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Introduction

Early attempts of building a density-functional theory can be found in the work of Thomas

[1] and Fermi [2] in 1927. In their model the energy is expressed with respect to the density

with a simple expression for the kinetic energy based on the uniform electron gas and nuclear-

electron and electron-electron interactions are described classically. This model was extended

to the Thomas-Fermi-Dirac model by including an exchange energy formula for the uniform

electron gas introduced by Dirac [3] in 1930. Another early model was given by Slater [4] in

1951 who proposed an approximation to the non-local exchange in the Hartree-Fock method

that depends only on the local electron density. Density-functional theory as known today was

first introduced in 1964 by Hohenberg and Kohn [5] as an alternative to solving the Schrödinger

equation. Density-functional theory applied in the Kohn-Sham [6] scheme is an exact method if

the exact exchange-correlation density functional is known, unfortunately it is not and a major

topic of research is to define better and better approximated functionals. The first approximated

functional that was proposed and that was used as a starting point to further development is

based on an model system, an hypothetical uniform electron gas. In this approximation at each

point of an inhomogeneous system the local exchange-correlation energy per particle is taken as

the exchange-correlation energy per particle of the uniform electron gas of the same density. This

approximation is called the local-density approximation (LDA), the most known parametrization

was given by Vosko et al.[7]. Even if LDA is based on a simple approximation, realistic systems

being different from an uniform electron gas, it performs surprisingly good and can even be

comparable to or better in accuracy than Hartree-Fock, showing good accuracy for molecular

properties such as equilibrium structure but failing to describe energetical quantities such as

bonding energies with an overbinding tendency. An extension to improve the performance of

LDA is to take information from the gradient of the density to take into account the non-

homogeneity of the true electronic density which leads to a new family of approximations:

generalized-gradient approximations (GGAs). An example of such functional is given by B88

[8] for the exchange and LYP [9] for the correlation. A way to improve the performance of

GGAs is to take into account the Laplacian of the density and/or the kinetic energy density,

leading to a new family of approximations: meta-generalized-gradient approximations (meta-

GGAs). One of the most used meta-GGA approximation is TPSS defined by Tao et al.[10].

LDA, GGAs and meta-GGAs are often referred to as semilocal approximations because they

1



2 INTRODUCTION

only depend on the density at a point or on the derivatives of the density at this point (or

the derivatives of the orbitals for meta-GGAs). These semilocal approximations often give

an accurate description of short-range dynamical correlation but fails to describe long-range

or static correlation. These semilocal approximations present typically a self-interaction error

which tends to favor delocalization of the electrons and induces too low total energies.

A way to improve the performance of approximated functionals, in particular by reducing

the self-interaction error, is to combine density-functional theory with wave-function theory and

create hybrid approximations. Combining both theories can be done in different ways. One of

the simplest way of doing it is by doing a linear separation of the electron-electron Coulomb

interaction into two parts

1

r
=

λ

r︸︷︷︸
WFT

+
(1− λ)

r︸ ︷︷ ︸
DFT

,

the first term being treated with using wave-function theory (WFT) while the second term be-

ing treated with density-functional theory (DFT) and λ is the parameter of this hybridation.

A first realization of this was done in 1993 by Becke with the half-and-half combination [11]

(i.e. λ = 0.5) of Hartree-Fock exchange and a density-functional approximation. Most of the

time this fraction of Hartree-Fock exchange was too important and some error compensation

between exchange and correlation was lost. Later this hybrid scheme was extended using sev-

eral empirical coefficients with a smaller coefficient of Hartree-Fock exchange [12]. Common

hybrid approximations nowadays use a fraction λ ' 0.2 − 0.25 of Hartree-Fock exchange [13].

An extension of such hybrid approximations is achieved by introducing a fraction of correlation

energy calculated using second-order Møller-Plesset perturbation theory (MP2) and is known as

double-hybrid approximations. It was originally introduced by Grimme [14]. Double-hybrid ap-

proximations allow us to use a more important fraction of Hartree-Fock exchange (λ ' 0.5−0.7)

than for hybrid approximations without loosing too much the benefit of the error compensation

but the method fails to describe phenomena that cannot be treated with MP2, for example

static correlation. The fraction of correlation energy calculated with wave-function theory can

be treated using other approximations such as random-phase approximations [15]. To improve

the description of static correlation, density-functional theory can also be combined with the

multiconfiguration self-consistent-field (MCSCF) method [16].

Combining density-functional theory and wave-function theory can be done going beyond

the linear combination with the range-separated approach introduced by Savin [17] in 1996 by

decomposing the electron-electron Coulomb interaction into a long-range part and a short-range

part using the error function
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1

r
=

erf(µr)

r︸ ︷︷ ︸
WFT

+
1− erf(µr)

r︸ ︷︷ ︸
DFT

,

where µ is a parameter controlling the range of the separation. The long-range interaction is

described using wave-function theory and the short-range interaction is described using density-

functional theory. A version limited to the range separation of the exchange, named long-range

correction scheme (LC), was proposed by Iikura et al.[18] by introducing long-range Hartree-

Fock exchange while short-range exchange and correlation are treated using density-functional

approximations. The range separation can also be done on the correlation, for example using

MP2 for the long-range correlation with long-range Hartree-Fock exchange and a short-range

exchange-correlation functional [19]. Such a decomposition can be performed using other meth-

ods to describe the long-range correlation such as random-phase approximations [20] or coupled-

cluster methods [21], which are well adapted to describe van der Waals dispersion interactions.

A multiconfigurational treatment of the long-range correlation can be used to improve the de-

scription of static correlation such as long-range MCSCF [22] or long-range density-matrix-

functional theory (DMFT) [23].

The density-functional theory formalism has been extended to describe excited states, with

linear-response time-dependent density-functional theory. The key quantity in this approxima-

tion is the exchange-correlation kernel. The spatial and frequency dependence of this kernel

needs to be approximated. The simplest approximation is the adiabatic semilocal approxi-

mation in which the kernel is local in time (i.e., independent of the frequency) and local in

space. This approximation gives reasonably good results for low-lying valence electronic exci-

tation energies of molecular systems but it fails to describe some phenomena such as multiple

excitations, charge-transfer excitation energies and Rydberg excitation energies. To overcome

these limitations, time-dependent density-functional theory has been extended to range separa-

tion. The decomposition of the exchange kernel into a long-range Hartree-Fock exchange kernel

and a short-range exchange kernel described by a density-functional approximation has first

been performed by Tawada et al.[24] and was able to correct some problems from the semilocal

approximation such as the description of Rydberg excitation energies and charge-transfer exci-

tation energies. The range-separated scheme can be extended by using a short-range correlation

kernel calculated with a density-functional approximation and using long-range linear-response

MCSCF [25] or long-range linear-response DMFT [26] approaches. The use of multiconfigura-

tional methods to describe the long-range response improves the description of static correlation

and it also allows one to calculate double excitations. The short-range correlation kernel can

also be combined with a long-range correlation kernel calculated using the many-body Green

function formalism [27] which gives us a frequency-dependent long-range correlation kernel.



4 INTRODUCTION

In this thesis we will investigate several aspects of hybrid methods combining wave-function

theory and density-functional theory. The first chapter will give a brief overview of density-

functional theory and these hybrid approaches.

In the second chapter the study is centered on the basis-set convergence of range-separated

hybrid methods. The basis-set convergence has been studied a lot for wave-function theory and

range-separated hybrid methods have been shown to converge faster, but the convergence rate

had not been explored yet. In this chapter we first studied the convergence in a partial-wave

expansion of the long-range wave function with respect to the maximal angular momentum. We

then studied the convergence of the long-range second-order Møller-Plesset correlation energy

with respect to the cardinal number of the Duning basis sets (cc-p(C)VXZ). The obtained results

allowed us to propose a three-point extrapolation scheme for the complete basis set energy of

range-separated hybrid density-functional theory.

The third chapter will be focused on double-hybrid density-functional methods combining

density-functional theory with second-order Møller-Plesset perturbation theory (MP2). These

methods give accurate results for thermochemical properties. Commonly the orbitals are eval-

uated without the MP2 term, which is added a posteriori. Recently Peverati and Head-Gordon

[28] proposed an orbital-optimized double-hybrid method where the orbitals are self-consistently

optimized in the presence of the MP2 correlation term. This orbital-optimized double-hybrid

method has shown an improvement in the spin-unrestricted calculations for symmetry breaking

and open-shell situations. In this study we will consider an alternative orbital-optimized double-

hybrid method based on the optimized-effective-potential (OEP) method that could bring ad-

vantages for calculations of excitation energy and response properties and a better description of

the LUMO orbital energy. We will compare the results for such an OEP double-hybrid method

to the standard double-hybrid method for the calculation of atomic and molecular properties

such as ionization potentials and electronic affinities.

In the fourth chapter we will consider range-separated linear-response time-dependent density-

functional theory and we will study the short-range exchange and correlation kernels. We

started by generalizing the exact-exchange kernel [29, 30] to range-separated time-dependent

density-functional theory. We then studied the behavior of the kernel with respect to the range-

separation parameter (µ) and we compared the behavior of the short-range exchange kernel

with the adiabatic LDA for He and H2. Finally we studied the frequency-dependent short-range

correlation kernel for a model system: H2 in a minimal basis set.

Finally in the last chapter we will give some general concluding remarks and outline.
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Chapter 1

Review of density-functional theory

and hybrid methods

In this chapter we will first briefly recall the many-body problem in Sec. 1.1 before introducing

density-functional theory in Sec. 1.2 and finally an introduction of the range-separated hybrid

approximations in Sec. 1.3. Further details can be found in Refs. [1, 2].

1.1 Schrödinger equation

The time-independent non-relativistic Schrödinger equation allowing us to describe atomic,

molecular or solid-state systems is given by

Ĥ|Ψ〉 = E|Ψ〉, (1.1)

with the energy E, the wave function Ψ and the Hamiltonian operator Ĥ. For a system with

M nuclei and N electrons the Hamiltonian in position representation is

Ĥ = −
N∑

i=1

1

2
∇2
i −

M∑

A=1

1

2MA
∇2
A −

N∑

i=1

M∑

A=1

ZA
riA

+

N∑

i=1

N∑

j>i

1

rij
+

M∑

A=1

M∑

B>A

ZAZB
RAB

. (1.2)

The equation is given in atomic units as will be all the equations in the following. In this

equation the sum for A runs over all the nuclei up to M and the sum for i runs over all electrons

up to N . The first two terms of the right-hand of the equation are the kinetic energy for the

electrons and the nuclei, respectively. The Laplacian ∇2
q is the sum of the second-order partial

derivatives; in Cartesian coordinates it is

∇2
q =

∂2

∂x2
q

+
∂2

∂y2
q

+
∂2

∂z2
q

.

The three last terms are the nuclei-electron interaction, the electron-electron interaction and the

nuclei-nuclei interaction. We can simplify this Hamiltonian by considering the Born-Oppenheimer

7
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approximation, considering the electrons moving and the nuclei fixed

Ĥ = −
N∑

i=1

1

2
∇2
i −

N∑

i=1

M∑

A=1

ZA
riA

+

N∑

i=1

N∑

j>i

1

rij
= T̂ + V̂ne + Ŵee. (1.3)

1.2 Density-functional theory

The aim of density-functional theory is to solve the many-body problem by expressing the energy

as a functional of the one-electron density

n(r) = N

∫
. . .

∫
|Ψ(x,x2, . . . ,xN )|2 ds dx2 . . . dxN (1.4)

with the integration over s is the sum over both s = +1/2 and s = −1/2. The density is

normalized as
∫
n(r)dr = N .

1.2.1 Hohenberg-Kohn theorems

First Hohenberg-Kohn theorem

The external potential v(r) is (to within a constant) a unique functional of n(r); since, in turn

v(r) fixes Ĥ we see that everything including the full many-particle ground-state energy is a

unique functional of n(r).

The proof for this theorem [3] is given if we consider two external potentials v(r) and v′(r)

that differ from more than one constant and that both lead to the same density n(r) for an

N -electron system. Each potential leads to different Hamiltonians Ĥ and Ĥ ′, respectively, and

to different ground-state wave functions Ψ and Ψ′, respectively. If we consider Ψ′ as a trial

function for Hamiltonian Ĥ we have

E0 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉

= E′0 +

∫
n(r)

[
v(r)− v′(r)

]
dr, (1.5)

with E0 the ground-state energy of Ĥ and E′0 the ground-state energy of Ĥ ′. If we now consider

Ψ as a trial function for Hamiltonian Ĥ ′

E′0 < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉

= E0 −
∫
n(r)

[
v(r)− v′(r)

]
dr. (1.6)
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Combining Eq. (1.5) and Eq. (1.6) we obtain E0 + E′0 < E′0 + E0 which is nonsense and shows

that there can only be one potential up to a constant leading to the same ground-state density.

We now introduce the Hohenberg-Kohn functional F such that the energy becomes, for the

specific external potential vne(r),

E[n] = F [n] +

∫
n(r)vne(r)dr. (1.7)

The functional F includes the terms of energy that are universal (i.e., independent from the

external potential),

F [n] = T [n] + Eee [n] = 〈Ψ [n] |T̂ + Ŵee|Ψ [n]〉, (1.8)

where Ψ [n] is the ground-state wave function associated with n, T [n] = 〈Ψ [n] |T̂ |Ψ [n]〉 the

kinetic energy and Eee = 〈Ψ [n] |Ŵee|Ψ [n]〉 the electron-electron interaction energy. In the

special case where the considered density is the ground-state density, the energy becomes the

energy of the ground state.

Second Hohenberg-Kohn theorem

We have shown that the energy is a functional of the density and that the ground-state energy

is then obtained by using the ground-state density. The second Hohenberg-Kohn theorem allows

us to use the variational principle for the Hohenberg-Kohn functional.

F [n], the functional that delivers the ground-state energy of the system, delivers the lowest energy

if and only if the input density is the true ground-state density, n0. This is analogous to the

variational principle applied to wave functions

E0 ≤ E [ñ] = F [ñ] +

∫
ñ(r)vne(r)dr. (1.9)

The proof for this theorem is based on the variational principle. We consider a trial density

ñ that implies the Hamiltonian H̃ which defines the ground-state wave function Ψ̃

〈Ψ̃|Ĥ|Ψ̃〉 = T [ñ] + Vee [ñ] +

∫
ñ(r)vne(r)dr = E [ñ] ≥ E0 [n0] = 〈Ψ0|Ĥ|Ψ0〉. (1.10)

Finally the ground-state energy can simply be expressed as

E0 = min
n

(
F [n] +

∫
n(r)vne(r)dr

)
. (1.11)
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Levy’s constrained-search formalism

Another way to define the universal functional is to use the constrained-search approach proposed

by Levy in 1979 [4]

F [n] = min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 (1.12)

where the minimization is done over all the normalized wave functions Ψ which yield the fixed

density n. The minimizing wave function for a given density is Ψ[n]. The constrained approach

allows us to easily connect the wave-function variational principle to the density variational

principle. Starting from

E0 = min
Ψ
〈Ψ|T̂ + V̂ne + Ŵee|Ψ〉, (1.13)

we decompose the variational principle in two steps, a search over the subset of all the antisym-

metric wave functions Ψ→ n that yield a given density n and a search over all densities

E0 = min
n

(
min
Ψ→n
〈Ψ|T̂ + V̂ne + Ŵee|Ψ〉

)
(1.14)

= min
n

(
min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉+

∫
n(r)vne(r)dr

)
. (1.15)

Considering the definition of the universal functional in Eq. (1.12) we obtain

E0 = min
n

(
F [n] +

∫
n(r)vne(r)dr

)
. (1.16)

1.2.2 Kohn-Sham approach

We saw previously that the energy can be expressed as a functional of the density but we still

have no expression for the Hohenberg-Kohn functional F . This functional should include the

kinetic energy, the classical Coulomb interaction (Hartree) and the non-classical contributions

(exchange and correlation).

Decomposition of the universal functional

We first consider the kinetic energy. We can exactly define the kinetic energy of a non-interacting

system at a given density

Ts[n] = min
Φ→n
〈Φ|T̂ |Φ〉 = 〈Φ [n] |T̂ |Φ [n]〉 (1.17)

where Φ is a single determinant and Φ[n] is the wave function minimizing 〈T̂ 〉 and yielding n.

This kinetic energy Ts is different from the exact kinetic energy T and we will need to take care
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of this difference in the functional. We decompose F [n] as

F [n] = Ts [n] + EHxc [n] (1.18)

with the Hartree-exchange-correlation energy EHxc which can be decomposed in two contribu-

tions: the Hartree energy

EH[n] =
1

2

∫∫
n(r)n(r′)
|r− r′| drdr′, (1.19)

and the exchange-correlation energy Exc. The non-interacting kinetic energy and the Hartree

energy are known exactly while the remaining terms are included in the exchange-correlation

energy

Exc [n] = (T [n]− Ts [n]) + (Eee [n]− EH [n]). (1.20)

The exchange-correlation energy thus contains the remaining of the kinetic energy and the non-

classical contribution to the electron-electron interaction energy Eee. The ground-state energy

[5] for a given potential vne is then

E = min
n

{
min
Φ→n

(
〈Φ|T̂ |Φ〉+ EHxc [nΦ] +

∫
vne(r)nΦ(r)dr

)}

= min
Φ

{
〈Φ|T̂ + V̂ne|Φ〉+ EHxc [nΦ]

}
. (1.21)

The minimizing single-determinant KS wave function giving the exact ground-state density is

written as

Φs =
1√
N !
|χ1(x1)χ2(x2) . . . χN (xN )| . (1.22)

The function χi(x) with x = (r, s) is a spin orbital composed of a product of spatial orbital

ϕi(r) and one of the two spin functions α(s) or β(s).The spatial orbitals fulfills

(
−1

2
∇2 + vs(r)

)
ϕi(r) = εiϕi(r). (1.23)

This potential vs(r) is such that the density of the reference system is the density of the real

system and is

vs(r) = vne(r) + vH(r) + vxc(r), (1.24)

with the Hartree potential corresponding to the derivative of the Hartree energy with respect

to the density vH(r) =
∫
n(r′)/|r− r′|dr′ and the exchange-correlation potential
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vxc(r) =
δExc[n]

δn(r)
. (1.25)

If the exchange-correlation energy was known exactly the method would be exact. Actually

it is unknown and approximations are used for practical calculations. The exchange-correlation

energy functional can be splitted in an exchange and a correlation energy functional. The

exchange functional is known

Ex [n] = 〈Φ[n]|Ŵee|Φ[n]〉 − EH [n] (1.26)

while the correlation energy functional is

Ec [n] = F [n]− (Ts [n] + EH [n] + Ex [n])

= 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Φ[n]|T̂ + Ŵee|Φ[n]〉 (1.27)

with Ψ[n] the wave functions minimizing 〈T̂ + V̂ee〉 and yielding n.

1.2.3 Some approximated functionals

LDA

The local-density approximation (LDA) is based on the simple model of the uniform electron

gas. In this model the electrons are moving on a background of positive charge distribution such

that the complete system is electrically neutral and defined by its number of electrons N and

its volume V that are infinite and its density n = N/V that is finite. In this approximation, the

exchange-correlation functional is expressed as

ELDA
xc [n] =

∫
n(r)εxc (n(r)) dr, (1.28)

whith εxc (n) the exchange-correlation energy per particle of a uniform electron gas of density n

that can be split into exchange (εx) and correlation (εc) contributions

εxc (n) = εx (n) + εc (n) . (1.29)

The exchange energy per particle of a uniform electron gas was given by Dirac [6] and Slater [7]

εx(n) = −3

4

(
3n

π

)1/3

, (1.30)

while the correlation energy per particle of a uniform gas is obtained by analysis and interpolation

of highly accurate quantum Monte-Carlo simulations of the homogeneous electron gas [8]. The

most known parametrization was proposed by Vosko et al. [9].
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Another local approximation includes the spin resolution, where the energy becomes a func-

tional of the spin densities nα and nβ with nα + nβ = n. Even if the functional does not have

to depend on the separate spin densities (if the potential is spin-independent) it may improve

the approximation for open-shell systems. The local-spin-density approximation (LSD) is then

simply defined as

ELSD
xc [nα, nβ] =

∫
n(r)εxc (nα(r), nβ(r)) dr, (1.31)

where εxc (nα, nβ) is the spin-resolved exchange-correlation energy per particle of the uniform

electron gas.

The LDA shows a good performance, comparable or even better to the Hartree-Fock ap-

proximation for properties such as equilibrium structures or harmonic frequencies but problems

remain to describe properties such as bond energies or atomization energies. For example the

LDA overestimates systematically the atomization energies. Finally the LDA was mostly used

in solid-state physics and less for computational chemistry.

GGAs and meta-GGAs

An extension of LDA can be found in the generalized-gradient approximation. In this approxi-

mation the functional at a point r depends not only on the density n(r), but also on the gradient

of the density ∇n(r) in order to introduce inhomogeneity in the electron density of the model.

The first attempt was made with the gradient-expansion approximation where the exchange-

correlation energy functional is defined as a Taylor expansion with respect to the density and its

derivatives. The first term of this expansion corresponds to the LDA approximation. This expan-

sion does not actually improve the performance of LDA because the exchange-correlation hole

defined by the expansion does not reproduce the constraints of the physical exchange-correlation

hole.

The generalized-gradient approximation is then defined as follows

EGGA
xc [n] =

∫
f (n(r),∇n(r)) dr, (1.32)

where the integrand f is a function depending both on the density and the gradient of the

density. The most important and most used GGA functionals are BLYP [10, 11] and PBE [12].

The Laplacian of the density ∇2n(r) and/or the kinetic energy density τ(r) can also be used in

the definition of functionals to improve the performance of GGAs. This defines a new family of

approximations: the meta-generalized-gradient approximations (meta-GGAs ou mGGAs). This

family is defined as

EmGGA
xc [n] =

∫
f
(
n(r),∇n(r),∇2n(r), τ(r)

)
dr, (1.33)
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and the most important meta-GGA functional is TPSS [13].

Hybrid approximations

To improve the performance of GGA and meta-GGA functionals an hybrid approximation was

proposed, first by Becke [14] where the exchange was decomposed in two contributions, a fraction

calculated using a density-functional approximation (DFA) and a fraction of Hartree-Fock (HF)

exchange

Ehybrid
xc = axE

HF
x + (1− ax)EDFA

x + EDFA
c (1.34)

with the Hartree-Fock exchange energy

EHF
x = −1

2

occ.∑

i,j

∫∫
χ∗i (x1)χj(x1)χ∗j (x2)χi(x2)

|r1 − r2|
dx1dx2. (1.35)

The ratio can be modified and it was further shown that the optimal fraction of Hartree-Fock

exchange should be around ax ' 0.2− 0.3. This type of functionals brings improvement to the

description of some properties (such as thermodynamic properties) at a reasonable computa-

tional cost but there is sometimes a loss with respect to GGA and meta-GGA functionals due

to the error compensation. Different options of development can then be considered to improve

the description of the correlation effects and particularly the non-local correlation effects. One

way to do this is to hybridize the correlation.

