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Résumé

La chimie quantique est la branche des sciences de la matière qui vise à améliorer la compréhen-
sion et la description des systèmes électroniques. Cet objectif encourage le développement de
méthodes pour des études qualitatives et quantitatives adaptées à tel ou tel système (de l’atome
à la protéine en passant par les cristaux) ou problème (des calculs d’énergies fondamentales aux
propriétés spectroscopiques en passant par des calculs de dynamique). Ces méthodes donnent
accès à une meilleure compréhension mais aussi des prédictions des résultats expérimentaux et
des propriétés moléculaires.

Plus spécifiquement, cette thèse résume la poursuite du développement d’une méthode de
calcul d’énergies et de propriétés moléculaires : la méthode de correction de base par la densité
électronique1 (voir les références [1–7] pour les travaux précédant cette thèse). Ce développement
est motivé par le problème des calculs de structures électroniques et plus spécifiquement par celui
des coûts de calcul importants qui limitent l’application des méthodes existantes à des systèmes
de tailles limitées.

L’équation de Schrödinger

Pour quantifier les problèmes de structure électronique, la stratégie privilégiée est la résolution
de l’équation de Schrödinger. Cette équation a valu au scientifique éponyme un prix Nobel
de physique en 1933. Ce dernier appliqua pour la première fois son équation au problème des
niveaux d’énergie de l’atome d’hydrogène en 1926 [8].

L’équation de Schrödinger fait intervenir une fonction d’onde qui dépend des coordonnées
spatiales et de spin des électrons constituant le système et qui permet la description de structures
électroniques à travers une liste de paramètres que le quanticien cherche à optimiser [9–11]. Dans
ce contexte, la paramétrisation de la fonction d’onde peut passer par de nombreuses stratégies
et l’approche privilégiée dans ce travail de thèse est la théorie des orbitales moléculaires où
les électrons sont délocalisés sur la molécule par l’utilisation d’orbitales moléculaires. Dans
l’approximation la plus simple2, les paramètres du système sont les poids attribués à chaque
orbitale atomique pour chacun des états monoélectroniques du système. Ces poids peuvent
alors être lus comme des probabilités d’occupation des orbitales atomiques.

Dans l’approximation de Born-Oppenheimer3, l’équation de Schrödinger indépendante du
temps est définie comme

ĤΨ(x) = EΨ(x), (1)

où Ĥ est l’opérateur hamiltonien électronique tel que Ĥ = T̂ + Ŵee + V̂ne + V̂nn comprenant
l’opérateur d’énergie cinétique des électrons et les interactions coulombiennes électron-électron,
noyaux-électrons et noyaux-noyaux, Ψ(x) est la fonction d’onde dépendant des coordonnées
spatiales et de spin des N électrons du système, x = (x1, x2, ..., xN), et E est l’énergie associée à

1Dans ce résumé, nous nous y référerons sous l’appellation �méthode de correction de base �.
2Hartree-Fock, en très simplifié.
3ou l’approximation des noyaux fixes.
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la fonction d’onde Ψ(x). Les opérateurs constituant l’hamiltonien et la définition de la fonction
d’onde sont détaillées dans le corps de la thèse.

Les approximations de l’équation de Schrödinger : définition de l’énergie
de corrélation

Une fois décidé l’objet de base pour la description d’un unique électron, l’orbitale moléculaire,
le quanticien doit décrire la structure des N électrons du système à travers une unique fonction
d’onde. Cette fonction d’onde doit encoder les propriétés des électrons dans un milieu électron-
ique et ses interactions avec ce dernier. Plus concrètement, il doit prendre en compte le caractère
fermionique des électrons, le principe d’exclusion de Pauli et toute autre forme de corrélation
entre les électrons du système4.

Une première approche est de considérer seulement l’aspect fermionique des électrons, c’est
à dire le principe d’exclusion de Pauli. C’est l’approximation de Hartree-Fock (HF) qui permet
cette description par l’utilisation d’un unique déterminant de Slater pour exprimer la fonction
d’onde à N électrons où chaque orbitale moléculaire χi(xn) (i est le numéro de l’orbitale molécu-
laire et n est le nème électron) est, au plus, occupée par un seul électron. Finalement, la fonction
d’onde Hartree-Fock s’exprime comme

ΦHF(x) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . χN(x1)
χ1(x2) χ2(x2) . . χN(x2)
. . . . .

. . . . .

. . . . .

χ1(xN) χ2(xN) . . χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2)

Dans cette approximation, l’équation de Schrödinger (1) peut être décomposée en N équa-
tions couplées où l’interaction entre électrons est traitée comme un champ moyen. Avec cette
approximation du champ moyen, il est possible d’obtenir une bonne description qualitative de
l’état fondamental où, in fine, les électrons occupent les orbitales moléculaires de plus basses
énergies comme illustré sur la Fig. 1.

Cependant, pour une description quantitative exploitable, notamment pour des compara-
isons avec les résultats expérimentaux, il est nécessaire d’aller au delà de l’approximation du
champ moyen, en utilisant les méthodes post-Hartree-Fock où la fonction d’onde est générale-
ment exprimée comme une combinaison linéaire de déterminants de Slater. Par exemple, en
utilisant une approche d’interaction de configuration (CI), la fonction d’onde a pour expression

|ΨCI⟩ = c0|ΦHF⟩ +

déterminants∑
i

ci|Φi⟩ (3)

où |ΦHF⟩ est la fonction d’onde Hartree-Fock et |Φi⟩ sont des déterminants construits à partir
du déterminant Hartree-Fock. Ces déterminants sont schématisés sur la Fig. 1. Les paramètres
du système à optimiser deviennent alors les coefficients du développement CI.

4Pour les habitués au formalisme, nous regroupons dans l’expression �toute autre forme de corrélation�, la
corrélation qui vient du terme de Coulomb. Ce terme diverge lorsque les deux électrons considérés sont proches
ce qui complique les calculs à courte portée. C’est pourquoi l’approximation de Hartree-Fock, où cette interaction
est traitée par un champ moyen, est un point de départ naturel. Pour les non habitués au formalisme, cette notion
est explicitée dans la thèse mais n’est pas nécessaire pour la compréhension de ce résumé.
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Figure 1: Schéma des états du système décrits par des déterminants de Slater. Chaque ligne
représente une orbitale moléculaire. HF: déterminant solution de l’équation de Hartree-Fock;
Excited determinants: déterminants construits à partir du déterminant Hartree-Fock où les
électrons sont excités dans les orbitales virtuelles (inoccupées dans le déterminant Hartree-Fock)
(Figure inspirée de la Réf. [12]).

En terme d’énergie, la différence observée avec l’énergie Hartree-Fock est appelée énergie de
corrélation Ec, tel que

Ec = EPHF − EHF, (4)

où EPHF est l’énergie obtenue à partir d’une approximation post-Hartree-Fock pour la fonction
d’onde et EHF est l’énergie obtenue dans l’approximation Hartree-Fock. Parmi les méthodes
post-Hartree-Fock, nous décrivons dans ce manuscrit les méthodes d’interaction de configuration
et la méthode coupled-cluster.

La théorie de la fonctionnelle de la densité

La théorie de la fonctionnelle de la densité est un autre moyen d’aborder le problème de la
structure électronique [13–15]. Son intérêt est qu’on y optimise la densité d’électrons, formalisée
par une fonction à 3 coordonnées spatiales, au lieu de la fonction d’onde à 4N coordonnées
d’espace et de spin. Cette réduction importante du nombre de degrés de liberté permet d’étendre
le domaine d’application de la chimie quantique à des systèmes plus grands.

Il existe également des méthodes hybrides combinant les méthodes centrées sur la forme
de la fonction d’onde et les approximations de la fonctionnelle de la densité. Deux d’entre
elles sont au cœur du présent travail de thèse : la théorie de la fonctionnelle de la densité à
séparation de portée [16] et la méthode de correction de base. Nous explicitons leurs formalismes
mathématiques dans la suite de ce résumé.

La théorie de la fonctionnelle de la densité à séparation de portée

Qualitativement, la théorie de la fonctionnelle de la densité à séparation de portée divise l’espace
des 3N coordonnées spatiales en deux domaines :

� Le domaine dit de �courte portée� correspond aux régions de l’espace où deux électrons
sont proches. Cette région de l’espace nécessite une base de fonctions particulièrement
grande (pour des coûts de calculs d’autant plus conséquents) pour donner suffisamment de
flexibilité à la description des termes à deux électrons, notamment l’énergie de corrélation
électronique ou la densité de paire, objets que nous définissons dans le corps de la présente
thèse. Dans cette méthode, cette région de l’espace est décrite à l’aide d’une fonctionnelle
de la densité, bénéficiant de sa représentation compacte de la corrélation électronique.
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Figure 2: Convergence en base de l’énergie (en Hartree) de l’état fondamental de l’atome
d’hélium. FCI est la méthode CI où l’on considère tous les déterminants accessibles à par-
tir du déterminant Hartree Fock. cc-pVXZ sont les noms des bases de fonction classées par
ordre croissant de nombre de fonctions de base les constituant.

� Le domaine dit �de longue portée� correspond au reste de l’espace. Les méthodes de
fonctions d’onde permettent, en général, une meilleure description de l’interaction entre
électrons dans ce domaine et sont donc utilisées pour cette partie de l’espace.

En pratique, des approximations pour la fonctionnelle de la densité ont été spécifiquement pro-
posées pour le terme de courte portée qui ont permis d’appliquer la théorie de la fonctionnelle
de la densité à séparation de portée à un large éventail de systèmes.

La méthode de correction de base par la densité électronique

L’objectif de la méthode de correction de base est d’améliorer la lente convergence en base des
méthodes de fonction d’onde post-Hartree-Fock. En effet, pour ces méthodes, les énergies et
propriétés moléculaires convergent lentement, bien que systématiquement, avec la taille de la
base de fonction utilisée. Le caractère systématique de cette convergence (illustré sur la Fig.
2) permet d’estimer une extrapolation des quantités dans la limite de la base complète mais
cette extrapolation est très rapidement limitée par le nombre de fonctions de base nécessaires
qui augmente considérablement avec la taille du système.

Avec la méthode de correction de base, nous proposons une procédure permettant d’estimer
l’erreur induite par le choix de base et cette erreur est estimée à partir d’une fonctionnelle de
la densité.

Jusqu’à présent, le choix de la fonctionnelle de la densité repose sur la considération que la
quantité limitante dans la convergence en base est l’énergie de corrélation à courte portée. Ce
qui rappelle la philosophie de la théorie de la fonctionnelle de la densité à séparation de portée.
C’est pourquoi nous approximons la fonctionnelle de la densité de la méthode de correction de
base par des variantes de celle développée pour la théorie de la fonctionnelle de la densité à
séparation de portée. Elles sont décrites qualitativement dans le tableau 1 et leurs expressions
sont données dans le corps de la thèse.

C’est dans ce contexte que s’inscrit le début du présent travail de doctorat dans lequel nous
implémentons et testons différentes approximations de cette fonctionnelle de la densité pour les
calculs d’énergies d’états fondamentaux et d’états excités mais aussi de moments dipolaires.

4



Table 1: Description des fonctionnelles de corrélation de courte portée utilisées pour la fonction-
nelle complémentaire de correction de base.

Fonctionnelle Caractéristiques

Ēsr,µ
c,LDA

[n]
Basée sur l’approximation de la densité locale (LDA),
cette fonctionnelle de la densité pour la corrélation (c)

de courte portée (sr) ne dépend que de la densité en chaque point de l’espace.

Ēsr,µ
c,PBE-OT

[n, n2]

Basée sur la variante PBE (du nom de ses créateurs Perdew, Burke
et Ernzerhof) de l’approximation du gradient généralisé (GGA), cette
fonctionnelle dépend de la densité et de son gradient en chaque point

de l’espace mais aussi de la densité de paire à coalescence (OT) n2(r, r) (voir
définition dans la thèse). Ajouter la dépendance en la densité de paire
à coalescence permet d’ajouter de l’information sur l’interaction entre

les électrons en chaque point de l’espace.

Ēsr,µ
c,PBE-UEG

[n]
Cette variante de la fonctionnelle PBE-OT approxime

la densité de paire à coalescence en chaque point
de l’espace par celle du gaz d’électron uniforme de densité n(r).

Correction de base par la densité par une équation auto-cohérente

Ce chapitre présente le travail publié dans la référence [E. Giner, D. Traore, B. Pradines, J.
Toulouse, J. Chem. Phys. 155, 204104 1-10 (2021)]. On y explicite l’algorithme de correction
de base auto-cohérent.

Dans les travaux précédant cet article, la correction de base de l’énergie était calculée à
posteriori à partir de la densité de la fonction d’onde:

EB0 = ⟨Ψ
B|Ĥ|ΨB⟩ + ĒB[nΨB], (5)

où ĒB[n] est la fonctionnelle de la densité pour la correction de base (appelée fonctionnelle de
correction de base dans la suite de ce résumé) et ΨB est la fonction d’onde dans la base B.

Considérons une approche de fonctions d’onde fondée sur une minimisation traduite en terme
d’équation de Lagrange, par exemple une approche d’interaction de configuration. L’algorithme
de correction de base auto-cohérente traite la minimisation qui définie la méthode de correction
de base en incluant la dérivée de la fonctionnelle de la densité dans l’équation d’Euler-Lagrange.
La minimisation de l’énergie dans la base,

EB0 = min
ΨB

{
⟨ΨB|T̂ + Ŵee + V̂ne|Ψ

B⟩ + ĒB[nΨB]
}
, (6)

conduit alors à
ĤBeff[nΨB0 ]|ΨB0 ⟩ = E

B
0 |Ψ

B
0 ⟩, (7)

où EB0 est le multiplicateur de Lagrange associé à la contrainte de normalisation de la fonction
d’onde ΨB0 et l’hamiltonien effectif est défini comme

ĤBeff[n] = T̂B + ŴBee + V̂Bne +
ˆ̄VB[n], (8)

avec ˆ̄VB[n] le potentiel effectif à 1 électron tel que

ˆ̄VB[n] =
∫

dr v̄B[n](r) n̂B(r), (9)
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Figure 3: Convergence en base de l’énergie de la molécule BH. FCI est la méthode CI où l’on
considère tous les déterminants accessibles à partir du déterminant Hartree Fock. FCI + PBE-
UEG correspond à l’énergie obtenue avec une correction a posteriori. Self-consistent FCI +
PBE-UEG correspond à l’énergie obtenue à partir de l’algorithme auto-cohérent. aug-cc-pVXZ
sont les noms des bases de fonction classées par ordre croissant du nombre de fonctions de base
constituant la base.

où v̄B[n](r) = δĒB[n]/δn(r) et n̂B(r) est l’opérateur densité projeté sur la base B.
En pratique, ĒB[n] et sa dérivée v̄B[n] sont approximées grâce à une fonctionnelle de la

densité issue de la théorie de la fonctionnelle de la densité à séparation de portée.
De cette manière, le potentiel de correction de base intervient dans les itérations du calcul

de fonction d’onde et des tests systématiques permettent d’éclaircir les résultats précédemment
publiés sur l’approximation non-auto-cohérente (Eq. (5)). En effet, dans cet article nous mon-
trons que les algorithmes auto-cohérent et non auto-cohérent donnent des résultats similaires
pour les calculs d’énergie de l’état fondamental. Nous donnons un exemple dans la Fig. 3 pour
la molécule BH où l’on voit que les courbes de convergence en base des énergies calculées avec
les deux approches se superposent. Ainsi, nous illustrons la validité de l’approximation non
auto-cohérente pour les calculs de cette quantité.

Dans cet article, nous présentons également nos travaux sur les calculs de moments dipolaires.
Le moment dipolaire est une quantité plus sensible au niveau de précision de la densité que
l’énergie de l’état fondamental et constitue un premier cadre simple pour comprendre l’effet des
fonctionnelles de correction de base et leurs potentiels sur la convergence en base de la densité.
Les résultats montrent des convergences en base nettement améliorées en présence du potentiel
de correction de base (voir Fig. 4), encourageant ainsi l’extension de la méthode de correction
de base aux propriétés moléculaires.

Correction de la base pour l’estimation de moments dipolaires à partir
de la méthode coupled-cluster

Alors que dans l’article précédent nous avons appliqué la correction de base auto-cohérente aux
calculs de moments dipolaires avec des approches variationnelles de type CI, nous propopons
ici d’étendre le calcul de propriétés moléculaires aux approches non-variationnelles telles que le
coupled cluster. Dans ce cadre, la formule du moment dipolaire incluant la correction de base
est la suivante

dB0 = dB + d̄B, (10)
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Figure 4: Convergence en base du moment dipolaire de la molécule BH. FCI est la méthode
CI où l’on considère tous les déterminants accessibles à partir du déterminant Hartree Fock.
Self-consistent FCI+PBE-UEG correspond au moment dipolaire obtenu à partir de l’algorithme
auto-cohérent. aug-cc-pVXZ sont les noms des bases de fonction classés par ordre croissant du
nombre de fonctions de base constituant la base.

où dB est le moment dipolaire calculé à partir d’une méthode de fonctions d’onde avec une base B
de fonctions et d̄B est le terme de correction. Dans l’article, nous expliquons comment ce dernier
terme peut être calculé, indépendemment du premier, à partir de la densité Hartree-Fock alors
que le premier terme peut être calculé à partir de n’importe quelle méthode corrélée, et plus
particulièrement la méthode coupled-cluster. L’équation 10 peut être obtenue en considérant
le moment dipolaire comme une dérivée de l’énergie définie comme 5 par rapport à un champ
électrique extérieur. On peut donc approximer chaque terme de l’équation 10 par un calcul de
différence d’énergies.

Les tests sur 14 molécules sont présentés dans la partie résultats de l’article (et sur la Fig.
5 de ce résumé) et montrent des résultats aussi encourageants que ceux présentés dans l’article
précédent. La correction de base peut donc être calculée indépendamment du calcul de fonction
d’onde dans la base. De plus, l’utilisation d’une fonction d’onde Hartree-Fock pour calculer la
correction de base est suffisante pour améliorer significativement les résultats. Dans ce schéma,
le calcul de la correction de base reste très marginal par rapport à celui du calcul de fonction
d’onde, ce qui est très avantageux.

Suite à cette étude, nous nous sommes naturellement demandé comment étendre la méthode
de correction de base à des propriétés plus générales que le moment dipolaire. En commençant
par les propriétés découlant de l’équation de la réponse linéaire, nous devons faire intervenir la
dérivée seconde de l’énergie pour laquelle la qualité de la fonctionnelle de correlation de courte
portée n’est pas encore connue.

A ce stade, nous réfléchissions à chercher une forme de fonctionnelle de correction de base
plus générale que la fonctionnelle de corrélation de courte portée et complètement (ou en tout cas
plus) spécifique au problème de convergence en base (voir le chapitre 4). Cette problématique
motiva le développement d’un modèle à une dimension proposant un cadre simple et contrôlé
pour le développement de cette fonctionnelle mais aussi pour la compréhension générale de la
méthode de correction de base.
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Figure 5: (a) Erreurs absolues des moment dipolaires calculés à partir d’énergies a) CCSD(T)
et (b) CCSD(T)+PBEUEG pour 14 molécules. Les moments dipolaires sont comparés aux
extrapolations en base dans la limite de la base complète des valeurs CCSD(T). La zone en vert
indique une erreur de ±0.001 unités atomiques.

Un modèle à une dimension : un cadre rigoureux pour le développement
de la méthode de correction de base

Ce chapitre présente le travail publié dans la référence [D. Traore, E. Giner, J. Toulouse, J. Chem.
Phys 156, 044113 1-13 (2022)]. On y explicite le développement d’un modèle à 2 électrons dans
un espace à 1 dimension pour l’étude de la méthode de correction de base.

Comme spécifié dans le paragraphe précédent, l’extension de notre méthode aux propriétés
électroniques nous a conduit au besoin de comprendre plus précisément l’effet de la correction
de base et des approximations choisies pour son application aux systèmes réels. Dans le domaine
du développement de méthodes, le quanticien est souvent amené à travailler avec des modèles
simplifiés où il se concentrera spécifiquement sur le problème qui l’intéresse. Notre problème
étant la convergence lente en base, nous étudions ici un système modèle qui reproduit cette
problématique. Nous résumons les caractéristiques de ce modèle dans la liste qui suit.
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L’hamiltonien

Après une étude bibliographique, nous avons décidé d’utiliser un potentiel δ-Dirac entre les
électrons. Celui-ci permet de reproduire la convergence lente en base rencontrée en 3D. Dans
cet article, l’hamiltonien a alors pour forme:

Ĥ = T̂ + Ŵee + V̂ne, (11)

avec

T̂ = −
1
2

N∑
i=1

∂2

∂x2
i

, Ŵee = δ(x1 − x2), V̂ne = −Z
N∑

i=1

δ(xi) , (12)

l’opérateur d’énergie cinétique, l’interaction entre électrons et l’interaction entre les électrons et
le noyau, respectivement.

La base de fonctions d’onde

Nous avons testé différents types de fonctions de base (bases de Slater, de Gaussienne, ondes
planes, ...) et avons décidé d’utiliser une base de fonctions de Hermite-Gauss. Elles ont l’avantage
d’avoir des propriétés mathématiques intéressantes qui nous permettent de limiter nos temps de
calculs et de ressembler aux genres de fonctions de bases que l’on utilise pour les systèmes à 3D
en plus de reproduire une convergence systématique de l’énergie avec le nombre de fonctions de
Hermite-Gauss utilisées.

Les méthodes de fonction d’onde disponibles

Le code réalisé permet actuellement de lancer des calculs Hartree-Fock, de théorie des perturba-
tions (Møller-Plesset d’ordre 2) et d’utiliser la fonctionnelle de correction de base construite à
partir de gaz d’électrons uniformes à 1D et de l’approximation locale de la densité (LDA). Pour
avoir plus de détails sur le formalisme mathématique de cette correction de base, nous invitons
le lecteur à lire le chapitre 4. Pour ce résumé, il est surtout important de préciser que la fonc-
tionnelle développée ne dépend plus de la théorie de la fonctionnelle de la densité à séparation
de portée.

Ce travail constitue un premier pas vers l’objectif d’une nouvelle fonctionnelle de correction
de base pour les calculs en 3D. L’extension du formalisme développé dans cet article pour les
systèmes 3D nécessitera de comprendre les propriétés des gaz d’électrons en 3D associés à une
base fixée et de construire un algorithme adaptable aux bases et systèmes d’intérêt.

Extension de la méthode de correction de base à la théorie de la réponse
linéaire

Dans l’optique d’étendre la méthode de correction de base aux propriétés moléculaires, nous
souhaitons développer une méthode rigoureuse pour les calculs de ces quantités. En chimie
quantique, l’un des formalismes à notre disposition est l’équation de réponse linéaire qui relie les
paramètres variationnels du système à sa réponse à une perturbation V̂(t) dépendante du temps.
Les fréquences ωBn sont les quantités physiques les plus importantes obtenues par la résolution
des équations de la réponse, car celles-ci peuvent être identifiée aux énergies d’excitation.

L’équation de réponse linéaire a pour expression,(
A B
B∗ A∗

) (
Xn

Yn

)
= ωBn

(
S 0
0 −S

) (
Xn

Yn

)
, (13)
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où Xn et Yn sont les vecteurs propres, S est la matrice de recouvrement, et A et B sont des
matrices dépendant de l’hamiltonien effectif mais aussi de la dérivée seconde de la fonctionnelle
de correction de base. Cette dernière quantité n’a pas encore été implémentée et testée dans
les précédentes études et nécessite une étude rigoureuse dans le cadre de l’utilisation de la
fonctionnelle de corrélation de courte portée.

Dans l’article correspondant au chapitre 5, l’équation de réponse linéaire en présence de
l’hamiltonien effectif a été testée sur un modèle à 1D avec potentiel harmonique et interaction
δ entre électrons. Nous y montrons que les énergies d’excitation sont légèrement dégradées en
comparaison avec l’utilisation d’un hamiltonien classique mais que les énergies totales des états
excités, EBn = EB0 +ω

B
n , sont nettement améliorées. Des tests préliminaires sur le béryllium nous

ont montré les mêmes conclusions.

Si nous parvenons à comprendre l’effet de la correction de base sur les énergies d’excitation,
l’étape suivante serait de calculer des propriétés moléculaires dépendant grandement de l’énergie
de corrélation.

Conclusion générale

Cette thèse présente l’état du développement de la méthode de correction de base après trois
années de doctorat. Après l’implémentation dans Quantum Package [17] et le test de l’équation
auto-cohérente pour la correction de base, nous nous sommes intéressés à l’extension de la
méthode aux propriétés moléculaires.

Nous nous sommes finalement focalisés sur la construction d’un modèle simplifié pour la
compréhension des propriétés mathématiques de l’équation de correction de base et de la fonc-
tionnelle complémentaire de correction de base.

Ce modèle devrait permettre d’entamer le développement d’une fonctionnelle complémen-
taire spécifique au problème de correction de base et d’éviter (ou confirmer) l’utilisation de la
fonctionnelle de corrélation de courte portée développée pour la théorie de la fonctionnelle de
la densité à séparation de portée. De plus, dans l’optique d’étendre notre domaine d’étude aux
propriétés moléculaires, nous utilisons ce modèle pour l’extension de notre nouvelle méthode à
la théorie de la réponse linéaire avant son application aux systèmes en 3D.
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Abstract

This thesis summarizes the development of a method for calculating energies and molecular
properties: the density-based basis-set correction method. This development is motivated by
the problem of electronic-structure calculations and more specifically by that of the large cal-
culation costs which limit the application of standard methods to systems of limited size. With
the basis-set correction method, we propose to estimate the finite basis-set error using func-
tional of the density. The work presented in this manuscript begins with the extension of the
basis-set correction method to a self-consistent formalism, allowing us to add the effect of the
basis-set correction on the optimization of the wave function. We then apply the basis-set cor-
rection method to dipole moment calculations by showing how to apply the basis-set correction
to coupled-cluster calculations. We also propose a one-dimensional model system for the devel-
opment and understanding of the basis-set correction method and the approximations chosen for
the basis-set correction functional. Finally, we use this model system for extending the basis-set
correction method to linear-response calculations.
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Introduction

Quantum chemistry aims to develop methods to describe the electronic structure of molecular
systems. These methods permit predictions and deeper understanding of experiments and of
molecular properties. At the heart of the quantum chemistry problem lies the Schrödinger
equation for electronic systems [1, 2] where the Coulomb repulsion between electrons forbids
finding analytical expressions for the solutions. The more problematic region of the space of
electron coordinates to be described is when two electrons are close to each other because of the
strong Coulomb repulsion: these are the so-called short-range correlation effects. Indeed, the
wave-function parametrization needs to be flexible enough to describe the depletion of the wave
function in these regions, and more specifically the so-called electron-electron cusp [3].

In practice, the wave function is expanded on a finite basis set and one can distinguish
between two types of approximations: i) the error due to the use of a finite basis set, and ii)
the error due to the wave-function method. There exists a hierarchy of both basis sets and
wave-function methods with increasing accuracy and computational costs, which is pictorially
summarized in the famous Pople diagram [4] (see Fig. 6).

Figure 6: Pople diagram from Ref. [5]. The horizontal axis classifies some wave-function methods
by accuracy levels. The vertical axis corresponds to basis sets with increasing sizes.

The simplest wave-function ansatz is the so-called Hartree-Fock approximation which substi-
tutes the Coulomb repulsion term by a mean-field potential. Within the Hartree-Fock framework,
one solves N coupled equations, one for each electron which permits a qualitative description of
the electronic structure with a reasonable computational cost. However, to reach chemical accu-
racy (an error less than 1 kcal/mol for chemically relevant energy differences), one needs to go
beyond the mean-field approximation and to consider the exact Coulomb repulsion, which leads
to the post-Hartree-Fock methods. Among them, the full-configuration-interaction method is
the exact solution within a given basis set and thus constitutes the target accuracy of the
wave-function methods. There exists a wide range of approximations between the Hartree-Fock
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approximation and the full-configuration-interaction method. Among the various approximated
wave-function ansätze, we can cite truncated configuration interaction, perturbation theory, or
the coupled cluster methods.

Regarding now the basis sets used in quantum chemistry, they are built such that energies
and molecular properties are systematically improvable until reaching the complete-basis-set
limit. Nevertheless, the complete-basis-set limit is numerically unreachable and the conver-
gence to this limit is slow. There are essentially two ways to estimate the complete-basis-set
limit: i) extrapolation schemes using basis sets of manageable sizes [6, 7], and ii) explicitly
correlated methods which introduce the electron-electron cusp and the related short-range cor-
relation effects [8,9]. Nevertheless, these two approaches suffer from computational limitations:
extrapolation schemes need increasingly large basis-set calculations which become rapidly unfea-
sible and explicitly correlated methods introduce auxiliary basis sets and a rather complicated
mathematical framework.

An alternative to the manipulation of expensive wave-function methods is density-functional
theory [10,11]. In this theory, the exact energy can be described using only density functionals,
among which the so-called exchange-correlation functional plays a crucial role. Nevertheless in
practice the exchange-correlation density functional is not known and therefore approximations
to the latter quantity have been derived. These functionals are computationally cheap and
therefore allow for applications on very large systems. However, these approximated functionals
are not systematically improvable and suffer from their uncontrolled description of long-range
correlation effects such as strong correlation and dispersion forces.

Finally, the combination of density-functional and wave-function theories has lead to hybrid
approaches among which we can cite the so-called range-separated density-functional theory
[12]. In the latter, one uses a non-diverging long-range electron-electron interaction with a
correlated wave-function method and the remaining short-range interaction is handled with a
density functional.

In the present thesis, we expose the developments of a recently introduced hybrid method
which tackles the problem of the slow basis-set convergence of wave-function methods: it is the
density-based basis-set correction method [13]. In the latter, one considers a complementary
functional of the density to estimate the correlation effects missing in a given finite basis set.
As most of the missing correlation effect are short-range correlation effect, in practice the com-
plementary functional is approximated by a specific type of range-separated density functional.
Previous works [13–19] have focused mainly on corrections to the energy and the present work
focuses on the extension to more generic molecular properties.

The manuscript is divided as follows.

Chapter 1 introduces some of the quantum chemistry methods involved in the present work.
After that, we discuss the slow basis-set convergence of the correlation energy which appears

in wave-function based calculations. From that follows the introduction of methods to estimate
the complete-basis-set limit. We end this chapter with a summary of the previous works on the
density-based basis-set correction method.

Chapter 2 corresponds to the implementation and test of the self-consistent algorithm for
the density-based basis-set correction method. With this procedure we go beyond the non-self-
consistent approximation for energies. We apply the self-consistent basis-set correction method
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to the dipole moment which is a property known to strongly depend on the density.

Chapter 3 corresponds to the extension of the correction of dipole moments to non-variational
methods such as the widely used coupled-cluster method. The aim of this work is to propose an
a-posteriori correction to the dipole moment and hence to avoid the self-consistent procedure.

Chapter 4 corresponds to the development of a one-dimensional model system to help for-
malizing the mathematical framework of the density-based basis-set correction method. By
avoiding the approximation of the basis-set complementary functional by a density functional
from another theory (namely range-separated density-functional theory) we allow for a clearer
understanding of the method.

Motivated by the possibility of computing properties related to excited states, we propose in
Chapter 5, an extension of the density-based basis-set correction method to the linear-response
formalism. We explain how the basis-set correction potential in the Hamiltonian leads to a
correlation kernel which depends on the second-order derivative of the complementary functional.
This chapter includes also tests performed on a one-dimensional model.
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CBS Complete basis set
c correlation (energy)
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CIPSI
Configuration interaction using a perturbative
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CIS Configuration interaction with single excitations
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DFA Density-functional approximation
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PT2 Second order perturbation theory
QP2 Quantum Package 2.0
RS-DFT Range-separated density-function theory
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1
Methods

1.1 A brief review of wave-function methods

1.1.1 The quantum electronic problem

We consider the Schrödinger equation in the Born-Oppenheimer1 and non-relativistic approxi-
mations for an N-electron system, in atomic units:

ĤΨ(x) = EΨ(x), (1.1)

with the electronic Hamiltonian operator Ĥ = T̂ + Ŵee + V̂ne + V̂nn where T̂ = −
∑N

i=1 ∆ri/2
is the kinetic-energy operator, Ŵee =

∑
i> j 1/∥ri − r j∥ is the Coulomb interaction between the

electrons, V̂ne = −
∑

i vne(ri) is the interaction between electrons and nuclei, vne(ri) = ZI/∥ri −RI∥,
V̂nn =

∑
I>J ZIZJ/∥RI − RJ∥ is the nuclei-nuclei interaction, and ZI is the Ith atomic number.

In the latter definitions, lowercase letters designate electron coordinates and uppercase letters
designate nuclear coordinates.

Here, Ψ(x) is the N-electron wave function and x = (x1, x2, x3, ..., xN) are the coordinates of
the N electrons. For the ith electron, xi = (ri, si) where ri = (xi, yi, zi) are its spatial coordinates
and si its spin coordinates. Finally, E is the energy of the electronic state described by Ψ(x).

Most of the present work focuses on the lowest-energy state commonly called the ground
state. The energy and wave function associated with this state are denoted by E0 and Ψ0.

The variational principle states that any approximation Ψ̃ for Ψ0 should lead to an energy
Ẽ ≃ ⟨Ψ̃|Ĥ|Ψ̃⟩ > E0. Therefore, given a family of approximate wave functions Ψ̃ with a restricted
set of variational parameters, the best energy one can access is

Ẽ0 = min
Ψ̃
⟨Ψ̃|Ĥ|Ψ̃⟩, (1.2)

and Ẽ0 = E0 in the limit where the minimizing wave function Ψ̃0 in Eq. (1.2) is the exact
ground-state wave function, i.e Ψ̃0 = Ψ0.

1.1.2 Hartree-Fock approximation

In the Hartree-Fock approximation [1, 2], the wave function is approximated by a single Slater
determinant. The properties of the determinant permit to recover an antisymmetric N-electron

1i.e. �when one can consider the electrons in a molecule to be moving in the field of fixed nuclei.� [1]
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wave function and thus respects the fermionic character of the electronic system.
Therefore, the Hartree-Fock (HF) wave function is

ΦHF(x) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . χN(x1)
χ1(x2) χ2(x2) . . χN(x2)
. . . . .

. . . . .

. . . . .

