from other objects, for example from the
objects jastrow and determinant.

The later objects are themselves constructed from yet other objects.
And so on.

Dependencies

Clearly, there are dependencies between these objects.

Usually, these dependencies are not systematically handled.

In IRP, the dependencies are systematically handled. The
programmer does not need to take care of the order of construction of
the objects.

4/9



The dependency “tree” of the objects

A simple example: psi

determinant

orbitals

coefficientsbasis functions

basis parameters

jastrow

electron coordinates

jastrow parameters

Vocabulary:

psi is a child of jastrow and determinant.

jastrow and determinant are the parents of psi.

jastrow parameters, electron coordinates, basis parameters,
and coefficients are leaves.

5/9



Constructing the objects

Each object which is not a leaf of the tree has a building subroutine which
constructs it.

For example, for psi, schematically:

subroutine psi bld

call object provide(‘jastrow’)

call object provide(‘determinant’)

psi = jastrow * determinant

end subroutine

6/9



The key subroutine: object provide

call object provide(‘determinant’) does the following:

It checks if determinant is valid, i.e. already calculated and can be used.

If yes, then nothing is done.

If no, then its checks if its parent orbitals is valid.

If it is valid, it calls the building subroutine determinant bld and marks
determinant as valid.
If orbitals is not valid, then it checks its parents. And so on.

7/9



The key subroutine: object provide

call object provide(‘determinant’) does the following:

It checks if determinant is valid, i.e. already calculated and can be used.

If yes, then nothing is done.

If no, then its checks if its parent orbitals is valid.

If it is valid, it calls the building subroutine determinant bld and marks
determinant as valid.
If orbitals is not valid, then it checks its parents. And so on.

Thus, object provide(‘determinant’) goes down recursively the
dependency tree under determinant until it finds valid objects. It then
climbs up the dependency tree, constructing the objects one after the other,
in the correct order, until it finally constructs determinant.

7/9



Advantages of object provide

object provide(‘determinant’) has several advantages:

It is simple. The programmer just needs to know the name of the
object that he wants, here determinant. He does not need to know
about intermediate objects such as orbitals.

It is efficient. This mechanism ensures that only the objects needed are
calculated.

It is safe. This mechanism ensures that each object is constructed
before it is used. If a leaf object is needed but not valid, the program
properly stops.

8/9



call object modified

If the value of an object, say electron coordinates, is modified we need
to make sure that any child or grandchild object is recalculated if needed.
This is done as follows:

electron coordinates = (-2.1, 0.7, 1.5)

call object modified(‘electron coordinates’)

9/9



call object modified

If the value of an object, say electron coordinates, is modified we need
to make sure that any child or grandchild object is recalculated if needed.
This is done as follows:

electron coordinates = (-2.1, 0.7, 1.5)

call object modified(‘electron coordinates’)

The program marks electron coordinates as valid, and recursively
climbs up the dependency tree to mark as invalid all the objects
depending on it.

This is a safe mechanism since it prevents the programmer from
forgetting to update objects in an iterative algorithm.

A particular case of using object modified is after reading leaf objects
from the input or after calculating objects which are not in the
dependency tree.

9/9