Double-hybrid approximations

Another type of hybrid approximation includes a fraction of correlation calculated with second-

order Møller-Plesser perturbation theory (MP2), namely the double hybrid (DH) approximation

EDH
xc = axE

HF
x + (1− ax)EDFA

x [n] + acE
MP2
c + (1− ac)E

DFA
c [n] (1.36)

where ax is the fraction of Hartree-Fock exchange and ac is the fraction of MP2 correlation given

by

EMP2
c =

occ.∑

i<j

unocc.∑

a<b

|〈χiχj |ŵee|χaχb〉 − 〈χiχj |ŵee|χbχa〉|2
εi + εj − εa − εb

, (1.37)

where 〈χiχj |ŵee|χaχb〉 are the two-electron integrals with ŵee the electron-electron interaction.

A rigorous formulation of these double-hybrid approximation was given by Sharkas et al. [15],

in which the approximation has one parameter (ac = a2
x) and a density scaling. A rigorous

formulation of the two-parameter double-hybrid approximation was given by Fromager [16].
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1.3 Range-separated hybrid approximations

The range-separated hybrid approximations are obtained by decomposing the electronic interac-

tion in a short-range and a long-range contribution [17] This separation scheme is motivated by

the idea of using the best of density-functional theory and wave-function theory: first the good

description at short-range given by density functional theory and second the good performance

to describe static correlation effects with wave-function theory, while keeping the computational

cost reasonably low. The decomposition of the electronic interaction is

1

r12
= wlr,µ

ee (r12) + wsr,µ
ee (r12) (1.38)

where wlr,µ
ee is the long-range interaction and wsr,µ

ee is the complement short-range interaction.

The transition between the two interactions is made by the use of the error function, the long-

range interaction being

wlr,µ
ee (r12) =

erf(µr12)

r12
, (1.39)

where µ is the range-separation parameter.

Considering these decomposition the universal functional F [n] becomes

F [n] = F lr,µ [n] + Esr,µ
Hxc [n] (1.40)

with the long-range universal functional F lr,µ [n] and the complement short-range Hartree-

exchange-correlation functional Esr,µ
Hxc [n]. The long-range universal functional is given by

F lr,µ [n] = min
Ψ→n
〈Ψ|T̂ + Ŵ lr,µ

ee |Ψ〉 (1.41)

where T̂ is the kinetic operator, Ŵ lr,µ
ee is the long-range interaction and Ψ is a multideterminant

wave function. The ground-state energy for a given potential vne is then

E0 = min
n

(
F lr,µ [n] + Esr,µ

Hxc [n] +

∫
n(r)vne(r)dr

)

= min
Ψ

(
〈Ψ|T̂ + Ŵ lr

ee + V̂ne|Ψ〉+ Esr,µ
Hxc [nΨ]

)

= 〈Ψµ|T̂ + Ŵ lr,µ
ee |Ψµ〉+ Esr,µ

Hxc [nΨµ ] +

∫
nΨµ(r)vne(r)dr. (1.42)

The minimizing ground-state multi-determinantal wave function Ψµ fulfills

(
T̂ + Ŵ lr,µ

ee + V̂ sr,µ
)
|Ψµ〉 = Eµ|Ψµ〉 (1.43)

where the short-range potential V̂ sr,µ =
∑

i v
sr,µ(ri) with
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vsr,µ(r) = vne(r) +
δEsr,µ

Hxc [nΨµ ]

δn(r)
. (1.44)

The vsr,µ is unique up to a constant as shown by the first Hohenberg-Kohn theorem. To express

the second term we need to decompose the short-range Hartree-exchange-correlation functional

Esr,µ
Hxc [n] = Esr,µ

H [n] + Esr,µ
xc [n] (1.45)

the first term is the complement short-range Hartree energy functional

Esr,µ
H [n] = EH [n]− 1

2

∫∫
n(r)n(r′)wlr,µ

ee (|r− r′|)drdr′, (1.46)

and Esr,µ
xc [n] the unknown short-range exchange-correlation energy.

If Esr,µ
xc [n] is known the method is exact but in practice approximations need to be introduced.

The first level of approximation is the range-separated hybrid (RSH) [18] using a N -electron

normalized single-determinant wave-function instead of Ψµ

EµRSH = min
Φ

{
〈Φ|T̂ + V̂ne + Ŵ lr,µ

ee |Φ〉+ Esr,µ
Hxc [nΦ]

}
(1.47)

where the minimizing Φµ fulfills

(
T̂ + V̂ne + V̂ lr,µ

Hx,HF [Φµ] + V̂ sr,µ
Hxc [nΦµ ]

)
|Φµ〉 = Eµ0 |Φµ〉. (1.48)

The long range correlation energy is then added a posteriori

E = EµRSH + Elr,µ
c,MP2 (1.49)

where the long-range MP2 correlation energy is given by

Elr,µ
c,MP2 =

occ.∑

i<j

unocc.∑

a<b

∣∣∣〈χµi χ
µ
j |ŵ

lr,µ
ee |χµaχµb 〉 − 〈χ

µ
i χ

µ
j |ŵ

lr,µ
ee |χµbχ

µ
a〉
∣∣∣
2

εµi + εµj − ε
µ
a − εµb

, (1.50)

with the set of RSH spin orbitals {χµk} and the RSH orbital energies εµk . Different methods can

be used to evaluate this correlation energy: coupled-cluster theory [19, 20], RPA approximations

[21, 22]
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Chapter 2

Basis convergence of range-separated

density-functional theory

In this chapter we focused on the basis convergence of range-separated density-functional

theory (DFT). This work has been published in The Journal of Chemical Physics [J. Chem.

Phys. 142, 074107 (2015)] and included in this chapter. The results presented in this article are

the summary of two studies on the basis convergence in two different contexts: the partial wave

expansion (where the basis is constructed by adding at each step all the orbitals corresponding

to a given angular momentum `) and the principal expansion with the Dunning basis sets (where

the cardinal number of the basis X that can be linked to the principal quantum number).

The starting point of the work on the partial-wave expansion was based on the study of the

second-order energy (E2) for a two-electron atom proposed by Schwartz [1]. In this study the

author expressed E2 with respect to `, starting from perturbation theory and expanding the

first-order wave-function Ψ1 and E2 in a basis of Legendre polynomials

E2(`) = − 45

256λ2
+

105

256λ3
− 25965

65536λ4
+O

((
1

λ

)5
)
,

where λ = (` + 1/2)2. We then considered a similar work of Kutzelnigg and Morgan [2] which

proposed a similar study based on the form of the wave-function proposed by Kutzelnigg [3] to

reproduce the correlation cusp condition defined by Kato [4] by imposing linearity with respect

to the inter-electronic distance. The first step of our study was to reproduce those proofs. The

next step was to extend this work to range separation. The long-range second-order energy is

then given by

Elr,µ
2 = 〈Ψ0|Ŵ lr,µ

ee − E1|Ψlr,µ
1 〉

where the long-range second-order energy Elr,µ
2 , the long-range first-order wave-function Ψlr,µ

1

and the long-range interaction Ŵ lr,µ
ee need to be expanded in the basis of Legendre polynomials.

19
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Such work shows a lot of complexity and the method may not be the best to describe the

convergence (the convergence of the first terms of a series may not be sufficient to make a

statement on the convergence of the series). A way to overcome this limitation was to rather

focus on the convergence of the wave function in the region of electron coalescence, as we know

that in the Coulomb case there is a singularity that appears at coalescence which is the limiting

factor of the convergence. We choose to consider a spherical model where two electrons are on

a 1a0 sphere and we compared the convergence of the Coulomb and long-range wave functions

using the form proposed by Kutzelnigg for the Coulomb interaction and the wave function

proposed by Gori-Giorgi and Savin [5] for the long-range interaction. We observed a change of

convergence rate with range separation that converges exponentially.

The second part of this work was focused on the convergence with respect to the cardinal num-

ber X of the Dunning basis sets (cc-pVXZ). To connect with the part on partial-wave expansion

we began with a study of the convergence of the wave function of the helium atom. This work

was done in collaboration with Bastien Mussard. We then wanted to extend previous works on

the convergence of correlated calculations [6] to range separation. The basis convergence of the

second-order energy with respect to X becomes exponential with range separation. Finally a

three-point extrapolation scheme was proposed for the complete basis set limit. Supplementary

results that were not included in the article are presented in Appendix A.

Discussions with other researchers pointed out that the computational cost of the three cal-

culations needed for the extrapolation was too high and an extension of this work could be to

find a way to simplify this extrapolation scheme for only two points so that it could be used

in practical calculations. Another point to discuss is to know whether similar results could be

expected if the calculations were performed in a self-consistent way (a preliminary study on the

path to a self-consistent RSH approach is presented in Chapter 3). We expect the results on the

convergence to be the same in this situation.
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Abstract

Range-separated density-functional theory is an alternative approach to Kohn-Sham density-

functional theory. The strategy of range-separated density-functional theory consists in separating

the Coulomb electron-electron interaction into long-range and short-range components, and treat-

ing the long-range part by an explicit many-body wave-function method and the short-range part

by a density-functional approximation. Among the advantages of using many-body methods for

the long-range part of the electron-electron interaction is that they are much less sensitive to the

one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we

provide a detailed study of the basis convergence of range-separated density-functional theory.

We study the convergence of the partial-wave expansion of the long-range wave function near the

electron-electron coalescence. We show that the rate of convergence is exponential with respect to

the maximal angular momentum L for the long-range wave function, whereas it is polynomial for

the case of the Coulomb interaction. We also study the convergence of the long-range second-order

Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with the cardinal number

X of the Dunning basis sets cc-p(C)VXZ, and find that the error in the correlation energy is best

fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapo-

lation scheme for range-separated density-functional theory based on an exponential formula.
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I. INTRODUCTION

Range-separated density-functional theory (DFT) (see, e.g., Ref. 1) is an attractive ap-

proach for improving the accuracy of Kohn-Sham DFT [2, 3] applied with usual local or

semi-local density-functional approximations. This approach is particularly relevant for

the treatment of electronic systems with strong (static) or weak (van der Waals) corre-

lation effects. The strategy of range-separated DFT consists in separating the Coulomb

electron-electron interaction into long-range and short-range components, and treating the

long-range part by an explicit many-body wave-function method and the short-range part

by a density-functional approximation. In particular, for describing systems with van der

Waals dispersion interactions, it is appropriate to use methods based on many-body per-

turbation theory for the long-range part such as second-order perturbation theory [4–16],

coupled-cluster theory [17–21], or random-phase approximations [22–34].

Among the advantages of using such many-body methods for the long-range part only

of the electron-electron interaction is that they are much less sensitive to the one-electron

atomic basis compared to the case of the standard Coulomb interaction. This has been

repeatedly observed in calculations using Dunning correlation-consistent basis sets [35] for

second-order perturbation theory [4, 6, 10, 15, 16], coupled-cluster theory [17] and random-

phase approximations [22, 23, 25, 27, 31]. The physical reason for this reduced sensitivity to

the basis is easy to understand. In the standard Coulomb-interaction case, the many-body

wave-function method must describe the short-range part of the correlation hole around the

electron-electron coalescence which requires a lot of one-electron basis functions with high

angular momentum. In the range-separation case, the many-body method is relieved from

describing the short-range part of the correlation hole, which is instead built in the density-

functional approximation. The basis set is thus only used to describe a wave function with

simply long-range electron-electron correlations (and the one-electron density) which does

not require basis functions with very high angular momentum.

In the case of the Coulomb interaction, the rate of convergence of the many-body methods

with respect to the size of the basis has been well studied. It has been theoretically shown

that, for the ground-state of the helium atom, the partial-wave expansion of the energy

calculated by second-order perturbation theory or by full configuration interaction (FCI)

converges as L−3 where L in the maximal angular momentum of the expansion [36–40].
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Furthermore, this result has been extended to arbitrary atoms in second-order perturbation

theory [41, 42]. This has motivated the proposal of a scheme for extrapolating the correlation

energy to the complete-basis-set (CBS) limit based on a X−3 power-law dependence of the

correlation energy on the cardinal number X of the Dunning hierarchical basis sets [43, 44].

This extrapolation scheme is widely used, together with other more empirical extrapolation

schemes [45–51]. In the case of range-separated DFT the rate of convergence of the many-

body methods with respect to the size of the basis has never been carefully studied, even

though the reduced sensitivity to the basis is one of the most appealing feature of this

approach.

In this work, we provide a detailed study of the basis convergence of range-separated DFT.

First, we review the theory of range-separated DFT methods (Section II) and we study the

convergence of the partial-wave expansion of the long-range wave function near the electron-

electron coalescence. We show that the rate of convergence is exponential with respect to

the maximal angular momentum L (Section III). Second, we study the convergence of the

long-range second-order Møller-Plesset (MP2) correlation energy of four systems (He, Ne,

N2, and H2O) with the cardinal number X of the Dunning basis sets, and find that the error

in the correlation energy is best fitted by an exponential in X. This leads us to propose

a three-point CBS extrapolation scheme for range-separated DFT based on an exponential

formula (Section IV).

Hartree atomic units are used throughout this work.

II. RANGE-SEPARATED DENSITY-FUNCTIONAL THEORY

In range-separated DFT, the exact ground-state energy of an electronic system is ex-

pressed as a minimization over multideterminantal wave functions Ψ (see, e.g., Ref. 1)

E = min
Ψ

{
〈Ψ|T̂ + V̂ne + Ŵ lr,µ

ee |Ψ〉+ Esr,µ
Hxc[nΨ]

}
, (1)

where T̂ is the kinetic-energy operator, V̂ne is the nuclear–electron interaction operator,

Esr,µ
Hxc[nΨ] is the short-range Hartree–exchange–correlation density functional (evaluated at

the density of Ψ), and Ŵ lr,µ
ee = (1/2)

∫∫
wlr,µ

ee (r12)n̂2(r1, r2)dr1dr2 is the long-range electron-

electron interaction operator written in terms of the pair-density operator n̂2(r1, r2). In this
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work, we define the long-range interaction wlr,µ
ee (r12) with the error function

wlr,µ
ee (r12) =

erf(µr12)

r12

, (2)

where r12 is the distance between two electrons and µ (in bohr−1) controls the range of

the separation, with rc = 1/µ acting as a smooth cutoff radius. For µ = 0, the long-range

interaction vanishes and range-separated DFT reduces to standard Kohn-Sham DFT. In the

opposite limit µ → ∞, the long-range interaction becomes the Coulomb interaction and

range-separated DFT reduces to standard wave-function theory. In practical applications,

one often uses µ ≈ 0.5 bohr−1 [52, 53].

The minimizing wave function Ψlr,µ in Eq. (1) satisfies the Schrödinger-like equation
(
T̂ + Ŵ lr,µ

ee + V̂ne + V̂ sr,µ
Hxc [nΨlr,µ ]

)
|Ψlr,µ〉 = E lr,µ|Ψlr,µ〉,

(3)

where V̂ sr,µ
Hxc is the short-range Hartree–exchange–correlation potential operator (obtained by

taking the functional derivative of Esr,µ
Hxc), and E lr,µ is the eigenvalue associated with Ψlr,µ.

In practice, many-body perturbation theory can be used to solve Eq. (3). An appropriate

reference for perturbation theory is the range-separated hybrid (RSH) approximation [4]

which is obtained by limiting the search in Eq. (1) to single-determinant wave functions Φ

Eµ
RSH = min

Φ

{
〈Φ|T̂ + V̂ne + Ŵ lr,µ

ee |Φ〉+ Esr,µ
Hxc[nΦ]

}
. (4)

The corresponding minimizing wave function will be denoted by Φµ. The exact ground-state

energy is then expressed as

E = Eµ
RSH + Elr,µ

c , (5)

where Elr,µ
c is the long-range correlation energy which is to be approximated by perturbation

theory. For example, in the long-range variant of MP2 perturbation theory, the long-range

correlation energy is [4]

Elr,µ
c,MP2 = 〈Φµ|Ŵ lr,µ

ee |Ψlr,µ
1 〉, (6)

where Ψlr,µ
1 is the first-order correction to the wave function Ψlr,µ (with intermediate nor-

malization). In the basis of RSH spin orbitals {φµk}, Elr,µ
c,MP2 takes a standard MP2 form

Elr,µ
c,MP2 =

occ∑

i<j

vir∑

a<b

∣∣〈φµi φµj |ŵlr,µ
ee |φµaφµb 〉 − 〈φµi φµj |ŵlr,µ

ee |φµbφµa〉
∣∣2

εµi + εµj − εµa − εµb
,

(7)
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FIG. 1. Convergence of the truncated partial-wave expansion 1 + fL(r12) for the Coulomb

interaction (left) and 1 + f lr,µ
L (r12) for the long-range interaction using µ = 0.5 bohr−1 (right)

for different values of the maximal angular momentum L. The functions are plotted with respect

to the relative angle θ between the position vectors r1 and r2 of the two electrons, using r12 =
√
r2

1 + r2
2 − 2r1r2 cos θ. We have chosen r1 = r2 = 1 bohr, giving r12 =

√
2− 2 cos θ. In the insert

plot on the right, the curves for L = 2, 3, and 4 are superimposed.

where 〈φµi φµj |ŵlr,µ
ee |φµaφµb 〉 are the long-range two-electron integrals and εµk are the RSH orbital

energies. The long-range correlation energy can also be approximated beyond second-order

perturbation theory by coupled-cluster [17] or random-phase [22, 23, 28–30] approxima-

tions. Beyond perturbation theory approaches, Eq. (3) can be (approximately) solved using

configuration interaction [1, 54, 55] or multiconfigurational self-consistent field [53, 56, 57]

methods. Alternatively, it has also been proposed to use density-matrix functional approx-

imations for the long-range part of the calculation [58, 59].

Since the RSH scheme of Eq. (4) simply corresponds to a single-determinant hybrid DFT

calculation with long-range Hartree-Fock (HF) exchange, it is clear that the energy Eµ
RSH

has an exponential basis convergence, just as standard HF theory [60]. We will thus focus

our study on the basis convergence of the long-range wave function Ψlr,µ and the long-range

MP2 correlation energy Elr,µ
c,MP2.
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III. PARTIAL-WAVE EXPANSION OF THE WAVE FUNCTION NEAR ELECTRON-

ELECTRON COALESCENCE

In this section, we study the convergence of the partial-wave expansion of the wave

function at small interelectronic distances, i.e. near the electron-electron coalescence, which

for the case of the Coulomb interaction determines the convergence of the correlation energy.

We first briefly review the well-known case of the Coulomb interaction and then consider

the case of the long-range interaction.

A. Coulomb interaction

For systems with Coulomb electron-electron interaction wee(r12) = 1/r12, the electron-

electron cusp condition [61] imposes the wave function to be linear with respect to r12 when

r12 → 0 [62]
Ψ(r12)

Ψ(0)
= 1 +

1

2
r12 +O(r2

12). (8)

Here and in the rest of this section, we consider only the dependence of the wave function

on r12 and we restrict ourselves to the most common case of the two electrons being in a

natural-parity singlet state [41] for which Ψ(0) 6= 0. The function

f(r12) =
1

2
r12 (9)

thus gives the behavior of the wave function at small interelectronic distances. Writing

r12 = ||r2 − r1|| =
√
r2

1 + r2
2 − 2r1r2 cos θ where θ is the relative angle between the position

vectors r1 and r2 of the two electrons, the function f(r12) can be written as a partial-wave

expansion

f(r12) =
∞∑

`=0

f` P`(cos θ), (10)

where P` are the Legendre polynomials and the coefficients f` are

f` =
1

2

(
1

2`+ 3

r`+2
<

r`+1
>

− 1

2`− 1

r`<
r`−1
>

)
, (11)

with r< = min(r1, r2) and r> = max(r1, r2). The coefficients f` decrease slowly with ` when

r1 and r2 are similar. In particular, for r1 = r2, we have f` ∼ `−2 as `→∞ [63]. Therefore,

the approximation of f(r12) by a truncated partial-wave expansion, ` ≤ L,

fL(r12) =
L∑

`=0

f` P`(cos θ), (12)
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FIG. 2. Convergence rate of the coefficients f lr,µ
` of the partial-wave expansion with respect to `

for ` ≥ 1, for several values of the range-separation parameter µ (in bohr−1) and for the Coulomb

case (µ → ∞). On the left: Plot of ln |f lr,µ
` | vs. ln ` which is linear for a power-law convergence.

On the right: Plot of ln |f lr,µ
` | vs. ` which is linear for an exponential-law convergence. The curves

for the Coulomb interaction and for µ = 10 are nearly superimposed.

also converges slowly with L near r12 = 0. This is illustrated in Figure 1 (left) which shows

1+fL(r12) as a function of θ for r1 = r2 = 1 bohr for increasing values of the maximal angular

momentum L. Comparing with the converged value corresponding to L→∞ [Eq. (10)], it

is clear that the convergence near the singularity at θ = 0 is indeed painstakingly slow.

This slow convergence of the wave function near the electron-electron coalescence leads

to the slow L−4 power-law convergence of the partial-wave increments to the correlation

energy [36–38, 41, 42] or, equivalently, to the L−3 power-law convergence of the truncation

error in the correlation energy [39, 40].

B. Long-range interaction

For systems with the long-range electron-electron interaction wlr,µ
ee (r12) = erf(µr12)/r12,

the behavior of the wave function for small interelectronic distances r12 was determined by

Gori-Giorgi and Savin [64]

Ψlr,µ(r12)

Ψlr,µ(0)
= 1 + r12p1(µr12) +O(r4

12), (13)

where the function p1(y) is given by

p1(y) =
e−y

2 − 2

2
√
πy

+

(
1

2
+

1

4y2

)
erf(y). (14)
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We thus need to study the function

f lr,µ(r12) = r12p1(µr12). (15)

For a fixed value of µ, and for r12 � 1/µ, it yields

f lr,µ(r12) =
µ

3
√
π
r2

12 +O(r4
12), (16)

which exhibits no linear term in r12, i.e. no electron-electron cusp. On the other hand, for

µ→∞ and r12 � 1/µ, we obtain

f lr,µ→∞(r12) =
1

2
r12 +O(r2

12), (17)

i.e. the Coulomb electron-electron cusp is recovered. The function f lr,µ(r12) thus makes the

transition between the cuspless long-range wave function and the Coulomb wave function.