χ1(xN) χ2(xN) . . χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.3)

where χp(xi) ≡ χp(ri, si) is the pth one-electron molecular spin-orbital for the ith electron at the
spatial position ri with spin si with associated energy ϵp. From Pauli’s exclusion principle, one
should note that each spin-orbital is occupied at most by one electron.

Using this framework, instead of solving the N-electron Schrödinger equation, one solves N
coupled one-electron equations

f̂χp(x) = ϵpχp(x), (1.4)

where the Fock operator is

f̂ = −
1
2
∆r −

∑
I

ZI

∥r −RI∥
+ v̂HF(x). (1.5)

The last term in Eq. (1.5) is the Hartree-Fock potential which is the mean-field potential seen
by the electron due to the presence of the other electrons and its expression is

v̂HF(x) =
occ.∑

k

(
Ĵk(x) − K̂k(x)

)
, (1.6)

where the sum is over occupied spin orbitals in the Hartree-Fock determinant.
From the latter equation, we define the Coulomb operator, Ĵk(x), such that

Ĵk(x1)χp(x1) =
[∫

dx2 |χk(x2)|2∥r1 − r2∥
−1

]
χp(x1), (1.7)

and the exchange operator, K̂k(x), such that

K̂k(x1)χp(x1) =
[∫

dx2 χ
∗
k(x2)∥r1 − r2∥

−1χp(x2)
]
χk(x1). (1.8)

As v̂HF(x) depends on all occupied molecular orbitals, equations (1.4) must be solved using
a self-consistent field approach.

Using this approximation, one gets a good qualitative description of the molecular system
(almost 99% of the total energy for a wide range of systems2). Nevertheless, for a quantitative
description one needs to go beyond the Hartree-Fock approximation, i.e. using the so-called
post-Hartree-Fock methods. These methods aim to get rid of the mean-field approximation, by
solving the N-electron Schrödinger equation using the exact Coulombic interaction between the
particles. These post-Hartree-Fock methods bring the effect of electronic correlation.

2that do not include strong or static correlation effects, which require a multi-determinantal description.
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Figure 1.1: Representations of Slater determinants for a system with six electrons. HF: Hartree-
Fock determinant ; S-type: determinants with a single excitation ; D-type: determinants with
double excitations ; T-type: determinants with triple excitations, and so on. The occupied and
virtual orbitals are those occupied and unoccupied in the Hartree-Fock determinant, respectively.
(Figure from Ref. [3])

1.1.3 Post-Hartree-Fock methods

Truncated- and full- configuration interactions

The configuration interaction (CI) [2] wave function is a linear combination of Slater determi-
nants generated by distributing one or more electrons in unoccupied molecular orbitals. The
generation of Slater determinants is most easily written in the second quantization formalism.

One considers operators that withdraw one electron from a given molecular spin-orbital or
add an electron to one. This operators are the annihilation and creation operators, âi and â†i ,
respectively, where i is the spin-orbital index.

Thus, one writes, for a determinant |Φa
i ⟩ describing a single excitation (S-type in Fig. 1.1)

from the occupied spin-orbital i to the virtual spin-orbital a,

|Φa
i ⟩ = â†aâi|ΦHF⟩, (1.9)

for a determinant |Φab
i j ⟩ describing a double excitation (D-type in Fig. 1.1) from the occupied

spin-orbitals i and j to the virtual spin-orbitals a and b,

|Φab
i j ⟩ = â†aâ†bâ jâi|ΦHF⟩, (1.10)

for a determinant |Φabc
i jk ⟩ describing a triple excitation (T-type in Fig. 1.1),

|Φabc
i jk ⟩ = â†aâ†bâ†c âkâ jâi|ΦHF⟩, (1.11)

and so on.
The full configuration interaction (FCI) wave function |ΨFCI⟩ is the wave function obtained

as the linear combination of all possible determinants we can build from the set of molecular
orbitals:

|ΨFCI⟩ = c0|ΦHF⟩ +

occ.∑
i

virt.∑
a

ca
i |Φ

a
i ⟩ +

occ.∑
i> j

virt.∑
a>b

cab
i j |Φ

ab
i j ⟩ +

occ.∑
i> j>k

virt.∑
a>b>c

cabc
i jk |Φ

abc
i jk ⟩ + ... (1.12)

where {ca
i , c

ab
i j , c

abc
i jk , ...} are the FCI coefficients, and occ. and virt. refer to occupied and virtual

orbitals in the Hartree-Fock determinant, respectively. The FCI coefficients are obtained by
solving the following minimization scheme:

EFCI = min
ΨFCI

⟨ΨFCI|Ĥ|ΨFCI⟩, (1.13)
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where EFCI is the FCI energy associated with the state |ΨFCI⟩. Due to the expectation value
formulation, the FCI energy is variational.

In practice, one should notice the rapid increase of the dimension of the FCI space3 with
the number of electrons. For instance, in Fig. 1.5 we report the number of determinants in
the FCI wave function for some simple systems. We read that the number of determinant
scale exponentially with the basis set size. Therefore, one usually truncates the wave-function
expansion Eq. (1.12) in terms of excitation levels. In this manner, we define several configuration
interaction approximations. The most common and well known is the Configuration Interaction
with Single and Double excitations (CISD) which leads to the wave function

|ΨCISD⟩ = c0|ΦHF⟩ +

occ.∑
i

virt.∑
a

ca
i |Φ

a
i ⟩ +

occ.∑
i> j

virt.∑
a>b

cab
i j |Φ

ab
i j ⟩. (1.14)

The CISD method has been mostly abandoned due to its lack of size extensivity, i.e., the energy
does not scale linearly with the number of electrons.

Selected Configuration Interaction

The selected configuration interaction approximation that we will consider here is the CIPSI,
Configuration Interaction using a Perturbative Selection made Iteratively [4, 5].

The CIPSI wave function is the linear combination of determinants {|I⟩} in a set R that
are the more suited to build a wave function for a good quantitative description of the specific
electronic system:

|ΨCIPSI⟩ =
∑
I∈R

cI |I⟩. (1.15)

In order to obtain ΨCIPSI, one starts with a substet R(0) of R. The set R(0) gives the wave
function

|Ψ(0)⟩ =
∑

I∈R(0)

c(0)
I |I⟩, (1.16)

where the superscript (0) indicates that we are at the initial step of the procedure, where the
determinants |I⟩ are in the set R(0). From here, we consider a kth step of the procedure such
that R(0) is a subset of R(k) which is itself a subset of R, and

|Ψ(k)⟩ =
∑

I∈R(k)

c(k)
I |I⟩. (1.17)

At each step, we define the subset R̄(k) that contains all the determinants |P⟩ that are not in
R(k).

We compute the contributions of each determinants |P⟩ to the second-order perturbation
energy,

ϵP,PT2 = −
|⟨Ψ(k)|Ĥ|P⟩|2

⟨P|Ĥ|P⟩ − ⟨Ψ(k)|Ĥ|Ψ(k)⟩
, (1.18)

and select a certain amount of determinants having the most important contributions in absolute
value. The selected determinants are added to the set R(k) to build the set R(k+1) and therefore
the wave function

|Ψ(k+1)⟩ =
∑

I∈R(k+1)

c(k+1)
I |I⟩. (1.19)

3i.e., the number of Slater determinants. Increasing the size of the system leads to more excitations possible
and thus to an higher number of FCI coefficients to optimize.

26



We also define the second-order perturbation theory at the step (k) as

EPT2 =
∑

P∈R̄(k)

ϵP,PT2. (1.20)

If EPT2 is greater than a a given threshold, one starts over at Eq. (1.17). At the end of the
procedure, the CIPSI energy is evaluated as

ECIPSI = Evar + EPT2, (1.21)

where Evar is the variational energy,

Evar = ⟨ΨCIPSI|Ĥ|ΨCIPSI⟩. (1.22)

The CIPSI algorithm is implemented in the Quantum Package 2.0 software [6] and we invite
the reader seeking for more information to consult Ref. [7] and the Quantum Package website
quantum-package.readthedocs.io.

Coupled-cluster theory

In subsequent chapters, we will use coupled-cluster approximations and mainly the CCSD(T)
method, i.e, Coupled-Cluster Singles and Doubles with perturbative Triples [2,8], the gold stan-
dard of quantum chemistry. The name gold standard is due to its good trade-off between
computational cost and accuracy for many molecular systems. In addition, the coupled-cluster
method cures the size-extensivity problem encountered in truncated CI methods. For our pur-
pose, we will not go into much considerations but we use this paragraph to qualitatively describe
its properties.

The coupled-cluster (CC) wave function is expressed through an exponential ansatz, such
that

|ΨCC⟩ = eT̂ |ΦHF⟩, (1.23)

where T̂ is the excitation operator. For example, for Coupled-Cluster Singles and Doubles
(CCSD), T̂ = T̂1 + T̂2 where T̂1 and T̂2 satisfy the following relations:

T̂1|ΦHF⟩ =

occ.∑
i

virt.∑
a

ta
i |Φ

a
i ⟩,

T̂2|ΦHF⟩ =

occ.∑
i> j

virt.∑
a>b

tab
i j |Φ

ab
i j ⟩.

(1.24)

The amplitudes ta
i , tab

i j are the coupled-cluster amplitudes defined through the equations

⟨Φa
i |e
−(T̂1+T̂2)Ĥe(T̂1+T̂2)|ΦHF⟩ = 0,

⟨Φab
i j |e
−(T̂1+T̂2)Ĥe(T̂1+T̂2)|ΦHF⟩ = 0.

(1.25)

However, in practice one computes the coupled-cluster energy using a projection on the
Hartree-Fock determinant:

ECCSD = ⟨ΦHF|Ĥe(T̂1+T̂2)|ΦHF⟩, (1.26)

where the coupled-cluster amplitudes are found from Eqs. (1.25).
However, to reach chemical accuracy, it has been shown that one must consider up to triple

excitations. In practice, one uses CCSD(T) where they are taken into account through a per-
turbation contribution computed on top of the CCSD calculation. Because it is not written as
an expectation value, the CCSD(T) method is not variational.
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1.2 A brief review of density-functional methods

1.2.1 Density-functional theory

Density-functional theory (DFT) is an alternative to wave-function approaches where one refor-
mulates the ground-state energy as a minimization over the one-electron density n(r). In fact,
according to the Hohenberg-Kohn theorem [9], the energy of the ground state is a functional
of its electronic density. The variational problem over the density can be derived from the
variational problem over the wave function in Eq. (1.2):

E0 = min
Ψ
⟨Ψ|T̂ + Ŵee + V̂ne|Ψ⟩

= min
n

{
min
Ψ→n
⟨Ψ|T̂ + Ŵee|Ψ⟩ +

∫
drvne(r)n(r)

}
= min

n

{
F[n] +

∫
drvne(r)n(r)

} (1.27)

where F[n] is the Levy-Lieb universal density functional,

F[n] = min
Ψ→n
⟨Ψ|T̂ + Ŵee|Ψ⟩, (1.28)

and Ψ→ n means that we minimize over wave functions which have the density n.
DFT gives access to energies and molecular properties often comparable with wave-function

correlated methods in terms of accuracy, at a computational cost comparable with the Hartree-
Fock approximation.

Kohn-Sham formulation of the Levy-Lieb universal density functional

The Kohn-Sham formulation [10] is the most common formulation where one considers a unique
Slater determinant Φ and decomposes the Levy-Lieb universal density functional as

F[n] = min
Φ→n
⟨Φ|T̂ |Φ⟩ + EHxc[n], (1.29)

where EHxc[n] is the universal Hartree-exchange-correlation functional of the density,

EHxc[n] = min
Ψ→n
⟨Ψ|T̂ + Ŵee|Ψ⟩ − min

Φ→n
⟨Φ|T̂ |Φ⟩, (1.30)

for which one usually considers the following decomposition:

EHxc[n] = EH[n] + Exc[n]. (1.31)

In this decomposition, EH[n] is the Hartree density functional defined by

EH[n] =
1
2

"
dr1dr2

n(r1)n(r2)
∥r1 − r2∥

, (1.32)

and describing the Coulombic interaction between electronic densities. The exchange and cor-
relation density functional, Exc[n], is also decomposed into Exc[n] = Ex[n] + Ec[n]. In the latter
expression, the exchange density functional is defined by

Ex[n] = ⟨Φ[n]|Ŵee|Φ[n]⟩ − EH[n], (1.33)

where Φ[n] is the minimizing Slater determinant with density n in Eq. (1.29). Finally, Ec[n] is
the correlation density functional and its expression is

Ec[n] = ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩ − ⟨Φ[n]|T̂ + Ŵee|Φ[n]⟩, (1.34)
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Figure 1.2: H2 dissociation curve using cc-pVTZ basis-set. Kohn-Sham DFT (KS-DFT) with
PBE exchange-correlation functional is compared with FCI.

where Ψ[n] is the minimizing multi-determinantal wave function with density n in Eq. (1.28).
In this context, the Kohn-Sham expression for the exact ground-state energy is

E0 = min
Φ

(
⟨Φ|T̂ + V̂ne|Φ⟩ + EHxc[nΦ]

)
, (1.35)

where nΦ is the density calculated from Φ.

Density-functional approximations

In practice, one does not have an explicit expression for Exc[n]. Thus, one uses density-functional
approximations (DFA).

There are two most common families of approximations: the local-density approximations
(LDA) and the generalized-gradient approximations (GGA). The LDA functional is expressed
as

ELDA
xc [n] =

∫
dr eUEG

xc (n(r)), (1.36)

where eUEG
xc (n) is the exchange-correlation energy density of the infinite uniform-electron gas4

(UEG). The GGA functionals are expressed as

EGGA
xc [n] =

∫
dr eGGA

xc (n(r),∇n(r)), (1.37)

where eGGA
xc (n,∇n) is an exchange-correlation energy density which also depends on the density

gradient. The GGA functional that we employ in the present work are the Perdew-Burke-
Ernzerhof (PBE) functional [11].

The major benefit in the definition of DFA is that it takes into account the short-range
correlation in a compact way which enables fast basis convergences. However, nonlocal correla-
tion effects such as strong correlation or dispersion forces are difficult to describe with LDA or
GGA functionals. As an example, in Fig. 1.2, we show the dissociation curve of the dihydrogen
molecule. Around the equilibrium distance, the density-functional method reproduces the FCI
energies. But as we stretch the molecule, the approximate functional tends to overestimate
ground-state energies.

For a more thorough introduction to the subject, we suggest the reader to consult Ref. [12]
and references therein.

4The uniform electron gas are model systems where the density is uniform in space.
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1.2.2 Range-separated density-functional theory

We focus in this paragraph on range-separated DFT (RS-DFT) [13] where the Coulomb repul-
sion is splitted in two parts i) the long-range repulsion is computed with a wave-function method,
and ii) the short-range repulsion is computed with a functional of the density. In this method,
one exploits the systematic and good convergence of the long-range interaction contribution to
the energy using wave-function-based approaches, and the fact that density-functional approx-
imations permit to use a simple formulation of the short-range repulsion. As we dedicate this
section to RS-DFT, we keep the problem of the short-range repulsion treatment to Sec. 1.3.2
where we illustrate how the short-range repulsion is the bottleneck in wave-function calculations.

The RS-DFT method is based on the following decomposition of the Levy-Lieb universal
density functional:

F[n] = min
Ψ→n
⟨Ψ|T̂ + Ŵ lr,µ

ee |Ψ⟩ + Ēsr,µ
Hxc

[n], (1.38)

where Ŵ lr,µ
ee is the long-range (lr) interaction,

Ŵ lr,µ
ee =

∑
i< j

wlr,µ
ee (∥ri − r j∥), (1.39)

with wlr,µ
ee (r) = erf(µr)/r, and the error function erf removing the short-range divergence of the

Coulomb interaction. On the left side of Fig. 1.3, we show the long-range interaction for different
values of µ. We see that as we increase the value of µ, we tend toward the exact interaction
1/∥r1 − r2∥. In practice, one often use a value around 0.5 for µ [14,15].

The last term in Eq. (1.38), Ēsr,µ
Hxc

[n], is the complementary short-range (sr) Hartree-exchange-
correlation (Hxc) functional of the density, and µ is the range-separation parameter.

Finally, the exact ground-state energy in the RS-DFT formulation is expressed as

E0 = min
Ψ

{
⟨Ψ|T̂ + V̂ne + Ŵ lr,µ

ee |Ψ⟩ + Ēsr,µ
Hxc

[nΨ]
}
, (1.40)

where nΨ is the density calculated from Ψ.
Usually, the sr-Hxc functional of the density is decomposed in Ēsr,µ

Hxc
[n] = Esr,µ

H
[n] + Ēsr,µ

xc [n].
In the latter expression, Esr,µ

H
[n] is the short-range Hartree density functional:

Esr,µ
H

[n] =
1
2

"
dr1dr2 n(r1)n(r2)wsr,µ

ee (∥r1 − r2∥) (1.41)

where wsr,µ
ee (r) = 1/r − wlr,µ

ee (r). On the right side of Fig. 1.3, we illustrate how the short-range
interaction reproduces the problematic short-range divergence of the exact 1/ ∥r1−r2∥ interaction.
The second term in the RS-DFT energy (Eq. (1.40)), Ēsr,µ

xc [n], is the short-range exchange and
correlation density functional. This functional is decomposed to

Ēsr,µ
xc [n] = Esr,µ

x [n] + Ēsr,µ
c [n]. (1.42)

Here, we introduce the short-range exchange density functional

Esr,µ
x [n] = ⟨ΦKS[n]|Ŵsr,µ

ee |Φ
KS[n]⟩ − Esr,µ

H
[n], (1.43)

where ΦKS[n] is the Kohn-Sham (KS) single determinant with density n and such that ΦKS[n] =
Ψµ=0[n], and the short-range interaction is defined by

Ŵsr,µ
ee =

∑
i< j

wsr,µ
ee (∥ri − r j∥). (1.44)
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The short-range correlation density functional reads

Ēsr,µ
c [n] = Ēsr,µ

Hxc
[n] − ⟨ΦKS[n]|Ŵsr,µ

ee |Φ
KS[n]⟩. (1.45)

In Ref. [16], the authors proposed a multi-determinantal decomposition for Ēsr,µ
xc [n]:

Ēsr,µ
xc [n] = Esr,µ

x,md
[n] + Ēsr,µ

c,md
[n]. (1.46)

where we consider the multi-determinantal short-range exchange density functional

Esr,µ
x,md

[n] = ⟨Ψlr,µ[n]|Ŵsr,µ
ee |Ψ

lr,µ[n]⟩ − Esr,µ
H

[n], (1.47)

where Ψlr,µ[n] is the multi-determinantal wave function with density n which minimizes the first
term in Eq. (1.38), ⟨Ψ|T̂ + Ŵ lr,µ

ee |Ψ⟩, and the short-range interaction is defined by

Ŵsr,µ
ee =

∑
i< j

wsr,µ
ee (∥ri − r j∥). (1.48)

Finally, the multi-determinantal complementary short-range correlation density functional is

Ēsr,µ
c,md

[n] = ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩ − ⟨Ψlr,µ[n]|T̂ + Ŵee|Ψ
lr,µ[n]⟩. (1.49)

Therefore, the RS-DFT with the multi-determinantal decomposition expression for the exact
ground-state energy is

E0 = ⟨Ψ
lr,µ|T̂ + V̂ne + Ŵee|Ψ

lr,µ⟩ + Ēsr,µ
c,md

[nΨlr,µ], (1.50)

where Ψlr,µ is the wave function which minimizes Eq. (1.40). In opposition with the decomposi-
tion in Eq. (1.42), the multi-determinantal decomposition treats the exact exchange functional
and it does not depend on an intermediate Slater determinant.

In this variant of RS-DFT, a function of the density is used as an approximation for Ēsr,µ
c,md

[n].
In the seminal work of Toulouse et al. [16], a local density approximation (LDA) is proposed:

Ēsr,µ
c,md

[n] ≃ Ēsr,µ
c,md,LDA

[n] =
∫

dr ēsr,µ,UEG
c,md

(n(r)), (1.51)

where ēsr,µ,UEG
c,md

(n) is the corresponding energy density of the UEG.
However, the LDA functional suffers from its locality assumption. Moreover, the authors in

Ref. [16] showed that the asymptotic behavior (i.e. µ→ ∞) of the multi-determinantal correla-
tion functional only depend on the on-top pair density which is the probability density of having
two electrons at the same spatial position. From this consideration comes the idea of GGA-based
correlation functionals with explicit dependence on the on-top (OT) pair density: the PBE-OT
and the PBE-UEG multi-determinant complementary short-range correlation functionals.

First, the PBE-OT multi-determinantal complementary short-range correlation density func-
tional [17] is

Ēsr,µ
c,md

[n] ≃ Ēsr,µ
c,md,PBE-OT

[n] =
∫

dr ēsr,µ,PBE
c,md

(n(r),∇n(r), n2(r, r)), (1.52)

where n2(r, r) is the on-top pair density from Ψlr,µ and ēsr,µ,PBE
c,md

is a function based on the PBE
correlation functional.
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Finally, the PBE-UEG multi-determinantal complementary short-range correlation density
functional [18] uses nUEG

2 (r, r), the on-top pair density of the uniform electron gas having the
density n(r):

Ēsr,µ
c,md

[n] ≃ Ēsr,µ
c,md,PBE-UEG

[n] =
∫

dr ēsr,µ,PBE
c,md

(n(r),∇n(r), nUEG
2 (r, r)). (1.53)

The on-top pair density of the uniform electron gas has been previously computed and therefore
can be imported in the physical system of interest thanks to the usual LDA mapping. Therefore,
the PBE-UEG functional is a good tradeoff between the LDA and the PBE-OT functionals.

For explicit expressions of the correlation energy per particle and related quantities, we invite
the reader to consult the supplementary materials of Ref. [19] and Sec. 2.2.2 for the PBE-OT
short-range correlation density functional.

1.3 The basis-set convergence of correlation effects in WFT

In this section, we address the problem of basis-set convergence of the correlation energy and
molecular properties in wave-function theory methods. To explain it briefly, a quantum chem-
istry calculation is performed through an optimization of the wave function which is expanded
on a finite set of basis functions (Sec. 1.3.1). However, to recover the exact energy and proper-
ties, one should make this expansion on a complete basis set (CBS), i.e. an infinite number of
basis functions, which is computationally unfeasible.

In practice, the finite basis set leads to errors that mostly impact the electronic correlation
description (Sec. 1.3.2). These errors add to the wave-function ansatz that has been chosen
(truncated CI, CCSD, CCSD(T), ...) but can be quantified and removed through extrapolation
techniques, or the use of a correlation factor (Sec. 1.3.3).

Depending on the system of interest, one chooses the type of basis functions better suited
to its description while taking into account the computational cost. For molecular systems, the
basis functions are centered on each nuclei. In this work, we use one family of basis sets: the
Dunning (Gaussian based) basis sets.

In practice, there is no need to know the list of available basis sets and their technical details
and one usually limits oneself to the family of basis sets suitable for the systems of interest.
However, in the case of method development, it can be useful to have a general picture of the
available basis sets to keep in mind their strengths and weaknesses. For that reason, I invite the
reader seeking for an introduction to basis-set families to look for the dedicated book chapters
in Ref. [2] or Refs. as [20,21]. Those who are only looking for the available basis sets for a given
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atom are invited to have a look at the Basis-Set Exchange library5.

1.3.1 Gaussian basis sets

One expands the one-electron molecular orbitals on atomic-centered basis functions. Considering
the pth molecular orbital χp(x), its expansion in the basis set B = {ϕµ} is such that

χp(x) = f (s)
∑
µ

cµ,pϕµ(r). (1.54)

The coefficients cµ,p are found by solving the Fock equations (1.4), f (s) is a spin function, and
ϕµ(r) are the so-called basis functions.

In the Dunning (or correlation-consistent) basis sets, the basis functions are linear combi-
nations (or contractions) of primitive Gaussian-type orbitals (GTO). The number of primitive
functions, Nprim., depends on the atom considered and the basis set. Fortunately, the basis
functions are all tabulated and one should not build them by hand. The basis functions are
usually build as

ϕµ(r) = (x − XA)a(y − YA)b(z − ZA)c
∑

i

dµ,ie−αµ,i∥r−RA∥
2

(1.55)

where r = (x, y, z), and RA = (XA,YA,ZA) are the coordinates of the nucleus A, and a, b, c are
integers related to the angular momentum. The coefficients dµ,i and exponents αµ,i are the one
defined in libraries.

One finds the coefficents and exponents for Dunning basis sets in libraries such as Basis-Set
Exchange and we will notice their astounding variety. We provide the most common basis sets
in the following subsections.

Polarized-valence basis sets [22–24]

The nomenclature can be understood starting from the cc-pVXZ basis sets where “cc” stands for
correlation consistent,“pV”for polarized valence, and“XZ”for X-zeta where X ∈ {D,T,Q, 5, 6, 7, ....}
is called the cardinal number of the basis set. The basis-set size increases going from X=D to
X=T , from X=T to X=Q, and so on.

Augmented basis sets [23–25]

For the computation of other molecular properties such as the dipole moments, we consider basis
sets with diffuse orbitals which are Gaussians with small exponents αµ,i. The Y-aug-cc-pVXZ
basis sets are well suited in that case. There, “aug” indicates the use of GTO useful for the
description of these diffuse orbitals and “Y” designates the level of this description6.

Core-valence basis sets [27,28]

In subsequent chapters, we also mention the use of the frozen-core approximation to decrease
the computational cost. In this approximation, the core orbitals remain doubly occupied even
at post-Hartree-Fock levels. For some systems where core electrons participate to the property
of interest, one performs full-electron calculations. In this case, using Dunning basis sets, one

5www.basissetexchange.org
6Usually, one has access to Y=null, Y=D, and Y=T. For beyond, one can find a procedure in Ref. [26]. We

used this Y-aug-cc-pVXZ basis sets when studying static polarizabilities where the convergence with respect to
Y is also significant. But for real systems and applications, one should not go to higher values for “Y” as the
optimization of the added GTO functions is less systematic than for the cc-pVXZ basis sets.
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Figure 1.4: Convergence of the helium ground-state energy with the basis set calculated by FCI.
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Figure 1.5: Number of Slater determinants in the FCI expansion for the helium, berylium and
carbon atoms. We use a logarithmic scale to emphasize the exponential scaling of the dimension
of the FCI space with the basis set size.

should consider the cc-pCVXZ basis sets where the C indicates the presence of basis functions
adapted for the description of core correlation.

These are the three families of Dunning basis set mentioned in this work [29]. The main idea
to keep in mind while reading the subsequent chapters is that by increasing the basis-set size,
in a given family, one consistently increases the quality of description of the molecular system,
especially the correlation effects which we discuss in the next paragraph.

1.3.2 Slow basis-set convergence of correlation

In Fig. 1.4, we compute the basis-set convergence of the helium ground-state energy. We notice
that the convergence is systematic toward the exact value.

The systematic convergence appearing in Hartree-Fock, and post-Hartree-Fock leads to ex-
trapolation schemes (Sec. 1.3.3) in order to estimate the CBS.

This behavior is generalizable molecular properties. However, as we increase the size of the
system, computations with large basis sets become unfeasible and thus the CBS value can be
soon unreachable using FCI.

The slow basis convergence illustrated in Fig. 1.4 was explained in the early years of quantum
chemistry by Hylleraas [30]. As mentioned in Sec. 1.1, post Hartree-Fock methods use the exact
divergent Coulomb interaction, 1/∥ri − r j∥. The latter implies the occurrence of the electron-
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electron cusp7 in the exact wave function [31]. This translates on the spherically averaged wave
function, Ψ̃, having a linear behavior in r12 = ∥r1 − r2∥ around r1 = r2 [32]:

∂Ψ̃

∂r12

∣∣∣∣
r12=0

=
1
2
Ψ(r12 = 0). (1.56)

For instance, in Fig. 1.6 we compute the pair density n2(r1, r2) at the FCI level of the helium atom
for different values of θ, the angle between the r1 and r2, and different basis sets. We emphasise
that because we use the FCI, the only approximation is the basis set. For θ ≃ 0, when the two
electrons are close, the pair density converges slowly toward the exact one: this is an illustration
of the slow convergence of the short-range correlation effect in WFT. One can also notice that
all the wave functions expanded in a finite basis set do not have the cusp. For instance, even
with the cc-pV5Z basis set, the FCI wave-function is far from the exact one. By contrast, the
long-range behavior is well converged using the cc-pV5Z basis set. This example illustrates how
post-Hartree-Fock methods (even FCI) struggle with the description of short-range correlation
but are well suited for the convergence of long-range correlation.

1.3.3 Standard methods to estimate the complete basis-set limit

The interest of performing quantum chemistry calculations using wave-function approaches lies
in the ability to obtain systematic accurate results. In this framework, one must keep in mind
that the more accurate result within a given method (MP2, CC, ...) is provided by the CBS
limit. To approximate this limit, one might consider extrapolation schemes or the use of a
correlation factor.

Two-point extrapolation schemes

We define EX as the ground-state energy computed using a Dunning basis set with cardinal
number X and refer to this basis set through the labelling XZ instead of cc-pVXZ or cc-pCVXZ
or aug-cc-pVXZ. We also consider ECBS as the ground-state energy at the CBS limit. Both
quantities are computed using the same correlated method.

The Hartree-Fock energy computed using the basis set XZ is EX
HF, and the Hartree-Fock

energy computed using a complete basis set is ECBS
HF .

From these quantities, we define the correlation energy using the basis set XZ,

EX
c = EX − EX

HF, (1.57)

7We do not consider the nuclei-electron cusp in this section for which the principle is the same.

35



and the correlation energy at the CBS limit,

ECBS
c = ECBS − ECBS

HF . (1.58)

In Ref. [33] the following relation between Eqs. (1.57) and (1.58) is found,

EX
c = ECBS

c + AX−3, (1.59)

where A is a parameter to be fitted from which we deduce a two-point extrapolation scheme:

ECBS
c =

EX
c X3 − EX−1

c (X − 1)3

X3 − (X − 1)3 , (1.60)

where EX−1
c is the correlation energy computed using a (X − 1)Z basis set.

In Ref. [34], this extrapolation scheme is extended to the dipole moment, d:

dCBS
c =

dX
c X3 − dX−1

c (X − 1)3

X3 − (X − 1)3 , (1.61)

where
dX
c = dX − dX

HF, (1.62)

and dX and dX
HF are the correlated dipole moment and Hartree-Fock dipole moment obtained in

a XZ basis set, respectively.

Explicitly correlated wave-function approaches

A family of wave-function methods aiming to attenuate the finite basis-set error with the use
of an explicit correlation function have been introduced: the so-called F12 methods [35, 36].
There, one adds geminal functions in addition to the conventional orbitals defined in a given
basis set. These geminal functions aim to capture the correlation effects outside the basis set
and are defined as

wi j(x1, x2) = Q̂12 f (r12)Ŝ
1
√

2
(ϕi(x1)ϕ j(x2) − ϕi(x2)ϕ j(x1)) (1.63)

where f (r12) is the correlation factor and is commonly expressed as

f (r12) =
1
γ

(1 − exp(−γr12)). (1.64)

In the last equation, γ is a parameter which permits to control the spatial range to be considered
in the correlation factor. In Fig. 1.7, we compute this correlation factor as a function of r12 for
different values of γ. We notice that small values of γ lead to a broader correlation factor.

In the geminal function (Eq. (1.63)), Q̂12 is a strong-orthogonality projector. It ensures
orthogonality between the geminals and the orbitals used for the expansion of the wave function
in the basis set. It is commonly expressed as

Q̂12 = (1 − Ô1)(1 − Ô2)(1 − V̂1V̂2), (1.65)

where Ôn =
∑occ.

i χi(xn)χ∗i (xn) and V̂n =
∑virt.

a χa(xn)χ∗a(xn) are projectors into the occupied and
standard virtual spaces, respectively, and n ∈ {1, 2}.

Finally, Ŝ is a rational generator which ensures to recover s- and p-wave coalescence condi-
tions.

Thus, the F12 approach is a rigorous basis-set correction method based on wave-function
theory but suffers from the need of an auxiliary basis set that complicates significantly the
computations.
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1.4 Density-based basis-set correction

In Secs. 1.1 and 1.2, we introduced wave-function and density-functional methods and emphasis
was placed on their strengths and weaknesses. On the one side, wave-function methods offer
applicability to a large variety of systems with sufficient accuracy but suffers from the com-
putational cost that grows rapidly with the system size. On the other side, density-functional
approximations are less systematic and accurate but allow applicability to larger systems.

In the so-called density-based basis-set correction approach [37], one focuses on the slow
convergence of properties mostly due to the unreachable electron-electron cusp behavior. In
Ref. [37], the authors propose a decomposition of the Levy-Lieb universal density functional into
a basis-set interaction component and a complementary functional of the density that should
recover the out-of-the-basis interaction features (see Sec. 1.4.1). Therefore, this approach must
be seen as an alternative approach for accelerating basis convergence of wave-function methods.
In the same reference, the authors proposed to use the RS-DFT functionals as approximations
for this complementary functional based on the similarities between the physics described in both
approaches (see Sec. 1.4.2). The density-based basis-set correction has mainly been applied to
ground-state energies (see Sec. 1.4.4). In the subsequent chapters of this thesis, we extend this
approach to molecular properties.

1.4.1 Decomposition of the Levy-Lieb universal density functional

Starting from the DFT ground-state energy minimization in Eq. (1.27), the density-based basis-
set correction approach considers the following decomposition for the Levy-Lieb universal density
functional, for density nB representable in the basis set B,

F[nB] = min
ΨB→nB

⟨ΨB|T̂ + Ŵee|Ψ
B⟩ + ĒB[nB], (1.66)

where ΨB is a multi-determinantal wave function representable in the basis set B, and ĒB[nB]
is the complementary density functional which reads

ĒB[nB] = min
Ψ→nB

⟨Ψ|T̂ + Ŵee|Ψ⟩ − min
ΨB→nB

⟨ΨB|T̂ + Ŵee|Ψ
B⟩. (1.67)

Thus, ĒB[nB] adds the contributions of the wave functions Ψ that are not representable in the
basis set B. In this context, the expression for an approximation of the ground-state energy
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evaluated in the basis set B is

EB0 = min
nB

{
F[nB] +

∫
dr vne(r)nB(r)

}
. (1.68)

Since in the minimization the densities are restricted to be representable in the basis set, EB0
is an upper bound to the exact ground-state energy: EB0 ≥ E0. Moreover, in the CBS limit, we
have

lim
B→CBS

EB0 = E0. (1.69)

Furthermore, the density converges quickly with respect to the basis set. Thus, EB0 has a faster
basis convergence to the CBS limit than the FCI ground-state energy.