As for the Coulomb case, we write f lr,µ(r12) as a partial-wave expansion

f lr,µ(r12) =
∞∑

`=0

f lr,µ
` P`(cos θ), (18)

and calculate with Mathematica [65] the coefficients f lr,µ
` for each `

f lr,µ
` =

2`+ 1

2

∫ 1

−1

f lr,µ(r12)P`(x)dx, (19)

with x = cos θ, r12 =
√
r2

1 + r2
2 − 2r1r2x, and using the following explicit expression for

P`(x)

P`(x) = 2`
∑̀

k=0

(
`

k

)(
`+k−1

2

`

)
xk. (20)

Since the partial-wave expansion of the first term in r2
12 in Eq. (16) terminates at ` = 1, we

expect a fast convergence with ` of f lr,µ
` , for µ small enough, and thus also a fast convergence

of the truncated partial-wave expansion

f lr,µ
L (r12) =

L∑

`=0

f lr,µ
` P`(cos θ). (21)

Plots of this truncated partial-wave expansion for µ = 0.5 in Figure 1 (right) confirm this

expectation. The Coulomb singularity at θ = 0 has disappeared and the approximation

f lr,µ
L (r12) converges indeed very fast with L, being converged to better than 0.001 a.u. already

at L = 2.
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We study in detail the dependence of the coefficients of the partial-wave expansion f lr,µ
`

on `. We compare two possible convergence behaviors, a power-law form

f lr,µ
` = A `−α, (22)

and an exponential-law form

f lr,µ
` = B exp(−β`), (23)

where A, B, α and β are (µ-dependent) parameters.

To determine which form best represents f lr,µ
` , in Figure 2 we plot ln |f lr,µ

` | for r1 = r2 = 1

as a function of ln ` (left) and as a function of ` (right), for several values of µ, as well as

for the Coulomb case (µ→∞) [66]. A straight line on the plot of ln |f lr,µ
` | vs. ln ` indicates

a power-law dependence, whereas a straight line on the plot of ln |f lr,µ
` | vs. ` indicates an

exponential-law dependence.

For the Coulomb case (black curve nearly superimposed with the curve for µ = 10), we

observe that the plot of ln |f`| vs. ln ` is linear, whereas the plot of ln |f`| vs. ` is curved

upward. This is expected for a power law A `−α form. Moreover, we find α ≈ 2 as expected

from Section III A. When going from large to small values of µ, we observe that the plot of

ln |f lr,µ
` | vs. ln ` becomes more and more curved downward, and the plot of ln |f lr,µ

` | vs. `

becomes more and more linear. We thus go from a power-law dependence to an exponential-

law dependence. Already for µ ≤ 2, the exponential law is a better description than the

power law.

When µ decreases, the absolute value of the slope of the plot of ln |f lr,µ
` | vs. ` increases,

i.e. the convergence becomes increasingly fast. More precisely, we have found β ≈ 2.598 −
1.918 lnµ for µ ≤ 2.

The exponential convergence of the partial-wave expansion of the long-range wave func-

tion near the electron-electron coalescence implies a similar exponential convergence for the

partial-wave expansion of the corresponding energy. The present study is thus consistent

with the approximate exponential convergence of the partial-wave expansion of the energy

of the helium atom in the presence of a long-range electron-electron interaction reported in

Refs. 67 and 68. However, no quantitative comparison can be made between the latter work

and the present work since the form of the long-range interaction is different.
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IV. CONVERGENCE IN ONE-ELECTRON ATOMIC BASIS SETS

In this section, we study the convergence of the long-range wave function and correlation

energy with respect to the size of the one-particle atomic basis. This problem is closely

related to the convergence of the partial-wave expansion studied in the previous section.

Indeed, for a two-electron atom in a singlet S state, it is possible to use the spherical-

harmonic addition theorem to obtain the partial-wave expansion in terms of the relative

angle θ between two electrons by products of the spherical harmonic part Y`,m of the one-

particle atomic basis functions

P`(cos θ) =
4π

2`+ 1

∑̀

m=−`
(−1)mY`,m(θ1, φ1)Y`,−m(θ2, φ2), (24)

where cos θ = cos θ1 cos θ2+sin θ1 sin θ2 cos(φ1−φ2) with spherical angles θ1,φ1 and θ2,φ2. The

partial-wave expansion can thus be obtained from a one-particle atomic basis, provided that

the basis saturates the radial degree of freedom for each angular momentum `. In practice,

of course, for the basis sets that we use, this latter condition is not satisfied. Nevertheless,

one can expect the convergence with the maximal angular momentum L of the basis to be

similar to the convergence of the partial-wave expansion.

For this study, we have analyzed the behavior of He, Ne, N2, and H2O at the same

experimental geometries used in Ref. 44 (RN−N = 1.0977 Å, RO−H = 0.9572 Å and ĤOH =

104.52◦). We performed all the calculations with the program MOLPRO 2012 [69] using

Dunning correlation-consistent cc-p(C)VXZ basis sets for which we studied the convergence

with respect to the cardinal number X, corresponding to a maximal angular momentum

of L = X − 1 for He and L = X for atoms from Li to Ne. We emphasize that the series

of Dunning basis sets does not correspond to a partial-wave expansion but to a principal

expansion [70, 71] with maximal quantum number N = X for He and N = X + 1 for

Li to Ne. The short-range exchange-correlation PBE density functional of Ref. 18 (which

corresponds to a slight modification of the one of Ref. 72) was used in all range-separated

calculations.
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FIG. 3. FCI wave function of the He atom at the Cartesian electron coordinates r1 = (0.5, 0., 0.)

bohr and r2 = (0.5 cos θ, 0.5 sin θ, 0.) bohr, calculated with Dunning basis sets ranging from cc-

pVDZ to cc-pV6Z (abbreviated as VXZ) and shown as a function of the relative angle θ, for the

standard Coulomb interaction case (left) and the long-range interaction case for µ = 0.5 bohr−1

(right). For the case of the Coulomb interaction, an essentially exact curve has been calculated

with a highly accurate 418-term Hylleraas-type wave function [73–75]. For comparison, we also

show the results obtained with the single-determinant HF and RSH wave functions (with the cc-

pV6Z basis) which just give horizontal lines since they do not depend on θ. In the insert plot on

the right, the V5Z and V6Z curves are superimposed.

A. Convergence of the wave function

We start by analyzing the convergence of the FCI ground-state wave function of the He

atom with respect to the cardinal number X of the cc-pVXZ basis sets. We perform a FCI

calculation with the long-range Hamiltonian in Eq. (3) using a fixed RSH density, calcu-

lated from the orbitals obtained in Eq. (4), in the short-range Hartree–exchange-correlation

potential. To facilitate the extraction of the wave function from the program, we use the

Löwdin-Shull diagonal representation of the spatial part of the FCI wave function in terms

of the spatial natural orbitals (NO) {ϕµi } [76, 77]

Ψlr,µ(r1, r2) =
∑

i≥1

cµi ϕ
µ
i (r1)ϕµi (r2), (25)

where the coefficients cµi are related to the NO occupation numbers nµi by the relation

nµi = 2|cµi |2. As the signs of cµi are undetermined we have chosen a positive leading coefficient

cµ1 =
√
nµ1/2, and we assumed that all the other coefficients are negative cµi = −

√
nµi /2 for

i ≥ 2 [78]. Even though it has been shown that, for the case of the Coulomb interaction,
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there are in fact positive coefficients in the expansion in addition to the leading one, for

a weakly correlated system such as the He atom, these positive coefficients appear only in

larger basis sets than the ones that we consider here and have negligible magnitude [79–81].

In Figure 3 we show the convergence of the FCI wave function Ψlr,µ(r1, r2) with the

cardinal number X for µ → ∞ which corresponds to the Coulomb interaction (left) and

for µ = 0.5 (right). The first electron is fixed at the Cartesian coordinates r1 = (0.5, 0., 0.)

(measured from the nucleus) and the position of the second electron is varied on a circle at the

same distance of the nucleus, r2 = (0.5 cos θ, 0.5 sin θ, 0.). For the Coulomb interaction, we

compare with the essentially exact curve obtained with a highly accurate 418-term Hylleraas-

type wave function [73–75]. The curve of Ψlr,µ(r1, r2) as a function of θ reveals the angular

correlation between the electrons [82]. Clearly, correlation is much weaker for the long-

range interaction. Note that a single-determinant wave function Φ(r1, r2) = ϕ1(r1)ϕ1(r2),

where ϕ1 is a spherically symmetric 1s orbital, does not depend on θ, and the HF and RSH

single-determinant wave functions indeed just give horizontal lines in Figure 3.

The fact that Figure 3 resembles Figure 1 confirms that the convergence with respect

to X is similar to the convergence of the partial-wave expansion with respect to L, and

thus corroborates the relevance of the study of Section III for practical calculations. As for

the partial-wave expansion, the convergence with X of the Coulomb wave function near the

electron-electron cusp is exceedingly slow. The long-range wave function does not have an

electron-electron cusp and converges much faster with X, the differences between the curves

obtained with the cc-pV5Z and cc-pV6Z basis being smaller than 0.03 mhartree. Note,

however, that the convergence of the long-range wave function seems a bit less systematic

than the convergence of the Coulomb wave function, with the difference between the cc-

pVQZ and cc-pV5Z basis being about 3 times larger than the difference between the cc-

pVTZ and cc-pVQZ basis. This may hint to the fact the Dunning basis sets have been

optimized for the Coulomb interaction and are not optimal for the long-range interaction.

Finally, we note that we have found the same convergence behavior with the short-range

exchange-correlation LDA density functional of Ref. 83.
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TABLE I. Valence MP2 correlation energies and their errors (in mhartree) for the Coulomb interac-

tion (Ec and ∆Ec) and the long-range interaction at µ = 0.5 bohr−1 (Elr,µ
c and ∆Elr,µ

c ) calculated

with Dunning basis sets of increasing sizes for He, Ne, N2 and H2O. The errors are calculated with

respect to the estimated CBS limit for the Coulomb interaction and with respect to the cc-pV6Z

values for the long-range interaction.

Coulomb interaction

He Ne N2 H2O

Basis Ec ∆Ec Ec ∆Ec Ec ∆Ec Ec ∆Ec

cc-pVDZ -25.828 11.549 -185.523 134.577 -306.297 114.903 -201.621 98.479

cc-pVTZ -33.138 4.239 -264.323 55.777 -373.683 47.517 -261.462 38.638

cc-pVQZ -35.478 1.899 -293.573 26.527 -398.749 22.451 -282.798 17.302

cc-pV5Z -36.407 0.970 -306.166 13.934 -409.115 12.085 -291.507 8.593

cc-pV6Z -36.807 0.570 -311.790 8.310 -413.823 7.377 -295.205 4.895

CBS limit -37.377a -320(1)b -421(2)b -300(1)b

Long-range interaction

He Ne N2 H2O

Basis Elr,µ
c ∆Elr,µ

c Elr,µ
c ∆Elr,µ

c Elr,µ
c ∆Elr,µ

c Elr,µ
c ∆Elr,µ

c

cc-pVDZ -0.131 0.227 -0.692 1.963 -20.178 3.316 -6.462 3.532

cc-pVTZ -0.262 0.096 -1.776 0.879 -22.663 0.830 -8.956 1.038

cc-pVQZ -0.322 0.036 -2.327 0.328 -23.263 0.231 -9.626 0.367

cc-pV5Z -0.346 0.012 -2.557 0.098 -23.430 0.064 -9.901 0.092

cc-pV6Z -0.358 -2.655 -23.494 -9.993

aTaken from Ref. 84 where it was obtained by a Gaussian-type geminal MP2 calculation.

bTaken from Ref. 44 where it was estimated from R12-MP2 calculations.

B. Convergence of the correlation energy

We also study the basis convergence of the long-range MP2 correlation energy, given in

Eq. (7), calculated with RSH orbitals for He, Ne, N2 and H2O.

In Table I we show the valence MP2 correlation energies and their errors as a function
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of the cardinal number X of the cc-pVXZ basis sets for X ≤ 6. We compare the long-

range MP2 correlation energies Elr,µ
c,X at µ = 0.5 and the standard Coulomb MP2 correlation

energies Ec,X corresponding to µ → ∞. For the case of the Coulomb interaction, the error

is calculated as ∆Ec,X = Ec,X − Ec,∞ where Ec,∞ is the MP2 correlation energy in the

estimated CBS limit taken from Refs. 44 and 84. For the range-separated case we do not

have an independent estimate of the CBS limit of the long-range MP2 correlation energy for

a given value of µ. Observing that the difference between the long-range MP2 correlation

energies for X = 5 and X = 6 is below 0.1 mhartree for µ = 0.5, we choose the cc-pV6Z

result as a good estimate of the CBS limit. Of course, the accuracy of this CBS estimate

will deteriorate for larger values of µ, but in practice this is a good estimate for the range

of values of µ in which we are interested, i.e. 0 ≤ µ ≤ 1 [85]. The error on the long-range

correlation energy is thus calculated as ∆Elr,µ
c,X = Elr,µ

c,X − Elr,µ
c,6 .

The first observation to be made is that the long-range MP2 correlation energies only

represent about 1 to 5 % of the Coulomb MP2 correlation energies. Although the long-range

correlation energy may appear small, it is nevertheless essential for the description of dis-

persion interactions for instance. The errors on the long-range MP2 correlation energies are

also about two orders of magnitude smaller than the errors on the Coulomb MP2 correlation

energies.

Inspired by Ref. 60, we compare two possible forms of convergence for the correlation

energy: a power-law form

Elr,µ
c,X = Elr,µ

c,∞ + AX−α, (26)

and an exponential-law form

Elr,µ
c,X = Elr,µ

c,∞ +B exp(−βX), (27)

where Elr,µ
c,∞ is the CBS limit of the long-range correlation energy and A, B, α, and β are

parameters depending on µ, as in Section III. In practice, we actually make linear fits of the

logarithm of the error ln(∆Elr,µ
c,X) for the two forms:

ln(∆Elr,µ
c,X) = lnA− α lnX, (28)

ln(∆Elr,µ
c,X) = lnB − βX. (29)

In Table II, we show the results of the fits for the Coulomb interaction and the long-range

interaction at µ = 0.5 using either the complete range of X or excluding the value for X = 2.
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TABLE II. Results of the fits to the power and exponential laws of the Coulomb valence MP2

correlation energy error ∆Ec,X and long-range valence MP2 correlation energy error ∆Elr,µ
c,X for

µ = 0.5 bohr−1. Different ranges, Xmin ≤ X ≤ Xmax, for the cardinal number X of the Dunning

basis sets are tested. The parameters A and B are in mhartree. The squared Pearson correlation

coefficients r2 of the fits are indicated in %. For each line, the largest value of r2 is indicated in

boldface.

Coulomb interaction

Power law Exponential law

Xmin Xmax α A r2 β B r2

He 2 6 2.749 81.84 99.82 0.749 44.04 98.55

3 6 2.902 104.00 99.97 0.669 29.51 99.19

Ne 2 6 2.543 843.36 99.59 0.696 479.76 99.00

3 6 2.754 1169.90 99.93 0.636 355.28 99.37

N2 2 6 2.513 697.74 99.71 0.686 397.67 98.76

3 6 2.693 923.76 99.98 0.621 286.90 99.16

H2O 2 6 2.742 717.04 99.52 0.751 391.27 99.09

3 6 2.988 1051.28 99.92 0.690 288.61 99.39

Long-range interaction

Power law Exponential law

Xmin Xmax α A r2 β B r2

He 2 5 3.128 2.35 96.71 0.974 1.68 99.77

3 5 3.997 8.16 99.11 1.028 2.13 99.95

Ne 2 5 3.189 22.06 95.04 0.998 15.97 99.18

3 5 4.257 101.51 98.27 1.098 24.57 99.65

N2 2 5 4.257 73.26 98.63 1.313 44.49 99.97

3 5 4.997 211.13 99.44 1.283 39.08 99.99

H2O 2 5 3.861 60.27 97.30 1.198 39.24 99.72

3 5 4.686 196.20 97.63 1.210 41.50 99.33
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We use the squared Pearson correlation coefficient r2 as a measure of the quality of the fit.

For the Coulomb interaction and for all the systems studied, the best fit is achieved with

the power law AX−α with α ≈ 2.5 − 3, which is roughly what is expected [44]. We note

however that the fits to the exponential law are also very good with r2 > 99% when the

X = 2 value is excluded. This explains why extrapolations of the total energy based on an

exponential formula have also been used for the case of the Coulomb interaction [45, 48].

For the case of the long-range interaction, the difference between the fits to the power

law and to the exponential law is much bigger. The best fit is by far obtained for the

exponential law with r2 > 99% for all systems and ranges of X considered. This exponential

convergence of the long-range correlation energy with respect to X is in accordance with

the exponential convergence of the partial-wave expansion of the long-range wave-function

observed in Section III.

We have also performed fits for several other values of µ between 0.1 and 1 and always

obtained an exponential convergence of the long-range valence MP2 correlation energy with

respect to X. However, contrary to what was observed for the partial-wave expansion, we

found that when µ decreases β also decreases a bit for the four systems considered. In other

words, when the interaction becomes more long range, the convergence of the long-range

correlation energy becomes slower. This surprising result may be due to the fact that the

cc-pV6Z result may not be as good an estimate of the CBS limit when µ increases. When

µ decreases, the prefactor B decreases and goes to zero for µ = 0, as expected. Moreover,

we have also checked that we obtain very similar results for the long-range all-electron MP2

correlation energy (including core excitations) with cc-pCVXZ basis sets.

We note that Prendergast et al. [86] have argued that the removal of the electron-electron

cusp in a small region around the coalescence point does not significantly improve the con-

vergence of the energy in the millihartree level of accuracy. At first sight, their conclusion

might appear to be in contradiction with our observation of the exponential convergence

of the long-range correlation energy with X. There are however important differences be-

tween the two studies: (1) their form of long-range interaction is different from ours, (2)

they consider interelectronic distance “cutoffs” of rc . 0.8 bohr whereas we consider larger

“cutoffs” rc = 1/µ ≥ 1 bohr, (3) they do not investigate exponential-law versus power-law

convergence.

Finally, in the Appendix we provide a complement analysis of the basis convergence of the
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correlation energy of the He atom for truncated configuration-interaction (CI) calculations

in natural orbitals. The analysis shows that, contrary to the case of the Coulomb interaction,

the convergence of the long-range correlation energy is no longer limited by the truncation

rank the CI wave function but by the basis convergence of the natural orbitals themselves.

This result is consistent with an exponential basis convergence of the long-range correlation

energy.

C. Extrapolation scheme

For the long-range interaction case, since both the RSH energy and the long-range cor-

relation energy have an exponential convergence with respect to the cardinal number X, we

propose to extrapolate the total energy to the CBS limit by using a three-point extrapola-

tion scheme based on an exponential formula. Suppose that we have calculated three total

energies EX , EY , EZ for three consecutive cardinal numbers X, Y = X + 1, Z = X + 2. If

we write

EX = E∞ +B exp(−βX), (30)

EY = E∞ +B exp(−βY ), (31)

EZ = E∞ +B exp(−βZ), (32)

and eliminate the unknown parameters B and β, we obtain the following estimate of the

CBS-limit total energy E∞

E∞ = EXY Z =
E2
Y − EXEZ

2EY − EX − EZ
. (33)

In Table III, we report the errors on the RSH+lrMP2 total energy, Eµ = Eµ
RSH +Elr,µ

c,MP2,

obtained with the three-point extrapolation formula using either X = 2, Y = 3, Z = 4

(∆Eµ
DTQ) or X = 3, Y = 4, Z = 5 (∆Eµ

TQ5), and we compare with the errors obtained with

each cc-pVXZ basis set from X = 2 to X = 5 (∆Eµ
X). Here again the errors are calculated

with respect to the cc-pV6Z total energy, for several values of the range-separation parameter

µ = 0.1, 0.5, 1.0, and only valence excitations are included in the MP2 calculations. For all

the systems studied the errors ∆Eµ
DTQ are less than 1.5 mhartree. For Ne, N2, and H2O,

these ∆Eµ
DTQ errors are significantly smaller (by a factor of about 3 to 15) than the errors

∆Eµ
Q obtained with the largest basis used for the extrapolation, and are overall comparable
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TABLE III. Errors (in mhartree) on the total RSH+lrMP2 energy, Eµ = EµRSH +Elr,µ
c,MP2, obtained

with cc-pVXZ basis sets from X = 2 to X = 5 (∆EµX = EµX − Eµ6 ) and with the three-point

extrapolation formula of Eq. (33) using X = 2, Y = 3, Z = 4 (∆EµDTQ = EµDTQ − E
µ
6 ) or X = 3,

Y = 4, Z = 5 (∆EµTQ5 = EµTQ5−E
µ
6 ). The errors are calculated with respect to the cc-pV6Z total

energy for several values of the range-separation parameter µ (in bohr−1). Only valence excitations

are included in the MP2 calculations.

µ ∆EµD ∆EµT ∆EµQ ∆Eµ5 ∆EµDTQ ∆EµTQ5

He 0.1 8.508 0.772 0.261 0.089 0.224 0.003

0.5 8.488 0.781 0.245 0.078 0.205 0.002

1.0 8.258 0.924 0.259 0.078 0.192 0.011

Ne 0.1 72.999 20.215 5.842 0.716 0.464 -2.127

0.5 74.523 20.337 5.763 0.751 0.401 -1.876

1.0 79.311 20.962 5.726 0.803 0.342 -1.548

N2 0.1 47.061 13.026 4.136 0.853 0.993 -1.069

0.5 51.581 13.406 4.090 0.810 1.083 -0.972

1.0 61.053 15.108 4.513 0.868 1.337 -1.043

H2O 0.1 54.861 15.229 5.005 0.857 1.451 -1.975

0.5 55.850 14.736 4.499 0.726 1.105 -1.475

1.0 61.013 15.212 4.423 0.724 1.099 -1.206

with the errors ∆Eµ
5 . Thus, the three-point extrapolation formula with X = 2, Y = 3,

Z = 4 provides a useful CBS extrapolation scheme for range-separated DFT. Except for

He, the errors ∆Eµ
TQ5 are negative (i.e. , the extrapolation overshoots the CBS limit) and

larger than the errors ∆Eµ
5 . Thus, the three-point extrapolation scheme with X = 3, Y = 4,

Z = 5 does not seem to be useful.

These conclusions extend to calculations including core excitations with cc-pCVXZ basis

sets, which are presented in Table IV. All the errors are smaller than for the valence-only

calculations. The errors ∆Eµ
DTQ are now less than 0.9 mhartree, and are smaller or compa-

rable to the errors ∆Eµ
5 . The errors ∆Eµ

TQ5 are always negative and are overall larger than

the errors ∆Eµ
DTQ.
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TABLE IV. Errors (in mhartree) on the total RSH+lrMP2 energy, Eµ = EµRSH +Elr,µ
c,MP2, obtained

with cc-pCVXZ basis sets from X = 2 to X = 5 (∆EµX = EµX − E
µ
6 ) and with the three-point

extrapolation formula of Eq. (33) using X = 2, Y = 3, Z = 4 (∆EµDTQ = EµDTQ − E
µ
6 ) or X = 3,

Y = 4, Z = 5 (∆EµTQ5 = EµTQ5 − E
µ
6 ). The errors are calculated with respect to the cc-pCV6Z

total energy for several values of the range-separation parameter µ (in bohr−1). Core excitations

are included in the MP2 calculations.

µ ∆EµD ∆EµT ∆EµQ ∆Eµ5 ∆EµDTQ ∆EµTQ5

Ne 0.1 70.932 18.941 4.929 0.522 -0.240 -1.501

0.5 72.501 18.990 4.831 0.537 -0.263 -1.333

1.0 77.497 19.517 4.775 0.554 -0.250 -1.140

N2 0.1 43.528 10.237 2.334 0.459 -0.126 -0.125

0.5 48.079 10.451 2.285 0.413 0.021 -0.144

1.0 57.942 12.118 2.677 0.467 0.227 -0.209

H2O 0.1 52.875 13.897 4.132 0.680 0.868 -1.208

0.5 53.936 13.350 3.614 0.534 0.541 -0.891

1.0 59.290 13.789 3.527 0.521 0.539 -0.724

We have also tested a more flexible extrapolation scheme where the RSH energy and

the long-range MP2 correlation energy are exponentially extrapolated independently but we

have not found significant differences. On the contrary, one may want to use a less flexible

two-point extrapolation formula using a predetermined value for β. The difficulty with such

an approach is to choose the value of β, which in principle should depend on the system, on

the range-separated parameter µ, and on the long-range wave-function method used. For

this reason, we do not consider two-point extrapolation schemes.

V. CONCLUSIONS

We have studied in detail the basis convergence of range-separated DFT. We have shown

that the partial-wave expansion of the long-range wave function near the electron-electron

coalescence converges exponentially with the maximal angular momentum L. We have also

demonstrated on four systems (He, Ne, N2, and H2O) that the long-range MP2 correla-
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tion energy converges exponentially with the cardinal number X of the Dunning basis sets

cc-p(C)VXZ. This contrasts with the slow X−3 convergence of the correlation energy for

the standard case of the Coulomb interaction. Due to this exponential convergence, the

extrapolation to the CBS limit is less necessary for range-separated DFT than for standard

correlated wave function methods. Nevertheless, we have proposed a CBS extrapolation

scheme for the total energy in range-separated DFT based on an exponential formula using

calculations from three cardinal numbers X. For the systems studied, the extrapolation

using X = 2, 3, 4 gives an error on the total energy with respect to the estimated CBS limit

which is always smaller than the error obtained with a single calculation at X = 4, and

which is often comparable or smaller than the error obtained with a calculation at X = 5.

We expect the same convergence behavior for range-separated DFT methods in which

the long-range part is treated by configuration interaction, coupled-cluster theory, random-

phase approximations, or density-matrix functional theory. Finally, it should be pointed out

that this rapid convergence is obtained in spite of the fact that the Dunning basis sets have

been optimized for the case of the standard Coulomb interaction. The construction of basis

sets specially optimized for the case of the long-range interaction may give yet a faster and

more systematic convergence.
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Appendix A: Convergence of the correlation energy for truncated CI calculations

In this Appendix, we explore the basis convergence of the correlation energy of the He

atom for truncated CI calculations for both the Coulomb and long-range interactions. For

a given basis set and interaction, we start by performing a FCI calculation and generating

the corresponding natural orbitals. We then use these natural orbitals in truncated CI

calculations for increasing orbital active spaces 1s2s, 1s2s2p, 1s2s2p3s, 1s2s2p3s3p, and
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TABLE V. Truncated CI correlation energies (in mhartree) of the He atom for the Coulomb

interaction and for the long-range interaction (at µ = 0.5 bohr−1) for different Dunning basis sets

cc-pVXZ (abbreviated as VXZ) and truncation ranks.

Coulomb interaction

rank VDZ VTZ VQZ V5Z V6Z

1s2s -14.997 -15.806 -16.087 -16.204 -16.212

1s2s2p -32.434 -35.256 -35.664 -35.794 -35.808

1s2s2p3s -35.909 -36.425 -36.595 -36.618

1s2s2p3s3p -37.448 -38.068 -38.261 -38.291

1s2s2p3s3p3d -39.079 -39.807 -39.999 -40.028

Long-range interaction

rank VDZ VTZ VQZ V5Z V6Z

1s2s -0.018 -0.036 -0.038 -0.039 -0.039

1s2s2p -0.155 -0.329 -0.415 -0.449 -0.468

1s2s2p3s -0.329 -0.415 -0.450 -0.468

1s2s2p3s3p -0.329 -0.415 -0.450 -0.469

1s2s2p3s3p3d -0.329 -0.416 -0.451 -0.470

1s2s2p3s3p3d. Table V shows the Coulomb and long-range correlation energies for the

different basis sets and truncation ranks. For the Coulomb interaction, the correlation

energy for a fixed rank converges rapidly with the basis size, while the convergence with

respect to the rank is much slower. For the long-range interaction, the correlation energy

jumps by one order of magnitude when including the 2p natural orbital, which is consistent

with the fact that the long-range interaction brings in first angular correlation effects [87].

The long-range correlation energy is essentially converged at rank 1s2s2p, and the overall

convergence is now determined by the basis convergence of the natural orbitals.

Finally, we compare two possible forms for the convergence of the truncated CI corre-

lation energies with the cardinal number X, the power law Eq. (26) and the exponential

law Eq. (27). Using as reference the results obtained with the cc-pV6Z basis set, we have

calculated for the different truncation ranks the correlation energy errors for the Coulomb
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TABLE VI. Results of the fits to the power and exponential laws of the truncated CI correlation

energy error for the Coulomb interaction, ∆Ec,X = Ec,X − Ec,6, and the long-range interaction,

∆Elr,µ
c,X = Elr,µ

c,X − E
lr,µ
c,6 for µ = 0.5 bohr−1. The range for the cardinal number X of the Dunning

basis sets is 2 ≤ X ≤ 6 for the 1s2s and 1s2s2p ranks, and 3 ≤ X ≤ 6 for all the larger ranks. The

parameters A and B are in mhartree. The squared Pearson correlation coefficients r2 of the fits

are indicated in %. For each line, the largest value of r2 is indicated in boldface.

Coulomb interaction

Power law Exponential law

rank α A r2 β B r2

1s2s 5.081 65.641 87.44 1.618 43.148 94.39

1s2s2p 5.765 241.923 95.45 1.797 131.516 98.80

1s2s2p3s 6.616 1219.794 95.63 1.716 140.022 98.11

1s2s2p3s3p 6.440 1168.927 96.46 1.668 140.605 98.65

1s2s2p3s3p3d 6.771 1874.080 97.16 1.751 200.085 99.07

Long-range interaction

Power law Exponential law

rank α A r2 β B r2

1s2s 3.974 0.321 99.45 1.206 0.188 97.51

1s2s2p 3.058 3.108 96.28 0.953 2.249 99.64

1s2s2p3s 3.956 11.283 99.01 1.018 2.991 99.93

1s2s2p3s3p 3.927 10.979 99.02 1.010 2.938 99.93

1s2s2p3s3p3d 3.892 10.701 99.00 1.001 2.898 99.93

interaction, ∆Ec,X = Ec,X − Ec,6, and for the long-range interaction, ∆Elr,µ
c,X = Elr,µ

c,X − Elr,µ
c,6 ,

and performed logarithmic fits as in Section IV B. Table VI shows the results of the fits. For

both the Coulomb and long-range interactions, for the rank 1s2s2p and larger, the best fit

is achieved with the exponential law B exp(−βX). Thus, in comparison with the Coulomb

interaction, the long-range interaction does not significantly change the basis convergence of
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the correlation energy at a fixed truncation rank. However, for the long-range interaction,

this exponential convergence at a fixed truncation rank becomes the dominant limitation to

the overall basis convergence.
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[4] J. G. Ángyán, I. C. Gerber, A. Savin, and J. Toulouse, Phys. Rev. A 72, 012510 (2005).
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Chapter 3

Self-consistent double-hybrid

density-functional theory using the

optimized-effective-potential method

In this chapter we wanted to compare two approaches to double-hybrid approximations, com-

bining a fraction of Hartree-Fock exchange and MP2 correlation with exchange and correlation

from density-functional approximations. The results of this study has been accepted in The

Journal of Chemical Physics and the manuscript is included in this chapter. The global context

of this work is the definition of a self-consistent range-separated double-hybrid approximation.

The aim of this first study was to compare two approaches for the one-parameter double-hybrid

(1DH) approximation [1]: (i) the standard approach with the MP2 contribution added a poste-

riori and (ii) a self-consistent approach based on the optimized-effective-potential method and

implemented by the team of Prof. Irek Grabowski from the Nicolaus Copernicus University

(Poland).

In this work we chose to compare some chemical properties and especially ionization poten-

tials (IP) and electronic affinities (EA). To calculate those properties with standard 1DH the

derivatives of the energy are calculated by finite differences [2]

−IP =

(
∂E1DH

∂N

)

N−δ
≈ E1DH(N)− E1DH(N −∆)

∆
,

−EA =

(
∂E1DH

∂N

)

N+δ

≈ E1DH(N + ∆)− E1DH(N)

∆
.

The numerical implementation of IP and EA was done by Bastien Mussard in the Molpro

code [3]. The first part of this work was to perform calculations for 1DH and RSH-MP2 for

different chemical properties. We then compare the results with the results for the self-consistent

1DH (OEP-1DH) made by our collaborators. To compare these data a work on derivative
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discontinuity was needed for the OEP-1DH method. The comparison of the RSH-MP2 with

self-consistent RSH-MP2 will be part of a later work.

For the standard approach Brillouin’s theorem applies and the single excitations do not con-

tribute to second order. However with self-consistency Brillouin’s theorem does no longer apply

and the single excitations do contribute in the perturbation theory similarly to Görling-Levy per-

turbation theory [4]. In this study the results of OEP-1DH compared to the standard case only

include double excitations. This choice was made to show modifications due to self-consistency

without the interfering of further modifications. An interesting open question would be to study

the contributions of the single excitations in the OEP-1DH scheme.

Bibliography

[1] K. Sharkas, J. Toulouse and A. Savin. Double-hybrid density-functional theory made rigor-

ous. J. Chem. Phys., 134, 064113, 2011.

[2] A. J. Cohen, P. Mori-Sánchez and W. Yang. Second-Order Perturbation Theory with Frac-

tional Charges and Fractional Spins. J. Chem. Theory. Comput. 5, 786, 2009

[3] B. Mussard and J. Toulouse. Fractional-charge and fractional-spin errors in range-separated

density-functional theory. accepted in Mol. Phys., doi:10.1080/00268976.2016.1213910,

[4] A. Gorling and M. Levy, Phys. Rev. A 50 , 196 1994 ! ; Int. J. Quantum Chem., Quantum

Chem. Symp. 29 ,93 1995.



Self-consistent double-hybrid density-functional theory using the

optimized-effective-potential method
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Abstract

We introduce an orbital-optimized double-hybrid (DH) scheme using the optimized-effective-

potential (OEP) method. The orbitals are optimized using a local potential corresponding to

the complete exchange-correlation energy expression including the second-order Møller-Plesset

(MP2) correlation contribution. We have implemented a one-parameter version of this OEP-

based self-consistent DH scheme using the BLYP density-functional approximation and compared

it to the corresponding non-self-consistent DH scheme for calculations on a few closed-shell atoms

and molecules. While the OEP-based self-consistency does not provide any improvement for the

calculations of ground-state total energies and ionization potentials, it does improve the accuracy

of electron affinities and restores the meaning of the LUMO orbital energy as being connected to a

neutral excitation energy. Moreover, the OEP-based self-consistent DH scheme provides reasonably

accurate exchange-correlation potentials and correlated densities.
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I. INTRODUCTION

Density-functional theory (DFT) [1, 2] is a powerful approach for electronic-structure

calculations of atoms, molecules, and solids. In the Kohn-Sham (KS) formulation, se-

ries of approximations for the exchange-correlation energy have been developed for an

ever-increasing accuracy: local-density approximation (LDA), semilocal approximations

(generalized-gradient approximations (GGA) and meta-GGA), hybrid approximations intro-

ducing a fraction of Hartree-Fock (HF) exchange, and nonlocal correlation approximations

using virtual KS orbitals (see, e.g., Ref. 3 for a recent review).

In the latter family of approximations, the double-hybrid (DH) approximations are be-

coming increasingly popular. Introduced in their current form by Grimme [4], they consist

in combining a semilocal exchange density functional with HF exchange and a semilocal

correlation density functional with second-order Møller-Plesset (MP2) perturbative correla-

tion. Numerous such DH approximations have been developed in the last decade (see Ref. 5

for a review). In general, DH approximations give thermochemistry properties with near-

chemical accuracy for molecular systems without important static correlation effects. In

virtually all applications of DH approximations, the orbitals are calculated within the gen-

eralized KS (GKS) framework [6] (i.e., with a nonlocal HF exchange potential) and without

the presence of the MP2 correlation term. The MP2 contribution is then evaluated using

the previously self-consistently calculated orbitals and added a posteriori to the total energy.

Recently, Peverati and Head-Gordon [7] proposed an orbital-optimized DH scheme where the

orbitals are self-consistently optimized in the presence of the MP2 correlation term. This is

a direct extension of orbital-optimized MP2 schemes in which the MP2 total energy is min-

imized with respect to occupied-virtual orbital rotation parameters [8, 9]. Like for regular

orbital-optimized MP2 method, also here the optimization of orbitals leads to substantial

improvements in spin-unrestricted calculations for symmetry breaking and open-shell sit-

uations. Very recently, an approximate orbital-optimized DH scheme was also proposed

which confirmed the utility of optimizing the orbitals in complicated electronic-structure

problems [10].

In this work, we propose an alternative orbital-optimized DH scheme using the optimized-

§ abuk@fizyka.umk.pl
¶ ig@fizyka.umk.pl
∗∗ eleonora.luppi@upmc.fr
†† julien.toulouse@upmc.fr
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effective-potential (OEP) method [11, 12] (see Refs. 13–15 for reviews on OEP). The idea

is to optimize the orbitals in the DH total energy expression by using a fully local potential

corresponding to the complete exchange-correlation energy expression including the MP2

contribution. This can be considered as an extension of OEP schemes using a second-order

correlation energy expression [16–20].

In comparison to the previously-mentioned orbital-optimized DH schemes, we expect

that the proposed OEP self-consistent DH scheme to provide additional advantages. First,

there is the appeal of staying within the philosophy of the KS scheme with a local potential.

Second, having a local potential and the associated orbital energies can be useful for interpre-

tative purposes. Third, the OEP approach can be advantageous in calculations of excitation

energies and response properties, similarly to the advantages of using OEP exact exchange

(EXX) versus regular HF. Indeed, contrary to the HF case, with EXX the unoccupied or-

bitals feel a local potential asymptotically decaying as −1/r, allowing it to support many

unoccupied bound states, which are good starting points for calculating high-lying/Rydberg

excitation energies and response properties (see, e.g., Refs. 13, 15, and 21).

The paper is organized as follows. In Section II, we review the theory of the standard

DH approximations and formulate the proposed self-consistent OEP DH approach. We

also explain how the ionization potential and the electron affinity are obtained in both

methods. After providing computational details in Section III, we discuss our results in

Section IV on total energies, ionization potentials, electron affinities, exchange-correlation

and correlation potentials, and correlated densities obtained for a set of atoms (He, Be, Ne,

Ar) and molecules (CO and H2O). Finally, Section V contains our conclusions.

Throughout the paper, we use the convention that i and j indices label occupied spin

orbitals, a and b label virtual ones, and p and q are used for both occupied and virtual spin

orbitals. In all equations Hartree atomic units are assumed.

II. THEORY

A. Standard double-hybrid approximations

For simplicity, in this work, we consider the one-parameter double-hybrid (1DH) approxi-

mation of Ref. 22 in which the density scaling in the correlation functional is neglected. The

3



extension to more general density-scaled or two-parameter double-hybrid approximations [4]

is straightforward. The expression of the total energy is thus written as

E =
∑

i

∫
ϕ∗i (x)

(
−1

2
∇2 + vne(r)

)
ϕi(x) dx

+EH + E1DH
xc , (1)

where ϕi(x) are the occupied spin orbitals with x = (r, σ) indicating space-spin coordinates.

In Eq. (1), vne(r) is the nuclei-electron potential, EH = (1/2)
∫∫

n(x1)n(x2)/|r2− r1|dx1dx2

is the Hartree energy written with the spin densities n(x) =
∑

i |ϕi(x)|2, and E1DH
xc is the

exchange-correlation energy taken as

E1DH
xc = E1H

xc + λ2 EMP2
c . (2)

In this expression, E1H
xc is the one-parameter hybrid (1H) part of the exchange-correlation

energy

E1H
xc = λEHF

x + (1− λ)EDFA
x + (1− λ2)EDFA

c , (3)

and λ (0 6 λ 6 1) is an empirical scaling parameter. The expression of the HF (or exact)

exchange energy is

EHF
x = −1

2

∑

i,j

〈ij|ji〉, (4)

where 〈pq|rs〉 =
∫∫

dx1dx2ϕ
∗
p(x1)ϕ

∗
q(x2)ϕr(x1)ϕs(x2)/|r2−r1| are the two-electron integrals.

The expression for the MP2 correlation energy is

EMP2
c = −1

4

∑

i,j

∑

a,b

|〈ij||ab〉|2
εa + εb − εi − εj

, (5)

where 〈ij||ab〉 = 〈ij|ab〉 − 〈ij|ba〉 are the antisymmetrized two-electron integrals, and εp is

the energy of the spin orbital p. Finally, EDFA
x and EDFA

c are the semilocal density-functional

approximations (DFA) evaluated at the spin densities n(x). For example, choosing the Becke

88 (B) exchange functional [23] and the Lee-Yang-Parr (LYP) correlation functional [24]

leads to the 1DH-BLYP double-hybrid approximation [22] which is a one-parameter version

of the B2-PLYP approximation [4].

We must stress here that the expression of the correlation energy in Eq. (5) has a standard

MP2 form. However, except for λ = 1, the orbitals are not the HF ones, so the value of

the correlation energy in Eq. (5) calculated with these orbitals does not correspond to
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the standard MP2 correlation energy. In the DFT context, the most usual second-order

correlation energy expression is given by second-order Görling-Levy (GL2) perturbation

theory [16, 17], which in addition to the MP2-like double-excitation term also includes a

single-excitation term. In this work, following the standard practice for the double-hybrid

approximations, we do not include the single-excitation term, which is usually two orders of

magnitude smaller than the double-excitation term [25–27].

In the standard DH approximations, the spin orbitals are calculated by disregarding

the MP2 term in Eq. (2) and considering the HF exchange energy as a functional of the

one-particle density matrix n1(x
′,x) =

∑
i ϕ
∗
i (x)ϕi(x

′), leading to a GKS equation

(
−1

2
∇2 + vne(r) + vH(r)

)
ϕp(x)

+

∫
v1Hxc (x,x′)ϕp(x

′)dx′ = ε1Hp ϕp(x), (6)

where vH(r) =
∫
n(x′)/|r′ − r|dx′ is the Hartree potential and v1Hxc (x,x′) is the functional

derivative of the three terms in Eq. (3) with respect to n1(x
′,x)

v1Hxc (x,x′) =
δE1H

xc

δn1(x′,x)

= λvHF
x (x,x′) + (1− λ)vDFA

x (x)δ(x− x′)

+(1− λ2)vDFA
c (x)δ(x− x′). (7)

In this expression, vHF
x (x,x′) = −n1(x,x

′)/|r − r′| is the nonlocal HF potential, while

vDFA
x (x) = δEDFA

x /δn(x) and vDFA
c (x) = δEDFA

c /δn(x) are the local exchange and corre-

lation DFA potentials, respectively. These 1H orbitals and corresponding orbital energies

ε1Hp are thus used in the MP2 correlation expression of Eq. (5). We recall that for λ = 0

the 1DH method reduces to the standard KS scheme, while for λ = 1 it recovers the stan-

dard MP2 method with HF orbitals. In practice, optimal values of λ are around 0.6-0.8,

depending on the density-functional approximations used [22, 28, 29].

B. Self-consistent OEP double-hybrid approximations

Here, we propose to fully self-consistently calculate the spin orbitals in the DH approxi-

mations by taking into account the MP2 term, and considering the HF exchange energy and

MP2 correlation energy as implicit functionals of the density. Thus, Eq. (6) is replaced by

5



a KS equation
(
−1

2
∇2 + vne(r) + vH(r) + vOEP-1DH

xc (x)

)
ϕp(x)

= εpϕp(x), (8)

where vOEP-1DH
xc is a fully local potential obtained by taking the functional derivative with

respect to the density of all terms in Eq. (2)

vOEP-1DH
xc (x) =

δE1DH
xc

δn(x)

= λvEXX
x (x) + (1− λ)vDFA

x (x)

+(1− λ2)vDFA
c (x) + λ2vGL2

c (x), (9)

where vEXX
x (x) = δEHF

x /δn(x) is the EXX potential and vGL2
c (x) = δEMP2

c /δn(x) is here

referred to as the GL2 correlation potential (even though it does not contain the single-

excitation term). Since EHF
x and EMP2

c are only implicit functionals of the density through

the orbitals and orbital energies, the calculation of vEXX
x (x) and vGL2

c (x) must be done with

the OEP method, as done in Refs. 18–20. We note that several alternative methods to

OEP have been proposed [30–36], but we do not consider these alternative methods in this

work. We will refer to the present approach as the OEP-1DH method. As in the case of

the standard DH approach, for λ = 0 the OEP-1DH method reduces to the standard KS

scheme. For λ = 1 it reduces to a correlated OEP scheme with the full MP2-like correlation

energy expression (but without the single-excitation term), here referred to as the OEP-GL2

scheme.