From Eqs. (1.66) and ⟨ΨB|V̂ne|Ψ
B⟩ =

∫
dr vne(r)nB(r), one can rewrite Eq. (1.68) as the

following minimization over wave functions developped in the basis set B,

EB0 = min
ΨB

{
⟨ΨB|T̂ + Ŵee + V̂ne|Ψ

B⟩ + ĒB[nΨB]
}
. (1.70)

1.4.2 Mapping with RS-DFT

In contrast with RS-DFT, ĒB[n] is not universal as it depends on the basis set and thus on
the system. Another difference with RS-DFT is the use of the full Coulomb interaction Ŵee

instead of the long-range interaction Ŵ lr,µ
ee . We remind that the wave function ΨB is cuspless

and therefore could be associated with an effective non-divergent electron-electron interaction.
In Ref. [37], the authors introduced an effective local two-electron interaction projected in the
basis B, WΨB(r1, r2), with expression8

WΨB(r1, r2) =
fΨB(r1, r2)

n2,ΨB(r1, r2)
, (1.71)

where
fΨB(r1, r2) =

∑
i jklmn∈B

Vkl
i jΓ

mn
kl [ΨB]ϕn(r2)ϕm(r1)ϕi(r1)ϕ j(r2), (1.72)

Vkl
i j = ⟨i j|kl⟩ are the two-electron integrals, Γmn

kl [ΨB] = 2⟨ΨB|â†m↓â
†

n↑âl↑âk↓|Ψ
B⟩ is the opposite-spin

two-body density matrix of ΨB, and n2,ΨB(r1, r2) =
∑

i jkl∈B ϕi(r1)ϕ j(r2)Γkl
i j[Ψ

B]ϕk(r1)ϕl(r2) is the

pair density associated with ΨB. The effective interaction WΨB is non-divergent and tends to the
exact Wee interaction in the CBS limit.

This has naturally lead to the mapping of the non-divergent long-range interaction of RS-
DFT (Eq. (1.39)) with WΨB(r1, r2). Therefore, in Ref. [37], the authors proposed to use a
RS-DFT correlation functional as an approximation for ĒB[nB]. More specifically, the authors
chose the multi-determinantal correlation functional as it is build from a multiconfiguration wave
function. In this mapping, they link a local and basis-specific definition of the RS-DFT range-
separation parameter µ to the non-divergent electron-electron interaction through the following
definition:

µB(r) =
√
π

2
WΨB(r, r). (1.73)

The definition for the range-separation parameter comes from imposing the limit

lim
r12→0

erf(µ(r1)r12)
r12

= WΨB(r1, r1), (1.74)

where r12 = ∥r1 − r2∥.

8for electrons with opposite spins.
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In this framework, the short-range correlation functionals of RS-DFT were used as approxi-
mations for ĒB[n] in Refs. [18,37]. Therefore, the aim of this approximation is to add correlation
effects on top of the correlated wave function ΨB. The first approximation is the LDA-like com-
plementary functional,

ĒBLDA[n] =
∫

dr esr,µ
B(r),UEG

c,md
(n(r)) , (1.75)

where esr,µ,UEG
c,md

(n) is the multi-determinant short-range correlation energy density of the UEG

parametrized in Ref. [38].
Then, the PBE-UEG complementary functional was introduced as

ĒBPBE-UEG[n] =
∫

drēsr,µ
B(r),PBE

c,md
(n(r),∇n(r), nUEG

2 (r)), (1.76)

where ēsr,µ,PBE
c,md

(n,∇n, n2) is the multi-determinant short-range correlation energy density based

on the PBE functional, nUEG
2 (r) is the UEG on-top pair density, with density n(r),

nUEG
2 (r) = n(r)2 [

1 − ζ(r)
]
g0(n(r)), (1.77)

ζ(r) is the spin-polarization, and g0(n) is the pair-distribution function of the UEG taken from
Ref. [39].

The final approximation is the PBE-OT density functional,

ĒBPBE-OT[n, n2] =
∫

drēsr,µ
B(r),PBE

c,md
(n(r), ζ(r),∇n(r), n̊2(r)), (1.78)

where n̊2(r) is the on-top pair density extrapolated to the limit µ→ ∞ such that

n̊2(r) = n2(r)
(
1 +

2
√
πµ(r)

)−1

, (1.79)

where n2(r) is the on-top pair density associated with the multi-determinantal wave-function ΨB.
The so-called spin-unpolarized PBE-OT (SU-PBE-OT) density functional was introduced

by imposing ζ(r) = 0, so that the functional becomes S z-invariant.

1.4.3 Self-consistent VS non-self-consistent

To solve the minimization over the wave function in Eq. (1.70), one can choose between an
a-posteriori correction,

EB0 ≃ ⟨Ψ
B
FCI|T̂ + V̂ne + Ŵee|Ψ

B
FCI⟩ + ĒB[nΨB

FCI
], (1.80)

where ΨB
FCI

is the FCI ground-state wave-function. This a-posteriori correction is what we also
call the non-self consistent method. This idea comes from the fact that the basis-set correction
is small, thus the complementary functional in Eq. (1.67) can be considered as a small pertur-
bation. Therefore, the a-posteriori correction has to be understood as a first-order perturbed
ground-state energy.

We can more generally consider the approximation to

EB0 ≃ EBWFT1 + ĒB[nΨB
WFT2

], (1.81)

where EB
WFT1

is the ground-state energy evaluated from a wave-function approximation referred
as WFT1 using a basis set B, and the density nΨB

WFT2
used to compute the correction energy is
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evaluated from another wave-function approximation referred as WFT2. Therefore, any post-
Hartree-Fock method is suitable for WFT1 and studies, as the one published in Ref. [40], show
that a cheaper density is sufficient for the evaluation of ĒB[nΨB

WFT2
]. This translates on the

possibility to use a cheap ansatz as Hartree-Fock for WFT2.
Another strategy is to write the Euler-Lagrange equation associated with Eq. (1.70) with

the constraint ⟨ΨB|ΨB⟩ = 1 and Lagrange multiplier EB. This leads to the following eigenvalue
equation: (

T̂B + V̂Bne + ŴBee +
ˆ̄VB[nΨB]

)
|ΨB⟩ = EB|ΨB⟩, (1.82)

where ˆ̄VB[n] =
∫
dr

(
δĒB[n]/δnB(r)

)
n̂(r) is the basis-set correction potential operator. The su-

perscript B in T̂B, V̂Bne, ŴBee, and n̂B(r) means that the operators are projected in the basis set B.
Because it depends on the density nΨB , Eq. (1.82) must be solved using a self-consistent scheme.
Finally, EB0 can be obtained as

EB0 = E
B − ⟨ΨB| ˆ̄VB[nΨB]|ΨB⟩ + ĒB[nΨB]. (1.83)

To apply the basis-set correction to excited states, we use the density nBk of the kth state to
compute the complementary energy. Therefore, the energy of the kth state is

EBk = EBk,FCI + ĒB[nBk ]. (1.84)

This assumes that the basis-set correction functional ĒB[n] does not depend on the state, which
is an approximation. An extension of the basis-set correction method to the linear-response
theory is introduced in Chap. 5.

1.4.4 Applications

The non-self-consistent method in Eq. (1.81) was employed in several published works. In
Ref. [37], it is used for the computation of ground-state energies and ionization potentials of
atomic systems up to Z = 10, using FCI and CIPSI energies with the LDA-like complementary
functional in Eq. (1.75). This first application of the basis-set correction method has shown that
chemically accurate results are obtained using a TZ basis set. However, the use of a LDA-like
framework leads to a systematic overestimation of the correlation energy.

For applications on strongly correlated molecular systems, the authors in Ref. [41] used FCI
and CIPSI energies with LDA (Eq. (1.75)) and PBE-OT (Eq. (1.78)) basis-set corrections.
In this work, the authors focused on dissociation curves where one often encounters strong
correlation behavior.

In Refs. [18,42], the method has been applied on a wide range of weakly correlated molecular
systems, namely the G2 set of molecules. They use CCSD(T) and SHCI9 energies in combination
with the PBE-UEG and PBE-OT functionals for the computation of atomization energies.

Still in the spirit of the strong-correlation problem, Ref. [43] provides application of the basis-
set correction method to the challenging case of transition-metal systems using SHCI energies
in combination with the PBE-UEG and the PBE-OT basis-set corrections. In the latter work,
the use of TZ basis set leads to chemically accurate total, ionization and dissociation energies,
where most of the results need 5Z basis sets without the basis-set correction contribution.

9the semistochastic heat-bath configuration interaction is a selected CI method.
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Encouraged by the positive conclusions of the latter works, in Ref. [44], the same strategy
is applied to various types of excited states (valence, Rydberg, double excitations), vertical and
adiabatic using CIPSI energies, and LDA, PBE-UEG and, PBE-OT basis-set corrections.

An application to a many-body perturturbation theory method was also proposed in Ref. [19].
In that context, one should consider the basis-set correction potential. In Ref. [19], the authors
compute the ionization energies in a GW10 formulation. Using the GW approach, the quantity
of interest is no longer the wave function but the Green’s function G which is a time-dependent
generalization of the density matrix. This approach also considers a non-interacting quantity,
the non-interacting Green’s function, G0. We also define the inverse of the projection of the
latter quantities on the basis set B, (GB)−1 and (GB0 )−1, which are linked through the following
Dyson equality, in the context of the basis-set correction method:

(GB)−1 = (GB0 )−1 − ΣBHxc[G
B] − Σ̄B[nGB]. (1.85)

In Eq. (1.85), ΣB
Hxc

[GB] is the Hartree-exchange-correlation self-energy in the basis and Σ̄B[nGB]
is the self energy coming from the functional derivative of the complementary basis-correction
density functional:

Σ̄B[n](r, r′) = v̄B[n](r)δ(r − r′), (1.86)

where v̄B[n](r) = δĒB[n]/δn(r). The author of Ref. [19] applied this method to ionization poten-
tials and they show that their basis convergences are significantly speeded up for a wide range
of small and larger molecules.

10The GW method is a Green function based method mainly used for electronic band structure calculations in
solids (see Ref. [45]). For the understanding of this paragraph, one should only keep in mind the fact that the
GW approximation is a many-body perturbation theory method.
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[7] E. Giner, Méthodes d’interaction de configurations et Monte Carlo quantique : marier le
meilleur des deux mondes, Tech. rep. (oct 2014).

[8] F. Jensen, Introduction to computational chemistry (John Wiley & Sons, LTD, 2017).

[9] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[10] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[11] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[12] J. Toulouse, Review of approximations for the exchange-correlation energy in density-
functional theory, https://arxiv.org/abs/2103.02645 (2021).

[13] J. Toulouse, F. Colonna and A. Savin, Phys. Rev. A 70, 062505 (2004).

[14] I. C. Gerber and J. G. Angyán, Chem. Phys. Lett. 415, 100 (2005).

[15] E. Fromager, J. Toulouse and H. J. A. Jensen, J. Chem. Phys. 126, 074111 (2007).

[16] J. Toulouse, P. Gori-Giorgi and A. Savin, Theor. Chem. Acc 114, 305 (2005).
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2
Self-consistent density-based basis-set correction: How
much do we lower total energies and improve dipole

moments?

This chapter corresponds to the article [E. Giner, D. Traore, B. Bradines, J. Toulouse, J. Chem.
Phys. 155, 044109 (2021)].

This work provides a self-consistent extension of the recently proposed density-based basis-
set correction method for wave-function electronic-structure calculations [E. Giner, B. Pradines,
A. Ferté, R. Assaraf, A. Savin and J. Toulouse, J. Chem. Phys. 149, 194301 (2018)]. In contrast
to the previously used approximation where the basis-set correction density functional was a
posteriori added to the energy from a wave-function calculation, here the energy minimization
is performed including the basis-set correction. Compared to the non-self-consistent approxi-
mation, this allows one to lower the total energy and change the wave function under the effect
of the basis-set correction. This work addresses two main questions: i) What is the change in
total energy compared to the non-self-consistent approximation, and ii) can we obtain better
properties, namely dipole moments, with the basis-set corrected wave functions? We implement
the present formalism with two different basis-set correction functionals and test it on different
molecular systems. The main results of the study are that i) the total energy lowering obtained by
the self-consistent approach is extremely small, which justifies the use of the non-self-consistent
approximation, and ii) the dipole moments obtained from the basis-set corrected wave functions
are improved, being already close to their complete-basis-set values with triple-zeta basis sets.
Thus, the present study further confirms the soundness of the density-based basis-set correction
scheme.

2.1 Introduction

One of the main limitations of electronic-structure calculations based on wave-function theory
(WFT) is the slow convergence of the results with respect to the size of the one-electron basis
set. This aspect is of fundamental importance in quantum chemistry as WFT methods have
otherwise many interesting features. In particular, in a given basis set B, WFT methods can
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usually be systematically improved toward the exact solution provided by full configuration
interaction (FCI). At the root of the slow convergence of WFT lies the singularity of the Coulomb
interaction: because it becomes infinite at electron-electron coalescence points, it creates a
derivative discontinuity of the wave function at these points, the so-called electron-electron
cusp [1,2], which is not representable by the usual incomplete basis sets employed. To cure the
slow convergence problem of WFT, two main approaches have emerged: basis-set extrapolation
techniques [3,4] and explicitly correlated F12 methods [5–10]. Basis-set extrapolation techniques
consist in exploiting the known asymptotic behavior of WFT properties as a function of the
size of the basis set in order to estimate the complete-basis-set (CBS) limit based on several
calculations with basis sets of increasing sizes. Explicitly correlated F12 methods consist in
supplementing to the usual basis sets a correlation factor which restores the electron-electron
cusp and accelerates the convergence toward the CBS limit. Although these F12 methods
are increasingly popular in quantum chemistry [11], they have the drawback of needing rather
complex three- and four-electron integrals [12] and, more generally, of involving a relatively
complex mathematical formalism which makes the adaptation of a WFT method to its F12
version a non trivial task.

An alternative path to speed up the convergence of WFT calculations with respect to the
size of the basis set has been recently proposed by some of the present authors [13] by exploiting
the ability of range-separated density-functional theory (RSDFT) to recover the short-range
correlation effects missing from an incomplete basis set. The central idea developed in Ref. [13]
is to define a mapping between the electron-electron Coulomb interaction projected into an
incomplete basis set B and the non-diverging long-range electron-electron interaction erf(µr12)/r12
used in RSDFT. The connection is done through the definition of a range-separation parameter
µ which varies in space and automatically adapts to the basis set B. Once this adaptive range-
separation parameter is defined, one can use a special flavor of short-range correlation density
functionals used in RSDFT for the estimation of the correlation energy missing in the considered
basis set B. An important property of this RSDFT-based approach is that the basis-set energy
correction properly vanishes in the CBS limit. This strategy was successfully validated for
the calculations of ionization potentials [13, 14], molecular atomization energies [15–17], and
excitation energies [18].

All the previous applications of this method rely on a non-self-consistent approximation in
which the basis-set energy correction is just added a posteriori to a good estimate of the FCI
energy in a given basis set B. In the present work, we go beyond this approximation and develop
a self-consistent formalism in order to answer two distinct questions: i) How crude is the non-
self-consistent approximation for total energies; and ii) can the self-consistent formalism yield
effective wave functions with better properties.

The paper is organized as follows. In Section 2.2.1 we present the exact theory of the
self-consistent basis-set correction scheme using either a functional of the density only or a
functional of both the density and the on-top pair density and we recall the non-self-consistent
approximation previously employed. In Section 2.2.2 we introduce our approximations of the
unknown exact basis-set correction functional by short-range functionals. In Section 2.2.3 we
explain how we solve the self-consistent basis-set correction equations by a selected configuration
interaction algorithm. In Section 2.3, we report and discuss results on the total energies of the Be
atom and the BH molecule, and on the dipole moments of the BH, FH, H2O, and CH2 molecules.
Section 4.4.3 contains our conclusions. Unless otherwise specified, Hartree (Ha) atomic units
(a.u.) are used throughout the paper.
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2.2 Theory

2.2.1 Self-consistent basis-set correction

Basis-set correction as a functional of the density

We start by reviewing the scheme where the basis-set correction is written as a functional of
the density, which was first developed in Ref. [13]. Given a basis set B, the exact ground-
state energy E0 of an electronic system can be approximated by the energy EB0 obtained by the
following minimization over B-representable one-electron densities nB, i.e. densities that can be
obtained from a wave function ΨB belonging to the N-electron Hilbert space generated by the
basis set B,

EB0 = min
nB

{
F[nB] +

∫
dr vne(r) nB(r)

}
, (2.1)

where vne(r) is the nuclei-electron interaction potential. In this expression, F[nB] is the standard
Levy-Lieb constrained-search universal density functional [19,20] evaluated at nB

F[nB] = min
Ψ→nB

⟨Ψ|T̂ + Ŵee|Ψ⟩, (2.2)

where T̂ and Ŵee are the kinetic-energy operator and the Coulomb electron-electron interaction
operator, respectively, and the notation Ψ→ nB means a N-electron wave function yielding the
density nB. It is important to notice that the wave functions Ψ used in the definition of F[nB] in
Eq. (2.2) are not restricted to be expandable in the basis set B but should instead be thought of
as expanded on a complete basis set. The minimizing density nB0 in Eq. (2.1) can be considered
as the best variational approximation to the exact ground-state density n0. Importantly, when
the basis set B is increased up to the CBS limit, the density nB0 and energy EB0 converge to the
exact ground-state density n0 and energy E0, respectively,

lim
B→CBS

nB0 = n0 and lim
B→CBS

EB0 = E0. (2.3)

Since the B-representability restriction is only applied to densities and not to wave functions,
the basis-set convergence of EB0 to E0 is much faster than in a usual WFT calculation.

We then decompose the universal Levy-Lieb density functional as

F[nB] = min
ΨB→nB

⟨ΨB|T̂ + Ŵee|Ψ
B⟩ + ĒB[nB], (2.4)

where ΨB designates wave functions restricted to the N-electron Hilbert space generated by the
basis set B, and ĒB[nB] is the complementary basis-set correction density functional required
to make Eq. (2.4) exact. This basis-set correction functional ĒB[nB] recovers the part of the
energy that is missing in the first term of the right-hand side of Eq. (2.4) due to the basis-set
restriction of the wave functions ΨB. Inserting Eq. (2.4) into Eq. (2.1) and recombining the two
minimizations, we can obtain EB0 by the following minimization over B-restricted wave functions
ΨB

EB0 = min
ΨB

{
⟨ΨB|T̂ + Ŵee + V̂ne|Ψ

B⟩ + ĒB[nΨB]
}
, (2.5)

where V̂ne is the nuclei-electron interaction operator and nΨB(r) = ⟨ΨB|n̂(r)|ΨB⟩ is the density of
the wave function ΨB, where we have introduced the density operator n̂(r) =

∑
σ∈{↑,↓} ψ̂

†
σ(r)ψ̂σ(r)

written in real-space second quantization. The minimizing wave function ΨB0 in Eq. (2.5) satisfies
the following self-consistent Schrödinger-like equation:

ĤBeff[nΨB0 ]|ΨB0 ⟩ = E
B
0 |Ψ

B
0 ⟩, (2.6)

47



where EB0 is the Lagrange multiplier associated with the normalization constraint of the wave
function ΨB0 and the effective Hamiltonian is defined for a given density nB as

ĤBeff[nB] = T̂B + ŴBee + V̂Bne +
ˆ̄VB[nB]. (2.7)

In this expression, T̂B, ŴBee, and V̂Bne are the kinetic, electron-electron, and electron-nuclei oper-

ators projected in the N-electron Hilbert space generated by the basis set B, and ˆ̄VB[nB] is the
one-electron effective potential operator,

ˆ̄VB[nB] =
∫

dr v̄B(r) n̂B(r), (2.8)

where v̄B(r) = δĒB[nB]/δnB(r) and n̂B(r) is the density operator projected in the basis set B.
Using real-valued spatial orthonormal orbitals {ϕp} spanning the same space as the basis set

B, the expression of the effective Hamiltonian in second quantization is

ĤBeff[nB] =
B∑
pq

(
hpq + v̄Bpq

)
Êpq +

1
2

B∑
pqrs

wpqrsêpqrs, (2.9)

where Êpq = â†p↑âq↑ + â†p↓âq↓ and êpqrs = ÊprÊqs − δqrÊps are the spin-singlet one- and two-particle
elementary operators, hpq are the usual one-electron integrals, wpqrs = ⟨pq|rs⟩ are the usual two-
electron integrals, and v̄Bpq are the one-electron integrals associated with the effective potential

v̄B(r),

v̄Bpq =

∫
drϕp(r)v̄B(r)ϕq(r). (2.10)

Note that in Eq. (2.9), we put B on top of the sum symbols to indicate that the sums run over
all orbitals generated by the basis set B.

Finally, note that we have considered the total density nB for simplicity but the theory can
be trivially extended to spin densities nB

↑
and nB

↓
.

Basis-set correction as a functional of density and on-top pair density

We now extend the theory to allow for a basis-set correction functional depending on both the
density nΨB(r) and the on-top pair density n2,ΨB(r) = ⟨ΨB|n̂2(r)|ΨB⟩ of a wave function ΨB, where

we have introduced the on-top pair density operator n̂2(r) =
∑
σ∈{↑,↓}

∑
σ′∈{↑,↓} ψ̂

†
σ(r)ψ̂†σ′(r)ψ̂σ′(r)ψ̂σ(r).

In the spirit of the generalized Kohn-Sham scheme [21] (see also Ref. [22]), we write the universal
Levy-Lieb density functional as

F[nB] = min
ΨB→nB

{
⟨ΨB|T̂ + Ŵee|Ψ

B⟩ + ĒB[nΨB , n2,ΨB]
}
, (2.11)

where ĒB[nΨB , n2,ΨB] can be any functional of nΨB and n2,ΨB such that the minimization in
Eq. (2.11) exactly gives F[nB]. Insertion into Eq. (2.1) leads to

EB0 = min
ΨB

{
⟨ΨB|T̂ + Ŵee + V̂ne|Ψ

B⟩ + ĒB[nΨB , n2,ΨB]
}
, (2.12)

and the minimizing wave function ΨB0 satisfies the following self-consistent Schrödinger-like equa-
tion:

ĤBeff[nΨB0 , n2,ΨB0
]|ΨB0 ⟩ = E

B
0 |Ψ

B
0 ⟩, (2.13)

where the effective Hamiltonian is defined for a given B-representable density nB and on-top pair
density nB2 as

ĤBeff[nB, nB2 ] = T̂B + ŴBee + V̂Bne +
ˆ̄VB[nB, nB2 ] + ˆ̄WB[nB, nB2 ]. (2.14)
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In this expression, ˆ̄VB[nB, nB2 ] is the one-electron effective potential operator,

ˆ̄VB[nB, nB2 ] =
∫

dr v̄B(r) n̂B(r), (2.15)

where v̄B(r) = δĒB[nB, nB2 ]/δnB(r), and ˆ̄WB[nB, nB2 ] is the two-electron effective interaction oper-
ator,

ˆ̄WB[nB, nB2 ] =
1
2

∫
dr w̄B(r) n̂B2 (r), (2.16)

where w̄B(r) = 2δĒB[nB, nB2 ]/δnB2 (r) and n̂B2 (r) is the on-top pair density operator projected in the
basis set B. The second-quantized expression of the effective Hamiltonian is

ĤBeff[nB, nB2 ] =
B∑
pq

(
hpq + v̄Bpq

)
Êpq +

1
2

B∑
pqrs

(
wpqrs + w̄Bpqrs

)
êpqrs, (2.17)

where, as before, v̄Bpq are the one-electron integrals associated with the effective potential v̄B(r),
and w̄Bpqrs are the two-electron integrals associated with the effective interaction w̄B(r),

w̄Bpqrs =

∫
drϕp(r)ϕr(r)w̄B(r)ϕq(r)ϕs(r). (2.18)

Of course, since the effective Hamiltonians in Eqs. (2.7) and (2.14) are different, their respec-
tive ground-state wave function ΨB0 are also different, even though we used the same notation.

Non-self-consistent approximation

In previous works [13,15,17,18], the minimization in Eq. (2.5) or (2.12) was not performed but
the minimizing wave function ΨB0 was simply approximated by the standard FCI wave function
ΨB

FCI
(or an estimate of it) in the basis set B

ΨB0 ≈ Ψ
B
FCI, (2.19)

leading to the following approximation for EB0 , for the basic theory of Section 2.2.1:

EB0 ≈ EBFCI + ĒB[nΨB
FCI

], (2.20)

where EB
FCI

is the standard FCI energy (or an estimate of it) in the basis set B, and for the
extended theory of Section 2.2.1,

EB0 ≈ EBFCI + ĒB[nΨB
FCI
, n2,ΨB

FCI
]. (2.21)

The approximation in Eq. (2.19) is in fact equivalent to approximating the minimizing density
nB0 in Eq. (2.1) by the standard FCI ground-state density nΨB

FCI
,

nB0 (r) ≈ nΨB
FCI

(r), (2.22)

which seems intuitively a reasonable approximation as one expects nΨB
FCI

and nB0 to be both close

to the exact density n0, and the encouraging numerical results obtained for energies with this
non-self-consistent approximation tend to confirm the validity of Eq. (2.22). Nevertheless, in
the present study, we will investigate the quantitative effect on energies and dipole moments of
performing the minimization in Eq. (2.5) or (2.12).
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2.2.2 Approximations for the basis-set correction functional ĒB

Local range-separation parameter

As originally proposed in Ref. [13], the basis-set correction functional ĒB can be mapped to
the so-called short-range correlation functional with multideterminant reference introduced in
Ref. [23] in the context of RSDFT. This mapping relies on the definition of a local range-
separation parameter µB(r) [13],

µB(r) =
√
π

2
WB(r) (2.23)

which provides a local measure of the incompleteness of the basis set B. It is defined such
that the long-range electron-electron interaction of RSDFT, wlr(r12) = erf(µr12)/r12, coincides at
coalescence (i.e., at r12 = 0) with an effective interaction representing the Coulomb electron-
electron interaction projected in the basis set B. The expression of this effective interaction at
coalescence is [13]

WB(r) =


fB
ΨB
loc

(r)

n2,ΨB
loc

(r) , if n2,ΨB
loc

(r) , 0,

∞, otherwise,

(2.24)

with

fB
ΨB
loc

(r) =
B∑

pqrstu

wpqrsΓrstuϕp(r)ϕq(r)ϕt(r)ϕu(r), (2.25)

where Γpqrs = 2⟨ΨB
loc
|â†r↓ â

†
s↑ âq↑ âp↓ |Ψ

B
loc
⟩ is the opposite-spin two-electron density matrix of some

“localizing” wave function ΨB
loc

, and n2,ΨB
loc

(r) is its associated on-top pair density,

n2,ΨB
loc

(r) =
B∑

pqrs

Γpqrsϕp(r)ϕq(r)ϕr(r)ϕs(r). (2.26)

The wave function ΨB
loc

is only used to localize the effective interaction projected in the basis set

B. The local range-separation parameter is very weakly dependent on this wave function ΨB
loc

.
It should be thought of as essentially dependent on the basis set B. Importantly, in the CBS
limit the effective interaction goes to the Coulomb interaction which diverges at coalescence,
and consequently, the local range-separation parameter goes to infinity,

lim
B→CBS

µB(r) = ∞, (2.27)

independently of ΨB
loc

, which is fundamental to guarantee the correct behavior of the theory in
the CBS limit.

Approximate basis-set correction functionals from short-range functionals

Approximations for the basis-set correction functional ĒB are obtained by using the previously
defined local range-separation parameter in short-range correlation functionals. Specifically, for
the basis-set correction functional in Eq. (2.5) we use the so-called PBE-UEG basis-set correction
functional (UEG stands for “uniform electron gas”) [15],

ĒBPBE-UEG[n] =
∫

dr ēsr,PBE
c,md

(n(r),∇n(r), nUEG
2 (r), µ(r)), (2.28)

and, for the basis-set correction functional in Eq. (2.12), we use the so-called PBE-OT basis-set
correction functional (OT stands for “on-top”) [16],

ĒBPBE-OT[n, n2] =
∫

dr ēsr,PBE
c,md

(n(r),∇n(r), n̊2(r), µ(r)), (2.29)
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where we have dropped the superscript B in the density, in the on-top pair density, and in the
local range-separation parameter for simplicity. In these expressions, the short-range (sr) corre-
lation energy density with multideterminant (md) reference ēsr,PBE

c,md
(n,∇n, n2, µ) has the following

generic form in terms of the density n, the density gradient ∇n, the on-top pair density n2, and
the range-separation parameter µ [24],

ēsr,PBE
c,md

(n,∇n, n2, µ) =
ePBE
c (n,∇n)

1 + β(n,∇n, n2) µ3 , (2.30)

β(n,∇n, n2) =
ePBE
c (n,∇n)

c n2
, (2.31)

where ePBE
c (n,∇n) is the usual Perdew-Burke-Ernzerhof (PBE) correlation energy density [25]

and c = (2
√
π(1 −

√
2))/3.

The key difference between the PBE-UEG and PBE-OT functional is the on-top pair density
used. The PBE-UEG functional uses nUEG

2 (r) which is an estimate of the exact on-top pair
density using a parametrization of the on-top pair density of the uniform electron gas (UEG) at
density n(r),

nUEG
2 (r) = n(r)2g0(n(r)), (2.32)

where the on-top pair-distribution function g0(n) is taken from Eq. (46) of Ref. [26]. By contrast,
the PBE-OT functional uses n̊2(r) which is an estimate of the exact on-top pair density obtained
from extrapolating the input on-top pair density n2(r) of the wave function ΨB to the limit
µ→ ∞ (see Ref. [26]),

n̊2(r) =
(
1 +

2
√
πµ(r)

)−1
n2(r). (2.33)

As shown in Ref. [16], the difference between the two flavors of on-top pair densities comes from
the treatment of strong correlation. While nUEG

2 (r) is a good approximation of the exact on-top
pair density for weakly correlated situations, when strong-correlation effects are present, it fails
to represent the large depletion of the exact on-top pair density and in this case n̊2(r) provides
a much better approximation of the exact on-top pair density.

The explicit expression of the one-electron effective potential associated with the PBE-UEG
functional,

v̄BPBE-UEG(r) =
δĒB

PBE-UEG
[n]

δn(r)
, (2.34)

was already given in a previous work [14]. The corresponding potential for the PBE-OT func-
tional,

v̄BPBE-OT(r) =
δĒB

PBE-OT
[n, n2]

δn(r)
, (2.35)

has a very similar expression, with the simplification that the on-top pair density n2 in Eq. (2.29)
is taken as independent of the density whereas nUEG

2 in Eq. (2.28) is a function of the density.
For the PBE-OT functional, we have in addition the two-electron effective interaction

w̄BPBE-OT(r) =
δĒB

PBE-OT
[n, n2]

δn2(r)
. (2.36)

Its explicit expression is

w̄BPBE-OT(r) =
∂ēsr,PBE

c,md

∂n2
(n(r),∇n(r), n̊2(r), µ(r))

∂n̊2(r)
∂n2(r)

(2.37)
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where
∂n̊2(r)
∂n2(r)

=

(
1 +

2
√
πµ(r)

)−1
, (2.38)

and
∂ēsr,PBE

c,md
(n,∇n, n2, µ)

∂n2
=

ēsr,PBE
c,md

(n,∇n, n2, µ)2 µ3

c (n2)2 . (2.39)

Note that the localizing wave function ΨB
loc

used in the definition of the local range-separation

parameter (see Section 2.2.2) is taken as fixed, i.e. we do not consider variations of ΨB
loc

. Im-
portantly, since the local range-separation parameter diverges in the CBS limit [Eq. (2.27)] and
since the correlation energy per particle ēsr,PBE

c,md
(n,∇n, n2, µ) in Eq. (2.30) vanishes for µ → ∞,

both basis-set correction functionals correctly vanish in the CBS limit,

lim
B→CBS

ĒBPBE-UEG[n] = 0, (2.40)

lim
B→CBS

ĒBPBE-OT[n, n2] = 0, (2.41)

i.e., the CBS limit is unaltered by the correction.

Frozen-core version of the basis-set correction functionals

When the wave function ΨB is calculated in the frozen-core approximation, we use the frozen-core
version of the basis-set correction functionals introduced in Ref. [15]. The basis-set correction
functionals become

ĒB[nΨB]→ ĒB[nΨB
val

], (2.42)

and
ĒB[nΨB , n2,ΨB]→ ĒB[nΨB

val
, n2,ΨB

val
], (2.43)

where ΨB
val

is the wave function ΨB truncated to the “valence” orbital space (i.e., with all core
orbitals removed). Accordingly, the local range-separation parameter becomes

µB(r)→ µBval(r) (2.44)

where

µBval(r) =
√
π

2
WBval(r). (2.45)

The valence-only effective interaction at coalescence is

WBval(r) =


fB
ΨB
loc,val

(r)

n2,ΨB
loc,val

(r) , if n2,ΨB
loc,val

(r) , 0,

∞, otherwise,

(2.46)

where

fB
ΨB
loc,val

(r) =
B∑
pq

Bval∑
rstu

wpqrsΓrstuϕp(r)ϕq(r)ϕt(r)ϕu(r), (2.47)

where Γpqrs = 2⟨ΨB
loc,val

|â†r↓ â
†
s↑ âq↑ âp↓ |Ψ

B
loc,val

⟩ is the opposite-spin two-electron density matrix of

the localizing wave function truncated to the valence orbital space ΨB
loc,val

, and n2,ΨB
loc,val

(r) is its
associated on-top pair density

n2,ΨB
loc,val

(r) =
Bval∑
pqrs

Γpqrsϕp(r)ϕq(r)ϕr(r)ϕs(r). (2.48)
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In Eqs. (2.47) and (2.48), the indication “Bval” on top of the sum symbols means that the sums
are only over valence (i.e., non-core) orbitals. It is noteworthy that µB

val
(r) still fulfills Eq. (2.27)

and thus the frozen-core versions of the basis-set correction functionals still correctly vanish in
the CBS limit.

Correspondingly, the frozen-core versions of the effective Hamiltonians in Eqs. (2.7) and (2.14)
are simply obtained by setting to zero all the one-electron effective integrals v̄Bpq and the two-

electron effective integrals w̄Bpqrs if at least one orbital involved in the integral is a core orbital.