The OEP equations for the EXX exchange and GL2 correlation potentials

∫
vEXX
x (x′) χs(x

′,x) dx′ = Λx(x), (10)

and ∫
vGL2
c (x′) χs(x

′,x) dx′ = ΛMP2
c (x), (11)

can be obtained after applying a functional-derivative chain rule (see, e.g., Refs. 14, 18, 20,

27, and 37). In these expressions, χs(x
′,x) = δn(x′)/δvs(x) is the KS static linear-response

function which can be expressed in terms of spin orbitals and spin orbital energies,

χs(x
′,x) = −

∑

i

∑

a

ϕ∗i (x
′)ϕa(x′)ϕ∗a(x)ϕi(x)

εa − εi
+ c.c., (12)
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where c.c. stands for the complex conjugate, and vs(x) = vne(r) + vH(r) + vOEP-1DH
xc (x) is

the total KS potential. The expressions for Λx(x) and ΛMP2
c (x) are, respectively,

Λx(x) =
δEHF

x

δvs(x)
=
∑

i

∫
dx′
(
δEHF

x

δϕi(x′)

δϕi(x
′)

δvs(x)
+ c.c.

)

=
∑

i,j

∑

a

(
〈ij|ja〉ϕ

∗
a(x)ϕi(x)

εa − εi
+ c.c.

)
, (13)

and

ΛMP2
c (x) =

δEMP2
c

δvs(x)
=
∑

p

[∫
dx′
(
δEMP2

c

δϕp(x′)

δϕp(x
′)

δvs(x)
+ c.c.

)
+
∂EMP2

c

∂εp

δεp
δvs(x)

]

=
1

2

∑

i,j

∑

a,b

∑

q 6=i

( 〈ij||ab〉〈ab||qj〉
εa + εb − εi − εj

ϕ∗q(x)ϕi(x)

εq − εi
+ c.c.

)

+
1

2

∑

i,j

∑

a,b

∑

q 6=a

( 〈ij||qb〉〈ab||ij〉
εa + εb − εi − εj

ϕ∗q(x)ϕa(x)

εq − εa
+ c.c.

)

+
1

2

∑

i,j

∑

a,b

|〈ij||ab〉|2
(εa + εb − εi − εj)2

(
|ϕa(x)|2 − |ϕi(x)|2

)
. (14)

In practice, in order to solve the OEP equations [Eqs. (10) and (11)], the EXX and GL2

potentials are calculated using expansions in a finite Gaussian basis set [38–42]. The EXX

potential is thus expanded over orthonormalized auxiliary Gaussian basis functions {gn(r)}
as

vEXX
x (rσ) = vSlater(rσ) +

∑

n

cσx,n gn(r), (15)

where the Slater potential, vSlater(rσ) = −(1/n(x))
∫

dx′|n1(x,x
′)|2/|r − r′|, is added to

ensure the correct −1/|r| asymptotic behavior of the potential. Similarly, the GL2 potential

is expanded as

vGL2
c (rσ) =

∑

n

cσc,n gn(r). (16)

Expanding as well the linear-response function in the same basis

χs(rσ, r
′σ) =

∑

n,m

(Xσ)nmgn(r)gm(r′), (17)

and after using Eq. (10), the coefficients in Eq. (15) are found as

cσx,n =
∑

m

(Λx,σ)m(X−1σ )mn − vσSlater,n, (18)

7



where (Λx,σ)m =
∫

dr gm(r)Λx(rσ), vσSlater,n =
∫

dr gn(r)vSlater(rσ), and (X−1σ )mn are the

elements of the (pseudo-)inverse of the matrix Xσ. Similarly, after using Eq. (11), the

coefficients in Eq. (16) are found as

cσc,n =
∑

m

(ΛMP2
c,σ )m(X−1σ )mn, (19)

where (ΛMP2
c,σ )m =

∫
dr gm(r)ΛMP2

c (rσ). In this work, the same basis set is used for expanding

the orbitals and the potentials. In practice, our OEP-1DH calculations employ a truncated

singular-value decomposition (TSVD) method for the construction of the pseudo-inverse of

the linear-response function [used in Eqs. (18) and (19)] to ensure that stable and physically

sound solutions are obtained in the OEP equations [Eqs. (10) and (11)].

In principle, this procedure selects the EXX and GL2 potentials which vanish at |r| → ∞.

We note that, when continuum states are included, the GL2 potential actually diverges at

infinity for finite systems [43–47]. Nevertheless, this problem is avoided when using a discrete

basis set with functions vanishing at infinity (such as the basis set used in this work) [46–

48]. In practice, the calculated potentials can still be shifted by a function which vanishes

at infinity but which is an arbitrary constant in the physically relevant region of space. To

remove this arbitrary constant, as in Ref. 18, we impose the HOMO condition on the EXX

potential

vEXX
x,HH = vHF

x,HH , (20)

where vEXX
x,HH =

∫
ϕ∗H(x)vEXX

x (x)ϕH(x)dx and vHF
x,HH =

∫∫
ϕ∗H(x)vHF

x (x,x′)ϕH(x′)dxdx′ =

−∑j〈Hj|jH〉 are the expectation values of the EXX and HF exchange potentials over the

HOMO spin orbital referred to as H. Similarly, we impose the HOMO condition on the GL2

potential

vGL2
c,HH = ΣMP2

c,HH(εH), (21)

where vGL2
c,HH =

∫
ϕ∗H(x)vGL2

c (x)ϕH(x)dx and ΣMP2
c,HH(εH) =

∫∫
ϕ∗H(x)ΣMP2

c (x,x′; εH)ϕH(x′)dxdx′

are the expectation values of the GL2 local potential and of the MP2 self-energy over

the HOMO spin orbital. The MP2 self-energy is defined as the functional derivative of

EMP2
c with respect to the one-particle Green function G(x′,x;ω), i.e. ΣMP2

c (x,x′;ω) =

8



2πi δEMP2
c /δG(x′,x;ω), and its diagonal matrix elements ΣMP2

c,pp (ω) are [49]

ΣMP2
c,pp (ω) = −1

2

∑

j

∑

a,b

|〈pj||ab〉|2
εa + εb − ω − εj

+
1

2

∑

i,j

∑

b

|〈ij||pb〉|2
ω + εb − εi − εj

. (22)

Eq. (20) can be obtained either by considering the asymptotic limit of Eq. (10) and using the

fact that the HOMO spin orbital dominates in this limit over all occupied spin orbitals [50],

or by considering the derivative of the HF exchange energy with respect to the electron

number (at fixed potential, i.e. at fixed orbitals) and using the chain rule with either the

one-particle density or the one-particle density matrix [50, 51]. Similarly, Eq. (21) can be

obtained by considering the derivative of the MP2 correlation energy with respect to the

electron number (at fixed potential) and using the chain rule with either the one-particle

density or the one-particle Green function [52]. For systems with degenerate HOMO orbitals,

we introduce in Eqs. (20) and (21) sums over the degenerate HOMOs divided by the number

of such HOMOs, (1/nH)
∑

H , as done in Ref. 53.

C. Ionization potential and electronic affinity

The ionization potential (IP) and the electronic affinity (EA) can be defined as derivatives

of the total energy with respect to the electron number N . For the self-consistent OEP DH

approximations, these derivatives can be expressed in terms of frontier spin orbital energies,

like in exact KS DFT, [51, 52, 54, 55]

− IPOEP-1DH =

(
∂EOEP-1DH

∂N

)

N−δ
= εH , (23)

and

− EAOEP-1DH =

(
∂EOEP-1DH

∂N

)

N+δ

= εL + ∆xc, (24)

where δ → 0+, L refers to the LUMO spin orbital, and ∆xc is the derivative discontinu-

ity of the exchange-correlation energy. For the OEP-1DH approximation, the derivative

discontinuity comes from the λ-scaled EXX and GL2 contributions

∆xc = λ ∆EXX
x + λ2 ∆GL2

c . (25)
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The terms ∆EXX
x and ∆GL2

c are given by [56]

∆EXX
x =

(
vHF
x,LL − vEXX

x,LL

)
−
(
vHF
x,HH − vEXX

x,HH

)
, (26)

where vHF
x,LL =

∫∫
ϕ∗L(x)vHF

x (x,x′)ϕL(x′)dxdx′ = −∑j〈Lj|jL〉 and vEXX
x,LL =

∫
ϕ∗L(x)vEXX

x (x)ϕL(x)dx

are the expectation values of the HF and EXX exchange potentials over the LUMO spin

orbital, and similarly [31, 52]

∆GL2
c =

(
ΣMP2

c,LL(εL)− vGL2
c,LL

)
−
(
ΣMP2

c,HH(εH)− vGL2
c,HH

)
,

(27)

where ΣMP2
c,LL(εL) =

∫∫
ϕ∗L(x)ΣMP2

c (x,x′; εL)ϕL(x′)dxdx′ and vGL2
c,LL =

∫
ϕ∗L(x)vGL2

c (x)ϕL(x)dx

are the expectation values of the MP2 self-energy and of the GL2 local potential over the

LUMO spin orbital. Clearly, if the HOMO condition of Eqs. (20) and (21) is imposed,

then the differences of terms in the second parenthesis in Eqs. (26) and (27) are in fact

zero. Note that Eq. (27) can be found from the linearized version of the Sham-Schlüter

equation [57]. Again, for degenerate HOMOs and/or LUMOs, we introduce in Eqs. (26)

and (27), sums over the degenerate HOMOs/LUMOs divided by the number of such degen-

erate HOMOs/LUMOs, i.e. (1/nH)
∑

H and (1/nL)
∑

L.

For standard DH approximations, following Refs. 58 and 59, we obtain IPs and EAs by

calculating derivatives of the total energy by finite differences

− IP1DH =

(
∂E1DH

∂N

)

N−δ
≈ E1DH(N)− E1DH(N −∆)

∆
, (28)

and

− EA1DH =

(
∂E1DH

∂N

)

N+δ

≈ E1DH(N + ∆)− E1DH(N)

∆
, (29)

with ∆ = 0.001. To calculate the energies for fractional electron numbers, E1DH(N−∆) and

E1DH(N + ∆), we use the extension of the DH total energy expression, including the MP2

correlation term, to fractional orbital occupation numbers, as given in Refs. 58 and 59 (for

the details of our implementation, see Ref. 60). As pointed out in Ref. 58, if the variation of

the orbitals and orbital energies in the MP2 correlation energy is neglected when taking the

derivative of the 1DH total energy with the respect to N , then Eqs. (28) and (29) simplify

to

− IP1DH =

(
∂E1DH

∂N

)

N−δ
≈ ε1HH + ΣMP2

c,HH(ε1HH ), (30)

10
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FIG. 1. Exchange-correlation and correlation potentials calculated with the OEP-1DH approx-

imation using the BLYP functional at the recommended value λ = 0.65 for the Be atom and

the CO molecule using different TSVD cutoffs 10−4, 10−6, 10−8 for the pseudo-inversion of the

linear-response function. For Be, the potentials for 10−4 and 10−6 are superimposed. For CO, the

potentials for 10−6 and 10−8 are superimposed.

and

− EA1DH =

(
∂E1DH

∂N

)

N+δ

≈ ε1HL + ΣMP2
c,LL(ε1HL ), (31)

which corresponds to standard second-order perturbative propagator theory (see, e.g.,

Ref. 49). Even though in practice we calculate IP1DH and EA1DH using Eqs. (28) and (29),

the approximate connection with the self-energy in Eqs. (30) and (31) is useful for compar-

ison and interpretative purposes. For example, it can be shown that ΣMP2
c,HH(ε1HH ) contains a

term corresponding to orbital relaxation in the (N−1)-electron system, and pair-correlation

terms for the N - and (N − 1)-electron systems [49, 61].

III. COMPUTATIONAL DETAILS

The 1DH calculations have been performed with a development version of MOLPRO

2015 [62], and the OEP-1DH ones with a development version of ACES II [63]. In all

calculations, we have used the B exchange [23] and the LYP correlation [24] density func-
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tionals, for EDFA
x and EDFA

c , respectively. This choice was motivated by the fact that

1DH-BLYP was found to be among the one-parameter double-hybrid approximations giving

the most accurate thermochemistry properties on average [22, 28, 64]. We expect however

that the effect of the OEP self consistency to be similar when using other density func-

tional approximations. The performance of both DH methods has been tested against a

few atomic (He, Be, Ne, and Ar) and molecular (CO and H2O) systems. For the latter, we

considered the following equilibrium geometries: for CO d(C–O) = 1.128Å, and for H2O

d(H–O) = 0.959Å and a(H–O–H) = 103.9◦. In all cases, core excitations were included in

the second-order correlation term.

In our OEP calculations, for convenience of implementation, the same basis set is used

for expanding both the orbitals and the exchange-correlation potential. To ensure that the

basis sets chosen were flexible enough for representation of orbitals and exchange-correlation

potentials, all basis sets were constructed by full uncontraction of basis sets originally devel-

oped for correlated calculations, as in Refs. 65 and 66. In particular, we employed an even

tempered 20s10p2d basis for He, and an uncontracted ROOS–ATZP basis [67] for Be and

Ne. For Ar, we used a modified basis set [68] which combines s and p basis functions from

the uncontracted ROOS–ATZP [67] with d and f functions coming from the uncontracted

aug–cc–pwCVQZ basis set [69]. In the case of both molecular systems, the uncontracted

cc–pVTZ basis set of Dunning [70] was employed. For all OEP calculations standard con-

vergence criteria were enforced, corresponding to maximum deviations in density-matrix

elements of 10−8. In practice, the use of the same basis set for expanding both the orbitals

and the exchange-correlation potential leads to the necessity of truncating the auxiliary func-

tion space by the TSVD method for constructing the pseudo-inverse of the linear-response

function. The convergence of the potentials with respect to the TSVD cutoff was studied.

Figure 1 shows the example of the convergence of the exchange-correlation and correlation

potentials of the Be atom and the CO molecule. For Be, the potentials obtained with

the 10−4 and 10−6 cutoffs are essentially identical, while for the 10−8 cutoff the exchange-

correlation potential has non-physical oscillations and the correlation potential diverges. For

CO, the potentials obtained with the 10−4 cutoff are significantly different from the poten-

tials obtained with the 10−6 cutoff, while no difference can be seen between the potentials

obtained with the 10−6 and 10−8 cutoffs. A cutoff of 10−6 was thus chosen for all systems

to achieve a compromise between convergence and numerical stability.
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In order to assess the quality of the results obtained with the standard and OEP-based

DH methods, we considered several reference data. We used estimated exact total ener-

gies extracted from numerical calculations [71] for He, Be, Ne, Ar, and from quadratic

configuration-interaction calculations extrapolated to the complete basis set [72] for CO and

H2O. We also used reference data from coupled-cluster singles-doubles with perturbative

triples [CCSD(T)] [73–76] calculations performed with the same basis sets. In particular,

these CCSD(T) calculations yielded densities which were used as input for generating refer-

ence KS potentials by inversion of the KS equations [77, 78], using the computational setup

described in Refs. 65 and 66. We also used estimated exact total energies extracted from

numerical calculations [71] for He, Be, Ne, Ar, and from quadratic configuration-interaction

calculations extrapolated to the complete basis set [72] for CO and H2O.

IV. RESULTS AND DISCUSSION

A. Total energies

Figure 2 shows the total energy of each system as a function of λ calculated with the 1DH

and OEP-1DH approximations. For comparison, CCSD(T) total energies calculated with

the same basis sets and estimated exact total energies taken from Refs. 71 and 72 are also

reported. Note that the CCSD(T) total energies are significantly higher than the estimated

exact energies, which is mostly due to the incompleteness of the basis sets used. Since the

explicit density-functional contribution of the DH calculations does not suffer from this large

basis incompleteness error, we prefer to use as reference the estimated exact energies.

At λ = 0, both DH methods reduce to standard KS using the BLYP functional, which

tends to overestimate the total energy by about 3 to 30 mhartree, except for Be atom where it

is underestimated (which may be connected to the presence of an important static correlation

contribution in this system). At λ = 1, the 1DH approximation reduces to standard MP2

(with HF orbitals), while the OEP-1DH approximation reduces to OEP-GL2 (i.e., the same

MP2 total energy expression but with fully self-consistently optimized OEP orbitals) [18, 19].

Standard MP2 systematically underestimates the total energy on magnitude (up to more

than 100 mhartree for Ar) which is partly due to the missing correlation contribution beyond

second order and to the incompleteness of the basis sets used. On the opposite, OEP-GL2
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FIG. 2. Total energies calculated with the 1DH and OEP-1DH approximations with the BLYP

functional as a function of λ. As reference values, CCSD(T) total energies calculated with the

same basis sets are given, as well as estimated exact total energies taken from Ref. 71 for He, Be,

Ne, Ar, and from Ref. 72 for CO and H2O. The vertical lines correspond to λ = 0.65, i.e. the value

recommended for 1DH with the BLYP functional in Ref. 22. For Be, the OEP-1DH calculations

are unstable for λ > 0.86.

systematically gives too negative total energies, as already known [19, 25]. For example, for

CO the OEP-GL2 total energy is more than 150 mhartree too low. Note that for Be the

OEP-GL2 calculation is unstable, as already reported [19, 20, 79]. The fact that OEP-GL2

gives much more negative total energies than standard MP2 should be connected to the fact

that the HOMO-LUMO orbital energy gap is much smaller with OEP-GL2 orbitals than

with HF orbitals (see results in Sections IV B and IV C).

In between the extreme values λ = 0 and λ = 1, the 1DH and OEP-1DH approximation

give smooth total energy curves, which start to visually differ for λ & 0.2. Note that for
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Be the OEP-1DH calculations are stable for λ ≤ 0.86. At λ = 0.65, which is the value

recommended in Ref. 22 for 1DH with the BLYP functional, both 1DH and OEP-1DH give

more accurate total energies than their respective λ = 1 limits (i.e., MP2 and OEP-GL2),

but do not perform necessarily better than the λ = 0 limit (KS BLYP). Depending on

the system considered, at λ = 0.65, the 1DH total energy is either more accurate or about

equally accurate than the OEP-1DH total energy. Thus, even though OEP-1DH provides an

important improvement over OEP-GL2, we conclude that the self-consistent optimization of

the orbitals in the 1DH approximation (i.e., going from 1DH to OEP-1DH) does not lead to

improved ground-state total energies for the few systems considered here. We expect that

a similar conclusion generally holds for ground-state energy differences such as atomization

energies, similarly to what has been found for the case of the hybrid approximations [80].

B. HOMO orbital energies and ionization potentials

Figure 3 reports, for each system, the HOMO orbital energy in the 1H approximation

[Eq. (6)] and minus the IPs in the 1DH [Eq. (28)] and OEP-1DH [Eq. (23)] approximations as

a function of λ. The reference IPs are from CCSD(T) calculations with the same basis sets.

The HOMO orbital energy in the 1H approximation represents the simplest approximation

to −IP available when doing a 1DH calculation. At λ = 0, the 1H approximation reduces

to standard KS with the BLYP functional, and we recover the well-known fact the HOMO

orbital energy is much too high (underestimating the IP by about 4 to 8 eV for the systems

considered here) with a semilocal DFA like BLYP, most likely due to the self-interaction error

in the exchange density functional. At λ = 1, the 1H approximation reduces to standard HF,

and in this case the HOMO orbital energy is a much better estimate of −IP, overestimating

the IP by about 1 eV except for Be where it is underestimated by about the same amount.

In between λ = 0 and λ = 1, the 1H HOMO orbital energy varies nearly linearly with λ,

which suggests that the λ-dependence is largely dominated by the exchange potential in

Eq. (7). At λ = 0.65, the 1H HOMO orbital energy is always higher than the reference −IP,

by about 1 or 2 eV depending on the system considered.

The IPs obtained with the 1DH method, i.e. taking into account the MP2 correlation

term, are smaller than the 1H IPs for all λ and all systems considered here, with the exception

of Be for which it is a bit larger. This is consistent with previous works which found that
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FIG. 3. HOMO orbital energies in the 1H approximation [Eq. (6)] and minus IPs in the 1DH

[Eq. (28)] and OEP-1DH [Eq. (23)] approximations using the BLYP functional as a function of λ.

The reference values were calculated as CCSD(T) total energy differences with the same basis sets.

The vertical lines correspond to λ = 0.65, i.e. the value recommended for 1DH with the BLYP

functional in Ref. 22. For Be, the OEP-1DH calculations are unstable for λ > 0.86.

IPs calculating by taking the derivative of the MP2 total energy with respect the electron

number are generally too small [58, 81]. At λ = 0.65, 1DH gives IPs that are underestimated

by about 2 or 3 eV, which is similar to the average accuracy obtained with the two-parameter

B2-PLYP double-hybrid approximation [59]. The effect of self-consistency, i.e. going from

1DH to OEP-1DH, is to further reduce the IPs, except for Be for which it increases it. For

He the differences between 1DH and OEP-1DH are very small, which may not be surprising

since for such a two-electron system the HF and EXX potentials have the same action on

occupied orbitals. At λ = 1, OEP-GL2 gives IPs which are generally not very accurate

(see also Ref. 82). In particular, for Ne, CO, and H2O, OEP-GL2 underestimates the IP
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FIG. 4. LUMO orbital energies in the 1H [Eq. (6)] and OEP-1DH [Eq. (8)] approximations and mi-

nus EAs in the 1DH [Eq. (29)] and OEP-1DH [Eq. (24)] approximations using the BLYP functional

as a function of λ. The reference EA values were calculated as CCSD(T) total energy differences

with the same basis sets, and the reference HOMO energy values were calculated by KS inversion

of the CCSD(T) densities. The vertical lines correspond to λ = 0.65, i.e. the value recommended

for 1DH with the BLYP functional in Ref. 22. For Be, the OEP-1DH calculations are unstable for

λ > 0.86.

by more than 3 eV. As a consequence, for these systems, for λ & 0.5 self-consistency only

deteriorates the accuracy of the IPs. We note that better IPs could be obtained using

modified second-order correlated OEP approximations [82].
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C. LUMO orbital energies and electronic affinities

Figure 4 reports, for each system, the LUMO orbital energy in the 1H [Eq. (6)] and

OEP-1DH [Eq. (8)] approximations and minus the EAs in the 1DH [Eq. (29)] and OEP-

1DH [Eq. (24), i.e. including the derivative discontinuity] approximations as a function of

λ. The reference EAs are from CCSD(T) calculations with the same basis sets, whereas the

reference KS LUMO orbital energies have been obtained by inversion of the KS equations

using CCSD(T) densities as input. The reference −EAs are all positive for the systems

considered, meaning that the anions are unstable. These positive values are an artifact of

the incompleteness of the basis set. In a complete basis set, the EAs should be either negative

(i.e., the anion is more stable than the neutral system) or zero (i.e., the anion dissociates into

the neutral system and a free electron). Even though the reported EA values are thus not

converged with respect to the basis set, the EAs given by different methods can nevertheless

be compared for a fixed basis set. By contrast, the reference KS LUMO orbital energies

are all correctly negative with the basis set employed. This is due to the fact that the KS

LUMO does not represent a state with an additional electron but a bound excited state of

the neutral system, which requires much less diffuse basis functions to describe. We note

however that, in the case of the CO and H2O molecules, the reported KS LUMO orbital

energies are not well converged with respect to the basis set due to the lack of diffuse basis

functions. Again, we can nevertheless meaningfully compare them with the reference data

obtained with the same basis sets.