2.2.3 Selected configuration interaction to solve the self-consistent eigenvalue equa-
tions

To solve the self-consistent basis-set correction eigenvalue equations [Eqs. (2.6) and (2.13)], we
use an adaptation of the configuration-interaction perturbatively selected iteratively (CIPSI)
algorithm [27–29], similar to the computational strategy already used in the context of RSDFT
[24].

To solve Eq. (2.6) for a given basis set B, we start at the first iteration, denoted as k − 1,
from a guess wave function ΨB,(k−1)

0 (usually a CIPSI ground-state wave function for the standard
Hamiltonian),

|Ψ
B,(k−1)
0 ⟩ =

∑
I ∈R(k−1)

c(k−1)
I |I⟩, (2.49)

where R(k−1) denotes a set of Slater determinants. We then use the density of this wave function
to form the following effective Hamiltonian at the next iteration k:

ĤB,(k)
eff
= ĤBeff[n

Ψ
B,(k−1)
0

], (2.50)

and we want to find the associated ground-state wave function ΨB,(k),

ĤB,(k)
eff
|ΨB,(k)⟩ = EB,(k)|ΨB,(k)⟩. (2.51)

This wave function is obtained by the CIPSI algorithm as

|ΨB,(k)⟩ =
∑

I ∈R(k)

cI |I⟩, (2.52)

where R(k) is the new set of Slater determinants at iteration k. According the CIPSI algorithm,
the set R(k) is obtained by repeatedly adding to a reference wave function ΨB,(k)

ref
the determinants

K having the largest second-order perturbation theory (PT2) contributions |E(k)
K,PT2

| with

E
(k)
K,PT2

= −
|⟨Ψ
B,(k)
ref
|ĤB,(k)

eff
|K⟩|2

⟨K|ĤB,(k)
eff
|K⟩ − ⟨ΨB,(k)

ref
|ĤB,(k)

eff
|Ψ
B,(k)
ref
⟩
, (2.53)

iteratively doubling the number of determinants in ΨB,(k)
ref

until the absolute value of the total
PT2 energy correction due to the missing determinants,

|E
(k)
PT2
| =

∣∣∣∣∣∣∣∣
∑

K <R(k)

E
(k)
K,PT2

∣∣∣∣∣∣∣∣ , (2.54)

is smaller than a given threshold. To reduce the cost of the evaluation of the PT2 contribution,
the semi-stochastic multi-reference approach of Garniron et al. [30] is used, adopting the technical
specifications recommended in that work.
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This determines the set of determinants R(k) which is then fixed for the rest of the iteration k.
The energy EB,(k)

0 for this iteration is then determined according to the minimization in Eq. (2.5)

EB,(k)
0 = min

ΨB,(k)

{
⟨ΨB,(k)|T̂ + Ŵee + V̂ne|Ψ

B,(k)⟩ + ĒB[nΨB,(k)]
}
, (2.55)

which amounts to solving the iterative equation,

ĤBeff[n
Ψ
B,(k)
0

]|ΨB,(k)
0 ⟩ = E

B,(k)
0 |Ψ

B,(k)
0 ⟩, (2.56)

for the optimal coefficients of the determinants {c(k)
I } leading to the minimizing wave function at

iteration k,
|Ψ
B,(k)
0 ⟩ =

∑
I ∈R(k)

c(k)
I |I⟩. (2.57)

The iterations over k are repeated until the variation of EB,(k)
0 is smaller than a given threshold.

The evaluation of the dipole moment is obtained as the expectation value of the dipole operator
over the converged wave function ΨB0 .

The same approach is used for solving Eq. (2.13) which involves the on-top pair density in
addition to the density.

2.3 Computation of total energies and dipole moments

2.3.1 Computational details

We study the total ground-state energies of the Be atom and BH molecule together with the
dipole moments of the BH, FH, H2O molecules in their ground states and of the CH2 molecule in
its lowest spin-singlet state. We report standard CIPSI (i.e., near FCI) results without the basis-
set correction (referred to as “CIPSI”), as well as CIPSI results including the basis-set correction
using the PBE-UEG and PBE-OT functionals with or without self-consistency. The non-self-
consistent calculations are referred to as “CIPSI+PBE-UEG and “CIPSI+PBE-OT”, whereas
the self-consistent calculations are referred to as “SC CIPSI+PBE-UEG” and “SC CIPSI+PBE-
OT”where SC stands for self-consistent. The orbitals used for all converged CIPSI calculations
are the natural orbitals obtained from a standard CIPSI calculation stopped at a total PT2
energy correction smaller in absolute value than 0.001 Ha. For the localizing wave function ΨB

loc
involved in the definition of the local range-separation parameter µB(r) (see Section 2.2.2), we
choose either a single Slater determinant (SD) built from the natural orbitals of the largest CIPSI
wave function (which we refer as µSD) or the largest CIPSI wave function (which we refer as
µCIPSI). We use the Dunning correlation-consistent basis-set family [31–35]. We perform both
non-frozen-core calculations using the core-valence aug-cc-pCVXZ basis sets, and frozen-core
calculations (with the 1s orbitals of non-hydrogen atoms frozen) using the valence aug-cc-pVXZ
basis sets and the corresponding frozen-core version of the basis-set correction (see Section 2.2.2).
All the CIPSI calculations have been performed with Quantum Package [36].

We also report the dipole moment at the coupled cluster singles doubles perturbative triples
[CCSD(T)] level which were taken from Ref. [37] for the BH and FH molecules, and obtained
using linear-response calculations from the Dalton software [38, 39] for the CH2 and H2O
molecules. The molecular geometries are taken from Ref. [37] for BH and FH, and from Ref. [40]
for H2O and CH2.

2.3.2 Total energies of the Be atom and the BH molecule

Tables 2.1 and 2.2 report the total energies of the Be atom and the BH molecule, respectively,
calculated using the aug-cc-pCVXZ basis sets with CIPSI without any basis-set correction and
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Table 2.1: Total ground-state energies (in Ha) of the Be atom calculated using the aug-cc-pCVXZ
(ACVXZ) basis sets (with X = D, T, Q) with CIPSI without the frozen-core approximation and
including different basis-set corrections with or without self-consistency. The energy lowering
∆ESC (in µHa) from the non-self-consistent to the self-consistent version of the basis-set correc-
tion is reported in square brackets.

ACVDZ ACVTZ ACVQZ

CIPSI -14.6519225 -14.6623971 -14.6655767

CIPSI+PBE-UEGµSD -14.6683617 -14.6686314 -14.6681020
SC CIPSI+PBE-UEGµSD [∆ESC] -14.6683878 [-26.1] -14.6686354 [-4.0] -14.6681026 [-0.6]

CIPSI+PBE-UEGµCIPSI -14.6677035 -14.6683762 -14.6679643
SC CIPSI+PBE-UEGµCIPSI [∆ESC] -14.6677395 [-36.0] -14.6683874 [-11.2] -14.6679681 [-3.8]

CIPSI+PBE-OTµSD -14.6663376 -14.6678846 -14.6677982
SC CIPSI+PBE-OTµSD [∆ESC] -14.6663741 [-36.5] -14.6678956 [-11.0] -14.6678020 [-3.8]

CIPSI+PBE-OTµCIPSI -14.6659463 -14.6677128 -14.6677140
SC CIPSI+PBE-OTµCIPSI [∆ESC] -14.6659748 [-28.5] -14.6677223 [-9.5] -14.6677171 [-3.1]

Exact non-relativistic total energya

-14.6673565
aFrom Ref. [41].

Table 2.2: Total ground-state energies (in Ha) of the BH molecule calculated using the aug-
cc-pCVXZ (ACVXZ) basis sets (with X = D, T, Q, 5) with CIPSI without the frozen-core
approximation and including different basis-set corrections with or without self-consistency. The
energy lowering ∆ESC (in µHa) from the non-self-consistent to the self-consistent version of the
basis-set correction is reported in square brackets.

ACVDZ ACVTZ ACVQZ ACV5Z

CIPSI -25.2550150 -25.2786179 -25.2857583 -25.2873779

CIPSI+PBE-UEGµSD -25.2838179 -25.2896303 -25.2906772 -25.2900079
SC CIPSI+PBE-UEGµSD [∆ESC] -25.2839270 [-109.1] -25.2896471 [-16.8] -25.2906804 [-3.2] –

CIPSI+PBE-UEGµCIPSI -25.2825079 -25.2890245 -25.2903975 –
SC CIPSI+PBE-UEGµCIPSI [∆ESC] -25.2826090 [-101.1] -25.2890400 [-15.5] – –

CIPSI+PBE-OTµSD -25.2798297 -25.2880486 -25.2899774 –
SC CIPSI+PBE-OTµSD [∆ESC] -25.2800391 [-209.4] -25.2881008 [-52.2] -25.2899937 [-16.3] –

CIPSI+PBE-OTµCIPSI -25.2789738 -25.2876363 -25.2897883 –
SC CIPSI+PBE-OTµCIPSI [∆ESC] -25.2791600 [-186.2] -25.2876809 [-44.6] – –

CIPSI total energy extrapolated to the CBS limit
-25.289032
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Table 2.3: Dipole moment (in a.u.) of the ground state of the BH molecule calculated using the
aug-cc-pCVXZ (ACVXZ) basis sets (with X = D, T, Q, 5) by Hartree-Fock (HF), CCSD(T),
and CIPSI without the frozen-core approximation and including different self-consistent basis-
set corrections. For the CIPSI calculations, the PT2 energy correction |EPT2| (in Ha) is reported
in square brackets. Extrapolations to the CBS limit are given in the last column.

ACVDZ ACVTZ ACVQZ ACV5Z CBS

HF 0.68796 0.68570 0.68489 0.68530
CCSD(T)a 0.52968 0.54649 0.54984 0.55125 0.55271
CIPSI [|EPT2 |] 0.52758 [2×10−6] 0.54388 [4×10−6] 0.54789 [4×10−6] 0.54975 [2×10−5] 0.55142
CIPSI extrapolated to EPT2 → 0 0.52757 0.54386 0.54790 0.54967 0.55126

SC CIPSI+PBE-UEGµSD [|EPT2 |] 0.53658 [2×10−6] 0.54835 [4×10−6] 0.55040 [4×10−5]

SC CIPSI+PBE-UEGµCIPSI [|EPT2 |] 0.53758 [2×10−6] 0.54812 [4×10−6]

SC CIPSI+PBE-OTµSD [|EPT2 |] 0.54340 [2×10−6] 0.55092 [4×10−6] 0.55093 [1×10−5]

SC CIPSI+PBE-OTµCIPSI [|EPT2 |] 0.54333 [2×10−6] 0.54973 [8×10−6]

aFrom Ref. [37].

Table 2.4: Dipole moment (in a.u.) of the ground state of the BH molecule calculated using
the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree-Fock (HF), CCSD(T),
and CIPSI with the frozen-core approximation and including different self-consistent basis-set
corrections. For the CIPSI calculations, the PT2 energy correction |EPT2| (in Ha) is reported in
square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.68796 0.68650 0.68494 0.68496
CCSD(T) 0.52939 0.54500 0.54724 0.54843 0.54966
CIPSI [|EPT2 |] 0.52782 [3×10−8] 0.54334 [1×10−7] 0.54563 [4×10−7] 0.54691 [1×10−6] 0.54823

SC CIPSI+PBE-UEGµSD [|EPT2 |] 0.53791 [4×10−7] 0.54815 [7×10−7] 0.54790 [3×10−6] 0.54815 [3×10−6]

SC CIPSI+PBE-OTµSD [|EPT2 |] 0.54512 [4×10−7] 0.55029 [5×10−7] 0.54880 [2×10−8]

with different basis-set corrections. It can be observed that the total energies obtained with
the basis-set corrections converge much faster toward the estimated exact total energies than
the total energies obtained without any basis-set correction. For the Be atom, all the basis-set
corrected total energies from the aug-cc-pCVDZ to the aug-cc-pCVQZ basis sets have errors
below 1.6 mHa ≈ 1 kcal/mol compared to the estimated exact total energy, whereas without
basis-set correction such an accuracy is not even reached with the aug-cc-pCVQZ basis set.
Similar trends are observed for the BH molecule: all the basis-set corrected total energies have
errors below 1 kcal/mol already from the aug-cc-pCVTZ basis set, whereas without basis-set
correction such an accuracy is reached only with the aug-cc-pCV5Z basis set.

Focusing now on the differences between the various basis-set corrections, we can notice
that i) using the local range-separation parameter µSD gives larger basis-set corrections than
using µCIPSI, ii) the PBE-UEG functional gives larger basis-set corrections than the PBE-OT
functional. As regards the effect of the self-consistency, it is remarkable to notice that self-
consistency lowers the total energy by a very small fraction of the total basis-set correction
(typically less than 1%), whatever the choice of functional or local range-separation parameter.
These results thus validate the previously introduced non-self-consistent approximation to the
basis-set correction (see Section 2.2.1) for energy calculations.

2.3.3 Dipole moments of the BH, FH, H2O, and CH2 molecules

As seen from Section 2.3.2, the self-consistency of the basis-set correction does not lead to
significant changes of the total energies. Nevertheless, one can wonder if the effective wave
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Figure 2.1: Basis-set convergence of the dipole moment of the ground state of the BH molecule
calculated using the aug-cc-pCVXZ (ACVXZ) and aug-cc-pVXZ (AVXZ) basis sets (with X =
D, T, Q, 5) by CIPSI including different self-consistent basis-set corrections without the frozen-
core approximation (a) and with the frozen-core approximation (b). The self-consistent basis-set
corrections are for the local range-separation parameter µSD. The green area indicates an error
of ±0.001 a.u. around the CIPSI CBS value.
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functions obtained with the self-consistent basis-set correction provide better properties.
We choose to investigate this aspect through the computation of the dipole moments of

the BH, FH, H2O, and CH2 molecules for several reasons: i) the basis-set convergence of dipole
moments with correlated wave-function methods is known to be slow (see, e.g., Refs. [37,40,42]),
ii) these molecules are sufficiently small to have near-CBS reference values, iii) the BH and CH2
molecules exhibit a non-trivial mixture of both strong and weak correlation due to the 2s-2p near
degeneracy in the boron and carbon atoms, whereas the FH and H2O molecules are dominated
by weak correlation effects.

Dipole moment of the BH molecule

We start by a detailed analysis on the BH molecule. The slow convergence of the dipole moment
of the BH molecule with respect to the size of the basis set has been illustrated at various
correlation levels including CCSD(T) by Halkier et al. [37], and we report in Table 2.3 their
CCSD(T) results at the non-frozen core level. In order to have a reasonable estimate of the
dipole moment in the CBS limit, we use the two-point X−3 extrapolation proposed in Ref. [37]
using the aug-cc-pCVQZ and aug-cc-pCV5Z basis sets. At the CCSD(T) level, an error of about
0.001 a.u. with respect to the CBS limit is not even reached with the aug-cc-pCV5Z basis set,
while the error is about 0.006 a.u. and 0.003 a.u. with the aug-cc-pCVTZ and aug-cc-pCVQZ
basis set, respectively, showing indeed the quite slow convergence of the dipole moment of BH.

We also report in Table 2.3 the dipole moment at the CIPSI level together with the value
of the PT2 energy correction |EPT2| associated with the variational wave function for which the
dipole moment have been calculated. The values of |EPT2| are all below 2 × 10−5 Ha, which was
found to be mandatory to converge the CIPSI dipole moments to a precision of about 0.0001
a.u. for the BH molecule. These represent therefore rather large calculations involving about
108 Slater determinants for the largest aug-cc-pCV5Z basis set. In order to obtain an estimation
of the error of the dipole moment at the CIPSI level in a given basis set with respect to FCI, we
extrapolate the CIPSI dipole moment to |EPT2| → 0 using a linear extrapolation as a function of
|EPT2| (similar to the proposal of Holmes et al. [43] for the total energy) using different values of
|EPT2|. As one can see from Table 2.3, for any basis set, the difference between the dipole moment
calculated by CIPSI with the smallest |EPT2| available and the dipole moment extrapolated with
respect to |EPT2| are negligible. Thus, with the values of |EPT2| used, the CIPSI dipole moments
provide reliable estimates of the FCI dipole moments. As regards basis-set errors, similar to the
CCSD(T) results, an error of about 0.001 a.u. on the CIPSI dipole moment with respect to the
CBS limit is not even reached using the aug-cc-pCV5Z basis set, illustrating once more the slow
convergence of the dipole moment with respect to the size of the basis set.

From Table 2.3 one can also notice that there is a small deviation between the CCSD(T) and
the CIPSI dipole moments which is of about 0.002 a.u. for the aug-cc-pCVXZ basis sets with
X= D, T, Q and of about 0.001 a.u. for the aug-cc-pCV5Z basis set. In addition, the deviation
between the CCSD(T) and CIPSI dipole moments extrapolated to the CBS limit is about 0.001
a.u., showing that CCSD(T) provides a very accurate value for the dipole moment of the BH
molecule.

Coming now to the self-consistent basis-set correction calculations, we report in Table 2.3 the
dipole moments obtained using the PBE-UEG and PBE-OT functionals using the local range-
separation parameters µSD and µCIPSI, and a graphical representation of the data for µSD is given
in Figure 2.1 (panel a). Clearly, the basis-set correction strongly accelerates the convergence to
the CBS limit. More specifically, it can be observed that i) in a given basis set, all basis-set
corrections significantly improve the dipole moment with respect to the CIPSI value, ii) the
PBE-OT functional gives more accurate results than the PBE-UEG functional, iii) an error of
about 0.001 a.u. on the dipole moment is obtained already with the aug-cc-pCVTZ basis set
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Table 2.5: Dipole moment (in a.u.) of the ground state of the FH molecule calculated using
the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree-Fock (HF), CCSD(T),
and CIPSI with the frozen-core approximation and including different self-consistent basis-set
corrections. For the CIPSI calculations, the PT2 energy correction |EPT2| (in Ha) is reported in
square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.75976 0.75750 0.75634 0.75617
CCSD(T) 0.70342 0.70465 0.70707 0.70794 0.70903
CIPSI [|EPT2 |] 0.70249 [9×10−6] 0.70406 [1×10−4] 0.70662 [1×10−4]

CIPSI extrapolated wrt EPT2 0.70248 0.70391 0.70646

SC CIPSI+PBE-UEGµSD [|EPT2 |] 0.71326 [3×10−5] 0.70873 [1×10−4]

SC CIPSI+PBE-OTµSD [|EPT2 |] 0.71362 [2×10−5] 0.70915 [1×10−4]

when using the PBE-OT functional. The result i) shows that, although the self-consistency does
not lead to significant improvement on the total energy (see Table 2.2), it is crucial to yield
effective wave functions providing better properties, illustrating the impact and the accuracy
of the effective basis-set correction potentials employed. The result ii) shows that the use of
the on-top pair density of the wave function rather than that estimated from the UEG gives a
better approximation of the exact on-top pair density, which can be understood as a signature
of strong-correlation effects.

Finally, we also report in Table 2.4 the dipole moments obtained with the frozen-core ap-
proximation using the aug-cc-pVXZ basis sets, and the corresponding graphical representation
is given in Figure 2.1 (panel b). Again, the basis-set correction with either the PBE-UEG or
PBE-OT functional yields a faster basis-set convergence of the dipole moment that in the stan-
dard CIPSI calculations. However, in this case, the convergence toward the CBS limit is slightly
better when using the PBE-UEG functional. The PBE-OT functional slightly overestimates the
dipole moment by 0.002 a.u. and 0.0006 a.u. with the aug-cc-pVTZ and aug-cc-pVQZ basis
sets, respectively, whereas the PBE-UEG functional yields a deviation below 0.0005 a.u. from
the aug-cc-pVTZ to the aug-cc-pV5Z basis set.

2.3.4 Dipole moments of the FH, H2O, and CH2 molecules

We now pursue our analysis on the FH, H2O, and CH2 molecules using only the frozen-core
approximation. The basis-set convergence of the dipole moments of these molecules was studied
in Refs. [37,42] at the CCSD(T) level. In Tables 2.5, 2.6, and 2.7, we report CCSD(T) and CIPSI
results with the aug-cc-pVXZ basis sets. The CBS estimates are obtained from a two-point X−3

extrapolation using the aug-cc-pVQZ and aug-cc-pV5Z basis sets at the CCSD(T) level, and
also at the CIPSI level in the case of CH2. One can notice that, at the CCSD(T) or CIPSI level,
an error of about 0.001 a.u. with respect to the estimated CBS limit is not even reached with
the aug-cc-pV5Z basis set. In addition, in the case of CH2, there is a significant discrepancy
between the extrapolated CCSD(T) and CIPSI dipole moments, which might be due to some
strong-correlation effects that are mistreated at the CCSD(T) level.

We also report in Tables 2.5, 2.6, and 2.7, the results using the self-consistent basis-set
correction. In contrast with the BH molecule, the effective wave functions obtained with the
PBE-UEG and PBE-OT functionals always yield very similar dipole moments for the FH and
H2O molecules. This can be explained by the fact that these molecules at their equilibrium
geometries are weakly correlated systems for which the on-top pair density based on the UEG is
a good approximation. For the FH, H2O, and CH2 molecules, the dipole moment is overestimated
with the aug-cc-pVDZ basis set using both functionals, but the results with the aug-cc-pVTZ
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Table 2.6: Dipole moment (in a.u.) of the ground state of the H2O molecule calculated using
the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree-Fock (HF), CCSD(T),
and CIPSI with the frozen-core approximation and including different self-consistent basis-set
corrections. For the CIPSI calculations, the PT2 energy correction |EPT2| (in Ha) is reported in
square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.78670 0.78038 0.77955 0.77956
CCSD(T) 0.72703 0.72364 0.72695 0.72815 0.72941
CIPSI [|EPT2 |] 0.72610 [3×10−5] 0.72294 [2×10−4]

SC CIPSI+PBE-UEGµSD [|EPT2 |] 0.73809 [2×10−5] 0.72818 [2×10−5]

SC CIPSI+PBE-OTµSD [|EPT2 |] 0.73840 [2×10−4] 0.72855 [1×10−4]

Table 2.7: Dipole moment (in a.u.) of the lowest spin-singlet state of the CH2 molecule calcu-
lated using the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree-Fock (HF),
CCSD(T), and CIPSI with the frozen-core approximation and including different self-consistent
basis-set corrections. For the CIPSI calculations, the PT2 energy correction |EPT2| (in Ha) is
reported in square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.74878 0.74478 0.74355 0.74353
CCSD(T) 0.65614 0.66009 0.66211 0.66310 0.66416
CIPSI [|EPT2 |] 0.65120 [2×10−5] 0.65446 [3×10−5] 0.65643 [4×10−5] 0.65780 [1×10−4] 0.65926

SC CIPSI+PBE-UEGµSD [|EPT2 |] 0.66249 [2×10−5] 0.65958 [3×10−5] 0.65890 [3×10−5]

SC CIPSI+PBE-OTµSD [|EPT2 |] 0.66527 [2×10−5] 0.66055 [4×10−5] 0.65932 [5×10−4]

basis set are already very close to the estimated CBS limit. From a quantitative point of view,
for the FH molecule with the aug-cc-pVDZ basis set the error with respect to the CBS dipole
moment is reduced from about 0.007 a.u. at the CIPSI level to about 0.004 a.u. with the
basis-set correction, whereas with the aug-cc-pVTZ basis set the error is reduced from 0.005
a.u. to below 0.0005 a.u.. For the CH2 molecule, with the aug-cc-pVDZ basis set the error with
respect to the CBS extrapolated CIPSI value is about 0.008 a.u. whereas it is about 0.003 a.u.
and 0.006 a.u. using the PBE-UEG and PBE-OT basis-set corrections, respectively. With the
aug-cc-pVTZ basis set, the error at the CIPSI level is still of about 0.005 a.u., whereas it is
below 0.001 a.u. for both the PBE-UEG and PBE-OT functionals. Finally, in the case of the
H2O molecule, the results using the basis-set correction are actually worst than the CIPSI ones
when using the aug-cc-pVDZ basis set, the error increasing from about 0.003 a.u. for CIPSI to
about 0.009 a.u. with the basis-set correction. One should nevertheless keep in mind that the
convergence of the dipole moment of H2O is non monotonic at the CCSD(T) level, the dipole
moment obtained with the aug-cc-pVDZ basis set being closer to the CBS limit than the ones
obtained using the aug-cc-pVTZ or aug-cc-pVQZ basis sets. Therefore, the seemingly good
values obtained at the CCSD(T) and CIPSI levels using the aug-cc-pVDZ basis set are likely
to be due to a compensation of errors. With the aug-cc-pVTZ basis set, the expected trend is
recovered, with CIPSI giving an error of about 0.006 a.u. and the basis-set correction reducing
this error to about 0.001 a.u..

2.4 Conclusion

In the present work, we have established the fully self-consistent density-based basis-set correc-
tion scheme [13]. Differently from previous works where a non-self-consistent approximation was
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used [13–18], here the energy is minimized in the presence of the basis-set correction functional
which i) guarantees to get a lower total energy with respect to the non-self-consistent approxi-
mation, and ii) allows the wave function to change under the presence of the basis-set correction.
We have tested this scheme on a few atomic and molecular systems (Be, BH, FH, H2O, and
CH2) with CIPSI wave functions and two different basis-set correction functionals PBE-UEG
and PBE-OT. While PBE-UEG is a functional of the density, PBE-OT uses in addition the
on-top pair density of the wave function as an independent variable.

The main results are that i) the lowering in total energy is extremely small compared to the
non-self-consistent approximations (typically less than 1%), which thus justifies this approxima-
tion for energy-only calculations, and ii) the wave functions obtained from the self-consistent
basis-set correction scheme yield dipole moments which converge much faster with respect to the
size of the basis set than standard wave-function calculations, being already close to the CBS
value with a triple-zeta basis set. This study thus tend to demonstrate that the density-based
basis-set correction scheme is not only useful for energy calculations but also for calculations of
response properties.

Acknowledgement

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme Grant agreement No. 810367
(EMC2).

Data availability

The data that support the findings of this study are available within the article and from the
corresponding author upon reasonable request.

61



Bibliography

[1] E. A. Hylleraas, Z. Phys. 54, 347 (1929).

[2] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

[3] T. Helgaker, W. Klopper, H. Koch and J. Noga, J. Chem. Phys. 106, 9639 (1997).

[4] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen and A. K. Wilson,
Chem. Phys. Lett. 286, 243 (1998).

[5] S. Ten-no, Theor. Chem. Acc. 131, 1070 (2012).

[6] S. Ten-no and J. Noga, WIREs Comput. Mol. Sci. 2, 114 (2012).
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3
Basis-set correction for coupled-cluster estimation of

dipole moments

This chapter corresponds to the article [D. Traore, J. Toulouse, E. Giner, J. Chem. Phys. 156,
174101 (2022)]

The present work proposes an approach to obtain a basis-set correction based on density-
functional theory (DFT) for the computation of molecular properties in wave-function theory
(WFT). This approach allows one to accelerate the basis-set convergence of any energy deriva-
tive of a non-variational WFT method, generalizing previous works on the DFT-based basis-set
correction where either only ground-state energies could be computed with non-variational wave
functions [J. Phys. Chem. Lett. 10, 2931 (2019)] or properties could be computed as expectation
values over variational wave functions [J. Chem. Phys. 155, 044109 (2021)]. This work focuses
on the basis-set correction of dipole moments in coupled-cluster with single, double, and pertur-
bative triple excitations (CCSD(T)), which is numerically tested on a set of fourteen molecules
with dipole moments covering two orders of magnitude. As the basis-set correction relies only
on Hartree-Fock densities, its computational cost is marginal with respect to the one of the
CCSD(T) calculations. Statistical analysis of the numerical results shows a clear improvement
of the basis convergence of the dipole moment with respect to the usual CCSD(T) calculations.

3.1 Introduction

Quantum chemistry aims to provide theoretical methods to predict molecular properties starting
from the many-body quantum mechanical problem. To solve this problem a wide range of meth-
ods were developed in the last few decades mainly based on wave-function theory (WFT) and
density-functional theory (DFT). The purpose of both approaches is to accurately treat correla-
tion effects, or in other terms, the quantum effects which go beyond a mean-field description such
as Hartree-Fock (HF). In the context of WFT, there exists a wide range of methods of increas-
ing computational cost – ranging from Møller-Plesset perturbation theory [1] to coupled-cluster
methods [2] – which in principle systematically converge to the full configuration interaction
(FCI) limit which is the exact solution within a given basis set. Nevertheless, the accuracy of
the results of a WFT method – even at the FCI level – strongly depends on the quality of the
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basis set, mainly because of the slow convergence of the wave function near the electron-electron
coalescence point [3, 4]. The combination of the slow basis-set convergence and the strong in-
crease of the computational cost with both the size of the basis set and the number of electrons
makes it very difficult to obtain well converged WFT calculations on large systems.

There are mainly two approaches to tackle the basis-set convergence problem of WFT: basis-
set extrapolation techniques [5, 6] and explicitly correlated F12 methods [7–12]. The basis-set
extrapolation techniques rely on a known asymptotic behavior of the correlation energy with
the size of the basis set but requires WFT calculations with basis sets of increasing sizes, which
makes their application limited to small or medium system size. The F12 methods accelerate
the basis-set convergence of the results thanks to the inclusion of a correlation factor explicitly
depending on electron-electron distances and restoring Kato’s electron-electron cusp condition
[4]. Although F12 methods improve indeed the results (typically, energy differences obtained
with a F12 method using a triple-zeta basis set are as accurate as the ones obtained with the
corresponding uncorrected WFT method using a quintuple-zeta basis set [13]), the F12 methods
necessarily induce computational overheads due to the large auxiliary basis sets required to
resolve three- and four-electron integrals [14].

An alternative path has been recently introduced by some of the present authors in Ref. [15]
where a rigorous framework was proposed to correct for the basis-set incompleteness of WFT
using DFT. A central idea of this work is the fact that the Coulomb electron-electron interaction
projected in an incomplete basis set is non-divergent and quite similar to the long-range interac-
tion used in range-separated DFT (RSDFT). A basis-set correction density functional can then
be built from RSDFT short-range correlation functionals using a local range-separation param-
eter which automatically adapts to the basis set used. This results in a relatively cheap way of
correcting the basis-set incompleteness of WFT, which has the desirable property of leading to an
unaltered complete-basis-set (CBS) limit. Two versions of this theory were proposed: (i) a non
self-consistent version where the basis-set correction functional is evaluated with any accurate
approximation of the FCI density and then simply added to an approximation of the FCI energy
in a given basis set [15]; and (ii) a recently introduced self-consistent variant were the energy
is minimized in the presence of the basis-set correction functional and therefore allows for the
wave function to be changed by the DFT correction [16]. The efficiency of the non-self-consistent
approach for computing total energies and chemically relevant energy differences of relatively
large magnitudes (such as ionization potentials [15,17], molecular atomization energies [18–21],
or excitation energies [22]) has been well established in previous works on a quite wide range
of atomic and molecular systems including light to transition-metal elements, and it was nu-
merically shown that the self-consistent framework does not give any significant improvement
of total energies [16].

The main advantage of the self-consistent formulation is nevertheless to allow for the com-
putation of first-order properties as expectation values over the minimized wave function thanks
to the variational property of the theory. In Ref. [16] the present authors have focused on
the dipole moments which are known to exhibit a slow convergence with respect to the size of
the basis set [23–25]. It was shown that the dipole moments computed at near FCI level with
the self-consistent basis-set correction method are close to the CBS limit in triple-zeta basis
sets, which contrasts with the slow basis-set convergence of the usual WFT approaches. The
drawback of the self-consistent framework is nonetheless to require a self-consistent variational
WFT calculation, which therefore excludes its application to non-variational approaches such as
coupled-cluster with singles, doubles, and perturbative triple excitations (CCSD(T)).

In the present work, we propose to overcome this limitation and target the computation of
first-order molecular properties as energy derivatives of the non-self-consistent basis-set correc-
tion approach. We apply this strategy to the computation of dipole moments at the CCSD(T)
level and propose a cheap computational strategy for the basis-set correction which uses only
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densities at the HF level, similarly to what have been done in the context of atomization energies
in Ref. [18].

This paper is organized as follows. In Sec. 3.2, we introduce the theory of the basis-set cor-
rection extended to the computation of dipole moments. In Sec. 3.3, we provide computational
details of our study on a set of fourteen molecules with dipole moments covering two orders of
magnitude. The numerical results are discussed in Sec. 3.4, and compared for some molecules
with the fully self-consistent formalism of Ref. [16]. Detailed results, as well as the molecular
geometries used, are available in the Supplementary material (Appendix C).

3.2 Theory

3.2.1 Dipole moment from the self-consistent basis-set correction

In this section, we generalize the framework of the basis-set correction to the presence of a
static external electric field. Consider the Hamiltonian of a N-electron system under an external
electric field ϵ = ϵu of strength ϵ along a direction u,

Ĥ(ϵ) = Ĥ0 − ϵd̂, (3.1)

where Ĥ0 is the Hamiltonian of the system without the electric field,

Ĥ0 = T̂ + V̂ne + Ŵee, (3.2)

with T̂ being the kinetic-energy operator, V̂ne being the electron-nuclei interaction operator,
and Ŵee the electron-electron interaction operator, and d̂ = d̂ · u where d̂ is the total (elec-
tron+nuclear) dipole-moment operator,

d̂ = −
N∑

i=1

ri +

Nnuclei∑
A=1

ZARA, (3.3)

where ri are the electron coordinates, and ZA and RA are the nuclei charges and coordinates.
In the basis-set correction formalism [15,16,19], the ground-state energy E0(ϵ) of the Hamil-

tonian in Eq. (3.1) is approximated by

EB0 (ϵ) = min
ΨB

{
⟨ΨB|Ĥ(ϵ)|ΨB⟩ + ĒB[nΨB]

}
, (3.4)

where the minimization is performed over the set of N-electron wave functions ΨB expanded
on the N-electron Hilbert space generated by the one-electron basis set B and ĒB[nΨB] is the
basis-set correction functional evaluated at the density nΨB of ΨB. The energy functional ĒB[n]
(introduced in Ref. [15]) compensates for the restriction on the wave functions ΨB due to the
incompleteness of the basis set B. The restriction coming from the basis set B in Eq. (3.4) then
applies only to densities nΨB . Roughly speaking, since the density converges much faster than
the wave function with respect to the basis set, EB0 (ϵ) is a much better approximation to the
exact energy E0(ϵ) than the corresponding FCI ground-state energy EB

FCI
(ϵ) calculated with the

same basis set B. Moreover, in the CBS limit, ĒB[n] vanishes and thus EB0 (ϵ) correctly converges
to the exact energy E0(ϵ).

From the basis-set corrected energy EB0 (ϵ) in Eq. (3.4), one can define the corresponding
basis-set corrected dipole moment dB as the first-order derivative with respect to the electric
field

dB = −
dEB0 (ϵ)

dϵ

∣∣∣∣∣
ϵ=0
. (3.5)
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It is important to stress here that dB is different from the FCI dipole moment dB
FCI

with the
same basis set B, as the former is taken as the derivative of EB0 (ϵ) which contains the basis-set
correction functional ĒB[n]. Similarly to the case of the energy, we expect dB to have a faster
basis-set convergence than dB

FCI
.

Since EB0 (ϵ) is stationary with respect to ΨB, the Hellmann-Feynman theorem applies and
gives dB as a simple expectation value

dB = ⟨ΨB0 (ϵ = 0)|d̂|ΨB0 (ϵ = 0)⟩, (3.6)

where ΨB0 (ϵ = 0) is the minimizing wave function of the self-consistent equation in Eq. (3.4) at
ϵ = 0. This was the approach used in Ref. [16].

Note that the Hellmann-Feynman theorem applies because the basis set B is independent
from the perturbing electric field. By contrast, if we wanted to calculate the gradient of the
energy with respect to nuclear coordinates, we would have to take into account the dependence
of the atomic basis set B on the nuclei coordinates. In that case, the Hellmann-Feynman
theorem would not apply and we would have to consider additional Pulay terms coming from
the dependence of both the wave function ΨB0 and the basis-set correction energy ĒB on the
nuclei coordinates.

3.2.2 Dipole moment from the non-self-consistent basis-set correction

As initially proposed in Ref. [15] for the case without the electric field, one can avoid the
minimization in Eq. (3.4) and approximate the energy EB0 (ϵ) by approximating the minimizing
wave function ΨB0 (ϵ) in Eq. (3.4) by the FCI wave function ΨB

FCI
(ϵ) in a given basis set B. This

leads to the following estimation of the ground-state energy

EB0 (ϵ) ≈ EBFCI(ϵ) + ĒB[nBFCI(ϵ)], (3.7)

where nB
FCI

(ϵ) is the ground state FCI density obtained in the presence of the electric field of
strength ϵ. The corresponding non-self-consistent basis-set corrected dipole moment is thus

dB ≈ dBFCI + d̄B, (3.8)

where

d̄B = −
dĒB[nB

FCI
(ϵ)]

dϵ

∣∣∣∣∣
ϵ=0

(3.9)

is the non-self-consistent basis-set correction to the dipole moment.
As obtaining both the dipole moment and the density at FCI level is often computationally

prohibitive, we follow Ref. [18] and approximate the FCI energy by the CCSD(T) energy and
the FCI density by the HF density (in the presence of the electric field)

EB0 (ϵ) ≈ EB
CCSD(T)

(ϵ) + ĒB[nBHF(ϵ)]. (3.10)

Within these approximations, the basis-set corrected dipole moment in Eq. (3.8) becomes

dB ≈ dB
CCSD(T)

+ d̄B, (3.11)

where dB
CCSD(T)

is the dipole moment at the CCSD(T) level and the basis-set correction d̄B is

d̄B = −
dĒB[nB

HF
(ϵ)]

dϵ

∣∣∣∣∣
ϵ=0
. (3.12)
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We approximate the basis-set correction functional ĒB[n] with the so-called (spin-dependent)
PBEUEG energy functional introduced in Ref. [18] where the local range-separation parameter
µB(r) is obtained using the HF wave function in the basis set B as proposed in Refs. [15] and [18].
The results obtained with Eq. (3.11) with the PBEUEG approximation for ĒB[n] evaluated at
the HF density will be referred to as CCSD(T)+PBEUEG.

In practice, we calculate the CCSD(T) dipole moment and the basis-set correction to the
dipole moment using a finite-difference approximation for the energy derivatives with respect to
the electric field

dB
CCSD(T)

≃ −

EB
CCSD(T)

(ϵ) − EB
CCSD(T)

(−ϵ)

2ϵ
, (3.13)

and

d̄B ≃ −
ĒB

[
nB
HF

(ϵ)
]
− ĒB

[
nB
HF

(−ϵ)
]

2ϵ
, (3.14)

using a finite field strength of ϵ = 10−4 a.u., as suggested in Ref. [23].

3.3 Computational details

The computation of the basis-set correction to the dipole moment d̄B were performed using
the Quantum Package program [26] and the CCSD(T) dipole moment were obtained with the
Gaussian program [27]. We used the augmented Dunning basis sets (Refs. [28, 29]) aug-cc-
pVXZ (abbreviated as AVXZ in the tables and figures of the paper) where X is the cardinal
number of the basis set X ∈ {D,T,Q, 5}. As no core-valence functions are used, the frozen-core
approximation is used throughout this paper where the 1s orbital is kept frozen for the elements
from Li to F.

The tests are done on a set of n = 14 molecules among which six open-shell molecules, for
which we use restricted open-shell CCSD(T) (ROCCSD(T)) energies and restricted open-shell
HF (ROHF) densities, and eight closed-shell molecules. Experimental geometries used for the
computations are taken from Ref. [25] for the entire set except in the case of BH and FH for
which the geometries are taken from Ref. [23]. We also report the results obtained in Ref. [16] for
the BH, FH, CH2, and H2O molecules using the self-consistent formalism [Eq. (3.6)] at near-FCI
level in order to compare with the present non-self-consistent formalism.

The accuracy of the dipole moments obtained with a given basis set and a given level of
approximation is evaluated with respect to the CBS limit of the CCSD(T) dipole moments,
dCBS
CCSD(T)

, which are evaluated as in Ref. [23]. In particular, the CBS results are computed as

follows
dCBS
CCSD(T) = dCBS

HF + dCBS
c , (3.15)

where dCBS
c is the CBS limit of the correlation contribution to the CCSD(T) dipole moment

which is computed using the following two-point X−3 extrapolation formula

dCBS
c =

dX
c X3 − d(X-1)

c (X − 1)3

X3 − (X − 1)3 , (3.16)

with
dX
c = dX

CCSD(T) − dX
HF, (3.17)

where dX
c and dX

HF are the correlation and HF contributions, respectively, to the CCSD(T) dipole
moment using the aug-cc-pVXZ basis set. In the present calculations, we evaluate Eq. (3.16)
at X = 5 and we estimate the CBS limit of HF dipole moment dCBS

HF in Eq. (3.15) simply by
using the HF dipole moment in the aug-cc-pV5Z basis set. For all the systems studied here, the
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HF dipole moments are converged with an accuracy better than 0.001 a.u. (as measured by the
difference between the aug-cc-pVQZ and aug-cc-pV5Z dipole moments).

At a given level of calculation in a basis set B we report the error on the dipole moment with
respect to the CBS reference ∆B = dB − dCBS

CCSD(T)
and the relative error ∆B

rel
= ∆B/dCBS

CCSD(T)
. To

statistically analyze the results, we also calculate the normal distribution function of the errors
for a given basis set B,

ρ(∆B) =
1

∆B
std

√
2π

exp

−1
2

∆B − ∆̄B
∆B
std

2 , (3.18)

where ∆̄B = (
∑n

i=1 ∆
B
i )/n is the mean error (ME) and ∆B

std
=

√∑n
i=1(∆Bi − ∆̄

B)2/(n − 1) is the

root-mean-square deviation (RMSD).

3.4 Results and discussion
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Figure 3.1: (a) CCSD(T) and (b) CCSD(T)+PBEUEG errors on the dipole moments of 14
molecules compared to CCSD(T)/CBS reference values. The green area indicates an error of
±0.001 a.u..

In Table 3.1, we report the dipole moments at various levels of approximations (HF, CCSD(T),
CCSD(T) + PBEUEG) with different basis sets, as well as the CCSD(T)/CBS reference values,
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Figure 3.2: (a) CCSD(T) and (b) CCSD(T)+PBEUEG relative errors on the dipole moments
of 14 molecules compared to CCSD(T)/CBS reference values. The green area indicates an error
of ±1%.

for the set of 14 molecules. Note the wide range of magnitudes of the dipole moments (from
0.04485 a.u. for CO to 2.78718 a.u. for LiN). The mean error (ME), mean absolute error (MAE),
mean absolute relative error (MARE), maximal absolute error (MAX), and root-mean-square
deviation (RMSD) obtained with CCSD(T) and CCSD(T)+PBEUEG are reported in Table 3.2.
The graphical representations of this data are provided in Figs. 3.1 and 3.2 for the errors and
relative errors, and in Fig. 3.3 for the normal distributions of errors.

Analyzing first the results at the CCSD(T) level in Table 3.2, one can notice that, as expected,
the ME and MAE systematically decrease with the size of the basis set. Moreover, as noted
in previous studies [18], not only the average values of the errors but also the RMSD tends to
decrease with the basis-set size. Nevertheless, the improvement of the results is rather slow as a
MAE below 0.001 a.u. is not reached even with the aug-cc-pV5Z basis set, illustrating the slow
convergence of properties with respect to the basis set at the CCSD(T) level. Regarding the
relative errors in Fig. 3.2, not surprisingly, the largest errors with respect to the CBS reference
come from the molecules with smallest dipole moments (i.e. CO and BeH). More quantitatively,
an aug-cc-pVQZ basis set is needed to obtain a MARE smaller than 1%.

Going from CCSD(T) to CCSD(T)+PBEUEG, one observes a systematic decrease of the
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Figure 3.3: (a) CCSD(T) and (b) CCSD(T)+PBEUEG normal distribution of errors on the
dipole moments of 14 molecules compared to CCSD(T)/CBS reference values. The green area
indicates an error of ± 0.001 a.u..

MAE, ME, MARE, and RMSD. Focusing on the MAE, an error below 0.001 a.u. is reached
with the aug-cc-pVQZ basis set, whereas such an accuracy is not even reached at the CCSD(T)
level with the aug-cc-pV5Z basis set. Qualitatively, for the aug-cc-pVTZ basis set and larger
basis sets, the MAEs obtained with CCSD(T)+PBEUEG with a basis set of cardinal number X
are comparable to the MAEs obtained with CCSD(T) with a basis set of cardinal number X+1.
Regarding the MARE, an error below 1% is reached with CCSD(T)+PBEUEG already with the
aug-cc-pVTZ basis set. One nevertheless observes that the effects of the basis-set correction on
the RMSD is very weak. From the plots of Fig. 3.1 one notes that even if the basis-set correction
systematically improves the results for the aug-cc-pVTZ basis set, its effect is less impressive
when there is both a large error and a large dipole moment (i.e. for BN, BO, and LiN).

In order to further demonstrate the validity of the different approximations leading to the
CCSD(T) + PBEUEG method, we conclude this study by a comparison with the self-consistent
basis-set correction formalism of Ref. [16], as well as different flavors of non-self-consistent ap-
proximations. In Ref. [16], the self-consistent method referred to as SC CIPSI+PBEUEG was
introduced, which can be considered as the nearly exact theory within our framework thanks
to the use of near-FCI (CIPSI, see [26] and references therein) wave functions. In all the cal-
culations reported below, the absolute value of the second-order perturbative contribution to
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the energy in the CIPSI calculations is below 10−4 a.u., which implies that the CIPSI energy
and density can indeed be considered as near-FCI quantities. We also consider two differ-
ent levels of non-self-consistent approximations: (i) CIPSI+PBEUEG@CIPSI where the CIPSI
energy is corrected with the PBEUEG functional evaluated at the CIPSI density, and (ii)
CCSD(T)+PBEUEG@CIPSI where the CIPSI energy is approximated by the CCSD(T) energy
but the PBEUEG functional is still evaluated at the CIPSI density. Therefore, we have a hier-
archy of approximations for the basis-set correction method using the PBEUEG functional: SC
CIPSI+PBEUEG as the exact self-consistent theory, then CIPSI+PBEUEG@CIPSI as the exact
non-self-consistent theory, then CCSD(T)+PBEUEG@CIPSI where only the WFT energy part is
approximated with respect to CIPSI+PBEUEG@CIPSI, and finally CCSD(T)+PBEUEG where
both theWFT energy and the density are approximated with respect to CIPSI+PBEUEG@CIPSI.

We report in Table 3.3 the results obtained with these different levels of theory for the dipole
moments of the BH, CH2, FH, and H2O molecules. The results obtained with the self-consistent
method SC CIPSI+PBEUEG are in close agreement with that obtained with the different non-
self-consistent approximations, the largest discrepancy being less than 0.006 a.u. for BH in
the aug-cc-pVDZ basis set with CCSD(T)+PBEUEG@CIPSI. Comparing the two methods at
the extremities of our hierarchy of approximations, one can notice that the absolute deviation
between CCSD(T)+PBEUEG and SC CIPSI+PBEUEG in a given basis set is never larger than
0.001 a.u. for FH and H2O, and the discrepancy slightly increases up to 0.006 and 0.003 a.u.
in the case of CH2 and BH, respectively. Nevertheless, as originally reported in Ref. [16] and
apparent from Table 3.3, discrepancies of the same order of magnitude also appear between the
uncorrected CIPSI and CCSD(T) results in the case of the CH2 and BH molecules. This suggests
that the main source of differences between the CCSD(T)+PBEUEG and SC CIPSI+PBEUEG
methods actually comes from the parent WFT theory. Focussing now specifically on the effect
of the density in the non-self-consistent basis-set correction, one can notice that the use of
either a HF or CIPSI density does not significantly change the results, as the largest deviation
between CCSD(T)+PBEUEG@CIPSI and CCSD(T)+PBEUEG are about 0.002 a.u. in the
case of CH2 in the aug-cc-pVDZ basis set. These results illustrate the validity of the different
approximations leading to the CCSD(T)+PBEUEG approach and are encouraging considering
that the latter has a much lower computational cost with respect to the self-consistent basis-set
formalism. Indeed, CCSD(T)+PBEUEG relies only on a standard CCSD(T) calculation and HF
calculations for the basis-set correction which is of negligible computational cost with respect to
CCSD(T).
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Table 3.1: HF, CCSD(T), and CCSD(T)+PBEUEG dipole moments in atomic units. For the
open-shell systems, we use the spin-restricted open-shell (RO) version of these methods.

AVDZ AVTZ AVQZ AV5Z CBS

CO
HF -0.10199 -0.10499 -0.10433 -0.10421
CCSD(T) 0.05550 0.05000 0.04600 0.04550 0.04485
CCSD(T) + PBEUEG 0.04398 0.04414 0.04273 0.04360

BeH
ROHF 0.11017 0.11076 0.11199 0.11218
ROCCSD(T) 0.09550 0.09100 0.09050 0.09050 0.09030
ROCCSD(T) + PBEUEG 0.08416 0.08746 0.08941 0.08980

BF
HF 0.34436 0.33390 0.33314 0.33328
CCSD(T) 0.34100 0.32700 0.32300 0.32200 0.32081
CCSD(T) + PBEUEG 0.33287 0.32351 0.32082 0.32068

BH
HF 0.68796 0.68649 0.68494 0.68496
CCSD(T) 0.52950 0.54500 0.54750 0.54850 0.54953
CCSD(T)+PBEUEG 0.54162 0.55002 0.54986 0.54980

CH
ROHF 0.62348 0.62000 0.61871 0.61858
ROCCSD(T) 0.54150 0.54950 0.55150 0.55250 0.55368
ROCCSD(T) + PBEUEG 0.55427 0.55481 0.55405 0.55396

NH
ROHF 0.63850 0.63505 0.63381 0.63384
ROCCSD(T) 0.59350 0.59950 0.60200 0.60350 0.60504
ROCCSD(T) + PBEUEG 0.60792 0.60519 0.60464 0.60506

CH2 (singlet)
HF 0.74877 0.74477 0.74355 0.74353
CCSD(T) 0.65600 0.66000 0.66200 0.66350 0.66510
CCSD(T) + PBEUEG 0.66666 0.66455 0.66420 0.66478

FH
HF 0.75976 0.75751 0.75634 0.75617
CCSD(T) 0.70350 0.70450 0.70700 0.70750 0.70820
CCSD(T) + PBEUEG 0.71371 0.70903 0.70946 0.70900

H2O
HF 0.78671 0.78039 0.77956 0.77956
CCSD(T) 0.72700 0.72400 0.72650 0.72800 0.72957
CCSD(T) + PBEUEG 0.73891 0.72930 0.72912 0.72920

BN
ROHF 1.13451 1.13862 1.13831 1.13840
ROCCSD(T) 0.76250 0.77550 0.78400 0.78650 0.78902
ROCCSD(T) + PBEUEG 0.77517 0.78145 0.78756 0.78846

BO
ROHF 1.17803 1.18533 1.18527 1.18539
ROCCSD(T) 0.88300 0.89550 0.90250 0.90450 0.90647
ROCCSD(T) + PBEUEG 0.89417 0.90153 0.90622 0.90698

LiH
HF 2.37055 2.36235 2.36153 2.36129
CCSD(T) 2.32500 2.31000 2.30800 2.30800 2.30825
CCSD(T)+PBEUEG 2.32501 2.30965 2.30795 2.30802

LiF
HF 2.56111 2.54103 2.53949 2.53905
CCSD(T) 2.50400 2.48300 2.48250 2.48250 2.48297
CCSD(T) + PBEUEG 2.50942 2.48542 2.48367 2.48321

LiN
ROHF 2.90309 2.90379 2.90372 2.90317
ROCCSD(T) 2.74200 2.77300 2.78250 2.78450 2.78718
ROCCSD(T) + PBEUEG 2.75215 2.77714 2.78464 2.78583
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Table 3.2: Mean error (ME), mean absolute error (MAE), mean absolute relative error (MARE),
maximal absolute error (MAX), and root-mean-square deviation (RMSD) (in atomic units) for
the CCSD(T) and CCSD(T)+PBEUEG dipole moments of 14 molecules. See Fig. 3.3 for the
corresponding plots of the normal distributions of errors.

AVDZ AVTZ AVQZ AV5Z

ME
CCSD(T) 0.01336 0.00579 0.00229 0.00122
CCSD(T)+PBEUEG 0.00319 0.00135 0.000004 -0.00012

MAE
CCSD(T) 0.01637 0.00579 0.00233 0.00125
CCSD(T)+PBEUEG 0.01080 0.00258 0.00086 0.00049

MARE (in %)
CCSD(T) 3.9 1.5 0.5 0.3
CCSD(T)+PBEUEG 1.6 0.6 0.4 0.3

MAX
CCSD(T) 0.04518 (LiN) 0.01418 (LiN) 0.00502 (BN) 0.00268 (LiN)
CCSD(T)+PBEUEG 0.03504 (LiN) 0.01004 (LiN) 0.00254 (LiN) 0.00136 (LiN)

RMSD
CCSD(T) 0.01484 0.00432 0.00163 0.00084
CCSD(T)+PBEUEG 0.01464 0.00376 0.00116 0.00063
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Table 3.3: Dipole moments obtained with near-FCI (CIPSI) and CCSD(T) calculations,
and with the self-consistent basis-set correction method (SC CIPSI+PBEUEG) of Ref. [16]
and different non-self-consistent basis-set correction methods (CIPSI+PBEUEG@CIPSI,
CCSD(T)+PBEUEG@CIPSI, and CCSD(T)+PBEUEG). Estimated CBS values using
Eq. (3.16) with X = 5 are reported when computations could be done with the aug-cc-pV5Z
basis set. a From Ref. [16]. b Results non available due to the computational requirement.

AVDZ AVTZ AVQZ AV5Z CBS

BH
CIPSIa 0.52782 0.54334 0.54563 0.54691 0.54823
SC CIPSI+PBEUEGa 0.53791 0.54815 0.54790 0.54815
CIPSI+PBEUEG@CIPSI 0.54139 0.54852 0.54795 0.54825

CCSD(T) 0.52950 0.54500 0.54750 0.54850 0.54953
CCSD(T)+PBEUEG@CIPSI 0.54307 0.55023 0.54988 0.54996
CCSD(T)+PBEUEG 0.54162 0.55002 0.54986 0.54980

CH2 (singlet)
CIPSIa 0.65120 0.65446 0.65643 0.65780 0.65926
SC CIPSI+PBEUEGa 0.66249 0.65958 0.65890 —b

CIPSI+PBEUEG@CIPSI 0.66382 0.66029 0.65952 —b

CCSD(T) 0.65600 0.66000 0.66200 0.66350 0.66510
CCSD(T)+PBEUEG@CIPSI 0.66874 0.66556 0.66448 —b

CCSD(T)+PBEUEG 0.66666 0.66455 0.66420 0.66478

FH
CIPSIa 0.70249 0.70406 0.70662 —b —b

SC CIPSI+PBEUEGa 0.71326 0.70873 —b —b

CIPSI+PBEUEG@CIPSI 0.71329 0.71188 —b —b

CCSD(T) 0.70350 0.70450 0.70700 0.70750 0.70820
CCSD(T)+PBEUEG@CIPSI 0.71425 0.71209 —b —b

CCSD(T)+PBEUEG 0.71371 0.70903 0.70946 0.70900

H2O
CIPSIa 0.72610 0.72294 —b —b —b

SC CIPSI+PBEUEGa 0.73809 0.72818 —b —b

CIPSI+PBEUEG@CIPSI 0.73656 0.72762 —b —b

CCSD(T) 0.72700 0.72400 0.72650 0.72800 0.72957
CCSD(T)+PBEUEG@CIPSI 0.73734 0.72819 0.72872 —b

CCSD(T)+PBEUEG 0.73891 0.72930 0.72912 0.72920

3.5 Conclusion

In the present study, we have proposed an extension of the recently introduced non-self-consistent
basis-set correction of CCSD(T) ground-state energies [18] to the computation of properties as
energy derivatives, focussing here on the dipole moment. The theory relies on the originally pro-
posed DFT-based basis-set correction approach [15] which accelerates the basis-set convergence
to the unaltered CBS limit. Numerical tests on a set of 14 molecules (including both closed and
open-shell) with dipole moments spanning two orders of magnitude have been carried in order
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to obtain a representative study of the performance of the present approach.
Although this study aims at correcting the basis-set convergence of the CCSD(T) dipole

moments, it can be formally generalized to any wave-function method and any energy derivative
with respect to a static perturbation. In its present form, the basis-set correction relies only on
HF calculations, which makes the basis-set correction essentially computationally free compared
to the correlated wave-function calculation. This approach is an alternative to the recently
proposed self-consistent basis-set correction [16] which allows for the computation of first-order
properties through expectation values over an energy-minimized wave function. In contrast with
the self-consistent formalism, the present approach does not require a variational wave function,
which considerably extends the domain of application of the basis-set correction.

Regarding now the numerical results, we have shown that the present approach significantly
accelerates the basis-set convergence of CCSD(T) dipole moments. Typically, the error obtained
in a basis set of cardinal X with the basis-set correction is comparable to the error of the
uncorrected CCSD(T) calculation with cardinal number X+1. We also compared the present
non-self-consistent basis-set correction with the self-consistent formalism of Ref. [16] and showed
that the two theories agree within a few milli-atomic units, illustrating the soundness of the
approximations leading to the non-self-consistent approach.

Considering the generality, the global performance, and the small computational cost of the
present approach, it could be an alternative to explicitly correlated approaches for calculation
of molecular properties. In the near future we will extend the method to higher-order static
properties, such as static polarizabilities, and also to more general dynamic properties, leading
in particular to the possibility of accelerating the basis-set convergence of excitation energies.

Supplementary information

The preset work comes with supplementary information containing: i) all the geometries of the
molecules studied here, ii) a graphical representation of the convergence of the dipole moment at
CCSD(T) and CCSD(T)+PBEUEG levels for each system studied, iii) the absolute and relative
errors with respect to the estimated CBS and the CCSD(T) and CCSD(T)+PBEUEG levels.
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[11] A. Grüneis, S. Hirata, Y.-Y. Ohnishi and S. Ten-no, J. Chem. Phys. 146, 080901 (2017).

[12] Q. Ma and H.-J. Werner, WIREs Comput. Mol. Sci. 8, e1371 (2018).

[13] D. P. Tew, W. Klopper, C. Neiss and C. Hattig, Phys. Chem. Chem. Phys. 9, 1921 (2007).

[14] G. M. J. Barca and P.-F. Loos, J. Chem. Phys. 147, 024103 (2017).
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4
Basis-set correction based on density-functional theory:

Rigorous framework for a one dimensional model

This chapter corresponds to the article [D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 156,
044113 (2022)].

We reexamine the recently introduced basis-set correction theory based on density-functional
theory, which consists in correcting the basis-set incompleteness error of wave-function methods
using a density functional. We use a one-dimensional model Hamiltonian with delta-potential
interactions which has the advantage of making easier to perform a more systematic analysis than
for three-dimensional Coulombic systems while keeping the essence of the slow basis convergence
problem of wave-function methods. We provide some mathematical details about the theory
and propose a new variant of basis-set correction which has the advantage of being suited to the
development of an adapted local-density approximation. We show indeed how to develop a local-
density approximation for the basis-set correction functional which is automatically adapted
to the basis set employed, without resorting to range-separated density-functional theory as in
previous works, but using instead a finite uniform electron gas whose electron-electron interaction
is projected on the basis set. The work puts the basis-set correction theory on firmer grounds
and provides an interesting strategy for the improvement of this approach.

4.1 Introduction

In electronic-structure theory of atoms, molecules or solids, one of the main limitations of stan-
dard correlated wave-function computational methods for solving the Schrödinger equation is
the slow convergence of the energy and other properties with respect to the size of the one-
electron basis set employed (see, e.g., Refs. [1–4]). This slow basis convergence originates from
the singular behavior of the repulsive Coulomb electron-electron interaction at small interelec-
tronic distances, which creates a depletion in the wave function with a characteristic derivative
discontinuity at electron-electron coalescence — the infamous electron-electron cusp [5,6].

The two main approaches for dealing with this problem are (i) extrapolation to the complete-
basis-set limit by using increasingly large basis sets [1, 2], and (ii) explicitly correlated methods
which incorporate in the wave function a correlation factor reproducing the electron-electron
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cusp (see, e.g., Ref. [7]). Recently, some of the present authors introduced an alternative basis-
set correction scheme based on density-functional theory (DFT) [8]. This latter scheme consists
in correcting the energy calculated by a wave-function method with a finite basis set by a density
functional incorporating the short-range electron correlation effects missing in the basis set. This
basis-set correction scheme was further developed and tested in Refs. [9–15], demonstrating that
it successfully accelerates the basis convergence of wave-function methods for various properties
and systems.

The advantages of the basis-set correction scheme is its conceptual simplicity and computa-
tional efficiency. In practice, however, the limpidity of this approach is somewhat diminished by
the fact that in all previously cited works the basis-set correction functional was approximated
by short-range correlation functionals borrowed from range-separated DFT [16–20]), relying on
an approximate mapping between the basis-set correction theory and range-separated DFT.

In the present work, we reexamine more closely the basis-set correction theory. For this,
we use a one-dimensional (1D) model Hamiltonian with delta-potential interactions [21–24]
which has the advantage of making easier to perform a more systematic analysis than for three-
dimensional (3D) Coulombic systems, while keeping the essence of the slow basis convergence
problem of wave-function methods. After introducing the 1D model and discussing its rele-
vance in Section 5.3, we present the basis-set correction theory in some mathematical details
in Section 4.3. In particular, we introduce a new variant of basis-set correction which has the
advantage of being suited for development of an adapted local-density approximation (LDA).
In Section 4.4, we show indeed how to develop a LDA for the basis-set correction functional
which is automatically adapted to the basis set employed without resorting to range-separated
DFT but using instead a finite uniform electron gas (UEG) whose electron-electron interaction
is projected on the basis set. Section 4.4.3 contains our conclusion and outlook. Hartree atomic
units (a.u.) are used throughout this work.

4.2 One-dimensional model system

4.2.1 Description of the model

We consider N = 2 electrons in a 1D He-like atom with delta-potential interactions described by
the Hamiltonian [21–24]

H = T +Wee + Vne, (4.1)

where

T = −
1
2

N∑
i=1

∂2

∂x2
i

, Wee = δ(x1 − x2), Vne = −Z
N∑

i=1

δ(xi) (4.2)

are the kinetic-energy operator, the Dirac-delta electron-electron interaction, and the Dirac-
delta nucleus-electron potential with nuclear charge Z = 2, respectively. Since we will be only
interested in the spin-singlet ground state, we can ignore spin and antisymmetry, and thus
work on the one-electron Hilbert space h = L2(R,C) and the two-electron (non-antisymmetrized)
tensor-product Hilbert space H = h ⊗ h . The ground-state energy can be expressed as

E0 = min
Ψ∈W
⟨Ψ,HΨ⟩, (4.3)

whereW is the set of all admissible wave functions

W =
{
Ψ ∈ H | Ψ ∈ H1(R2,C), ⟨Ψ,Ψ⟩ = 1

}
, (4.4)

82



where H1(R2,C) = { f ∈ L2(R2,C) | ∂i f ∈ L2(R2,C), i = 1, 2} is the first-order Sobolev space and
⟨ , ⟩ designates the L2 inner product.

The ground state of this 1D He-like atom with delta-potential interactions can be considered
as a model for the ground state of the real 3D He atom. Indeed, it can be shown that the ground
state of a generalization to arbitrary dimension D of the electronic Hamiltonian of the He atom
with Coulomb-potential interactions exactly reduces for D = 1, after appropriate scaling of the
energies and distances, to the ground state of the Hamiltonian in Eq. (4.1) [23, 25–28]. Our
main interest in this model is that it gives an electron-electron cusp (or derivative discontinuity)
condition identical to the familiar 3D one [5,6], i.e. for small interelectronic distances x12 = x1−x2
the exact ground-state wave function behaves as

Ψ0(x1, x2) = Ψ0(x1, x1)
(
1 +

1
2
|x12| + O(x2

12)
)
. (4.5)

When using a finite one-electron basis set, we thus expect a slow convergence with the basis
size very similar to the slow convergence observed in 3D quantum systems with the Coulomb
electron-electron interaction. This is why we prefer this model to other 1D quantum systems
(see, e.g., Refs. [29,30]).

Another neat fact about the present model is that it can be solved analytically at the Hartree-
Fock (HF) level [31]. The total HF ground-state energy is

EHF = −Z2 +
Z
2
−

1
12
= −3.083333... a.u., (4.6)

and the HF (doubly) occupied spatial orbital is

∀x ∈ R, ϕ1(x) = 2β
√
γ

e−β|x|

1 − γ e−2β|x| , (4.7)

with β = Z − 1/2 = 3/2 and γ = 1/(4Z − 1) = 1/7. The exact ground-state energy cannot
be calculated analytically but has been accurately estimated numerically [21, 24] to be E0 =

−3.155390 a.u..

4.2.2 Full-configuration interaction in a basis set

We now consider full-configuration-interaction (FCI) calculations in a finite one-electron basis
set B ⊂ H1(R,C). To have a systematically improvable basis set, we use Hermite (or Hermite-
Gaussian) basis functions

∀x ∈ R, f αn (x) = Nα
n Hn(

√
2αx) e−αx2

, (4.8)

where n is a natural number, Hn are the Hermite polynomials, Nα
n = (2nn!)−1/2(2α/π)1/4 is the

normalization factor, and α > 0 is a real constant. It is well known that the set { f αn }n=0,...,nmax

converges to a complete orthonormal basis of L2(R,C) in the limit nmax → ∞ for any fixed
exponent α. We deliberately use the same exponent in all basis functions, namely α = 11.5,
instead of multiple exponents in order to avoid optimizing them. Except for that, this basis set
is quite similar to the Gaussian-type-orbital basis sets widely used in quantum chemistry. Since
we are not interested in the convergence of the HF energy with this basis set (which is slow, see
Appendix 4.5.1) but only in the convergence of the FCI correlation energy, we add the exact
occupied HF orbital ϕ1 given in Eq. (4.7) to the basis set. Our final basis set is thus

B =
{
ϕ1

}
∪

{
f αn

}
n=0,...,nmax

≡
{
χµ

}
µ=1,...,M

, (4.9)

and contains M = nmax + 2 basis functions: χ1 = ϕ1, χ2 = f α0 , ..., χM = f αnmax
.
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Figure 4.1: FCI ground-state energy EB
FCI

[Eq. (4.10)] of the 1D He-like atom as a function of
the basis size nmax. The exact energy is taken from Ref. [24].

We introduce now hB = span(B) as the M-dimensional one-electron Hilbert space spanned
by this basis set B, and HB = hB⊗hB the corresponding two-electron Hilbert space of dimension
M2. The FCI ground-state energy for this basis set B is

EBFCI = min
Ψ∈WB

⟨Ψ,HΨ⟩, (4.10)

whereWB is the set of normalized wave functions restricted to HB

WB =
{
Ψ ∈ HB | ⟨Ψ,Ψ⟩ = 1

}
. (4.11)

In practice, we proceed as follows. For each basis size nmax, we first perform a HF calcu-
lation [3, 32]. The nucleus-electron integrals are just ⟨χµ, vneχν⟩ = −Zχµ(0)χν(0), and the ki-
netic integrals ⟨χµ, tχν⟩ = (1/2)

∫
R
χ′µ(x)χ′ν(x)dx and the two-electron integrals ⟨χµχν,Weeχλχσ⟩ =∫

R
χµ(x)χν(x)χλ(x)χσ(x)dx are calculated by Romberg numerical integration [33]. We then use

the obtained HF orbitals {ϕi}i=1,...,M to expand the FCI ground-state wave function as

ΨBFCI(x1, x2) =
M∑

i=1

M∑
i=1

ci, jϕi(x1)ϕ j(x2). (4.12)

The FCI coefficients ci, j and the associated FCI ground-state energy EB
FCI

are found by diago-
nalization of the Hamiltonian. Parity inversion symmetry is exploited in all our calculations.

In Fig. 4.1, we report the FCI ground-state energy EB
FCI

as a function of the basis size nmax.
We observe a quite slow convergence of EB

FCI
with nmax toward the exact ground-state energy

E0. A numerical fit from nmax = 50 and 70 gives the following power-law convergence

EBFCI ∼
nmax→∞

E0 +
A

nb
max

, (4.13)

gives A ≈ 0.077 a.u. and b ≈ 0.68. Equivalently, in terms of the number of basis functions M,
this convergence law can be stated as 1/Mb. Note that since our basis set includes the exact
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Figure 4.2: FCI correlation pair density ρB2,c(x1, x2) of the 1D He-like atom at x1 = 0 as a function
of x2 for different basis size nmax.