The LUMO orbital energy in the 1H approximation represents the simplest approximation

to −EA (and not to the KS LUMO orbital energy since it is obtained with the nonlocal HF

potential) available when doing a 1DH calculation. At λ = 0, the 1H approximation reduces

to standard KS with the BLYP functional, and we recover the fact that LUMO orbital

energy with a semilocal DFA like BLYP is roughly half way between the exact KS LUMO

orbital energy and the exact −EA (i.e., εDFA
L ≈ εexactL + ∆xc/2, see e.g. Ref. 83). At λ = 1,

the 1H approximation reduces to standard HF, and in this case the LUMO orbital energy is

a quite good estimate of −EA (within the finite basis set) for the systems considered here.

At λ = 0.65, the 1H LUMO orbital energy underestimates −EA by about 0.25 to 1 eV,

depending on the system.

The 1DH approximation gives −EAs rather close to the 1H ones, which indicates that
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the MP2 correlation term has only a modest effect on this quantity for the systems consid-

ered. Coming now to the OEP-1DH results, the LUMO orbital energy obtained in these

calculations has a behavior as a function of λ which is clearly distinct from the other curves.

Starting from the BLYP LUMO orbital energy value at λ = 0, it becomes more negative as

λ is increased, and becomes an increasingly accurate approximation to the exact KS LUMO

orbital energy (and not to −EA). This is an essential difference between having a local

EXX (and GL2) potential instead of a nonlocal HF potential. At λ = 0.65, the OEP-1DH

LUMO orbital energies underestimate the reference KS LUMO energies by about 1 to 2 eV.

The estimate of −EA in the OEP-1DH approximation is obtained by adding the derivative

discontinuity ∆xc to the OEP-1DH LUMO orbital energy. For the closed-shell systems con-

sidered here, the derivative discontinuity is largely dominated by the exchange contribution.

The derivative discontinuity is systematically overestimated in OEP-GL2, leading to −EAs

that are much too high. It turns out that, at the recommended value λ = 0.65, OEP-1DH

gives −EAs which agree with the reference values within 0.4 eV for the systems considered.

Thus, the OEP-based self-consistency improves the accuracy of EAs.

D. Exchange-correlation and correlation potentials

Figure 5 shows the exchange-correlation potentials calculated by OEP-1DH at the rec-

ommended value of λ = 0.65, as well as the potentials obtained at the extreme values of λ,

corresponding to KS BLYP (λ = 0) and OEP-GL2 (λ = 1). The reference potentials have

been obtained by employing the KS inversion approach using the CCSD(T) densities.

The BLYP exchange-correlation potentials are not negative enough, they do not describe

well the shell structure (core/valence transition), and decay too fast at large distances. The

OEP-GL2 exchange-correlation potentials have the correct −1/r asymptotic behavior and

are quite accurate for the rare-gas atoms (especially for He and Ar), but have too much

structure for CO and H2O. For Be, the OEP-GL2 calculation is unstable. The OEP-1DH

exchange-correlation potentials do not have quite the correct asymptotic behavior since

they decay as −λ/r, but for λ = 0.65 they have reasonable shapes in the physically relevant

region of space. Note in particular that the OEP-1DH calculation yields a stable solution

for Be. For CO and H2O, the OEP-1DH exchange-correlation potentials actually improve

over both the BLYP and OEP-GL2 exchange-correlation potentials. Therefore, even though
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FIG. 5. Exchange-correlation potentials calculated with the OEP-1DH approximation [Eq. (9)]

using the BLYP functional at the recommended value λ = 0.65, and at the extreme values λ = 0

(standard BLYP) and λ = 1 (OEP-GL2). The reference potentials were calculated by KS inversion

of the CCSD(T) densities. For Be, the OEP-GL2 calculations are unstable. For CO, the potential

is plotted along the direction of the bond with the C nucleus at −1.21790 bohr and the O nucleus

at 0.91371 bohr. For H2O, the potential is plotted along the direction of a OH bond with the O

nucleus at 0.0 and the H nucleus at 1.81225 bohr.

the recommended value of λ = 0.65 was determined based on energetical properties of the

standard non-self-consistent 1DH scheme, it appears that this value of λ also gives reasonable

exchange-correlation potentials as well.

The correlation part of the potentials are plotted in Figure 6. The correlation potentials

in BLYP calculations (i.e., the LYP correlation potential evaluated at the self-consistent

BLYP density) are unable to reproduce the complex structure of the reference correlation

potentials. Note that this is in spite of the fact that LYP correlation energies are usu-
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FIG. 6. Correlation potentials calculated with the OEP-1DH approximation [correlation terms in

Eq. (9)] using the BLYP functional at the recommended value λ = 0.65, and at the extreme values

λ = 0 (standard BLYP) and λ = 1 (OEP-GL2). The reference potentials were calculated by KS

inversion of the CCSD(T) densities. For Be, the OEP-GL2 calculation is unstable. For CO, the

potential is plotted along the direction of the bond with the C nucleus at −1.21790 bohr and the

O nucleus at 0.91371 bohr. For H2O, the potential is plotted along the direction of a OH bond

with the O nucleus at 0.0 and the H nucleus at 1.81225 bohr.

ally reasonably accurate. On the contrary, the OEP-GL2 correlation potentials tend to be

largely overestimated, as previously observed [27, 65]. Overall, the OEP-1DH correlation

potentials at λ = 0.65 have fairly reasonable shapes, providing a good compromise between

the understructured BLYP and the overestimated OEP-GL2 correlation potentials.
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FIG. 7. Correlated density calculated with the OEP-1DH approximation using the BLYP func-

tional at the recommended value λ = 0.65, and at the extreme values λ = 0 (standard BLYP)

and λ = 1 (OEP-GL2). The reference correlated densities are calculated with CCSD(T). For com-

parison, correlated densities calculated with standard MP2 are also shown. For Be, the OEP-GL2

calculation is unstable. For CO, the potential is plotted along the direction of the bond with the

C nucleus at −1.21790 bohr and the O nucleus at 0.91371 bohr. For H2O, the potential is plotted

along the direction of a OH bond with the O nucleus at 0.0 and the H nucleus at 1.81225 bohr.

E. Correlated densities

The analysis of the correlated densities provides a useful tool for the detailed examination

of the correlation effects on the electronic density and for the test of exchange-correlation

approximations in DFT [65, 66, 84–87]. Thus, in Figure 7 we report correlated densities

calculated by OEP-1DH at the recommended value of λ = 0.65, as well as the correlated

densities obtained at the extreme values of λ, corresponding to KS BLYP (λ = 0) and OEP-

22



GL2 (λ = 1). The correlated density is defined as ∆nc(r) = n(r) − nx-only(r) where n(r) is

the total density calculated with the full exchange and correlation terms and nx-only(r) is the

density calculated with only the exchange terms (see Refs. 65, 66, 84, and 85 for discussions

on different definitions of correlated densities). The reference correlated densities have been

calculated with the CCSD(T) method as ∆nc,CCSD(T)(r) = nCCSD(T)(r) − nHF(r), while

nCCSD(T)(r) was obtained from the CCSD(T) relaxed density matrix [88–90] constructed

using the Lagrangian approach [91–93]. For comparison, correlated densities calculated in

standard MP2 (1DH with λ = 1) with the same relaxed density-matrix approach are also

shown. Due to our current implementation limitations (lack of the relaxed density-matrix

approach for the 1DH approximation), the correlated densities for the non-self-consistent

1DH approximation have not been calculated.

At λ = 0, i.e. in KS BLYP calculations, the correlated densities are mostly very much

underestimated. At λ = 1, the correlated densities are largely overestimated with OEP-

GL2. At λ = 0.65, the OEP-1DH correlated densities tend to be quite accurate, achieving

a good balance between the underestimated BLYP correlated densities at λ = 0 and the

overestimated OEP-GL2 correlated densities at λ = 1. The OEP-1DH correlated densities

are overall similar in accuracy to the MP2 and CCSD(T) correlated densities.

V. CONCLUSION

In this work, we have proposed an OEP-based self-consistent DH scheme in which the or-

bitals are optimized with a local potential including the MP2 correlation contribution. While

staying in the philosophy of the KS scheme with a local potential, this scheme constitutes

an alternative to the orbital-optimized DH scheme of Peverati and Head-Gordon [7].

We have implemented a one-parameter version of this OEP-based self-consistent DH

scheme using the BLYP density-functional approximation and compared it to the corre-

sponding non-self-consistent DH scheme for calculations on a few closed-shell atoms and

molecules. While the OEP-based self-consistency does not provide any improvement for the

calculations of ground-state total energies and ionization potentials, it does improve the accu-

racy of electron affinities and restores the meaning of the LUMO orbital energy as being con-

nected to a neutral excitation energy. Moreover, the OEP-based self-consistent DH scheme

provides reasonably accurate exchange-correlation potentials and correlated densities. In

23



comparison to the standard OEP-GL2 method [16–20], our OEP-based self-consistent DH

scheme is more stable and removes the large overestimation of correlation effects.

Additional work can be foreseen to exploit the full power of the OEP-based self-consistent

DH scheme. For example, our scheme should be tested against more systems, including open-

shell ones for which we expect the OEP self-consistency to provide advantages similar to

the orbital-optimized DH scheme of Ref. 7. It would also be interesting to apply linear-

response time-dependent DFT on our OEP-based self-consistent DH scheme to calculate

excitation energies. Finally, the present procedure should be applied to the range-separated

DH approach [94] which has the advantage of having a fast basis convergence [95].
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[57] L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).

[58] A. J. Cohen, P. Mori-Sánchez, and W. Yang, J. Chem. Theory Comput. 5, 786 (2009).

[59] N. Q. Su, W. Yang, P. Mori-Sánchez, and X. Xu, J. Phys. Chem. A 118, 9201 (2014).

[60] B. Mussard and J. Toulouse, Fractional-charge and fractional-spin errors in

range-separated density-functional theory, Mol. Phys., published online (2016);

26



doi=10.1080/00268976.2016.1213910, preprint arXiv:1607.03621.

[61] B. T. Pickup and O. Goscinski, Mol. Phys. 26, 1013 (1973).

[62] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, “MOLPRO,
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Chapter 4

Study of the short-range

exchange-correlation kernel

4.1 Introduction

Time-dependent density-functional theory (TDDFT) [1] and especially the linear-response

formalism is one of the most used approach for the calculation of electronic excitation ener-

gies. The key quantity in this context is the exchange-correlation kernel which is space and

frequency dependent and needs to be approximated. The frequency dependence is very difficult

to treat [2] and most of the time this dependence is neglected which is called the adiabatic

approximation. Most of the time a further approximation is made by using semilocal density

functionals. Despite this crude approximation adiabatic semilocal exchange-correlation kernels

give reasonably accurate results in many cases at low computational cost. However, adiabatic

semilocal approximations have some limitations: they give too low charge-transfer and Rydberg

excitation energies [3, 4], they fail to describe double excitations [5, 6] or to describe excitation

states along bond dissociations coordinates [7].

A way to overcome the limitations of the semilocal approximations is to extend TDDFT to

range separation [8]. The description of Rydberg and charge-transfer excitation energies can

be improved by introducing a long-range Hartree-Fock exchange kernel [9]. The long-range

correlation can be described using long-range linear-response density-matrix-functional theory

(DMFT) [10] or long-range linear-response multiconfigurational self-consistent field [11] that

give access to double excitations. In practice, in the range-separated TDDFT approaches the

short-range exchange-correlation kernel remains described by an adiabatic approximation.

In this study we considered linear-response TDDFT extended to range separation and we

studied in particular the frequency dependence of the short-range exchange-correlation kernel.

We were particularly interested by the behavior of the short-range exchange and correlation
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kernels as a function of the range-separation parameter. The chapter is organized as follows.

A brief review of TDDFT is proposed in Sec. 4.2. The form of the exchange kernel is then

explored: the exact-exchange kernel is first generalized to range separation in Sec. 4.3 and

the asymptotic behavior of the short-range exact-exchange kernel with respect to the range-

separation parameter µ is studied in Sec. 4.4. Finally the form of the short-range correlation

kernel is explored in the special case of H2 in a minimal basis in Sec. 4.5.

4.2 Review on time-dependent density-functional theory

4.2.1 Time-dependent Schrödinger equation for many-electron systems

The time evolution of a N -particle system in a time-dependent external scalar potential is

described by the time-dependent Schrödinger equation that propagates a given initial state

Ψ(t0) = Ψ0

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (4.1)

with the N -particle Hamiltonian

Ĥ(t) = T̂ + V̂ (t) + Ŵee, (4.2)

with the kinetic operator T̂ = −1
2

∫
[∇2

rn̂1(r, r′)]r=r′dr, the electron-electron interaction Ŵee =
1
2

∫∫
n̂2(r, r′)/|r−r′|drdr′ and the time-dependent potential V̂ (t) =

∫
v(r, t)n̂(r)dr that contains

the contributions from the electron-nuclei interaction and the external electric-field perturbation.

In these expressions, n̂1(r, r′) is the one-particle density matrix operator, n̂2(r, r′) is the pair-

density operator and n̂(r) is the density operator.

The time-dependent many-body Schrödinger equation cannot be solved exactly for most of

molecular systems and approximated methods have to be used. One of the most widely used

method is time-dependent density-functional theory (TDDFT).

4.2.2 Time-dependent density-functional theory: the Kohn-Sham formalism

The fundamental statement of TDDFT is that the properties of the interacting system can

be deduced from the knowledge of the time-dependent density n(r, t) with a fixed initial state

condition. This is possible due to the Runge-Gross theorem [1] that can be considered as

an extension at the time-dependent level of the first Hohenberg-Kohn theorem. In the time-

dependent Kohn-Sham (KS) scheme the real system is replaced by a model system of non-

interacting particles

i
d

dt
|ϕi(t)〉 =

[
T̂ + V̂KS[n](t)

]
|ϕi(t)〉 (4.3)

with the same density as in the real system n(r, t) =
∑occ.

i |ϕi(r, t)|2 and the Kohn-Sham

potential operator V̂KS[n](t) =
∫
n̂(r)vKS(r, t)dr. This density is imposed by the time-dependent
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Kohn-Sham potential

vKS(r, t) = v(r, t) + vH(r, t) + vxc(r, t) (4.4)

with the time-dependent Hartree potential

vH(r, t) =

∫
dr′

n(r′, t)
|r− r′| (4.5)

and vxc(r, t) the time-dependent exchange-correlation potential that needs to be approximated.

The most common approximation is the adiabatic approximation.

The adiabatic approximation: In this approximation a functional defined for ground-state

DFT is used with a density that corresponds to the time-dependent density at fixed time. This

approximation is local in time

vadiabatic
xc (r, t) =

δExc[n]

δn

∣∣∣∣
n=n(r,t)

(4.6)

where Exc[n] is the ground-state exchange-correlation density functional.

4.2.3 Linear-response

If the time-dependent external potential is small enough it is not necessary to solve the time-

dependent Kohn-Sham equation. Calculating the linear change of the density allows us to

calculate linear-response properties such as the optical absorption spectrum.

While t < t0 the time-dependent external potential is switched off and the system is only subject

to the nuclear potential and is in its ground state. At t0 the time-dependent perturbation v(1)

is switched on and will induce a change in the density

n(r, t) = n(0)(r) + n(1)(r, t) + n(2)(r, t) + . . . (4.7)

the first-order term of the density depends linearly on v(1) and is sufficient to describe a weak

perturbation

n(1)(r, t) =

∫ t

t0

dt′
∫

dr′χ(r, t; r′, t′)v(1)(r′, t′) (4.8)

with χ(r, t; r′, t′) the linear-response function of the system. The linear change can also be

expressed using the Kohn-Sham system

n(1)(r, t) =

∫ t

t0

dt′
∫

dr′χ0(r, t; r′, t′)v(1)
KS(r′, t′) (4.9)
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with χ0(r, t; r′, t′) the Kohn-Sham linear-response function. The potential v(r, t) can be ex-

pressed with respect to the Kohn-Sham potential

v(r, t) = vKS(r, t)− vHxc(r, t) (4.10)

and can be differentiated with respect to the density

δv(r, t)

δn(r′, t′)
=
δvKS(r, t)

δn(r′, t′)
− δvHxc(r, t)

δn(r′, t′)
(4.11)

which can be expressed in frequency space

χ−1(r, r′, ω) = χ−1
0 (r, r′, ω)− fHxc(r, r

′, ω) (4.12)

with the Kohn-Sham linear-response function

χ0(r, r′, ω) =

occ.∑

i

unocc.∑

a

ϕ∗i (r)ϕa(r)ϕ∗a(r
′)ϕi(r′)

εi − εa + ω + i0+
+

occ.∑

i

unocc.∑

a

ϕ∗a(r)ϕi(r)ϕ∗i (r
′)ϕa(r′)

εi − εa − ω − i0+
(4.13)

and fHxc the Hartree-exchange-correlation kernel that needs to be approximated.

4.2.4 Range-separated TDDFT

By decomposing the electron-electron interaction into long-range and short-range parts, the

many-electron system can alternatively be replaced by a long-range interacting effective system

i
d

dt
|Ψlr(t)〉 =

[
T̂ + Ŵ lr

ee + V̂ sr(t)
]
|Ψlr(t)〉, (4.14)

with the time-dependent long-range wave function Ψlr which gives the time-dependent density

equal to the density of the true system n(r, t). The short-range potential operator is V̂ sr(t) =∫
drn̂(r)vsr(r, t) with

vsr(r, t) = v(r, t) + vsr
Hxc(r, t) (4.15)

and in analogy with the previous section the linear-response theory can then be expressed as

χ−1(r, r′, ω) = (χlr)−1(r, r′, ω)− f sr
Hxc(r, r

′, ω) (4.16)

with χlr the response function of the system described by the Hamiltonian in Eq. (4.14) and the

short-range Hartree-exchange-correlation kernel f sr
Hxc(r, r

′, ω) that remains to approximate.
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4.3 Study of the short-range exchange kernel

4.3.1 Range-separated time-dependent exact-exchange method

The time-dependent exact-exchange (TDEXX) method was introduced by Görling [12, 13]. In

this section we extend this method to range separation by applying a perturbation theory along

the adiabatic connection following the derivation of Ref. [14]. The derivation will be restrained to

closed-shell systems. We first consider the range-separated time-dependent Schrödinger equation

i
d

dt
|Ψlr,λ(t)〉 =

[
T̂ + V̂ sr,λ(t) + λŴ lr

ee

]
|Ψlr,λ(t)〉 (4.17)

with Ŵ lr
ee the long-range electron-electron interaction and V̂ sr,λ the potential operator keeping

the time-dependent density constant for every value of the coupling constant λ. The initial

condition Ψlr,λ(t0) is chosen to reproduce the initial density n(r, t0) for all λ. When λ = 0 the

system is the non-interacting system and can be described by the time-dependent Kohn-Sham

equation

i
d

dt
|ΦKS(t)〉 =

[
T̂ + V̂KS(t)

]
|ΦKS(t)〉 (4.18)

with the initial condition ΦKS(t0) = Ψlr,λ=0(t0) and the potential V̂ sr,λ=0(t) = V̂KS(t) = V̂ (t) +

V̂Hxc(t). At λ = 1 the system is the partially interacting system described by the range-separated

time-dependent Schrödinger equation with the potential V̂ sr,λ=1(t) = V̂ (t)+ V̂ sr
Hxc(t). The short-

range potential is Taylor expanded with respect to λ

vsr,λ(r, t) =

∞∑

k=0

λkvsr,(k)(r, t) = vKS(r, t) + λvsr,(1)(r, t) + λ2vsr,(2)(r, t) + . . . (4.19)

The short-range potential can be written as

vsr,λ(r, t) = v(r, t) + vsr,λ
Hxc(r, t) = vKS(r, t)−

(
vHxc(r, t)− vsr,λ

Hxc(r, t)
)
, (4.20)

the first-order contribution to the short-range potential is then

vsr,(1)(r, t) = −(vH(r, t)− vsr
H(r, t))− (vx(r, t)− vsr

x (r, t)) = −vlr
H(r, t)− vlr

x (r, t), (4.21)

with vsr
H(r, t) and vsr

x (r, t) the short-range Hartree and exchange potentials and vlr
H(r, t) and

vlr
x (r, t) the long-range Hartree and exchange potentials. The dependence of the first-order

contribution to the short-range potential on the long-range Hartree and exchange potentials can

seem counter-intuitive but this can be explained by the long-range nature of the perturbation

introduced in Eq. (4.17). The sum of the remaining terms k ≥ 2 corresponds to the negative

of the long-range correlation potential. Considering the Taylor expansion of the potential in

Eq. (4.19) the Hamiltonian is written as
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T̂ + V̂KS(t) + λ
[
Ŵ lr

ee − V̂ lr
H (t)− V̂ lr

x (t)
]
− λ2V̂ lr,(2)(t) + . . . (4.22)

Then we expand the density with respect to λ,

nλ(r, t) =
∞∑

k=0

λkn(k)(r, t), (4.23)

every term higher than the zeroth-order being zero because the density remains constant along

the adiabatic connection. To express the first-order contribution of the density we finally need

to expand the long-range wave function Ψlr(t) with respect to λ

Ψlr,λ(t) =

∞∑

k=0

λkΨlr,(k)(t) = ΦKS(t) + λΨlr,(1)(t) + λ2Ψlr,(2)(t) + . . . (4.24)

In the time-dependent case every Taylor expansion depends on the choice of the initial condition.