HF occupied orbital this slow convergence is entirely due to the correlation energy. According
to the analysis given in Appendix 4.5.2, we theoretically expect b = 0.5. The difference most
likely means that larger values of nmax are needed to reach the asymptotic regime. Note that
for the 3D Coulomb case it is well known that the correlation energy exhibits a cubic-law
convergence with respect to either the maximal angular momentum or the maximal principal
quantum number of the basis set, or equivalently a 1/M convergence law in terms of the number
of basis functions [3, 34]. In the present work, the use of a basis of Hermite functions with a
single exponent thus leads to an even slower convergence rate.

To illustrate further the slow basis convergence, we also calculate the FCI correlation pair
density

ρB2,c(x1, x2) = 2
(
|ΨBFCI(x1, x2)|2 − |ΦHF(x1, x2)|2

)
, (4.14)

where ΦHF(x1, x2) = ϕ1(x1)ϕ1(x2) is the HF wave function. In Fig. 4.2, this quantity is plotted
with respect to the second electron coordinate x2 for a fixed value of the first electron coordinate
x1 = 0. The convergence of ρB2,c(x1, x2) with nmax is again slow and reminiscent of the well-known
slow basis convergence of the correlation pair density for the 3D Coulomb electron-electron
interaction (see, e.g., Refs. [3, 35, 36]). Note that the small derivative discontinuity seen on all
the curves of Fig. 4.2 at x2 = 0 is due to the fact that we include in our basis set the exact HF
orbital in Eq. (4.7) which has itself an electron-nucleus cusp, namely ϕ1(x) = ϕ1(0)(1−Z|x|+O(x2)).
The electron-electron cusp condition in Eq. (4.5) is only recovered for large nmax.

In conclusion, the present 1D model adequately captures the main characteristics of the slow
basis convergence problem of standard quantum-chemistry wave-function methods, and it is thus
appropriate for applying our basis-set correction approach.

4.3 Basis-set correction theory

We now develop the basis-set correction theory based on DFT for the present 1D model which
aims at removing the basis-set incompleteness error in the FCI ground-state energy. This requires
to develop an extension of standard DFT from the usual complete-basis-set setting to the case
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of the incomplete finite one-electron basis set B. In such a finite basis set, it is known that the
original Hohenberg-Kohn theorem [37] does not hold anymore [38–40], in the sense that there is
an infinite number of local potentials which give, after projection in a finite basis set, the same
ground-state density [41]. However, we will show that we can still define density functionals
associated with a finite basis set.

4.3.1 Density-functional theory for the one-dimensional model

We start by reviewing some useful definitions of standard DFT specialized to the 1D model.
For mathematically oriented reviews of DFT, see for instance Refs. [42–49], and in particular
Ref. [50] which encompasses the 1D case.

Working on the same Hilbert space H as before, we now consider the following 1D Hamilto-
nian for N = 2 electrons with a general external potential v

H[v] = T +Wee + V, (4.15)

where again T = −(1/2)
∑N

i=1 ∂
2/∂x2

i and Wee = δ(x1 − x2), and V =
∑N

i=1 v(xi) is now a general
external potential operator. We will still take admissible wave functions to be in the spaceW
given in Eq. (4.4). The convex set of densities representable by a wave function Ψ ∈ W, the
so-called N-representable densities, is then [42,50]

R = {ρ | ∃ Ψ ∈ W, ρΨ = ρ}

=

{
ρ ∈ L1(R) | ρ ≥ 0,

∫
R
ρ(x)dx = N,

√
ρ ∈ H1(R)

}
,

(4.16)

where ρΨ(x1) = N
∫
R
|Ψ(x1, x2)|2dx2 is the density of the wave function Ψ. We have R ⊂ X where X

is the Banach space X = C0(R)∩ L1(R) with C0(R) the space of continuous functions vanishing at
infinity. Therefore, the space of external potentials v that we can consider is the continuous dual
space of X, i.e. V = X′ = M(R) + L∞(R) where M(R) is the space of bounded Radon measures.
Note that the setV includes the external potential considered in Section 5.3, i.e. vne(x) = −Zδ(x).
For v ∈ V, we then define the ground-state energy as

E0[v] = inf
Ψ∈W
⟨Ψ,H[v]Ψ⟩. (4.17)

The Levy-Lieb density functional [42, 51] is defined as a constrained-search over wave func-
tions yielding the density ρ

∀ρ ∈ R, F[ρ] = min
Ψ∈Wρ

⟨Ψ, (T +Wee)Ψ⟩, (4.18)

whereWρ = {Ψ ∈ W | ρΨ = ρ}. It gives the ground-state energy as

E0[v] = inf
ρ∈R

(F[ρ] + (v, ρ)) , (4.19)

where we have introduced the notation (v, ρ) =
∫
R

v(x)ρ(x)dx. If a minimizing density ρ0 exists
in Eq. (4.19) then it is an exact ground-state density for the potential v.

One can also define the Lieb density functional [42], which is the Legendre–Fenchel convex-
conjugate of E0[v]

∀ρ ∈ R, FL[ρ] = sup
v∈V

(E0[v] − (v, ρ)) . (4.20)
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Just like the Levy-Lieb functional F, the Lieb functional FL gives the exact ground-state en-
ergy as E0[v] = infρ∈R (FL[ρ] + (v, ρ)). In general, the functionals F and FL are different, the
Lieb functional being in fact the lower semi-continuous convex envelope (lscv) of the Levy-Lieb
functional, i.e.

FL = lscv(F) ≤ F. (4.21)

It turns out that the Lieb functional can also be expressed as a generalization of the Levy-
Lieb functional in which the constrained search is extended from pure-state wave functions to
ensemble density matrices [42, 52]. This implies that F[ρ] = FL[ρ] for densities ρ which are
densities of a non-degenerate ground state of the Hamiltonian H[v] for some potential v. In the
present case of two spin-singlet electrons, the ground state is always non-degenerate and thus
the Levy-Lieb and Lieb functionals are identical, i.e. F = FL.

4.3.2 First variant of basis-set correction

The first variant of basis-set correction corresponds to the one introduced for the 3D Coulombic
case in Ref. [8] and further developed in Refs. [9–12, 14]. We consider the Hamiltonian H[v] in
Eq. (4.15) on the two-electron Hilbert space HB associated with the basis set B. For v ∈ V, the
FCI ground-state energy is

EBFCI[v] = min
Ψ∈WB

⟨Ψ,H[v]Ψ⟩, (4.22)

where WB, given in Eq. (4.11), is the set of normalized wave functions restricted to HB. We
define the corresponding Levy-Lieb density functional for the basis set B as

∀ρ ∈ RB, FB[ρ] = min
Ψ∈WB

ρ

⟨Ψ, (T +Wee)Ψ⟩, (4.23)

whereWB
ρ =

{
Ψ ∈ WB | ρΨ = ρ

}
and RB is the set of densities representable by a wave function

Ψ ∈ WB

RB =
{
ρ | ∃ Ψ ∈ WB, ρΨ = ρ

}
. (4.24)

A priori, this set is not convex and not easily characterized. The FCI ground-state energy can
be expressed as

EBFCI[v] = min
ρ∈RB

(
FB[ρ] + (v, ρ)

)
. (4.25)

We now decompose the exact Levy-Lieb density functional F[ρ] in Eq. (4.18) as

∀ρ ∈ RB, F[ρ] = FB[ρ] + ĒB[ρ], (4.26)

where ĒB[ρ] is the complementary basis-set correction density functional

ĒB[ρ] = ⟨Ψ[ρ], (T +Wee)Ψ[ρ]⟩ − ⟨ΨB[ρ], (T +Wee)ΨB[ρ]⟩,

(4.27)

and Ψ[ρ] and ΨB[ρ] are minimizing wave functions in Eqs. (4.18) and (4.23), respectively. Clearly,
sinceWB

ρ ⊂ Wρ, we have ∀ρ ∈ RB, FB[ρ] ≥ F[ρ], and thus ĒB[ρ] ≤ 0. Since the decomposition

in Eq. (4.26) is defined only for ρ ∈ RB, we cannot recover the exact ground-state energy E0[v].
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Instead, we can obtain the following approximate energy obtained by restricting the minimization
in Eq. (4.19) to densities ρ in RB

EB0 [v] = min
ρ∈RB

(F[ρ] + (v, ρ))

= min
ρ∈RB

 min
Ψ∈WB

ρ

⟨Ψ, (T +Wee)Ψ⟩ + ĒB[ρ] + (v, ρ)


= min

Ψ∈WB

(
⟨Ψ, (T +Wee + V)Ψ⟩ + ĒB[ρΨ]

)
, (4.28)

or, designating by ΨB0 ∈ W
B a minimizing wave function in Eq. (4.28),

EB0 [v] = ⟨ΨB0 , (T +Wee + V)ΨB0 ⟩ + ĒB[ρΨB0 ]. (4.29)

It is easy to see that E0[v] ≤ EB0 [v] ≤ EB
FCI

[v]. For a given basis set B, the functional ĒB[ρ]
provides a (self-consistent) basis-set correction to the FCI energy so that EB0 [v] is a better ap-
proximation to E0[v] than EB

FCI
[v] is. Moreover, as the basis set is increased toward completeness,

EB0 [v] should converge much faster to E0[v] than EB
FCI

[v] does, since, roughly speaking, densities
ρ typically converge faster than wave functions Ψ with respect to the basis set.

For simplicity, instead of performing the minimization in Eq. (4.28), one may use a non-self-
consistent approximation consisting in using the FCI ground-state wave function ΨB

FCI
in place

of ΨB0 , giving what we will call a “FCI+DFT” energy

EBFCI+DFT[v] = ⟨ΨBFCI, (T +Wee + V)ΨBFCI⟩ + ĒB[ρΨB
FCI

], (4.30)

which is an upper bound of EB0 [v], i.e. EB
FCI+DFT

[v] ≥ EB0 [v]. Again, as the basis set is increased

toward completeness, EB
FCI+DFT

[v] should converge much faster to E0[v] than EB
FCI

[v] does.
One inconvenience of this basis-set correction scheme is that, for a given finite basis set B, it

does not give the exact ground-state energy, even in principle if we knew the exact complementary
basis-set correction functional ĒB[ρ]. This is due to the fact that FB[ρ] is defined only on the
restricted set of densities RB. Another related inconvenience is that since ĒB[ρ] is defined
only on this restricted set of densities, it is not clear how to define the LDA for it. Defining
the LDA would indeed require to consider uniform densities, but uniform densities are not in
RB. Even though uniform densities are not in R either, they can be approached with densities
from R [53,54], so it would be preferable to have a complementary basis-set correction functional
defined on the entire set R. This would also permit to connect in principle the basis-set correction
scheme to the exact ground-state energy. This is what is achieved by the second variant of basis-
set correction.

4.3.3 Second variant of basis-set correction

For the second variant of basis-set correction, we work on the full Hilbert spaceH (not restricted
to the basis set B), and define the following Hamiltonian

HwB[v] = T +WBee + V, (4.31)

where the kinetic-energy operator T and the external potential operator V are still defined as
before, but the electron-electron interaction operator is now projected in the basis set B

WBee = PBWeePB, (4.32)

where PB is the orthogonal projector onto the basis-set-restricted Hilbert space HB. The no-
tation “wB” is to remind us that only Wee is projected. In fact, WBee is a complicated non-local
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two-electron operator. Using an orthonormal orbital basis {ϕi}i=1,...,M spanning the same space
as B, its integral kernel can be written as

WBee(x1, x2; x′1, x
′
2) =

M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

ϕi(x1)ϕ j(x2) ⟨ϕiϕ j,Weeϕkϕl⟩ ϕ
∗
k(x′1)ϕ∗l (x′2), (4.33)

where ⟨ϕiϕ j,Weeϕkϕl⟩ =
∫
R
ϕ∗i (x)ϕ∗j(x)ϕk(x)ϕl(x)dx are the two-electron integrals in the orbital basis

{ϕi}. For v ∈ V, the associated ground-state energy is

EwB
0 [v] = inf

Ψ∈W
⟨Ψ,HwB[v]Ψ⟩. (4.34)

Clearly, if we were to restrict the minimization in Eq. (4.34) to the set WB, EwB
0 [v] would

reduce to EB
FCI

[v] [Eq. (4.22)]. Therefore, we have EwB
0 [v] ≤ EB

FCI
[v]. Moreover, because Wee is a

positive operator, one would expect that projecting it in a finite basis should typically decrease
the ground-state energy, i.e. EwB

0 [v] ≤ E0[v], but this may not be generally true.
We then define the corresponding Levy-Lieb functional for all densities ρ ∈ R as

∀ρ ∈ R, FwB[ρ] = min
Ψ∈Wρ

⟨Ψ, (T +WBee)Ψ⟩. (4.35)

For the same reasons as before, comparison with Eq. (4.23) shows that, for ρ ∈ RB, FwB[ρ] ≤
FB[ρ]. The ground-state energy EwB

0 [v] can be written as

EwB
0 [v] = inf

ρ∈R

(
FwB[ρ] + (v, ρ)

)
. (4.36)

We now decompose the exact Levy-Lieb density functional F[ρ] as

∀ρ ∈ R, F[ρ] = FwB[ρ] + ĒwB
Hxc[ρ], (4.37)

which defines the complementary Hartree-exchange-correlation (Hxc) basis-set correction func-
tional ĒwB

Hxc
[ρ]. Analogously to what is done in multideterminant range-separated DFT [18, 20,

55–58], the functional ĒwB
Hxc

[ρ] can be decomposed as

ĒwB
Hxc[ρ] = ĒwB

Hx,md[ρ] + ĒwB
c,md[ρ], (4.38)

where ĒwB
Hx,md

[ρ] is the Hartree-exchange (Hx) contribution defined as the expectation value of

the complementary interaction W̄Bee = Wee−WBee over the minimizing multideterminant (md) wave
function ΨwB[ρ] (that we will assume to be unique up to a global phase factor) in Eq. (4.35)

ĒwB
Hx,md[ρ] = ⟨ΨwB[ρ], W̄BeeΨ

wB[ρ]⟩, (4.39)

and ĒwB
c,md

[ρ] is the remaining correlation (c) contribution

ĒwB
c,md[ρ] = ⟨Ψ[ρ], (T +Wee)Ψ[ρ]⟩ − ⟨ΨwB[ρ], (T +Wee)ΨwB[ρ]⟩. (4.40)

Clearly, since Ψ[ρ] minimizes ⟨Ψ, (T +Wee)Ψ⟩, we have ĒwB
c,md

[ρ] ≤ 0. Since the decomposition in
Eq. (4.37) is defined for all densities ρ ∈ R, we can obtain the exact ground-state energy as

E0[v] = inf
ρ∈R

(
FwB[ρ] + ĒwB

Hxc[ρ] + (v, ρ)
)

= inf
ρ∈R

(
min
Ψ∈Wρ

⟨Ψ, (T +WBee)Ψ⟩ + ĒwB
Hxc[ρ] + (v, ρ)

)
= inf

Ψ∈W

(
⟨Ψ, (T +WBee + V)Ψ⟩ + ĒwB

Hxc[ρΨ]
)
. (4.41)
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For potentials v for which there exists a minimizing wave function ΨwB
0 ∈ W in Eq. (4.41), this

wave function yields a exact ground-state density ρ0, i.e. ρΨwB
0
= ρ0. It is in fact the minimizing

wave function in Eq. (4.35) giving the density ρ0, i.e. Ψ
wB
0 = ΨwB[ρ0]. Using this fact and

combining Eqs. (4.41), (4.38), and (4.39), we can express the exact ground-state energy as

E0[v] = ⟨ΨwB
0 , (T +Wee + V)ΨwB

0 ⟩ + ĒwB
c,md[ρΨwB

0
]. (4.42)

Thus, this second variant of basis-set correction leads to an energy expression similar to Eq. (4.29)
obtained for the first variant of basis-set correction, with the functional ĒwB

c,md
[ρ] replacing the

functional ĒB[ρ] and the wave function ΨwB
0 replacing the wave function ΨB0 . One advantage of

this second variant of basis-set correction is that it gives the exact ground-state energy E0[v].
The price to pay is that the minimization in Eq. (4.41) is more complicated than in Eq. (4.28)
since it is over general wave functions Ψ ∈ W and not simply wave functions restricted toWB.
Moreover, the minimization involves not only the functional ĒwB

c,md
[ρ] but also the functional

ĒwB
Hx,md

[ρ] in Eq. (4.39) which did not appear in the first variant of basis-set correction.
Similarly to the first variant of basis-set correction, we can define a non-self-consistent ap-

proximation consisting in using the FCI ground-state wave function ΨB
FCI

in place of ΨwB
0 in

Eq. (4.42), giving an alternative “FCI+DFT” energy

EwB
FCI+DFT[v] = ⟨ΨBFCI, (T +Wee + V)ΨBFCI⟩ + ĒwB

c,md[ρΨB
FCI

], (4.43)

which is quite similar but not equivalent to Eq. (4.30) since the complementary basis-set correc-
tion functional is different. Like for the first variant of basis-set correction, when the basis set is
increased toward completeness, EwB

FCI+DFT
[v] should converge much faster to E0[v] than EB

FCI
[v]

does.
Finally, we define the Lieb density functional for this second variant of basis-set correction

∀ρ ∈ R, FwB
L [ρ] = sup

v∈V

(
EwB

0 [v] − (v, ρ)
)
. (4.44)

Like in standard DFT, by the theory of Legendre–Fenchel transformations, this Lieb functional
FwB
L

must be the lower semi-continuous convex envelope of the Levy-Lieb functional FwB, i.e.

FwB
L = lscv(FwB) ≤ FwB. (4.45)

One could also write down this Lieb functional as a constrained-search over ensemble density
matrices, and again we should have FwB[ρ] = FwB

L
[ρ] for densities ρ which are densities of a non-

degenerate ground state of the Hamiltonian HwB[v] for some potential v. As already mentioned,
in the present case of two spin-singlet electrons, the ground state is always non-degenerate and
thus the Levy-Lieb and Lieb functionals are identical, i.e. FwB = FwB

L
. As we will see in

Section 4.4.2, the definition in Eq. (4.44) is useful to calculate the functional in practice since
it involves a unconstrained maximization over potentials v whereas the definition in Eq. (4.35)
involves a potentially more complicated constrained minimization over wave functions yielding
a fixed density ρ.

In summary, the advantage of the second variant of basis-set correction over the first variant
is that it is connected with the exact ground-state energy [via Eq. (4.41) or (4.42)] and that it
involves a complementary basis-set correction functional which is defined for all densities in R.
In the next section, we exploit this in order to construct a LDA for the functional ĒwB

c,md
[ρ].

4.4 Local-density approximation from finite uniform-electron gas

In standard DFT, the LDA is based on the infinite UEG. Essentially, for the 1D case, cal-
culating the energy per particle of the infinite UEG amounts to plugging an uniform density
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ρunif : x 7→ ρ0 ∈ (0,+∞) in the density functional F[ρ] and taking the thermodynamic limit,
i.e. limN→∞ F[ρunif]/N. One difficulty is that a non-zero uniform density function ρunif defined
on the entire real line R is obviously not N-representable. For the 3D case, the infinite UEG
was rigorously mathematically defined in Refs. [53, 54] by first convoluting the uniform density
with a function of compact support (so that the convoluted density is N-representable) and then
taking the thermodynamic limit N → ∞ (after removing the Hartree energy which is divergent
for the Coulombic 3D case). Here, in the spirit of Ref. [59], we will instead consider a finite
UEG, i.e., for a finite electron number N.

4.4.1 Finite uniform-electron gas for the complete-basis-set case

To define a 1D finite UEG, we generalize the standard DFT of Section 4.3.1 from the real line
R to a finite interval Ωa = (−a/2, a/2) of length a. Hence, the one-electron Hilbert space is
ha = L2(Ωa,C) and the two-electron Hilbert space is Ha = ha ⊗ ha. For external local potentials
v ∈ Va (where the space Va will be specified below) and N = 2 electrons, we define the ground-
state energy of the Hamiltonian H[v] = T +Wee + V [Eq. (4.15)] restricted to the Hilbert space
Ha as

E0,a[v] = inf
Ψ∈Wa

⟨Ψ,H[v]Ψ⟩a, (4.46)

with the set of admissible wave functions

Wa =
{
Ψ ∈ Ha | Ψ ∈ H1

per(Ω
2
a,C), ⟨Ψ,Ψ⟩a = 1

}
, (4.47)

where ⟨Ψ1,Ψ2⟩a =
∫
Ω2

a
Ψ∗1(x1, x2)Ψ2(x1, x2)dx1dx2 is the inner product on Ha and H1

per designates

the set of functions in H1 with periodic boundary conditions on the domain (see, e.g., Ref. [60]),
which can be defined as H1

per(Ω
2
a,C) =

{
Ψ|Ω2

a
| Ψ ∈ H1

loc
(R2,C), Ψ is aZ2-periodic

}
where Ψ|Ω2

a
des-

ignates the restriction of Ψ to Ω2
a and H1

loc
(R2,C) is the local first-order Sobolev space.

The corresponding Levy-Lieb density functional is

∀ρ ∈ Ra, Fa[ρ] = min
Ψ∈Wa,ρ

⟨Ψ, (T +Wee)Ψ⟩a, (4.48)

whereWa,ρ = {Ψ ∈ Wa, ρΨ = ρ} and Ra is the set of N-representable densities on Ωa

Ra = {ρ | ∃ Ψ ∈ Wa, ρΨ = ρ}

=

{
ρ ∈ L1(Ωa) | ρ ≥ 0,

∫
Ωa

ρ(x)dx = N,
√
ρ ∈ H1

per(Ωa)
}
,

(4.49)

and H1
per(Ωa) = { f ∈ H1(Ωa) | limx→−a/2 f (x) = limx→a/2 f (x)}. We have Ra ⊂ Xa where Xa is

the Banach space Xa = Cper(Ωa)∩ L1(Ωa) with Cper(Ωa) the space of continuous functions on Ωa

with periodic boundary conditions. Therefore, the space of external potentials to consider is the
continuous dual space of Xa, i.e. Va = X

′
a = Mper(Ωa) + L∞(Ωa) where Mper(Ωa) is the space of

bounded Radon measures on Ωa with periodic boundary conditions. In the limit of an infinite
interval (a → ∞), we recover the standard theory on the real line R, i.e. lima→∞ Fa[ρ] = F[ρ]
where F[ρ] is the standard Levy-Lieb functional defined in Eq. (4.18). Similarly, we could
generalize the Lieb density functionals in Eq. (4.20) to the finite interval Ωa.

We now define a finite UEG (fUEG) by considering the uniform density ρunif : x 7→ ρ0 = N/a
on the interval Ωa for the fixed electron number N = 2. Note that ρunif is in fact the unique
uniform density belonging to Ra. The energy per particle of this finite UEG is

εfUEG(ρ0) =
Fa[ρunif]

N
, (4.50)
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Figure 4.3: FCI correlation energy per particle εc,fUEG(ρ) [Eqs. (4.50) and (4.52)] of the 1D finite
UEG as a function of the density ρ for N = 2 electrons and a plane-wave cutoff npwmax = 60. The
exact PT2 correlation energy per particle, which is independent of N and ρ, is indicated as a
horizontal line. The correlation energy per particle of the infinite UEG (N → ∞) as parametrized
by Magyar and Burke [24] from essentially numerically exact Bethe-ansatz results is also plotted
for comparison.

and is a function of the only variable ρ0 since N is fixed and a = N/ρ0. The value of Fa[ρunif]
corresponds to the ground-state energy of the two-electron Hamiltonian with zero external po-
tential

HfUEG = H[0] = T +Wee, (4.51)

with periodic boundary conditions on Ωa, provided that the ground-state density is the uniform
density ρunif (i.e., no translational symmetry breaking). We note that in Refs. [61–64] 1D finite
UEGs mapped to a ring were introduced using the Coulomb electron-electron interaction. Here,
instead we use the Dirac-delta electron-electron interaction and we do not work on a ring.

For a given density ρ0 in the range [0, 10] a.u. and for the fixed electron number N = 2 and
interval length a = N/ρ0, we calculate the ground-state energy by performing a FCI calculation
using a one-electron plane-wave (pw) orthonormal basis {pn}n∈Z, |n|≤npwmax

where pn(x) = (1/
√

a)eikn x

and kn = 2πn/a. The one-electron kinetic integrals ⟨pn1 , tpn2⟩a = (2π2n2
1/a

2)δn1,n2 and the two-
electron integrals ⟨pn1 pn2 ,Weepn3 pn4⟩a = (1/a)δn1+n2,n3+n4 are trivial. We use a plane-wave cutoff
npwmax = 60 which leads to FCI energies converged to at least 1 mhartree (and in fact generally
better than that). As usual, the finite UEG energy per particle can be decomposed as

εfUEG(ρ) = ts,fUEG(ρ) + εH,fUEG(ρ) + εx,fUEG(ρ) + εc,fUEG(ρ),

(4.52)

with the non-interacting kinetic energy per particle ts,fUEG(ρ) = 0 (since N = 2 the only occupied
orbital is the constant plane wave p0(x) = 1/

√
a which has a zero kinetic energy), the Hartree

energy per particle εH,fUEG(ρ) = ρ/2, the exchange energy per particle εx,fUEG(ρ) = −ρ/4, and
the correlation energy per particle εc,fUEG(ρ).

The correlation energy per particle εc,fUEG(ρ) is plotted in Fig. 4.3. In the high-density limit,
εc,fUEG(ρ) tends to the correlation energy per particle in second-order perturbation theory (PT2)
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with respect to the electron-electron interaction Wee

lim
ρ→∞

εc,fUEG(ρ) = εPT2
c,fUEG = −

1
24
, (4.53)

which is a constant independent of ρ. It turns out that this constant is the same for N = 2 and
N → ∞ [24]. In the low-density limit, εc,fUEG(ρ) goes to zero linearly with ρ (see Ref. [65])

εc,fUEG(ρ) ∼
ρ→0
−
ρ

4
, (4.54)

so as to exactly cancel out the Hartree and exchange energies per particle. This is due to the fact
that, in this limit, the probability density of finding the electrons at the same point of space is
zero and thus the Dirac-delta electron-electron interaction has not effect. This is the 1D version
of the strong-interaction limit of DFT [66–69]. Equation (4.54) is also true for N → ∞ [24, 70],
and is in fact true independently of N [65]. In Fig. 4.3, we also show the correlation energy
per particle of the infinite UEG (N → ∞) as parametrized by Magyar and Burke [24] from
essentially numerically exact Bethe-ansatz results. Not only the correlation energies per particle
for N = 2 and N → ∞ agree well for small and large densities, as they should since they have
the same N-independent asymptotic behaviors [Eqs. (4.53) and (4.54)], but they also agree very
well for intermediate densities (the maximal deviation between the two curves being about 0.4
mhartree), showing that the thermodynamic limit N → ∞ is essentially already reached at N = 2
for this 1D UEG. Hence, there is no need considering 1D UEGs with N > 2 electrons. This must
be due to the very short-range nature of the Dirac-delta electron-electron interaction. For the
1D UEG with the Coulomb interaction, the correlation energy per particle depends much more
strongly on the electron number [62].

4.4.2 Finite uniform-electron gas for the incomplete-basis-set case

We now generalize the second variant of basis-set correction of Section 4.3.3 from the real
line R to a finite interval Ωa = (−a/2, a/2) of length a. For v ∈ Va and N = 2 electrons, we
define the ground-state energy of the restriction to the Hilbert space Ha of the Hamiltonian
HwB[v] = T + WBee + V [Eq. (4.31)], featuring the electron-electron interaction projected in the
basis set B used for the 1D He-like atom, as

EwB
0,a [v] = inf

Ψ∈Wa
⟨Ψ,HwB[v]Ψ⟩a. (4.55)

The corresponding Levy-Lieb density functional is

∀ρ ∈ Ra, FwB
a [ρ] = min

Ψ∈Wa,ρ
⟨Ψ, (T +WBee)Ψ⟩a, (4.56)

and the corresponding Lieb density functional is

∀ρ ∈ Ra, FwB
L,a[ρ] = sup

v∈Va

(
EwB

0,a [v] − (v, ρ)a
)
, (4.57)

where (v, ρ)a =
∫
Ωa

v(x)ρ(x)dx. Again, in the limit of an infinite interval (a→ ∞), we recover the
theory of Section 4.3.3.

For a given basis set B, we now define an associated finite UEG by considering the uniform
density ρunif : x 7→ ρ0 = N/a on the interval Ωa for the fixed electron number N = 2. The kinetic
+ electron-electron energy per particle of this B-dependent finite UEG is

fwBfUEG(ρ0) =
FwB

a [ρunif]
N

, (4.58)
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where

FwB
a [ρunif] = ⟨ΨwB[ρunif], (T +WBee)Ψ

wB[ρunif]⟩a, (4.59)

and ΨwB[ρunif] is the ground-state wave function (assumed to be unique up to a global phase
factor) of the two-electron Hamiltonian

HwB
fUEG = T +WBee + VwB, (4.60)

with periodic boundary conditions on Ωa and with VwB =
∑N

i=1 vwB(xi) where vwB(x) is the local
potential (that we assume to exist and which is defined up to an additive constant) which enforces
the constraint that the ground-state wave function ΨwB[ρunif] yields indeed the uniform density
ρunif. Since the projected electron-electron interaction WBee breaks translation invariance, the
addition of the potential vwB is necessary to restore a uniform density. This is in contrast with
the UEG for the complete-basis-set case for which no external potential was necessary to obtain
a uniform density [Eq. (4.51)]. To conveniently obtain the potential vwB, we use the fact that,
since the two-electron finite UEG has a non-degenerate ground state, the Levy-Lieb functional
FwB

a and the Lieb functional FwB
L,a

are identical. The potential vwB then just corresponds to the

maximizing potential in Eq. (4.57) for ρ = ρunif (see Refs. [71–73])

vwB = argmax
v∈Va

(
EwB

0,a [v] − (v, ρunif)a
)
. (4.61)

For a given basis set B, for a given density ρ0 in the range [0, 10] a.u., and for the fixed electron
number N = 2 and interval length a = N/ρ0, we calculate the energy EwB

0,a [v] by performing a
FCI calculation using a plane-wave orthonormal basis {pn}n∈Z, |n|≤npwmax

. The one-electron kinetic
integrals are still ⟨pn1 , tpn2⟩a = (2π2n2

1/a
2)δn1,n2 . The integrals of the electron-electron interaction

projected in the basis set B [see Eq. (4.33)] can be calculated as

⟨pn1 pn2 ,W
B
eepn3 pn4⟩a =

M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

S ∗i,n1
S ∗j,n2

⟨ϕiϕ j,Weeϕkϕl⟩ S k,n3S l,n4 , (4.62)

where ⟨ϕiϕ j,Weeϕkϕl⟩ are the two-electron integrals in terms of the HF orbitals {ϕi}i=1,...,M of the 1D
He-like atom expanded in the basis set B (see Section 4.2.2) and S i,n = ⟨ϕi, pn⟩a =

∫
Ωa
ϕ∗i (x)pn(x)dx

are the overlap integrals between the HF orbitals and the plane-wave basis functions. The
potential v to optimize in Eq. (4.61) is also expanded on the same plane-wave basis set

v(x) =
∑

n∈Z,|n|≤npwmax

cn pn(x), (4.63)

with coefficients cn ∈ R and we impose c−n = cn in order to have a real-valued and parity-even
potential. The one-electron potential integrals, needed to calculate EwB

0,a [v], are

⟨pn1 , vpn2⟩a =

∫
Ωa

p∗n1
(x)v(x)pn2(x)dx =

cn1−n2
√

a
, (4.64)

and the second term in Eq. (4.61) is simply (v, ρunif)a =
√

ac0ρ0. Finally, for the optimization of
the potential, it is useful to have the derivative of F[v] = EwB

0,a [v] − (v, ρunif)a with respect to the
coefficient cn. Using the Hellmann-Feynman theorem, we find

∂F[v]
∂cn

= (pn, ρΨv)a − (pn, ρunif)a

=
1
√

a

∑
n1∈Z,|n1 |≤npwmax

γn1,n1+n −
√

aρ0δn,0, (4.65)
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Figure 4.4: External optimized potential vwB(x) [Eq. (4.61)] keeping a uniform density ρ0 = 2
a.u. for the 1D finite UEG for N = 2 electrons and for different sizes nmax of the basis set B of
the 1D He-like atom.

where we have used ρΨv(x) =
∑

n1∈Z,|n1 |≤npwmax

∑
n2∈Z,|n2 |≤npwmax

γn1,n2 pn1(x)p∗n2
(x) with the one-particle

reduced density matrix γ of the ground-state wave function Ψv of HwB[v]. In practice, we use
a plane-wave cutoff of npwmax = 30. We can use a smaller cutoff than the cutoff used for the
complete-basis-set UEG in Section 4.4.1 since the FCI energy EwB

0,a [v] has a fast convergence

with npwmax due to the presence of the projected electron-electron interaction WBee. To optimize
the coefficients {cn} of the potential, we use the conjugate gradient method [33]. Since the term
n = 0 in Eq. (4.63) is just an arbitrary constant, we keep the coefficient c0 fixed to 0. With
a zero potential v, the FCI density ρΨv=0(x) can deviate from the target density ρ0 by about as
much as 0.2 a.u. for the basis set B of smallest size (i.e., M = 1). With our optimized potentials
vwB, the density ρΨvwB

(x) deviates from the target density ρ0 to at most about 10−4 a.u..
As an aside, it might be worthwhile to stress here that in the Hamiltonian in Eq. (4.60),

the kinetic-energy operator T is not projected in the basis set B. We observed that if T is also
projected in the basis set B, then the high-lying states of T collapse to the lower part of the
spectrum, which inevitably pollutes the nature of the ground state of the finite UEG Hamiltonian
and renders numerically impossible to find a potential restoring a uniform density. This is why
in the second-variant of basis-set correction in Section 4.3.3 we have decided to project only the
electron-electron interaction Wee in the basis set B.

The optimized potentials vwB(x) obtained from Eq. (4.61) are plotted in Fig. 4.4 for the
example of the target density ρ0 = 2 a.u. and for different sizes nmax of the basis set B of the
1D He-like atom introduced in Section 4.2.2. To compensate for the breaking of translation
invariance of the projected electron-electron interaction, all potentials show oscillations with
maximum amplitude on the edges of the interval. As expected, when nmax increases, the ampli-
tude of the potential decreases, as it must eventually go to zero in the complete-basis-set limit
nmax → ∞.

Once the FCI ground-state wave function ΨwB[ρunif] = ΨvwB for the optimal potential vwB

has been obtained, we calculate the following energy per particle using this wave function

εwBfUEG(ρ0) =
⟨ΨwB[ρunif], (T +Wee)ΨwB[ρunif]⟩a

N
, (4.66)
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Figure 4.5: FCI correlation energy per particle εwB
c,fUEG

(ρ) [Eqs. (4.66) and (4.67)] of the 1D finite
UEG as a function of the density ρ for N = 2 electrons and for different sizes nmax of the basis
set B of the 1D He-like atom. The curve labelled by“HF” corresponds to the limiting case where
the basis set B contains only the exact HF occupied orbital.

which we can decompose in the same way as in Eq. (4.52)

εwBfUEG(ρ) = ts,fUEG(ρ) + εH,fUEG(ρ) + εx,fUEG(ρ) + εwBc,fUEG(ρ),

(4.67)

with the same kinetic, Hartree, and exchange contributions as in Eq. (4.52), and a new correlation
energy per particle εwB

c,fUEG
(ρ). This latter quantity is plotted in Fig. 4.5 for different sizes nmax

of the basis set B of the 1D He-like atom. As expected, when nmax increases, εwB
c,fUEG

(ρ) becomes
more negative and gets closer to the correlation energy per particle εc,fUEG(ρ) of the complete-
basis-set limit nmax → ∞. For finite nmax, it can be observed that, in the high-density limit,
the correlation energy per particle εwB

c,fUEG
(ρ) goes to zero, unlike in Eq. (4.53). This is due to

the fact that, as the density increases, the relevant electron-electron distances contributing to
the correlation energy become smaller and the basis set B is unable to resolve the Dirac-delta
electron-electron interaction at a fine enough distance scale.

Finally, we calculate the complementary multideterminant correlation energy per particle of
the finite UEG for the basis set B [see Eq. (4.40)]

ε̄wBc,md,fUEG(ρ) = εfUEG(ρ) − εwBfUEG(ρ), (4.68)

which is plotted in Fig. 4.6 for different basis sizes nmax. As nmax increases, the magnitude of
ε̄wB
c,md,fUEG

(ρ) decreases and must eventually go to zero in the complete-basis-set limit nmax → ∞.

The magnitude is largest for high densities since ε̄wB
c,md,fUEG

(ρ) must compensate for the inability
of the basis set B to represent the Dirac-delta electron-electron interaction at a small distance
scale. Perhaps surprisingly, there is also a local maximum of the magnitude of ε̄wB

c,md,fUEG
(ρ) at

small densities. This is due to the fact that, at small densities, ε̄wB
c,md,fUEG

(ρ) does not exactly
cancel out the Hartree and exchange energies per particle, in contrast to the complete-basis-set
case [Eq. (4.54)]. Again, this must come from the inability of the basis set B to represent the
Dirac-delta electron-electron interaction sufficiently precisely to give a zero probability density
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Figure 4.6: FCI complementary correlation energy per particle ε̄wB
c,md,fUEG

(ρ) [Eq. (4.68)] of the
1D finite UEG as a function of the density ρ for N = 2 electrons and for different sizes nmax of
the basis set B of the 1D He-like atom. The curve labelled by “HF” corresponds to the limiting
case where the basis set B contains only the exact HF occupied orbital.

of finding the electrons as the same point of space in the low-density limit. Interestingly, in
between the small and the large-density regimes, for nmax ≥ 5, the magnitude of ε̄wB

c,md,fUEG
(ρ)

passes through a minimum. In particular, for nmax = 70, ε̄wB
c,md,fUEG

(ρ) is almost zero at around
ρ ≈ 0.5 a.u., which means that the basis set B accurately captures the effect of the Dirac-delta
electron-electron interaction at this density.

4.4.3 Finite local-density approximation

We can now define the finite LDA (fLDA) for the complementary multideterminant correlation
density functional ĒwB

c,md
[ρ] [Eq. (4.40)] involved in the second-variant of basis-set correction

using the previously determined complementary correlation energy per particle ε̄wB
c,md,fUEG

(ρ) of
the 1D finite UEG

ĒwB
c,md,fLDA[ρ] =

∫
R
ρ(x)ε̄wBc,md,fUEG(ρ(x))dx. (4.69)

We recall that in standard LDA the functional of an inhomogeneous system for a finite electron
number N is approximated using the UEG for infinite electron number N → ∞. Here, instead,
in the present finite LDA the functional of the inhomogeneous system is approximated using the
UEG of the same electron number N. The use of this finite LDA in lieu of the standard LDA
should not be seen as a crucial point for the basis-set correction theory but more like a convenient
alternative. For a sufficiently short-range complementary interaction W̄Bee = Wee −WBee, the LDA
should not depend much on the electron number used in the definition of the underlying UEG.

We then correct the FCI energy of the 1D He-like atom using this fLDA functional in
the non-self-consistent approximation introduced in Eq. (4.43), obtaining what we will call the
“FCI+fLDA” energy

EwB
FCI+fLDA = ⟨ΨBFCI, (T +Wee + Vne)ΨBFCI⟩ + ĒwB

c,md,fLDA[ρΨB
FCI

].

(4.70)
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Figure 4.7: FCI ground-state energy EB
FCI

[Eq. (4.10)] and FCI+fLDA ground-state energy
EwB
FCI+fLDA

[Eq. (4.70)] of the 1D He-like atom as a function of the basis size nmax. The first
point labelled by “HF” corresponds to the limiting case where the basis set B contains only the
exact HF occupied orbital (in this case, FCI simply reduces to HF). The exact energy is taken
from Ref. [24].

In practice, we calculate ĒwB
c,md,fLDA

[ρΨB
FCI

] by numerical integration using cubic interpolation

between calculated values of ε̄wB
c,md,fUEG

(ρ). The FCI densities of the 1D He-like atom take values
from 0 to about 3.5 a.u..

In Fig. 4.7, the FCI+fLDA energy is plotted as a function of the basis size nmax. It is clear
that the basis-set correction provides a spectacular improvement of the FCI energy. For example,
for nmax = 0, the FCI energy is about 55 mhartree above the exact energy while the FCI+fLDA
energy is only 1.5 mhartree below the exact energy. For nmax ≥ 20, the FCI+fLDA energy is
within 1 mhartree of the exact energy. We note that the residual error must come from the fact
that in Eq. (4.42) the functional ĒwB

c,md
[ρ] is approximated with the fLDA functional and also

that the wave function ΨwB
0 is approximated by the FCI wave function ΨB

FCI
.

Conclusion

In this work, we have reexamined the recently introduced DFT-based basis-set correction theory
on a 1D model with delta-potential interactions, which is a convenient setting to carefully study
the slow basis convergence problem of quantum-chemistry wave-function methods. We provided
mathematical details about the formulation of the theory, as well as a new variant of basis-set
correction which has the advantage that the basis-set correction functional is defined for all N-
representable densities. This allowed us to define a LDA for the basis-set correction functional,
not based on range-separated DFT as in all previous works, but directly on a 1D finite UEG
adapted to the basis set employed. We showed that this approach is very effective to correct for
the basis-set incompleteness error in the FCI ground-state energy. We believe that the present
work puts the basis-set correction theory on firmer grounds.

Future efforts will focus on the extension of the present work to 3D Coulombic systems. The
extension of the theory is straightforward. What remains to be seen is whether the present work
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adapts well to the standard Gaussian-type-orbital basis sets used in quantum chemistry and
whether we can still construct an accurate LDA for the basis-set correction functional based on
a 3D UEG with the Coulomb electron-electron interaction projected in the basis set.
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4.5 Appendix: Convergence rate of the expectation value of a Dirac-

delta potential in a basis of Hermite functions

4.5.1 One-electron Dirac-delta potential

Let us consider the 1D hydrogen-like Hamiltonian

h = −
1
2
d2

dx2 − Zδ(x), (4.71)

with nuclear charge Z ∈ (0,+∞). The ground-state wave function is (see, e.g., Refs. [74,75])

∀x ∈ R, φ(x) =
√

Ze−Z|x|, (4.72)

which exhibits a cusp identical to the 3D Coulombic case. We expand φ in the orthonormal
basis of Hermite functions { f αn }n∈N [Eq. (4.8)]

∀x ∈ R, φ(x) =
∞∑

n=0

cn f αn (x), (4.73)

with coefficients cn =
∫
R

f αn (x)φ(x)dx, which are non-zero only for even integers n. Using the
following asymptotic equivalent of the unnormalized Hermite functions, for fixed x, [76]

Hn(
√

2αx)e−αx2
∼

n→∞

2n

√
π
Γ

(
n + 1

2

)
cos

(
x
√

4αn −
nπ
2

)
, (4.74)

and the well-known asymptotic equivalent of the gamma function

Γ(z) ∼
z→∞

√
2π zz−1/2e−z, (4.75)
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we obtain the following asymptotic equivalent of the normalized Hermite functions

f αn (x) ∼
n→∞

√
2
π

α1/4

n1/4 cos
(
x
√

4αn −
nπ
2

)
. (4.76)

Writing n = 2p with p ∈ N, we then find the leading term of the asymptotic expansion of the
coefficients c2p by integrating over x

c2p ∼
p→∞

Z3/2
√

2π α3/4

(−1)p

(2p)5/4 . (4.77)

This is perfectly consistent with the analysis of Refs. [77,78] which shows that an exponentially
decaying function φ having a square-integrable first weak derivative (i.e., φ ∈ H1(R)) but a
non-square-integrable second weak derivative (i.e., φ < H2(R)) must have Hermite expansion
coefficients cn going to zero as n−k with k ∈ (1, 3/2]. The leading term of the asymptotic expansion
of c2p f α2p(x) is thus

c2p f α2p(x) ∼
p→∞

Z3/2

π
√
α

1
(2p)3/2 cos

(
x
√

8αp
)
, (4.78)

and, in particular at x = 0,

c2p f α2p(0) ∼
p→∞

Z3/2

π
√
α

1
(2p)3/2 . (4.79)

Calling φ̃ the best approximation (in the sense of the L2 norm) to φ obtained with a maximal
quantum number nmax, i.e.

∀x ∈ R, φ̃(x) =
nmax∑
n=0

cn f αn (x), (4.80)

we find that φ̃(0) converges slowly to the exact value φ(0) =
√

Z as

φ̃(0) ∼
nmax→∞

φ(0) −
Z3/2

π
√
α

1

n1/2
max

, (4.81)

and the expectation value of the Dirac-delta potential vne(x) = −Zδ(x) has a similar convergence
behavior in 1/n1/2

max

⟨φ̃, vneφ̃⟩ = −Zφ̃(0)2

∼
nmax→∞

−Zφ(0)2 +
2Z5/2φ(0)
π
√
α

1

n1/2
max

. (4.82)

We also expect the total energy to converge as 1/n1/2
max in a basis of Hermite functions.

4.5.2 Two-electron Dirac-delta interaction

Let us consider the Hamiltonian of the 1D two-electron Hooke’s atom [24]

H = −
1
2
∂2

∂x2
1

−
1
2
∂2

∂x2
2

+
1
2
ω2x2

1 +
1
2
ω2x2

2 + δ(x1 − x2), (4.83)

where ω is the angular frequency parameter of the external harmonic potential. In contrast
to the 1D He-like atom [Eq. (4.1)], the 1D two-electron Hooke’s atom has the advantage to be

100



solvable in terms of special functions. Indeed, changing the variables to the center-of-mass (cm)
coordinate X = (x1+ x2)/2 and the relative (rel) coordinate x12 = (x1− x2) makes the Hamiltonian
separable

H = hcm + hrel, (4.84)

where

hcm = −
1
4
∂2

∂X2 + ω
2X2, (4.85)

and

hrel = −
∂2

∂x2
12

+
1
4
ω2x2

12 + δ(x12). (4.86)

The total ground-state energy is then

E0 = E0 + ε0, (4.87)

where E0 = ω/2 is the ground-state energy of hcm and ε0 is the ground-state energy of hrel which
is found from the equation [24,79]

2
√

2ω
Γ
(
−
ν0
2 +

1
2

)
Γ
(
−
ν0
2

) = −1, (4.88)

where ν0 = ε0/ω − 1/2. For example, for ω = 1 a.u., we have ε0 = 0.806746 a.u. [24]. The
ground-state wave function is

∀(X, x12) ∈ R2, Ψ(X, x12) = Φ(X)ψ(x12), (4.89)

where the center-of-mass wave function is just given by the first Hermite function Φ(X) = f 2ω
0 (X)

and the relative wave function is given by [79]

∀x12 ∈ R, ψ(x12) = cDν0(
√
ω|x12|), (4.90)

where c is a real-valued normalization constant and x 7→ Dν(x) with ν ∈ R is the parabolic
cylinder function [76]. The relative wave function has the same cusp as in Eq. (4.5), i.e. ψ(x12) =
ψ(0)[1 + (1/2)|x12| + O(x2

12)].
Let us consider now the expansion of the wave function Ψ in the tensor-product orthonormal

basis of Hermite functions {(x1, x2) 7→ f αn1
(x1) f αn2

(x2)}(n1,n2)∈N2 . Due to invariance of the harmonic-
oscillator Hamiltonian to a rotation of coordinates, the same space is spanned by the rotated
orthonormal basis {(X, x12) 7→ f 2α

n1
(X) f α/2n2 (x12)}(n1,n2)∈N2 (see Refs. [77, 78]). This means that the

relative wave function ψ is independently expanded as

∀x12 ∈ R, ψ(x12) =
∞∑

n=0

dn f α/2n (x12), (4.91)

with coefficients dn =
∫
R

f α/2n (x12)ψ(x12)dx12, which are non-zero only for even integers n. Using
Eq. (4.76) and with the help of Mathematica [80], we find the leading term of the asymptotic
expansion of the coefficients d2p

d2p ∼
p→∞
−

(−1)p c
α3/42µ0+1/4Γ (µ0)

1
(2p)5/4 . (4.92)
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where µ0 = −ν0/2 + 1/2. Introducing the best approximation to ψ obtained with a maximal
quantum number nmax

∀x12 ∈ R, ψ̃(x12) =
nmax∑
n=0

dn f α/2n (x12), (4.93)

we find that ψ̃(0) converges slowly to the exact value ψ(0) = c
√

2π/[2µ0Γ(µ0)] as

ψ̃(0) ∼
nmax→∞

ψ(0) +
c

√
πα 2µ0Γ(µ0)

1

n1/2
max

, (4.94)

and the expectation value of the Dirac-delta interaction Wee = δ(x12) has a similar convergence
behavior in 1/n1/2

max

⟨ψ̃,Weeψ̃⟩ = ψ̃(0)2

∼
nmax→∞

ψ(0)2 +
2cψ(0)

√
πα 2µ0Γ(µ0)

1

n1/2
max

. (4.95)

We thus see that the two-electron energy converges as 1/n1/2
max in a basis of Hermite functions.
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5
Density-based basis-set correction applied to linear

response properties

This chapter corresponds to the article [D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 158,
234107 (2023)]

The basis-set correction method based on density-functional theory consists in correcting the
energy calculated by a wave-function method with a given basis set by a density functional. This
basis-set correction density functional incorporates the short-range electron correlation effects
missing in the basis set. This results in accelerated basis convergences of ground-state energies to
the complete-basis-set limit. In this work, we extend the basis-set correction method to a linear-
response formalism for calculating excited-state energies. We give the general linear-response
equations, as well as the more specific equations for configuration-interaction wave functions.
As a proof of concept, we apply this approach to the calculations of excited-state energies in a
one-dimensional two-electron model system with harmonic potential and a Dirac-delta electron-
electron interaction. The results obtained with full-configuration-interaction wave functions
expanded in a basis of Hermite functions and a local-density-approximation basis-set correction
functional show that the present approach does not help in accelerating the basis convergence
of excitation energies. However, we show that it significantly accelerates basis convergences of
excited-state total energies.

5.1 Introduction

One of the main limitations of standard electronic-structure wave-function computational meth-
ods is their slow convergence of ground- and excited-state energies and other properties with
respect to the one-electron basis set (see, e.g., Refs. [1–4]). This slow convergence can be traced
back to the non-smoothness of the exact eigenfunctions of the Schrödinger Hamiltonian with
repulsive Coulomb electron-electron interaction [5], namely the electron-electron cusp condi-
tion [6, 7].

There are two main approaches for dealing with this slow basis convergence problem. The
first approach consists in extrapolating the results to the complete-basis-set (CBS) limit by using
increasingly large basis sets [1, 2]. This approach is very common for estimating the CBS limit
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of the ground-state energy but has also been used for estimating the CBS limit of excited-state
energies and properties (see, e.g., Refs. [8–11]). The second approach consists in using explicitly
correlated R12 or F12 methods which incorporate in the wave function a correlation factor
reproducing the electron-electron cusp (see, e.g., Refs. [12–15]). The vast majority of R12/F12
methods have been applied to ground-state energy calculations but linear-response extensions
have also been proposed for excitation energies and dynamic response properties [16–20].

Recently, some of the present authors introduced an alternative basis-set correction method
based on density-functional theory (DFT) [21]. It consists in correcting the energy calculated
by a wave-function method (such as configuration interaction or coupled-cluster) with a given
basis set by an adapted basis-set correction density functional incorporating the short-range
electron correlation effects missing in the basis set, resulting in an accelerated convergence
to the CBS limit. This basis-set correction method was further developed and validated on
atomization energies [22–24] and dissociation energy curves [25]. The method was also extended
to calculations of ionization potentials within the GW approach [26] and to calculations of dipole
moments [27,28]. It was also proposed to extend the method to calculations of excitation energies
using a straightforward state-specific approach in which the same basis-set correction functional
is evaluated from the density of each state [29]. Even though the last approach was shown to be
able to accelerate the basis convergence of electronic excitation energies of molecular systems, it
is based on the a-priori questionable assumption that one can use the same basis-set correction
functional for all states.

In the present work, we extend the basis-set correction method to a linear-response formalism,
providing a more rigorous framework for calculating excitation energies. Moreover, it allows
for calculations of response properties such as dynamic polarizabilities. As a first proof of
concept, we apply this approach to calculations of excitation energies in a one-dimensional (1D)
model system consisting of two electrons in a harmonic potential with a Dirac-delta two-electron
interaction [30, 31]. We previously used a similar 1D model system in Ref. [32] to study with
some mathematical rigor the basis-set correction method. The relevance of this 1D model for
quantum chemistry lies in the fact that the Dirac-delta two-electron interaction induces a slow
basis convergence quite similar to the one observed with the standard two-electron Coulomb
interaction in three-dimensional (3D) systems.

The paper is organized as follows. In Sec. 5.2, we formulate the general linear-response theory
for the DFT-based basis-set correction scheme, and we give explicit expressions for configuration-
interaction wave functions. In Sec. 5.3, we apply the linear-response DFT-based basis-set cor-
rection theory to the 1D model system and we discuss the results. Finally, Sec. 5.4 contains our
conclusions. Hartree atomic units are used throughout this work.

5.2 Linear-response DFT-based basis-set correction

In this section, we derive the general linear-response equations for the DFT-based basis-set
correction approach. We consider a finite one-electron basis set B ⊂ H1(R3 × {↑, ↓},C) where H1

is the first-order Sobolev space. The corresponding one-electron Hilbert space spanned by this
basis set is denoted by hB = span(B) and the corresponding N-electron Hilbert space is given by
the N-fold antisymmetric tensor product of hB, i.e. HB =

∧N hB.

5.2.1 General ground-state optimization

We consider a general parametrized wave function |Ψ(p)⟩ ∈ HB with M complex-valued param-
eters p = (p1, p2, ..., pM) ∈ CM. For example, these parameters could be configuration-interaction
coefficients or orbital-rotation parameters. For convenience, we work with the intermediately
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normalized wave function (see, e.g., Ref. [33])

|Ψ̄(p)⟩ =
|Ψ(p)⟩
⟨Ψ0|Ψ(p)⟩

, (5.1)

where |Ψ0⟩ = |Ψ(p0)⟩ is the current wave function obtained for the current parameters p = p0.
The current wave function is taken as normalized to unity, i.e. ⟨Ψ0|Ψ0⟩ = 1. The advantage
of this intermediate normalization is that the first- and second-order derivatives of |Ψ̄(p)⟩ with
respect to p at p = p0,

|Ψ̄I⟩ =
∂|Ψ̄(p)⟩
∂pI

∣∣∣∣∣∣p=p0
and |Ψ̄I,J⟩ =

∂2|Ψ̄(p)⟩
∂pI∂pJ

∣∣∣∣∣∣p=p0
, (5.2)

are orthogonal to |Ψ0⟩, i.e. ⟨Ψ̄I |Ψ0⟩ = 0 and ⟨Ψ̄I,J |Ψ0⟩ = 0. This simplifies the derivation of the
equations.

In the DFT-based basis-set correction approach [21], we introduce the following ground-state
energy expression for a N-electron system with Hamiltonian Ĥ

EB(p) =
⟨Ψ̄(p)|Ĥ|Ψ̄(p)⟩
⟨Ψ̄(p)|Ψ̄(p)⟩

+ ĒB[ρΨ̄(p)], (5.3)

where ĒB[ρ] is the basis-set correction density functional evaluated at the density of Ψ̄(p)

ρΨ̄(p)(r) =
⟨Ψ̄(p)|ρ̂(r)|Ψ̄(p)⟩
⟨Ψ̄(p)|Ψ̄(p)⟩

, (5.4)

where ρ̂(r) is the density operator at point r. The self-consistent basis-set corrected ground-state
energy is then [27]

EB0 = min
p∈CM

EB(p). (5.5)

The role of the density functional ĒB[ρ] is to accelerate the basis convergence without altering
the CBS limit. The latter point is guaranteed by imposing that ĒB[ρ] vanishes in the CBS limit,
i.e. limB→CBS ĒB[ρ] = 0.

In practice, the minimization can be done by iteratively solving an effective Schrödinger
equation [27], or, more generally, using for example the Newton method in which the current
parameters are iteratively updated using the parameters changes ∆p = p − p0 found by solving
the linear equations (see, e.g., Ref. [34])(

A B
B∗ A∗

) (
∆p
∆p∗

)
= −

(
g
g∗

)
, (5.6)

where * designates the complex conjugate and g is the energy gradient vector

gI =
∂EB(p)
∂p∗I

∣∣∣∣∣∣
p=p0

= ⟨Ψ̄I |ĤBeff|Ψ0⟩, (5.7)

with the effective Hamiltonian

ĤBeff = Ĥ + ˆ̄VB[ρΨ0], (5.8)

involving the basis-set correction potential operator

ˆ̄VB[ρ] =
∫
R3

v̄B[ρ](r)ρ̂(r)dr, (5.9)
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with v̄B[ρ](r) = δĒB[ρ]/δρ(r). In Eq. (5.6), A and B are the energy Hessian matrices

AI,J =
∂2EB(p)
∂p∗I∂pJ

∣∣∣∣∣∣
p=p0

= ⟨Ψ̄I |ĤBeff − E
B
0 |Ψ̄J⟩ + KI,J , (5.10)

where EB0 = ⟨Ψ0|ĤBeff|Ψ0⟩ is the energy of the effective Hamiltonian for the current wave function
Ψ0, and

BI,J =
∂2EB(p)
∂p∗I∂p∗J

∣∣∣∣∣∣
p=p0

= ⟨Ψ̄I,J |ĤBeff|Ψ0⟩ + LI,J , (5.11)

involving the basis-set correction kernel contributions

KI,J =

∫
R3×R3

f̄B[ρΨ0](r, r′)⟨Ψ̄I |ρ̂(r)|Ψ0⟩⟨Ψ0|ρ̂(r′)|Ψ̄J⟩drdr′, (5.12)

and

LI,J =

∫
R3×R3

f̄B[ρΨ0](r, r′)⟨Ψ̄I |ρ̂(r)|Ψ0⟩⟨Ψ̄J |ρ̂(r′)|Ψ0⟩drdr′, (5.13)

with f̄B[ρ](r, r′) = δ2ĒB[ρ]/δρ(r)δρ(r′).
At the end of the optimization, provided that we have reached the global energy minimum,

the current parameters p0 are the optimal ground-state parameters. To make clear the link with
our previous work [27], we note that the present energy minimization is equivalent to solving the
following effective Schrödinger equation projected in the basis of the first-order wave-function
derivatives {|Ψ̄I⟩}I=1,...,M

⟨Ψ̄I |ĤBeff − E
B
0 |Ψ0⟩ = 0. (5.14)

Since ⟨Ψ̄I |Ψ0⟩ = 0, Eq. (5.14) is indeed equivalent to having a zero energy gradient, i.e. gI =

⟨Ψ̄I |ĤBeff|Ψ0⟩ = 0.

5.2.2 General linear-response equations

Starting from the optimal ground state, we now add a time-dependent perturbation operator
V̂(t) to the Hamiltonian,

Ĥ(t) = Ĥ + V̂(t), (5.15)

where V̂(t) is chosen as a periodic monochromatic electric-dipole interaction of frequency ω

V̂(t) = −d̂ · ϵ+e−iωt − d̂ · ϵ−e+iωt, (5.16)

where d̂ = −
∫
R3 r ρ̂(r)dr is the dipole-moment operator, and ϵ+ and ϵ− are the electric-field

strengths for the positive and negative frequency terms (taken as different for intermediate
derivations but ultimately we must have ϵ+ = ϵ−).

The wave function |Ψ̄(p(t))⟩ will now depend on time through the parameters p(t) = p0+∆p(t)
where p0 are the optimal ground-state parameters and ∆p(t) are the time variations of the
parameters which can be written as

∆p(t) = p+e−iωt + p−e+iωt, (5.17)
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where p+ ∈ CM and p− ∈ CM are the Fourier components. The ground-state energy expression
in Eq. (5.3) is replaced by the quasi-energy expression [35–40]

QB(ϵ+, ϵ−; p+,p−) =
1
T

∫ T

0

{
⟨Ψ̄(p(t))|Ĥ(t) − i ∂∂t |Ψ̄(p(t))⟩

⟨Ψ̄(p(t))|Ψ̄(p(t))⟩
+ ĒB[ρΨ̄(p(t))]

}
dt, (5.18)

where T = 2π/ω is the period. Note that, in the definition of the quasi-energy in Eq. (5.18),
the same basis-set correction density functional ĒB[ρ] used for the ground-state calculation is
employed, which is known as the adiabatic approximation. This approximation is almost always
used in time-dependent DFT calculations of excitation energies (see, e.g, Refs. [41,42]). Due to
this approximation, the basis-set correction contribution to the quasi-energy is a local functional
of time. Overcoming this approximation would require the complicated task of developing a
quasi-energy basis-set correction contribution having the form a non-local functional of time,
i.e. depending on all the time history. We do not attempt to do that in the present work.
The optimal quasi-energy QB0 (ϵ+, ϵ−) is a stationary value of QB(ϵ+, ϵ−; p+,p−) with respect to
variations of the parameters p+ and p−, which we write as

QB0 (ϵ+, ϵ−) ∈ stat
(p+,p−)∈C2M

QB(ϵ+, ϵ−; p+,p−), (5.19)

where “stat” refers to the set of stationary values. In the zero electric-field limit (ϵ+ = ϵ− = 0),
vanishing parameters p+ = p− = 0 are optimal and the corresponding optimal quasi-energy
reduces to the ground-state energy, i.e. QB0 (0, 0) = EB0 .

The optimal quasi-energy allows one to define the dynamic dipole polarizability tensor as

αBi, j(ω) = −
∂2QB0 (ϵ+, ϵ−)

∂ϵ−i ∂ϵ
+
j

∣∣∣∣∣∣∣
ϵ±=0

, (5.20)

where i and j refer to 3D Cartesian components. Calculating this second-order derivative using
the chain rule via the optimal parameters p+ and p− (which implicitly depend on ϵ+ and ϵ−)
leads to (see, e.g., Refs. [39,40])

αBi, j(ω) =
(
Vi

V∗i

)† (
Λ(ω) Ξ
Ξ∗ Λ(−ω)∗

)−1 (
V j

V∗j

)
, (5.21)

where Λ(ω) and Ξ are the quasi-energy Hessian matrices

ΛI,J(ω) =
∂2QB(ϵ+, ϵ−; p+,p−)

∂p+∗I ∂p+J

∣∣∣∣∣∣p±=0
ϵ±=0

= AI,J − ωS I,J , (5.22)

and

ΞI,J =
∂2QB(ϵ+, ϵ−; p+,p−)

∂p+∗I ∂p−∗J

∣∣∣∣∣∣p±=0
ϵ±=0

= BI,J , (5.23)

where AI,J and BI,J are given in Eqs. (5.10) and (5.11), and S I,J is the overlap matrix of the
first-order wave-function derivatives

S I,J = ⟨Ψ̄I |Ψ̄J⟩. (5.24)

Equation (5.21) also involves the perturbed energy gradient vector

V j,I =
∂2QB(ϵ+, ϵ−; p+,p−)

∂ϵ+j ∂p+∗I

∣∣∣∣∣∣∣p±=0
ϵ±=0

= −⟨Ψ̄I |d̂ j|Ψ0⟩, (5.25)
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corresponding to transition dipole-moment matrix elements.
Finally, the poles in ω of the dynamic dipole polarizability αBi, j(ω) provide M positive excita-

tion energies {ωBn } (and M opposite deexcitation energies), which can be found from the following
generalized eigenvalue equation (see, e.g., Ref. [34])(

A B
B∗ A∗

) (
Xn

Yn

)
= ωBn

(
S 0
0 −S

) (
Xn

Yn

)
, (5.26)

where (Xn,Yn) are eigenvectors. The obtained excitation energies {ωBn } include the basis-set cor-
rection through the potential v̄B[ρ](r) in Eq. (5.9) and kernel f̄B[ρ](r, r′) in Eqs. (5.12) and (5.13),
and may be expected to converge faster to their CBS limit, provided good enough approxima-
tions are used for the basis-set correction functional used for v̄B[ρ](r) and f̄B[ρ](r, r′). Obviously,
the corresponding basis-set corrected total energy of the nth excited state is given by

EBn = EB0 + ω
B
n , (5.27)

and could also be expected to converge faster to its CBS limit, if the basis-set correction func-
tional is good enough.

5.2.3 Linear-response equations for configuration-interaction wave functions

We now give the more specific form of the linear-response equations for configuration-interaction
(CI) wave functions. Given a set of M orthonormal configurations {|ΦI⟩}, the CI wave function
is parametrized as

|Ψ(p)⟩ =
M∑

I=1

pI |ΦI⟩. (5.28)

The ground-state parameters are assumed to be real valued and are denoted by p0
I = cI, so

that the ground-state wave function is |Ψ0⟩ =
∑M

I=1 cI |ΦI⟩. From Eq. (5.2), the first-order and
second-order derivatives of the intermediately normalized wave function are found to be

|Ψ̄I⟩ = |ΦI⟩ − cI |Ψ0⟩, (5.29)

and
|Ψ̄I,J⟩ = 2cIcJ |Ψ0⟩ − cJ |ΦI⟩ − cI |ΦJ⟩. (5.30)

In a spin-restricted formalism with a set of real-valued orthonormal orbitals {φi} ⊂ hB, the
linear-response matrices in Eq. (5.26) now become

AI,J = ⟨ΦI |ĤBeff − E
B
0 |ΦJ⟩ + KI,J , (5.31)

BI,J = KI,J , (5.32)

S I,J = δI,J − cIcJ , (5.33)

where the kernel contribution takes the form

KI,J =
∑
i, j,k,l

∆γI
i, j ∆γ

J
k,l f̄Bi, j,k,l, (5.34)

with i, j, k, l referring to spatial orbitals. In Eq. (5.34), we have introduced

∆γI
i, j = γ

I
i, j − cIγi, j, (5.35)
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Table 5.1: Exact total energies of the first 5 eigenstates of even-parity and singlet symmetries
for the 1D two-electron Hooke-type atom with ω0 = 1, and corresponding excitation energies.
All energies are in hartree.

State (n,m) Total energy En,m Excitation energy En,m − E0,0

(0, 0) 1.306746
(0, 2) 3.187051 1.880305
(2, 0) 3.306746 2.000000
(0, 4) 5.144734 3.837988
(2, 2) 5.187051 3.880305

where γi, j and γ
I
i, j are the ground-state and transition density matrices, respectively,

γi, j = ⟨Ψ0|Êi, j|Ψ0⟩ =

M∑
I=1

M∑
J=1

cIcJ⟨ΦI |Êi, j|ΦJ⟩, (5.36)

γI
i, j = ⟨ΦI |Êi, j|Ψ0⟩ =

M∑
J=1

cJ⟨ΦI |Êi, j|ΦJ⟩, (5.37)

where Êi, j = â†i↑â j↑ + â†i↓â j↓ is the spin-summed one-electron density-matrix operator in second

quantization. Finally, in Eq. (5.34), f̄Bi, j,k,l are the matrix elements of the basis-set correction

kernel f̄B[ρΨ0](r, r′) over the spatial orbitals

f̄Bi, j,k,l =
∫
R3×R3

f̄B[ρΨ0](r, r′) φi(r)φ j(r)φk(r′)φl(r′)drdr′. (5.38)

5.3 One-dimensional model system

5.3.1 Description of the model and exact solutions

We consider the 1D two-electron Hooke-type atom studied in Refs. [30–32]. We work first in
the infinite-dimensional spin-free one-electron Hilbert space h = L2(R,C) and the associated
non-antisymmetrized tensor-product two-electron Hilbert space H = h ⊗ h . The Hamiltonian is

Ĥ = −
1
2
∂2

∂x2
1

−
1
2
∂2

∂x2
2

+
1
2
ω2

0x2
1 +

1
2
ω2

0x2
2 + δ(x1 − x2), (5.39)

involving a harmonic external potential of curvature ω2
0 (which will be chosen to 1 throughout this

study) and a Dirac-delta two-electron interaction. The latter two-electron interaction generates
in 1D the same s-wave electron-electron cusp as the Coulomb interaction does in 3D, and it is
thus an appropriate model to study the basis convergence [32]. This 1D two-electron Hooke-type
atom can be considered as the 1D analog of the well-known 3D two-electron Hooke atom (see,
e.g., Refs. [43,44]).