The initial-state wave function is chosen to be the ground state of a range-separated time-

independent Schrödinger equation Ψlr,λ(t0) = Ψlr,λ
0

[
T̂ + Û sr,λ + λŴ lr

ee

]
|Ψlr,λ

0 〉 = Eλ0 |Ψlr,λ
0 〉, (4.25)

with Û sr,λ is the time-independent potential operator associated with the potential usr,λ(r) which

keeps the density constant along the adiabatic connection. At this point of the derivation the

time-dependent potential and the static potential do not need to be equal initially usr,λ(r) 6=
vsr,λ(r, t0). The expansion of the wave-function in Eq. (4.24) becomes, for the initial state

Ψlr,λ
0 =

∞∑

k=0

λkΨ
lr,(k)
0 = ΦKS

0 + λΨ
lr,(1)
0 + λ2Ψ

lr,(2)
0 + . . . (4.26)

Time-dependent perturbation theory [12] yields the first-order contribution to the wave func-

tion Ψlr,λ(t) due to the first-order perturbation in Eq. (4.22)

Ψlr,(1)(t) = (−i)
∞∑

k=0

ΦKS
k (t)

∫ t

t0

dt′〈ΦKS
k (t′)|Ŵ lr

ee − V̂ lr
H (t′)− V̂ lr

x (t′)|ΦKS
0 (t′)〉

+

∞∑

l=1

ΦKS
l (t)

〈ΦKS
l |Ŵ lr

ee − Û lr
H − Û lr

x |ΦKS
0 〉

EKS
0 − EKS

l

, (4.27)

where ΦKS
k (t) are the solutions from the time-dependent Kohn-Sham equation that evolve from

ΦKS
k , the k-th eigenstate of the time-independent Kohn-Sham equation ΦKS

k (t0) = ΦKS
k . The

first-order contribution to the density is then

n(1)(r, t) = 〈ΦKS
0 (t)|n̂(r)|Ψlr,(1)(t)〉+ c.c.= 0, (4.28)
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where ΦKS
0 (t) is the zeroth-order term of Ψlr,λ(t) evolving from the initial condition ΦKS(t0) =

ΦKS
0 . Combined to the expression of Ψlr,(1)(t) of Eq. (4.27) it becomes

0 =(−i)
∞∑

k=0

〈ΦKS
0 (t)|n̂(r)|ΦKS

k (t)〉
∫ t

t0

dt′〈ΦKS
k (t′)|Ŵ lr

ee − V̂ lr
H (t′)− V̂ lr

x (t′)|ΦKS
0 (t′)〉+ c.c.

+
∞∑

l=1

〈ΦKS
0 (t)|n̂(r)| ΦKS

l (t)〉〈Φ
KS
l |Ŵ lr

ee − Û lr
H − Û lr

x |ΦKS
0 〉

EKS
0 − EKS

l

+ c.c.. (4.29)

The time-dependent and time-independent Kohn-Sham wave functions are Slater determinants

constructed from orbitals ϕk and ϕk(t) satisfying the time-independent and time-dependent

one-particle Kohn-Sham equations respectively

[
T̂ + ÛKS

]
|ϕk〉 = εk|ϕk〉 (4.30)

i
d

dt
|ϕk(t)〉 =

[
T̂ + V̂KS(t)

]
|ϕk(t)〉. (4.31)

We can then express Eq. (4.29) with the Kohn-Sham orbitals and after some algebra we arrive

to the range-separated time-dependent exact-exchange equation

∫ t

t0

dt′
∫

dr′χ0(r, t; r′, t′)vlr
x (r′, t′) = Λlr

x (r, t) (4.32)

with the Kohn-Sham linear-response function

χ0(r, t; r′, t′) = 2(−i)
occ.∑

i

unocc.∑

a

ϕ∗i (r, t)ϕa(r, t)ϕ
∗
a(r
′, t′)ϕi(r′, t′) + c.c. (4.33)

and the right-hand side of Eq. (4.32)

Λlr
x (r, t) =2(−i)

occ.∑

i

unocc.∑

a

ϕ∗i (r, t)ϕa(r, t)
∫ t

t0

dt′〈ϕa(t′)|V̂ NL,lr
x (t′)|ϕi(t′)〉+ c.c. (4.34)

+ 2

occ.∑

i

unocc.∑

a

ϕ∗i (r, t)ϕa(r, t)×
〈ϕa|ÛNL,lr

x − Û lr
x |ϕi〉

εi − εa
+ c.c..

The factor 2 is due to the summation over the spin degree of freedom for closed-shell systems.

The non-local (NL) exchange potential corresponds to the Hartree-Fock exchange potential

applied to the Kohn-Sham orbitals

[
V̂ NL,lr

x (t)ϕk(t)
]

(r) = −
∫ occ.∑

j

ϕj(r, t)ϕ
∗
j (r
′, t)ϕk(r

′, t)wlr
ee(|r− r′|)dr′ (4.35)
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and ÛNL,lr
x and Û lr

x are the time-independent long-range non-local and local exchange potentials,

respectively.

The short-range exchange potential can be obtained from the difference of the long-range

TDEXX equation and the standard TDEXX equation

∫ t

t0

dt′
∫

dr′χ0(r, t; r′, t′)
(
vx(r′, t′)− vlr

x (r′, t′)
)

= Λx(r, t)− Λlr
x (r, t)

∫ t

t0

dt′
∫

dr′χ0(r, t; r′, t′)vsr
x (r′, t′) = Λsr

x (r, t) (4.36)

where Λsr
x (r, t) is simply equivalent to Λlr

x (r, t) given in Eq. (4.34) with the long-range electron-

electron interaction replaced by the equivalent short-range interaction.

4.3.2 Short-range exact-exchange kernel

To express the short-range exact-exchange (EXX) kernel we need to take the functional deriva-

tive of the TDEXX equation (4.36) with respect to the Kohn-Sham time-dependent potential

vKS(r, t). The point at which we do the derivation will be vKS(r, t) = uKS(r) such as in the

following expressions V̂x(t0) = Ûx = V̂x. The detailed derivation for the exact-exchange kernel

without range separation is presented in Appendix B. With range separation the short-range

EXX kernel is given by

∫
dr′′

∫
dr′′′χ0(r, r′′, ω)f sr

x (r′′, r′′′, ω)χ0(r′′′, r′, ω) = hsr
x (r, r′, ω). (4.37)

In analogy to the definition of the exact-exchange kernel proposed by Görling [12] we decompose

hsr
x (r, r′, ω) in three terms: h1,sr

x (r, r′, ω), h2,sr
x (r, r′, ω) and h3,sr

x (r, r′, ω) defined as

h1,sr
x (r, r′, ω) = −2

occ.∑

i,j

unocc.∑

a,b

×
(

ϕ∗i (r)ϕa(r)〈aj|bi〉srϕ∗b(r′)ϕj(r′)
(εj − εb + ω + i0+)(εi − εa + ω + i0+)

+
ϕ∗a(r)ϕi(r)〈ib|ja〉srϕ∗j (r′)ϕb(r′)

(εj − εb − ω − i0+)(εi − εa − ω − i0+)

)
, (4.38)

h2,sr
x (r, r′, ω) = −2

occ.∑

i,j

unocc.∑

a,b

×
(

ϕ∗i (r)ϕa(r)〈ab|ji〉srϕ∗j (r′)ϕb(r′)
(εj − εb − ω − i0+)(εi − εa + ω + i0+)

+
ϕ∗a(r)ϕi(r)〈ij|ba〉srϕ∗b(r′)ϕj(r′)

(εj − εb + ω + i0+)(εi − εa − ω − i0+)

)
, (4.39)
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h3,sr
x (r, r′, ω) = −2

occ.∑

i,j

unocc.∑

a

×
(
ϕ∗i (r)ϕa(r)〈j|V̂ NL,sr

x − V̂ sr
x |i〉ϕ∗a(r′)ϕj(r′)

(εj − εa + ω + i0+)(εi − εa + ω + i0+)

+
ϕ∗a(r)ϕi(r)〈i|V̂ NL,sr

x − V̂ sr
x |j〉ϕ∗j (r′)ϕa(r′)

(εj − εa − ω − i0+)(εi − εa − ω − i0+)

)

+2
occ.∑

i

unocc.∑

a,b

×
(
ϕ∗i (r)ϕa(r)〈a|V̂ NL,sr

x − V̂ sr
x |b〉ϕ∗b(r′)ϕi(r′)

(εi − εb + ω + i0+)(εi − εa + ω + i0+)

+
ϕ∗a(r)ϕi(r)〈b|V̂ NL,sr

x − V̂ sr
x |a〉ϕ∗i (r′)ϕb(r′)

(εi − εb − ω − i0+)(εi − εa − ω − i0+)

)
. (4.40)

The introduced short-range integrals are given by

〈ij|kl〉sr =

∫∫
ϕ∗i (r)ϕ∗j (r

′)ϕk(r)ϕl(r
′)wsr

ee(|r− r′|)drdr′, (4.41)

with wsr
ee(|r − r′|) = erfc(µ|r − r′|)/|r − r′| the short-range interaction. In the following section

we will be interested in exploring the frequency dependence of this short-range exact-exchange

kernel f sr
x for µ → ∞. To do so we will consider a more convenient and compact form of the

short-range EXX kernel based on Ref. [15] where the orbitals are real-valued

∫∫
dr′dr′′

∑

ia,jb

ϕia(r)λia(ω)ϕai(r
′)f sr

x (r′, r′′, ω)ϕjb(r
′′)λjb(ω)ϕbj(r

′′′)

=
∑

ia,jb

ϕia(r)λia(ω)Xsr
ia,jb(ω)λjb(ω)ϕbj(r

′′′) (4.42)

with λia(ω) = 4εia/(ω
2 − ε2ia) where εia = εi−εa and ϕia(r) = ϕi(r)ϕa(r). The function Xsr

ia,jb(ω)

can be decomposed similarly to hsr
x in Eq. (4.37), h1,sr

x and h2,sr
x will be given in this new form

by

X1+2,sr
ia,jb (ω) = −1

4

([
1 +

ω2

εiaεjb

]
〈aj|bi〉sr +

[
1− ω2

εiaεjb

]
〈ab|ji〉sr

)
. (4.43)

The summations run over pairs of occupied/unoccupied orbitals (ia). The next contribution to

Xsr
ia,jb(ω) will recover h3,sr

x

X3,sr
ia,jb(ω) =

1

4

[
1 +

ω2

εiaεjb

](
δij〈ϕa|V̂ NL,sr

x − V̂ sr
x |ϕb〉 − δab〈ϕi|V̂ NL,sr

x − V̂ sr
x |ϕj〉

)
. (4.44)
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4.4 Asymptotic expansion with respect to the range-separation

parameter of the short-range exchange kernel

To explore the behavior of short-range exact-exchange kernel we expand the short-range elec-

tronic interaction with respect to the range-separation parameter µ. In the limit of µ going to

∞ the interaction can be described by [16]

wsr
ee(r12) =

µ→∞
4
√
π

m∑

n=0

(−1)nAn
n!(n+ 2)µn+2

δ(n)(r12) +O
(

1

µm+3

)
(4.45)

where r12 = |r1 − r2| and An = Γ((n + 3)/2) with Γ the gamma function. In the following we

will study the behavior of the short-range exact-exchange kernel when µ goes to ∞.

4.4.1 Leading-order contribution

We consider the first term of the asymptotic expansion of the short-range interaction

wsr,(0)
ee (r12) =

π

µ2
δ(r12). (4.46)

We introduce this interaction in the Xsr
ia,jb functions defined in Eq. (4.43) and Eq. (4.44). Due

to the Dirac function the non-local short-range exchange potential V̂ NL,sr
x behaves as a local

potential such that X
3,sr,(0)
ia,jb (ω) does not contribute and the kernel only depends on X

1+2,sr,(0)
ia,jb (ω).

∫∫
dr′dr′′

∑

ia,jb

ϕia(r)λia(ω)ϕai(r
′)f sr,(0)

x (r′, r′′, ω)ϕjb(r
′′)λjb(ω)ϕbj(r

′′′)

=
∑

ia,jb

ϕia(r)λia(ω)X
1+2,sr,(0)
ia,jb (ω)λjb(ω)ϕbj(r

′′′) (4.47)

To evaluate X
1+2,sr,(0)
ia,jb (ω) we introduced the leading-order contribution to the short-range

interaction in the definition of the short-range integrals

〈ij|kl〉sr,(0) =

∫
dr

π

µ2
ϕi(r)ϕj(r)ϕk(r)ϕl(r) (4.48)

and X
1+2,sr,(0)
ia,jb becomes

X
1+2,sr,(0)
ia,jb = −1

2
〈aj|bi〉sr,(0) = −1

2

π

µ2

∫
drϕa(r)ϕi(r)ϕb(r)ϕj(r). (4.49)

We can then rewrite the equation of the kernel as
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∫∫
dr′dr′′

∑

ia,jb

ϕia(r)λia(ω)ϕai(r
′)f sr,(0)

x (r′, r′′, ω)ϕjb(r
′′)λjb(ω)ϕbj(r

′′′)

=
∑

ia,jb

ϕia(r)λia(ω)

[
−1

2

π

µ2

∫
d3r′ϕa(r′)ϕi(r′)ϕb(r

′)ϕj(r′)
]
λjb(ω)ϕjb(r

′′′), (4.50)

and by identification between the right-hand and the left-hand sides of the equation we can

determine the expression of the leading-order contribution to short-range exchange kernel

f sr,(0)
x (r′, r′′, ω) = −1

2

π

µ2
δ(r′ − r′′). (4.51)

4.4.2 Next-order contribution

We now consider the next-order contribution of the asymptotic expansion of the short-range

interaction

wsr,(1)
ee (r12) = −4

3

√
π

µ3
δ(1)(r12) (4.52)

and introduce it in the expression of Xsr
ia,jb. The next-order contribution vanishes because of the

integration over the angular degrees of freedom

∫
dΩ1

∫
dr12δ

(1)(r12)f(r12) = −
∫

dΩ1u12 · ∇f |r12=0 = 0, (4.53)

where Ω1 stands for the angular coordinates associated to the variable r1. We can then express

the kernel as

f sr
x (r2, r3, ω) =

µ→∞
−1

2

π

µ2
δ(r2 − r3) +O

(
1

µ4

)
(4.54)

This result is consistent with results obtained from the study of the asymptotic expansion of the

exact ground-state short-range spin-independent exchange density functional for µ → ∞ [17]

and shows that the leading order term of the exact-exchange kernel is local in space and does

not depend on the frequency.

4.4.3 Examples of H2 and He

In this section we calculate the projection of the short-range exchange kernel in the molecular

orbital basis

(ia|f sr
x |jb) =

∫∫
ϕi(r)ϕa(r)f sr

x (r, r′)ϕj(r′)ϕb(r
′)drdr′ (4.55)

for two-electron systems in cc-pVDZ (abbreviated as VDZ) basis sets [18]. For two-electrons

systems the exact-exchange kernel can be related to the Hartree kernel as fEXX
x = −1/2fH.



90 CHAPTER 4. STUDY OF SHORT-RANGE EXCHANGE-CORRELATION KERNEL

For two-electron systems, the EXX kernel is thus frequency independent. We will compare the

behavior of three kernels: the short-range LDA exchange kernel [17], the short-range exact-

exchange kernel and the short-range exact-exchange kernel when µ→∞ defined in Eq. (4.54).

The calculations were performed using the quantum chemistry program MOLPRO [19]. The

orbitals are calculated at the RSH level [20].
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Figure 4.1: Projection of the short-range exchange kernel in the VDZ basis set (ia|f sr
x |ia) with

respect to the range-separation parameter µ for H2 at equilibrium (1.4 bohr) (top) and in the
dissociation limit (distance of 10 bohr) (bottom) calculated with the short-range LDA, short-
range exact-exchange and short-range exact exchange in the µ → ∞ limit. For each distance
two transitions are shown: the first transition 1σg → 1σu and a higher transition 1σg → 3πg.

The results for H2 in VDZ are presented in Fig. 4.1. In this basis set we have one occupied

orbital and nine unoccupied orbitals, we only considered the diagonal terms of the kernel matrix.

In the limit of high µ we notice that the behavior of the three kernels are the same and that the

leading term of the expansion Eq. (4.54) gives a good description in this region. On the other

end of the curve, for µ→ 0 we can notice the difference of behavior between srLDA and srEXX:

srEXX seems to have a ”flatter” start than srLDA at µ→ 0. This difference of behavior could

be explained if we consider the behavior of both potentials (srLDA [17] and srEXX [21]) for

µ→ 0
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Figure 4.2: Projection of the short-range exchange kernel in VDZ basis set for He calculated
with the short-range LDA, short-range exact-exchange and short-range exact exchange in the
µ → ∞ limit. Two transitions are shown: the first transition 1s → 2s and a higher transition
1s→ 2p.

vsr,EXX
x (r) = vx(r) +

2µ√
π

+ µ3vsr,(3)
x (r) +O

(
µ5
)

(4.56)

vsr,LDA
x (r) = vLDA

x (r) +
µ√
π
− αµ2rs(r)

π
+O

(
e−1/µ2

)
, (4.57)

with rs = (3/(4πn))1/3 the Wigner-Seitz radius and α = (4/(9π))1/3. By taking the second-order

derivative of both potentials with respect to the density the corresponding kernels are

f sr,EXX
x (r, r′) = fEXX

x (r, r′) + µ3 f sr,(3)
x (r, r′) +O

(
µ5
)

(4.58)

f sr,LDA
x (r, r′) = fLDA

x (r)δ(r− r′) + πα4r4
s (r)µ2 +O

(
e−1/µ2

)
, (4.59)

with fLDA
x (r) = ∂2eLDA

x /∂n2 the second-order derivative of the LDA exchange energy density

with respect to the density. The srLDA exchange kernel in the limit of small µ should thus

be quadratic while the short-range EXX exchange kernel should behave as µ3. This seems

consistent with the behavior observed for H2 at equilibrium (however in the dissociation limit the

variation of the short-range EXX kernel seems to be faster for the first transition 1σg → 1σu).

It is interesting to remark that for localized valence excitation (1σg → 1σu at equilibrium)

srLDA gives good results with respect to srEXX even for µ close to 0. For Rydberg excitations

(1σg → 3πg at equilibrium and in the dissociation limit) and delocalized valence excitation

(1σg → 1σu in the dissociation limit) there is a loss of accuracy. We finally considered a second

system, the helium atom in the VDZ basis set, and the results are presented in Fig. 4.2. The

results for He are similar to H2: the local valence excitations are well described by srLDA.
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4.5 Study of the exact frequency-dependent correlation kernel

In this section we want to extend our study of the short-range exchange kernel to the short-range

correlation kernel. The analytic derivation of the exact correlation kernel in a similar way to

Sec. 4.3 is complicated due to the definition of the correlation potential vc =
∑∞

i=2−v(i). An

example of exploring the orbital-dependent correlation functionals with many-body perturbation

theory at second order is given by Bokhan and Bartlett [22]. A way to study the frequency

dependence is to consider the exact correlation kernel for a model system: H2 in minimal basis

set.

4.5.1 FCI of H2 in minimal basis set

The derivation of the short-range correlation kernel in this section will be based on a full-

configuration interaction (FCI) calculation in a minimal basis set. For H2 the minimal basis set

will be composed of two orthogonal orbitals ϕ1 and ϕ2 localized on the two hydrogen atoms.

The different determinants for H2 in this minimal basis set are presented in Fig. 4.3.

|11̄〉 |12̄〉 |1̄2〉 |12〉 |1̄2̄〉 |22̄〉

Figure 4.3: Determinants for H2 in a minimal basis set.

The wave-functions and energies obtained at the FCI level are obtained by solving the matrix

projection of the Hamiltonian on those determinants. The obtained results are

|0〉 = c1|11̄〉+ c2|22̄〉 E0 = 2ε1 − J11 + ∆−
√

∆2 −K2
12

|1〉 = c′1|11̄〉+ c′2|22̄〉 E1 = 2ε1 − J11 + ∆ +
√

∆2 −K2
12

|2〉 = 1√
2

(|12̄〉+ |21̄〉) E3 = h11 + h22 + J12 +K12

|3〉 = |12〉 E3 = h11 + h22 + J12 −K12

|4〉 = |1̄2̄〉 E4 = h11 + h22 + J12 −K12

|5〉 = 1√
2

(|12̄〉 − |21̄〉) E5 = h11 + h22 + J12 −K12

(4.60)

with the coefficients for |0〉 defined by c2
1 + c2

2 = 1 and c2 = (∆ −
√

∆2 +K2
12)/K12 and the

coefficients for |1〉 defined by (c′1)2 + (c′2)2 = 1 and c′2 = (∆ +
√

∆2 +K2
12)/K12 with 2∆ =

2ε2−2ε1+J22−4J12+2K12+J11. The orbital energies are ε1 = h11+J11 and ε2 = h22+2J12−K12,
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hpp = 〈p|ĥ|p〉 the one-electron integral and Jpq = 〈pq|pq〉 and Kpq = 〈pq|qp〉 the Coulomb and

exchange two-electrons integrals. The wave function |0〉 is the ground state, |1〉 and |2〉 are

singlet excited states and |3〉, |4〉 and |5〉 are triplet excited states. The integrals used to define

the different terms in the full-range Coulomb case can be taken from Ref. [23]. In the following

derivation of the short-range correlation kernel we will consider these states as starting point to

evaluate the linear-response function for both the full-range and long-range cases.

4.5.2 Calculation of the linear-response function

We want to calculate the exact linear-response function

χ(x1,x2; x′1,x
′
2;ω) =

∑

K 6=0

〈0|Ψ̂†(x′1)Ψ̂(x1)|K〉〈K|Ψ̂†(x′2)Ψ̂(x2)|0〉
ω − (EK − E0) + i0+

(4.61)

−
∑

K 6=0

〈0|Ψ̂†(x′2)Ψ̂(x2)|K〉〈K|Ψ̂†(x′1)Ψ̂(x1)|0〉
ω + (EK − E0)− i0+

(4.62)

where Ψ̂(x) =
∑
i
φi(x)âi, Ψ̂†(x) =

∑
i
φ∗i (x)â†i , |0〉 is the ground-state wave function and |K〉 are

the excited-states wave functions. It can be expressed in the basis of molecular orbitals

[χ(ω)]pq,rs =

∫
dx1dx′1dx2dx′2φp(x

′
1)φ∗q(x1)χ(x1,x2; x′1,x

′
2;ω)φ∗r(x2)φs(x

′
2) (4.63)

and using Eq. (4.61) it gives

[χ(ω)]pq,rs =
∑

K 6=0

〈0|â†pâq|K〉〈K|â†sâr|0〉
ω −∆EK + i0+

−
∑

K 6=0

〈0|â†sâr|K〉〈K|â†pâq|0〉
ω + ∆EK − i0+

(4.64)

with ∆EK = EK − E0. The linear-response function can be spin-adapted [24, 25, 26] into one

singlet block

1χpq,rs =
1

2
(χp↑q↑,r↑s↑ + χp↑q↑,r↓s↓ + χp↓q↓,r↑s↑ + χp↓q↓,r↓s↓) (4.65)

and three triplet blocks

3,0χpq,rs =
1

2
(χp↑q↑,r↑s↑ − χp↑q↑,r↓s↓ − χp↓q↓,r↑s↑ + χp↓q↓,r↓s↓) (4.66a)

3,1χpq,rs = −1

2
(χp↑q↓,r↑s↓χp↑q↓,r↓s↑ + χp↓q↑,r↑s↓ + χp↓q↑,r↓s↑) (4.66b)

3,−1χpq,rs =
1

2
(χp↑q↓,r↑s↓ − χp↑q↓,r↓s↑ − χp↓q↑,r↑s↓ + χp↓q↑,r↓s↑) (4.66c)

where p, q, r and s refer now to spatial orbitals. We can express the singlet linear-response

function matrix as
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[
1χ(ω)

]
pq,rs

=
1

2


∑

K 6=0

〈0|Êpq|K〉〈K|Êsr|0〉
ω −∆EK + i0+

−
∑

K 6=0

〈0|Êsr|K〉〈K|Êpq|0〉
ω + ∆EK − i0+


 (4.67)

with Êpq = â†p↑âq↑ + â†p↓âq↓. The triplet contributions 3,0χ,3,1χ and 3,−1χ can be obtained by

using
√

2T̂ 1,0 = â†p↑âq↑− â
†
p↓âq↓, T̂

1,1 = −â†p↑âq↓ and T̂ 1,−1 = â†p↓âq↑, respectively, instead of Êpq.