Expressed with the center-of-mass (cm) coordinate X = (x1 + x2)/2 and the relative (rel)
coordinate x12 = x1 − x2, the Hamiltonian is separable [32] and its eigenvalues are

En,m = Ecm
n + Erel

m for n ∈ N and m ∈ N, (5.40)

where Ecm
n = ω0(n + 1/2) is the center-of-mass contribution and Erel

m is the relative contribution,

Erel
m =

ω0(νm + 1/2), for m even,

ω0(m + 1/2), for m odd,
(5.41)
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Figure 5.1: Ground-state energy of the 1D two-electron Hooke-type atom with ω0 = 1 calcu-
lated by the standard FCI method, the non-self-consistent FCI+LDA and self-consistent SC-
FCI+LDA basis-set corrected methods as a function of the basis size nmax.

with the real numbers νm being the solutions of the equation [30,45]

2
√

2ω0
Γ
(
−
νm
2 +

1
2

)
Γ
(
−
νm
2

) = −1, (5.42)

where Γ is the gamma function. The associated eigenfunctions are

Ψn,m(X, x12) = ψcm
n (X)ψrel

m (x12), (5.43)

where the center-of-mass eigenfunctions are ψcm
n (X) = f 2ω0

n (X) and the relative eigenfunctions are

ψrel
m (x12) =

cmDνm(
√
ω0|x12|), for m even,

fω0/2
m (x12), for m odd,

(5.44)

where Dνm is the parabolic cylinder function [46] and cm is a normalization constant. Here,
fω0
n designates the Hermite functions (i.e., quantum harmonic-oscillator eigenfunctions) for the
frequency ω0

fω0
n (x) = Nω0

n Hn(
√
ω0x) e−ω0 x2/2, (5.45)

where Hn are the Hermite polynomials, Nω0
n = (2nn!)−1/2(ω0/π)1/4 is the normalization factor.

As announced, for even m, the relative eigenfunctions has the familiar s-wave cusp condition:
ψrel

m (x12) = ψrel
m (0)[1 + (1/2)|x12| + O(x2

12)] (see Ref. [32]).
We will only consider eigenstates of even-parity symmetry [i.e., invariant under the transfor-

mation (x1, x2)→ (−x1,−x2)] and singlet symmetry (i.e., invariant under the exchange x1 ↔ x2),
corresponding to the eigenstates with both even quantum numbers n and m. The exact total
energies of the first 5 of these eigenstates, as well as the corresponding excitation energies, are
given in Table 5.1 for ω0 = 1.
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Figure 5.2: Excitation energies of the states (0, 2), (2, 0), (0, 4), and (2, 2) of the 1D two-electron
Hooke-type atom with ω0 = 1 calculated by the standard FCI method and the LR-FCI+LDA
basis-set corrected method as a function of the basis size nmax. For comparison, excitation
energies obtained with a zero basis-set correction kernel [LR-FCI+LDA (K=0)] and with a non-
self-consistent state-specific approach (FCI+LDA) are also shown.

5.3.2 Full-configuration-interaction calculation in a basis set

We consider finite basis sets of Hermite (or Hermite-Gauss) functions

B = { fω0
n }n=1,...,nmax , (5.46)

with a fixed parameter ω0 = 1 and a variable maximal quantum number nmax determining the
basis size. The one-electron and two-electron Hilbert spaces corresponding to this basis set are
hB = span(B) and HB = hB ⊗ hB.

For several values of nmax, we first perform a Hartree-Fock (HF) calculation to obtain the
set of orthonormal HF orbitals {φi}, and we then perform a full-configuration-interaction (FCI)
calculation for the states of even-parity symmetry. The parameterized FCI wave function is thus
|ΨFCI(p)⟩ =

∑M
I=1 pI |ΦI⟩ where |ΦI⟩ = |φI1⟩ ⊗ |φI2⟩, and the orbitals φI1 and φI2 are restricted to

be of the same parity symmetry. In Fig. 5.1 we report the FCI ground-state energy E0,FCI =

⟨Ψ0,FCI|Ĥ|Ψ0,FCI⟩, where Ψ0,FCI is the FCI ground-state wave function, as a function of the
basis size nmax. As expected, the FCI ground-state energy slowly converges toward the exact
ground-state energy as nmax increases. The convergence rate is compatible with the theoretical
convergence rate of 1/n1/2

max determined in Ref. [32].
We construct a local-density approximation (LDA) for the basis-set correction functional

ĒB[ρ]

ĒBLDA[ρ] =
∫
R
ρ(r)ε̄B(ρ(r)) dr, (5.47)
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Figure 5.3: Excited-state total energies of the states (0, 2), (2, 0), (0, 4), and (2, 2) of the 1D
two-electron Hooke-type atom with ω0 = 1 calculated by the standard FCI method and the
LR-FCI+LDA basis-set corrected method as a function of the basis size nmax. For compari-
son, excited-state total energies obtained with a zero basis-set correction kernel [LR-FCI+LDA
(K=0)] and with a non-self-consistent state-specific approach (FCI+LDA) are also shown.
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where the energy per particle ε̄B(ρ) is defined in exactly the same way as in Ref. [32], i.e. as the
complementary multideterminant correlation energy per particle of a two-electron finite uniform
electron gas with electron-electron interaction projected in the basis set B. For convenience, we
fit the numerically calculated energy per particle ε̄B(ρ) to a rational fraction

ε̄B(ρ) ≈
∑4

i=0 aBi ρ
i

1 +
∑4

j=1 bBj ρ
j
, (5.48)

where the values of the coefficients aBi and bBj for each basis size nmax are given in the Supple-
mentary Material.

We perform a ground-state FCI calculation including self-consistently the basis-set correction
LDA functional according to Eq. (5.5). The required LDA basis-set correction potential is
obtained by straightforward differentiation of Eq. (5.47)

v̄BLDA[ρ](r) = ε̄B(ρ(r)) + ρ(r)
dε̄B(ρ)
dρ

∣∣∣∣∣∣
ρ=ρ(r)

. (5.49)

The resulting energy, labelled as SC-FCI+LDA, is reported as a function of the basis size nmax

in Fig. 5.1. We see that the basis-set correction LDA functional is very effective in reducing the
basis-set incompleteness error, resulting in a fast convergence of the SC-FCI+LDA ground-state
energy toward the exact ground-state energy. For comparison, we also show in Fig. 5.1 the
non-self-consistent approximation [21,32], labelled as FCI+LDA,

E0,FCI+LDA = E0,FCI + ĒBLDA[ρΨ0,FCI]. (5.50)

On the scale of the plot, it is superimposed with the SC-FCI+LDA energy, showing that the
non-self-consistent approximation is an excellent approximation for calculating the ground-state
energy of the present system. The same trends have been observed in atomic and molecular
systems [27].

We then perform linear-response calculations on-top of the ground-state SC-FCI+LDA cal-
culations according to Eq. (5.26). The required LDA basis-set correction kernel is obtained by
differentiation of Eq. (5.49)

f̄BLDA[ρ](r, r′) =
2 dε̄B(ρ)

dρ

∣∣∣∣∣∣
ρ=ρ(r)

+ ρ(r)
d2ε̄B(ρ)
dρ2

∣∣∣∣∣∣
ρ=ρ(r)

 δ(r − r′). (5.51)

The resulting linear-response basis-set corrected excitation energies, labelled as LR-FCI+LDA,
are reported in Fig. 5.2 as a function of the basis set nmax for the four excited states considered
in Table 5.1, and compared to the excitation energies obtained by standard FCI. The first thing
to note is that the FCI excitation energies have a much faster basis convergence than the FCI
ground-state energy. This is somehow expected since the same electron-electron cusp condition
applies for both the ground state and the considered excited states, and therefore the short-
range correlation effects normally responsible for the slow basis convergence should partially
cancel out in the excitation energies. Accelerating the basis convergence of excitation energies
is thus a more subtle task than accelerating the basis convergence of ground-state energies. In
fact, LR-FCI-LDA does not provide any improvement over standard FCI but instead mostly
deteriorates the basis convergence of excitation energies. We may attribute these disappointing
results to the limited accuracy of the LDA basis-set correction potential and kernel.

In Fig. 5.2, we also show excitation energies obtained with a basis-set correction kernel set
to zero, such that

AI,J ≃ ⟨ΦI |ĤBeff − E
B
0 |ΦJ⟩, (5.52)
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and
BI,J ≃ 0. (5.53)

This approximation is labelled as LR-FCI+LDA (K=0) in the figures of the present paper. It is
somewhat consoling to see that the LDA kernel does nevertheless improve the excitation ener-
gies, albeit sometimes by a small amount. Finally, Fig. 5.2 also reports the excitation energies
obtained by the non-self-consistent state-specific approach of Ref. [29], labelled as FCI+LDA.
In this approach, the excited-state energy of the nth excited state is estimated as

En,FCI+LDA = En,FCI + ĒBLDA[ρΨn,FCI], (5.54)

where En,FCI = ⟨Ψn,FCI|Ĥ|Ψn,FCI⟩ is the FCI total energy of the nth excited state with wave
function Ψn,FCI. The excitation energy is then given by En,FCI+LDA − E0,FCI+LDA. Globally, the
state-specific FCI+LDA approach gives excitation energies quite similar to the LR-FCI+LDA
method, except for the state (0, 4) where FCI+LDA gives clearly excitation energies that more
rapidly converge with the basis size. Since the state-specific FCI+LDA approach only involves
the energy density functional ĒB

LDA
[ρ] and not its derivatives, it may indicate that LDA is more

accurate for the energy than for the potential and kernel.
We discuss now the total excited-state energies which are reported in Fig. 5.3 as a function

of the basis set nmax for the four excited states considered. Here, we observe that the FCI
excited-state energies exhibit a similar convergence with respect to nmax as the FCI ground-state
energy. This is expected since, as mentioned before, the same electron-electron cusp condition
applies for both the ground state and the considered excited states. In comparison to the case
of the excitation energies, there is no partial cancellation of short-range electron correlation
effects, and it is thus an easier task to accelerate the basis convergence of total excited-state
energies. Globally, the LR-FCI+LDA excited-state energies [Eq. (5.27)] tend to have less basis-
set incompleteness error than the standard FCI excited-state energies, and converge faster with
nmax to the exact energies. However, the performance of the basis correction is not uniform
over all the states considered. For the state (0, 2), the basis-set correction is very effective in
reducing the error and accelerating the basis convergence. For the states (2, 0) and (2, 2), the
basis-set correction again effectively reduces the error but does not seem to significantly change
the convergence rate for large nmax. For the state (0, 4), the basis-set correction only reduces the
error for small nmax but does not improve the standard FCI energy for nmax ≳ 30.

Comparison with the total excited-state energies obtained with a zero basis-set correction
kernel [LR-FCI+LDA (K=0)] shows again that the LDA kernel improves the basis convergence,
even though the effect is small for some of the states. The state-specific FCI+LDA approach
gives total excited-state energies very similar to the LR-FCI+LDA ones, except again for the
state (0, 4) where FCI+LDA gives total excited-state energies that rapidly converge with basis
size.

As a final comment, we note that the FCI total energies are of course systematically higher
than the exact total energies for the ground and excited states, which makes possible a partial
compensation of errors in the FCI excitation energies. By contrast, the basis-set corrected total
energies converge to the exact total energies from below for the ground state and from above
for the excited states, and thus the basis-set corrected excitation energies do not enjoy any
compensation of errors.

5.4 Conclusions

In this work, we have extended the DFT-based basis-set correction method to the linear-response
formalism, allowing one to calculate excited-state energies. We have given the general linear-
response equations, as well as the more specific equations for configuration-interaction wave func-
tions. As a proof of concept, we have applied this approach to the calculations of excited-state
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energies in 1D two-electron model system with harmonic potential and a Dirac-delta electron-
electron interaction. The results obtained with FCI wave functions expanded in a basis of
Hermite functions and a LDA basis-set correction functional within the adiabatic approxima-
tion show that the present linear-response basis-set correction method unfortunately does not
help in accelerating the basis convergence of excitation energies. However, it does significantly
accelerate the basis convergence of excited-state total energies.

These mixed results should now be checked on real 3D molecular systems. Possibly, for these
systems, an important ingredient to add to the basis-set correction functional will be the on-
top pair density. The fact that the simple non-self-consistent state-specific basis-set correction
approach was found in Ref. [29] to help accelerating the convergence of excitation energies in
molecular systems gives us hope that the present linear-response basis-set correction method
could be useful as well for these systems.

Supplementary Material

The Supplementary Material contains the coefficients of the LDA basis-set correction energy per
particle in Eq. (D.1) for different basis sizes nmax.
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Conclusion

Originally, the density-based basis-set correction method has been implemented as an a posteriori
correction. It only needed a density for the complementary functional and permitted corrections
to energies and differences of energies. In this thesis, we have extended the basis-set correction
method to other molecular properties.

This work started with the implementation of the self-consistent equation that includes
the basis-set correction functional in the optimization of the wave function. In that way, we
have access to first-order response molecular properties through expectation values. The dipole
moment is the molecular property we chose for a first application of the self-consistent basis-set
correction method. We also worked on a non-self consistent procedure for the correction of the
coupled-cluster dipole moment using finite differences of energies.

In order to better understand the basis-set correction method, we developed a one-dimensional
(1D) model. The latter model helped in the development of a local-density approximation (LDA)
for the basis-set correction functional. We also used a similar 1D model for testing the extension
of the basis-set correction method to a linear-response formalism.

The work on the implementation of the self-consistent equation and its application to the
dipole moment is exposed in Chap. 2. Using expectation values, we computed dipole mo-
ments using the eigenvectors of a self-consistent effective Schrödinger equation. Results showed
improved basis convergences of the dipole moments in comparison with standard methods.

We also used the implementation to compute ground-state energies with the self-consistent
procedure. Due to the comparable results with the a-posteriori approximation, we conclude that
the a-posteriori correction is valid for the ground-state energy. Therefore one can access a viable
correction at the cost of a single density-functional calculation.

The last conclusion made us wonder if a similar procedure is valid for the dipole moment.
In Chap. 3, we show how to compute a correction to the dipole moment using a finite difference
of short-range correlation energies at a given density. In addition, we convinced ourselves that
corrections computed with the Hartree-Fock density were comparable with the use of the full-
configuration-interaction density. The latter conclusion allows the use of a correction at the cost
of a Hartree-Fock calculation which can be applied to any correlated method. By getting rid of
self-consistent methods, dipole moments can be computed using coupled-cluster methods and
the Hartree-Fock-based correction provides enhanced basis-set convergences.

With the purpose to better understand the density-based basis-set correction method and
the approximations we used, we developed in Chap. 4 a 1D model with two electrons interacting
through a Dirac-delta interaction. Using the latter interaction, we recover systematic and slow
convergences of ground-state energies with the number of Hermite-Gauss basis functions. This
model led us to quantities that are easily computable and manipulable.

The next step was to develop a LDA-based complementary functional without any range-
separated density-functional theory flavor. This development required understanding the behav-
ior of the uniform electron gas model in the presence of the basis-set correction potential which
is not invariant under translation.
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Finally, in Chap. 5, we used a similar one-dimensional model for the extension of the basis-set
correction method to molecular properties computed with the linear-response formalism. In that
case, the basis-set correction enters through the second-order derivative of the complementary
functional. Our tests on the model system showed that the excitation energies (eigenvalues of
the linear-response equation) are not improved using the LDA-based density functional but the
basis convergences of the excited-state total energies are accelarated.

Finally, these three years permitted to lay the foundations of what we hope to be a significant
field of development: the extension of the density-based basis-set correction method to molecular
properties. The logical continuation of this work would be to understand and validate (or not)
the use of the second-order derivative of the short-range density functional and the on-top pair
density for molecular properties of three-dimensional (3D) systems. This work should start with
the extension of the 1D linear-response basis-set correction formalism to 3D systems.

On the other hand, we aim at extending the 1D complementary functional, free of range-
separated density functionals, to 3D systems. To this end, we will need to define the properties
of the 3D uniform electron gas and build a process to generate a basis-set correction functional
that will depend on the basis set.
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A
The impact of diffuse functions on the basis-set

correction of dipole moment

This appendix is related to Chap. 3. In Tab. C.13, we notice that the basis-set correction does
not improve the basis convergence of the LiH dipole moment. Here, we study the impact of
diffuse functions on the basis-set convergence of the LiH dipole moment. Indeed, the authors
in Ref. [1] remind that additional diffuse functions are often needed for the computation of
molecular properties and therefore dipole moments.

In Tab. A.1, we report the convergences of Hartree-Fock and CCSD(T) dipole moments
with cc-pCVXZ, aug-cc-pCVXZ, and d-aug-cc-pCVXZ basis sets. We notice that Hartree-Fock
and CCSD(T) dipole moments are not converged using the cc-pCVQZ basis set. However,
the use of d-aug-cc-pCVXZ basis sets does not improve dipole moments regarding their aug-
cc-pCVXZ counterparts. We conclude that aug-cc-pCVXZ basis sets already contain enough
diffuse functions.

Finally, no major change occurs while adding diffuse functions (for the same X). The latter
remark is consistent with the feature of our basis-set correction functional approximation which
should target short-range correlation.

For this study, augmented basis sets have been developed using the recipe provided in Ref. [1]
to generate extra-diffuse functions for Y-aug-cc-p(C)VXZ basis sets for Y greater than 1. In this
framework, even-tempered parameters α and β are respectively defined as the smallest exponent
and the ratio between the two most diffuse functions in the aug-cc-p(C)VXZ set. Finally, each
added function will have an exponent αβ for the d-aug-cc-pCVXZ set, αβ2 for the t-aug-cc-
pCVXZ set, αβ3 for the q-aug-cc-pCVXZ set, and so on.
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Table A.1: The second and third columns are the Hartree-Fock and CCSD(T) dipole moments
of LiH in atomic units computed from finite differences of energies using cc-pCVXZ, aug-cc-
pCVXZ and d-aug-cc-pCVXZ basis sets. The experimental value is 2.3135 a.u.. The last column
corresponds to the correction to the dipole moment computed from a finite difference of the
PBEUEG short-range correlation energy at the HF density.

Basis/Method HF CCSD(T) d̄B (PBEUEG)

cc-pCVDZ 2.3378 2.2495 0.0050
cc-pCVTZ 2.3497 2.2780 0.0015
cc-pCVQZ 2.3580 2.2880 0.0006
CBS 2.2892

aug-cc-pCVDZ 2.3667 2.3155 0.0041
aug-cc-pCVTZ 2.3609 2.2960 0.0014
aug-cc-pCVQZ 2.3612 2.2935 0.0006
CBS 2.2915

d-aug-cc-pCVDZ 2.3643 2.3115 0.0037
d-aug-cc-pCVTZ 2.3613 2.2960 0.0014
d-aug-cc-pCVQZ 2.3613 2.2935 0.0006
CBS 2.2917

t-aug-cc-pCVDZ - - 0.0035
t-aug-cc-pCVTZ - - 0.0013
t-aug-cc-pCVQZ - - 0.0006
CBS
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B
Linear-response basis-set correction applied to
excited-state energies of the berrylium atom

This appendix is related to Chap. 5. We report the preliminary tests of the linear-response
basis-set correction method for the berrylium atom. Here, we use the following variant for the
multi-determinantal correlation functional

ĒBLDA-UEG[n] =
∫

dr esr,µ
B(r),LDA-UEG

c,md
(n(r), ζ(r), nUEG

2 (r)), (B.1)

where

esr,µ,LDA-UEG
c,md

(n, ζ, nUEG
2 ) =

eLDA
c (n, ζ)

1 + β(n, ζ, nUEG
2 )µ3

, (B.2)

where

β(n, ζ, nUEG
2 ) =

3

2
√
π(1 −

√
2)

eLDA
c (n, ζ)

nUEG
2

. (B.3)

We use this variant because we have access to the second-order derivative of eLDA
c (n, ζ) from

Ref. [1].

In Fig. B.1, we show the excitation energies to the 2s2p 1P state on the panel a), and to the
2p2 1D state on the panel b). The FCI excitation energies correspond to the energy differences
between the FCI eigenvalues associated with each state without the basis-set correction potential.
The LR-FCI-LDA (K=0) curve corresponds to the linear-reponse eigenvalues without the effect
of the basis-set correction kernel in Eq. 5.34. Finally, the LR-FCI-LDA curve corresponds to
the linear-response eigenvalues with the basis-set correction kernel.

For both excitation energies, we notice that the linear-response equations lead to eigenvalues
greater than the FCI eigenvalues. Therefore, the linear-response framework does not correct the
FCI estimations of the excited states. Moreover, the kernel contribution tends to deteriorate the
results as compared to the LR-FCI-LDA (K=0) excitation energies.

In Fig B.2, we show the total energies of the 2s2p 1P state on the panel a), and of the 2p2

1D state on the panel b). For the FCI energy, we report the eigenvalues of the FCI solution.
For the linear-response calculations, the ground-state energy is the one from the self-consistent
basis-set correction method.
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By contrast with the excitation energies, both LR-FCI-LDA (K=0) and LR-FCI-LDA total
energies are closer to the experimental value than the FCI energy. Moreover, the LR-FCI-LDA
total energies show better convergences than the LR-FCI-LDA (K=0) results.

Finally, this results are similar with those obtained in Chap. 5 : the linear-response exitation
energies do not improve the FCI excitation energies, whereas the total energies are improved.
However, this results need to be read with some care: we use cc-pVXZ basis sets due to compu-
tational costs that forbid us to use aug-cc-pVXZ basis sets (or cc-pCVXZ). Therefore, this may
limit the accuracy.

The preliminary results point to the need of improving the linear-response basis-set correction
method by implementing more accurate basis-set correction functionals, in particular depending
on the on-top pair density.
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Figure B.1: Excitation energies from the 2s22 1S ground state to the a) singlet 2s2p 1P and b)
singlet 2p2 1D states. The experimental values are taken from Ref. [2].
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Figure B.2: Total energies of the a) singlet 2s2p 1P and b) singlet 2p2 1D states. The experi-
mental values are computed from the excitation energies in Ref. [2] and a reference ground-sate
energy of -14.66737 Ha from Ref [3].
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C
Supplementary material: Basis-set correction for

coupled-cluster estimation of dipole moments

Geometries

Table C.1: Input xyz geometries (in angström) and their ref-
erences.

Molecules

CO [1]

C 0.0000 0.0000 0.0000
O 0.0000 0.0000 1.1282

BeH [1]

Be 0.0000 0.0000 0.0000
H 0.0000 0.0000 1.3426

BF [1]

B 0.0000 0.0000 0.0000
F 0.00000 0.0000 1.2669

BH [2]
B 0.0000 0.0000 0.0000
H 0.0000 0.0000 1.2324

CH [1]

C 0.0000 0.0000 0.0000
H 0.0000 0.0000 1.1199

NH [1]

N 0.0000 0.0000 0.0000
H 0.0000 0.0000 1.0362

CH2 (singlet) [1]

C 0.0000 -0.0000 0.1734
H 0.0000 -0.8623 -0.5202
H 0.0000 -0.8623 -0.5202

FH [2]
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F 0.0000 0.0000 0.0000
H 0.0000 0.0000 0.9170

H2O [1]

O 0.0000 0.0000 0.1173
H 0.0000 0.7572 -0.4692
H 0.0000 -0.7572 -0.4692

BN [1]

B 0.0000 0.0000 0.0000
N 0.0000 0.0000 1.3250

BO [1]

B 0.0000 0.0000 0.0000
O 0.0000 0.0000 1.2045

LiH [1]

Li 0.0000 0.0000 0.0000
H 0.0000 0.0000 1.5949

LiF [1]

Li 0.0000 0.0000 0.0000
F 0.0000 0.0000 1.5639

LiN [1]

Li 0.0000 0.0000 0.0000
N 0.0000 0.0000 1.8690
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Detailed results for the molecules

Table C.2: CO
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ -0.10199 0.05550 0.04398
aug-cc-pVTZ -0.10499 0.05000 0.04414
aug-cc-pVQZ -0.10433 0.04600 0.04273
aug-cc-pV5Z -0.10421 0.04500 0.04360

CBS 0.04485
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Figure C.1: CO
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Table C.3: BeH
Basis/Method ROHF ROCCSD(T) ROCCSD(T)+PBEUEG

aug-cc-pVDZ 0.11017 0.09550 0.08416
aug-cc-pVTZ 0.11076 0.09100 0.08746
aug-cc-pVQZ 0.11199 0.09050 0.08941
aug-cc-pV5Z 0.11218 0.09050 0.08980

CBS 0.09030
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Figure C.2: BeH
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Table C.4: BF
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 0.34436 0.34100 0.33287
aug-cc-pVTZ 0.33390 0.32700 0.32351
aug-cc-pVQZ 0.33314 0.32300 0.32082
aug-cc-pV5Z 0.33328 0.32200 0.32068

CBS 0.32081
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Figure C.3: BF
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Table C.5: BH
Basis/ Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 0.68796 0.52950 0.54162
aug-cc-pVTZ 0.68649 0.54500 0.55002
aug-cc-pVQZ 0.68493 0.54750 0.54986
aug-cc-pV5Z 0.68496 0.54850 0.54980

CBS 0.54953
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Figure C.4: BH
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Table C.6: CH
Basis/Method ROHF ROCCSD(T) ROCCSD(T)+PBEUEG

aug-cc-pVDZ 0.62348 0.54150 0.55427
aug-cc-pVTZ 0.62000 0.54950 0.55481
aug-cc-pVQZ 0.61871 0.55150 0.55405
aug-cc-pV5Z 0.61858 0.55250 0.55396

CBS 0.55368
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Figure C.5: CH
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Table C.7: NH
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 0.63850 0.59350 0.60792
aug-cc-pVTZ 0.63505 0.59950 0.60519
aug-cc-pVQZ 0.63381 0.60200 0.60464
aug-cc-pV5Z 0.63384 0.60350 0.60506

CBS 0.60504
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Figure C.6: NH
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Table C.8: CH2
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 0.74877 0.65600 0.66666
aug-cc-pVTZ 0.74477 0.66000 0.66455
aug-cc-pVQZ 0.74355 0.66200 0.66420
aug-cc-pV5Z 0.74353 0.66350 0.66478

CBS 0.66510
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Figure C.7: CH2
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Table C.9: FH
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 0.75976 0.70350 0.71371
aug-cc-pVTZ 0.75751 0.70450 0.70903
aug-cc-pVQZ 0.75634 0.70700 0.70946
aug-cc-pV5Z 0.75617 0.70750 0.70900

CBS 0.70820
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Figure C.8: FH
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Table C.10: H2O
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 0.78671 0.72700 0.73891
aug-cc-pVTZ 0.78039 0.72400 0.72930
aug-cc-pVQZ 0.77956 0.72650 0.72912
aug-cc-pV5Z 0.77956 0.72800 0.72920

CBS 0.72957
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Figure C.9: H2O
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Table C.11: BN
Basis/Method ROHF ROCCSD(T) ROCCSD(T)+PBEUEG

aug-cc-pVDZ 1.13451 0.76250 0.77517
aug-cc-pVTZ 1.13862 0.77550 0.78145
aug-cc-pVQZ 1.13831 0.78400 0.78756
aug-cc-pV5Z 1.13840 0.78650 0.78846

CBS 0.78902
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Figure C.10: BN
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Table C.12: BO
Basis/Method ROHF ROCCSD(T) ROCCSD(T)+PBEUEG

aug-cc-pVDZ 1.17803 0.88300 0.89417
aug-cc-pVTZ 1.18533 0.89550 0.90153
aug-cc-pVQZ 1.18527 0.90250 0.90622
aug-cc-pV5Z 1.18539 0.90450 0.90698

CBS 0.90647
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Figure C.11: BO
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Table C.13: LiH
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 2.37055 2.32500 2.32501
aug-cc-pVTZ 2.36235 2.31000 2.30965
aug-cc-pVQZ 2.36153 2.30800 2.30795
aug-cc-pV5Z 2.36129 2.30800 2.30802

CBS 2.30825
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Figure C.12: LiH
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Table C.14: LiF
Basis/Method HF CCSD(T) CCSD(T)+PBEUEG

aug-cc-pVDZ 2.56111 2.50400 2.50942
aug-cc-pVTZ 2.54103 2.48300 2.48542
aug-cc-pVQZ 2.53949 2.48250 2.48367
aug-cc-pV5Z 2.53905 2.48250 2.48321

CBS 2.48297
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Figure C.13: LiF
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Table C.15: LiN
Basis/Method ROHF ROCCSD(T) ROCCSD(T)+PBEUEG

aug-cc-pVDZ 2.90309 2.74200 2.75215
aug-cc-pVTZ 2.90379 2.77300 2.77714
aug-cc-pVQZ 2.90372 2.78250 2.78464
aug-cc-pV5Z 2.90317 2.78450 2.78583

CBS 2.78718
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Figure C.14: LiN
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Table of errors

Table C.16: Errors in dipole moments (in atomic units) with respect to CCSD(T)/CBS for
frozen-core calculations for the entire set of molecules. For each Dunning basis set (AVXZ=aug-
cc-pVXZ, X ∈{D,T,Q,5}), the first column contains the errors of the CCSD(T) dipole moments
and the second column contains the errors after adding the PBEUEG basis-set correction.

AVDZ AVTZ AVQZ AV5Z

CCSD(T) +PBEUEG CCSD(T) +PBEUEG CCSD(T) +PBEUEG CCSD(T) +PBEUEG
CO 0.01065 -0.00087 0.00515 -0.00071 0.00115 -0.00212 0.00065 -0.00125
BeH 0.00520 -0.00614 0.00070 -0.00284 0.00020 -0.00089 0.00020 -0.00050
BF 0.02019 0.01207 0.00619 0.00270 0.00219 0.00001 0.00119 -0.00013
BH 0.02003 0.00791 0.00453 -0.00049 0.00203 -0.00033 0.00103 -0.00027
CH 0.01218 -0.00059 0.00418 -0.00112 0.00218 -0.00036 0.00118 -0.00027
NH 0.01154 -0.00288 0.00554 -0.00015 0.00304 0.00041 0.00154 -0.00002

CH2 (singlet) 0.00910 -0.00156 0.00510 0.00055 0.00310 0.00090 0.00160 0.00032
FH 0.00470 -0.00551 0.00370 -0.00083 0.00120 -0.00126 0.00070 -0.00080
H2O 0.00257 -0.00934 0.00557 0.00027 0.00307 0.00045 0.00157 0.00037
BN 0.02652 0.013855 0.01352 0.00757 0.00502 0.00146 0.00252 0.00056
BO 0.02347 0.01230 0.01097 0.00494 0.00397 0.00025 0.00197 -0.00051
LiH 0.01675 0.01676 0.00175 0.00140 -0.00025 -0.00030 -0.00025 -0.00023
LiF -0.02103 -0.02645 -0.00003 -0.00246 0.00047 -0.00070 0.00047 -0.00024
LiN 0.04518 0.03504 0.01418 0.01004 0.00468 0.00254 0.00268 0.00136

Table C.17: Relative errors (%) in dipole moments with respect to CCSD(T)/CBS for frozen-core
calculations for the entire set of molecules. For each Dunning basis set (AVXZ=aug-cc-pVXZ,
X ∈{D,T,Q,5}), the first column contains the errors of the CCSD(T) dipole moments and the
second column contains the errors after adding the PBEUEG basis-set correction.

AVDZ AVTZ AVQZ AV5Z

CCSD(T) +PBEUEG CCSD(T) +PBEUEG CCSD(T) +PBEUEG CCSD(T) +PBEUEG
CO 23.75 -1.95 11.48 -1.59 2.57 -4.74 1.45 -2.80
BeH 5.76 -6.79 0.78 -3.14 0.22 -0.99 0.22 -0.56
BF 6.29 3.76 1.93 0.84 0.68 0.00 0.37 -0.04
BH -3.64 -1.44 -0.82 0.09 -0.37 0.06 -0.19 0.05
CH -2.20 0.11 -0.76 0.20 -0.39 0.07 -0.21 0.05
NH -1.91 0.48 -0.92 0.02 -0.50 -0.07 -0.25 0.00

CH2 (singlet) -1.37 0.23 -0.77 -0.08 -0.47 -0.14 -0.24 -0.05
FH -0.66 0.78 -0.52 0.12 -0.17 0.18 -0.10 0.11
H2O -0.35 1.28 -0.76 -0.04 -0.42 -0.06 -0.22 -0.05
BN -3.36 -1.76 -1.71 -0.96 -0.64 -0.19 -0.32 -0.07
BO -2.59 -1.36 -1.21 -0.55 -0.44 -0.03 -0.22 0.06
LiH 0.73 0.73 0.08 0.06 -0.01 -0.01 -0.01 -0.01
LiF 0.85 1.07 0.00 0.10 -0.02 0.03 -0.02 0.01
LiN -1.62 -1.26 -0.51 -0.36 -0.17 -0.09 -0.10 -0.05
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D
Supplementary material: Basis-set correction based on
density-functional theory: Linear-response formalism

for excited-state energies

For each basis set B of size nmax, the LDA basis-set correction energy per particle is fitted to a
rational fraction

ε̄B(ρ) ≈
∑4

i=0 aBi ρ
i

1 +
∑4

j=1 bBj ρ
j
, (D.1)

where the coefficients are given in Tab. D.1.

Table D.1: Coefficients for the rational faction of Eq. (D.1). The coefficients have been found
using Mathematica NonlinearModelFit function.

nmax aB0 aB1 aB2 aB3 aB4 bB1 bB2 bB3 bB4
1 -0.000071 -0.198377 -4.150011 14.507548 -21.949820 20.296972 139.231729 -321.276975 536.780361
2 -0.000594 -0.173014 0.384433 -0.244367 -0.365982 5.401147 -7.446688 6.256052 8.969527
3 0.000444 -0.330837 0.297792 0.012509 -0.652327 24.748701 -18.057894 4.452590 15.604104
4 0.000795 -0.483374 0.382824 -0.346615 -0.485469 50.965472 -37.484558 17.394304 11.199767
5 0.000879 -0.637201 0.012849 0.251293 -0.793912 82.954134 -50.063365 9.142699 18.248454
10 -0.005058 0.025411 -0.076797 0.085669 -0.034448 -2.385101 3.352381 -2.446328 0.874405
20 -0.003546 0.018777 -0.073303 0.062172 -0.018124 -0.362275 1.663291 -1.437415 0.436582
30 -0.001524 -0.001298 -0.003401 0.004565 -0.001330 -1.064542 0.542581 -0.183654 0.036448
40 -0.001315 -0.001846 -0.000559 0.001925 -0.000579 -1.045314 0.447844 -0.113278 0.017638
50 -0.001259 -0.001685 0.000160 0.001096 -0.000349 -1.036763 0.413128 -0.088704 0.011676
60 -0.001212 -0.001615 0.000544 0.000651 -0.000229 -1.015071 0.382952 -0.073090 0.008439
70 -0.002015 0.026366 -0.069143 -0.167102 -0.010058 -10.127259 52.123001 -7.934000 0.982991
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