The matrix form of the singlet linear-response function is, in the occupied/virtual and vir-

tual/occupied block,

1χ(ω) =




c2
1

ω −∆E2 + i0+
− c2

2

ω + ∆E2 − i0+

c1c2

ω −∆E2 + i0+
− c1c2

ω + ∆E2 − i0+

c1c2

ω −∆E2 + i0+
− c1c2

ω + ∆E2 − i0+

c2
2

ω −∆E2 + i0+
− c2

1

ω + ∆E2 − i0+


 . (4.68)

In the non-interacting limit (c1 → 1, c2 → 0), the Kohn-Sham response function, Eq. (4.13), is

obtained. The inverse singlet linear-response function is

1χ−1(ω) =




(ω −∆E2)c2
1 − (ω + ∆E2)c2

2

(c2
1 − c2

2)2

2∆E2c1c2

(c2
1 − c2

2)2

2∆E2c1c2

(c2
1 − c2

2)2

(ω −∆E2)c2
2 − (ω + ∆E2)c2

1

(c2
1 − c2

2)2


 . (4.69)

Similarly, the matrix form of the triplet linear-response functions is

3,0χ(ω) =




c2
1

ω −∆E5 + i0+
− c2

2

ω + ∆E5 − i0+
− c1c2

ω −∆E5 + i0+
+

c1c2

ω + ∆E5 − i0+

− c1c2

ω −∆E5 + i0+
+

c1c2

ω + ∆E5 − i0+

c2
2

ω −∆E5 + i0+
− c2

1

ω + ∆E5 − i0+


 ,

(4.70)

and the inverse is

3,0χ−1(ω) =




−c2
2(ω −∆E5) + c2

1(ω + ∆E5)

(c2
1 − c2

2)2

−2c1c2∆E5

(c2
1 − c2

2)2

−2c1c2∆E5

(c2
1 − c2

2)2

c2
2(ω −∆E5)− c2

1(ω + ∆E5)

(c2
1 − c2

2)2


 . (4.71)

The χp↑q↓,r↓s↑ and χp↓q↑,r↑s↓ elements are equal to 0, 3,−1χ and 3,1χ are then equal and, as the

energies of the triplet states are degenerate, we can see that 3,0χ = 3,1χ = 3,−1χ.

4.5.3 Derivation of the exact short-range correlation kernel

The short-range kernel can be deduced from the difference of the inverse of the long-range

linear-response function and the inverse of the full-range linear-response function, as presented

in Eq. (4.16). The long-range linear-response function has the same expression as the full-range
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linear-response function calculated in Sec. 4.5.2 but evaluated with the long-range Hamiltonian

Ĥ = T̂ + Ŵee + V̂ne → Ĥ lr = T̂ + Ŵ lr
ee + V̂ne + V̂ sr

Hxc (4.72)

leading to the long-range orbital energies

ε1 → εlr1 = h11 + 2J11 −K lr
11 + V sr

xc,11 (4.73a)

ε2 → εlr2 = h22 + 2J12 −K lr
12 + V sr

xc,12 (4.73b)

with V sr
xc,ij =

∫
drϕi(r)vsr

xc(r)ϕj(r) the integral of the short-range exchange-correlation potential

and the long-range Coulomb and exchange two-electrons integrals

Jpq → J lr
pq = 〈pq|wlr

ee|pq〉 (4.74a)

Kpq → K lr
pq = 〈pq|wlr

ee|qp〉. (4.74b)

The coefficients clr
1 and clr

2 and the energy differences ∆Elr
K have the same form as for the full-

range interaction but are evaluated using the long-range orbital energies and the long-range

two-electron integrals.

Introducing the linear-response function of Sec. 4.5.2 into Eq. (4.16) we obtain the singlet

and triplet Hartree-exchange-correlation kernels

1f sr
Hxc(ω) =




∆E2

(c21−c22)2
− ∆Elr

2

((clr1 )2−(clr2 )2)2
−2c1c2∆E2

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

2

((clr1 )2−(clr2 )2)2

−2c1c2∆E2

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

2

((clr1 )2−(clr2 )2)2
∆E2

(c21−c22)2
− ∆Elr

2

((clr1 )2−(clr2 )2)2




+ ω


−

1
(c21−c22)2

+ 1
((clr1 )2−(clr2 )2)2

0

0 1
(c21−c22)2

− 1
((clr1 )2−(clr2 )2)2


 , (4.75)

3f sr
Hxc(ω) =




∆E5

(c21−c22)2
− ∆Elr

5

(clr12)2
−2c1c2∆E5

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

5

((clr1 )2−(clr2 )2)2

−2c1c2∆E5

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

5

(clr12)2
∆E5

(c21−c22)2
− ∆Elr

5

((clr1 )2−(clr2 )2)2




+ ω


−

1
(c21−c22)2

+ 1
((clr1 )2−(clr2 )2)2

0

0 1
(c21−c22)2

− 1
((clr1 )2−(clr2 )2)2


 . (4.76)

The singlet and triplet short-range Hartree kernels are

1f sr
H =

(
2K12 − 2K lr

12 2K12 − 2K lr
12

2K12 − 2K lr
12 2K12 − 2K lr

12

)
=

(
2Ksr

12 2Ksr
12

2Ksr
12 2Ksr

12

)
, (4.77)
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3f sr
H =

(
0 0

0 0

)
. (4.78)

The singlet short-range exchange-correlation kernel is then

1f sr
xc(ω) =



∆E2

(c21−c22)2
− ∆Elr

2

((clr1 )2−(clr2 )2)2
− 2Ksr

12 −2c1c2∆E2

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

2

((clr1 )2−(clr2 )2)2
− 2Ksr

12

−2c1c2∆E2

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

2

((clr1 )2−(clr2 )2)2
− 2Ksr

12
∆E2

(c21−c22)2
− ∆Elr

2

((clr1 )2−(clr2 )2)2
− 2Ksr

12




+ ω


−

1
(c21−c22)2

+ 1
((clr1 )2−(clr2 )2)2

0

0 1
(c21−c22)2

− 1
((clr1 )2−(clr2 )2)2


 (4.79)

and the triplet short-range exchange-correlation kernel is

3f sr
xc(ω) =



∆E5

(c21−c22)2
− ∆Elr

5

(clr12)2
−2c1c2∆E5

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

5

((clr1 )2−(clr2 )2)2

−2c1c2∆E5

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

5

(clr12)2
∆E5

(c21−c22)2
− ∆Elr

5

((clr1 )2−(clr2 )2)2




+ ω


−

1
(c21−c22)2

+ 1
((clr1 )2−(clr2 )2)2

0

0 1
(c21−c22)2

− 1
((clr1 )2−(clr2 )2)2


 . (4.80)

We will consider two ways of calculating the short-range exchange kernel. We will first consider

the HF exchange kernel

1f sr,HF
x = 3f sr,HF

x =

(
−J12 + J lr

12 −K12 +K lr
12

−K12 +K lr
12 −J12 + J lr

12

)
=

(
−J sr

12 −Ksr
12

−Ksr
12 −J sr

12

)
, (4.81)

and the (spin-independent) exact-exchange presented in Sec. 4.3

1f sr,EXX
x = −1

2
1f sr

H =

(
−K12 +K lr

12 −K12 +K lr
12

−K12 +K lr
12 −K12 +K lr

12

)
=

(
−Ksr

12 −Ksr
12

−Ksr
12 −Ksr

12

)
, (4.82)

3f sr,EXX
x = −1

2
3f sr

H =

(
0 0

0 0

)
. (4.83)

If the exchange contribution is the short-range Hartree-Fock exchange kernel the singlet and

triplet short-range correlation kernels are
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1f sr, postHF
c (ω) =



∆E2

(c21−c22)2
− ∆Elr

2

((clr1 )2−(clr2 )2)2
− 2Ksr

12 + J sr
12 −2c1c2∆E2

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

2

((clr1 )2−(clr2 )2)2
−Ksr

12

−2c1c2∆E2

(c21−c22)2
+

2clr1 c
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2 ∆Elr

2

((clr1 )2−(clr2 )2)2
−Ksr

12
∆E2

(c21−c22)2
− ∆Elr

2

((clr1 )2−(clr2 )2)2
− 2Ksr

12 + J sr
12




+ ω


−

1
(c21−c22)2

+ 1
((clr1 )2−(clr2 )2)2

0

0 1
(c21−c22)2

− 1
((clr1 )2−(clr2 )2)2


 , (4.84)

3f sr, postHF
c (ω) =



∆E5

(c21−c22)2
− ∆Elr

5

(clr12)2
+ J sr

12 −2c1c2∆E5

(c21−c22)2
+

2clr1 c
lr
2 ∆Elr

5

((clr1 )2−(clr2 )2)2
+Ksr

12

−2c1c2∆E5
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+

2clr1 c
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2 ∆Elr

5

(clr12)2
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12
∆E5

(c21−c22)2
− ∆Elr

5

((clr1 )2−(clr2 )2)2
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


+ ω


−

1
(c21−c22)2
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((clr1 )2−(clr2 )2)2

0

0 1
(c21−c22)2

− 1
((clr1 )2−(clr2 )2)2


 . (4.85)

On the other hand, if the exchange contribution is the short-range exact-exchange kernel the

singlet and triplet short-range correlation kernels are

1f sr, postEXX
c (ω) =



∆E2
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2

((clr1 )2−(clr2 )2)2
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+
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2
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+
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2

((clr1 )2−(clr2 )2)2
−Ksr

12
∆E2

(c21−c22)2
− ∆Elr

2

((clr1 )2−(clr2 )2)2
−Ksr

12




+ ω


−

1
(c21−c22)2

+ 1
((clr1 )2−(clr2 )2)2

0

0 1
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− 1
((clr1 )2−(clr2 )2)2


 , (4.86)

3f sr, postEXX
c (ω) =

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5
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

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
−

1
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+ 1
((clr1 )2−(clr2 )2)2

0

0 1
(c21−c22)2

− 1
((clr1 )2−(clr2 )2)2


 . (4.87)

In all cases if we compare both kernels we can see that the frequency dependence is the same

for the singlet and the triplet kernels.
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Figure 4.4: Contributions to the singlet short-range correlation kernel for H2 in STO-3G. We
plotted the diagonal element of the frequency-dependent matrix [∆1fc(ω = 1)]12,12, the diagonal
elements of the frequency-independent matrix [1fc(ω = 0)]12,12 and the off-diagonal elements
of the frequency-independent matrix [1fc(ω = 0)]12,21 with respect to µ (left) and the ratio
|∆1fc(ω)/1fc(ω = 0)| for both HF and EXX exchange with respect to µ (right). These results
are calculated at equilibrium distance (1.4 bohr) (top) and when stretching the H-H bond (10
bohr) (bottom). On the bottom plot the curves for the 1f sr

c (ω = 0) are superimposed.

4.5.4 Calculations on H2 in STO-3G basis

We calculate the different terms of the singlet short-range correlation kernel [Eqs. (4.84) and

(4.86)] by performing calculations using the MOLPRO software [19] with the STO-3G basis set.

The long-range coefficients and energies are calculated with FCI with long-range Hamiltonian

using a fixed RSH density [20] and full-range coefficients and energies are calculated with FCI

with the full-range Hamiltonian. The Coulomb and exchange integrals J12 and K12 are extracted

from the TDDFT module. We decompose the kernel matrix in two matrices: the frequency-

independent term 1fc(ω = 0) and the frequency-dependent term common to both singlet and

triplet kernel ∆1fc(ω) = 1fc(ω) − 1fc(ω = 0). In the calculations the frequency-dependent

kernel is evaluated at ω = 1 (hartree) as representative of the order of magnitude of electronic

excitations in atoms and molecules. The results are presented in Fig. 4.4. We first consider the

evolution of the kernel elements with respect to the range-separation parameter µ and we can
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independent matrix [1fc(ω = 0)]12,12 and the off diagonal elements of the frequency-independent
matrix [1fc(ω = 0)]12,21.
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Figure 4.6: Contributions to the singlet kernel for H2 in STO-3G. We plotted the diagonal
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frequency-independent matrix [1fc(ω = 0)]12,12 and the off diagonal elements of the frequency-
independent matrix[1fc(ω = 0)]12,21 with respect to R at µ = 0.4
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notice that the amplitude of the frequency-dependent term is small compared to the elements

of the frequency-independent matrix. We considered the ratio of |∆1fc(ω = 1)/1fc(ω = 0)| and

we can notice that for µ ≥ 0.9 bohr−1 for postHF and µ ≥ 1.8 bohr−1 for postEXX the ratio

is constant showing the similar asymptotic behavior of the frequency-dependent and frequency-

independent contributions of the singlet kernel. The ratio converges to 0.18 this value is small

and the adiabatic approximation is thus good for the short range correlation kernel but it remains

an approximation. We plotted in Fig. 4.5 the product fc × µ2. The fact that the curves go

to some constants for µ → ∞ indicates that the asymptotic behavior of the contributions to

the correlation kernel behaves as 1/µ2. We then considered the evolution of the kernel elements

with respect to the internuclear distance R at µ = 0.4 bohr−1 which is an optimal value in

range-separated TDDFT. The result is presented in Fig. 4.6. We notice that all the terms have

a similar behavior and diverge for large R. We studied the behavior of the correlation term while

stretching the H-H bond (at R = 10 bohr) we first notice that there is no longer a difference

between postHF and postEXX terms, the leading term of the kernel is given by the difference

of the coefficients c1 and c2 (and clr
1 and clr

2 ) that are nearly degenerate and make the terms

diverge. Thus the amplitude of the kernel is more important than for the equilibrium. The ratio

|∆1fc(ω = 1)/1fc(ω = 0)| converges slower and to a higher value than at equilibrium (' 1) which

implies that in this case the frequency-dependent term is more important and that the adiabatic

approximation is less accurate. Finally we can see in Fig. 4.5 that the asymptotic behavior

of the frequency-dependent and frequency-independent terms remain as 1/µ2. To extend this

work it would be interesting to study the effect of this exact short-range correlation kernel on

the bond-breaking 1Σg −1 Σu excitation energy to see if it could compensate the decay to zero

of the excitation energy observed for the adiabatic approximation.

4.6 Conclusion

In this work, we have studied the short-range exchange and correlation kernels. We first extended

the EXX time-dependent density-functional theory to range separation and studied the asymp-

totic expansion of the short-range EXX kernel as a function of the range-separation parameter.

We showed that the two first terms of this asymptotic expansion are frequency-independent

and local in space. We then compared the performance of this short-range EXX kernel to the

short-range LDA kernel for two simple systems: H2 and He in the VDZ basis set. We showed

that in the limit of large µ the semilocal approximation becomes exact but when µ goes to 0 the

semilocal approximation has limitations with a good behavior for localized valence excitation

energies but less accurate results for Rydberg and delocalized valence excitation energies.

In the second part of this chapter we studied the short-range correlation kernel by studying

the exact short-range correlation kernel for a model system: H2 in a minimal basis set. We

first derived the short-range correlation kernel and noticed that for this system the frequency

dependence is the same for both singlet and triplet kernels and that it does not depend on the
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nature of the exchange contribution (HF or EXX). We continued this study with practical calcu-

lations for H2 in the STO-3G basis and we showed that even in the limit of large µ the adiabatic

approximation is not exact. This frequency dependent term is relatively small at equilibrium

but becomes large in the dissociation limit.

In further work the study of the short-range exchange kernel could be extended by deriving the

next term of the asymptotic expansion. This term would be in 1/µ4 and should be frequency

dependent. An implementation work could be also done to describe larger systems and study the

adiabatic semilocal approximation in more complicated examples implying double excitations.
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Conclusion

In this thesis we were interested in the study of hybrid approximations between wave-function

based methods and density-functional theory considering two ways of decomposing the electron-

electron interaction: linearly or with range separation. We performed three separate studies.

The first chapter presented in this work was focused on the basis-set convergence in the

range-separated scheme. We performed two studies to compare and characterize the basis-set

convergence in full-range and range-separated methods. We have first shown that the partial-

wave expansion of the long-range wave function near the electron-electron coalescence converges

exponentially with the maximal angular momentum L. We then have shown that the long-range

correlation energy error evaluated with the second-order Møller-Plesset perturbation theory was

converging exponentially with respect to the cardinal number of the Dunning basis sets cc-

pVXZ. This is an acceleration with respect to the full-range case where the convergence is

polynomial (X3). While studying the basis-set convergence we noticed that the Dunning basis

sets may not be optimal to perform calculations with range-separated methods. The results

obtained in this chapter are expected to be similar when using other methods to describe the

long-range correlation such as configuration interaction, coupled-cluster theory or random-phase

approximations.

The second chapter was focused on double-hybrid methods and particularly on a self-consistent

way to include the MP2 correlation energy using an optimized-effective-potential (OEP) method.

The aim of this study was to compare the performance of such self-consistent double-hybrid

approximation to the standard double-hybrid approximation. A one-parameter self-consistent

double-hybrid approximation has first been implemented. We considered a set of atoms and

molecules and compared some properties such as ionization potentials and electronic affinities.

We observed no improvement for total energies and ionization potentials but we obtained good

estimates for LUMO orbital energies and good accuracy for electronic affinities. An interesting

result is that this self-consistent approximation give reasonably good accuracy for the exchange-

correlation and correlation potentials and correlated densities.

In the last chapter we considered range-separated linear-response time-dependent density-

functional theory and we studied the short-range exchange and correlation kernels. After ex-
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tending the exact-exchange TDDFT to range-separation we proposed an asymptotic expansion

of the short-range exact-exchange kernel with respect to the range-separation parameter µ. The

first terms of the asymptotic expansion of the short-range exact-exchange kernel are both adia-

batic and local in space. The practical calculations performed for He and H2 in the VDZ basis

set showed an exact behavior for short-range LDA in the limit of large µ. We extended our

work on the short-range exact correlation kernel for H2 in a minimal basis set. Calculations in

STO-3G basis set showed that even for the short-range correlation kernel at large value of µ the

adiabatic approximation is not exact. The error coming from adiabatic approximation is even

more important in the dissociation limit of H2.

These studies can be extended and the perspectives are the following:

• A first point which could be of interest would be to define basis sets that would be optimal

for performing range-separated calculations.

• To extend the study on the OEP-based double-hybrid approximation a first step would

be to consider a comparison based on a larger set of systems and including other orbital-

optimized double-hybrid approximations such as the one proposed by Peverati and Head-

Gordon. A second step would be to extend this self-consistent double-hybrid approxima-

tion to range-separation or to the calculation of excited states by applying linear-response

time-dependent density-functional theory on this self-consistent double-hybrid approxima-

tion.

• The short-range exchange kernel could be extended by deriving the next term of the

asymptotic expansion. This term would be in 1/µ4 and should be frequency dependent.

An implementation work could be done also to describe greater systems and study the adi-

abatic semilocal approximation in more complicated examples implying double excitations

for both short-range exchange and correlation kernels.



Appendix A

Additional results for the basis-set

convergence of the long-range

correlation energy

In this appendix, complementary results to the study in Chapter 2 are presented.

A.1 Convergence of the correlation energy including core

electrons

The results presented in the article are given for valence-only calculations. We extended

the study to calculations including the core excitations. The long-range MP2 correlation

energies including core excitations and the errors with respect to the energy calculated

in cc-pCV6Z are presented in Tab. A.1. In this case the approximation of taking the

calculations at X = 6 as a converged reference is still valid. We then compared the fits

for the polynomial law Elr,µ
c,X = Elr,µ

c,∞ + AX−α and the exponential law Elr,µ
c,X = Elr,µ

c,∞ +

B exp(−βX). The results of the fits for the long-range MP2 correlation energy including

core excitations are presented in Tab. A.2. There is an important difference between the

results of the two fits. Similarly to the results for valence-only calculations the best fit is

obtained for the exponential law by far with r2 > 99%.
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Table A.1: MP2 correlation energies and their errors (in mhartree) for the long-range interaction
at µ = 0.5 bohr−1 (Elr

c and ∆Elr
c ) calculated with core Dunning basis sets of increasing sizes for

Ne, N2 and H2O. The errors are calculated with respect to the cc-pCV6Z values.

Long-range interaction
µ = 0.5

Ne N2 H2O
Basis set Elr

c ∆Elr
c Elr

c ∆Elr
c Elr

c ∆Elr
c

cc-pCVDZ -0.7003 1.9640 -20.3491 3.2790 -6.4989 3.5277
cc-pCVTZ -1.7941 0.8702 -22.8333 0.7949 -8.9992 1.0274
cc-pCVQZ -2.3358 0.3285 -23.4009 0.2272 -9.6617 0.3649
cc-pCV5Z -2.5675 0.0967 -23.5651 0.0631 -9.9344 0.0922
cc-pCV6Z -2.6642 -23.6282 -10.0266

Table A.2: Results of the fits to the power and exponential laws of the long-range MP2 correlation
energy error ∆Elr

c,X for µ = 0.5 bohr−1. Different ranges Xmin ≤ X ≤ Xmax, for the cardinal
number X of the core Dunning basis sets are tested. The parameters A and B are in mhartree.
The squared Pearson correlation coefficients r2 of the fits are indicated in %.

Long-range interaction
Power law Exponential law

Xmin Xmax α A r2 β B r2

Ne 2 5 -3.1969 22.1531 95.04 -1.0007 16.0226 99.17
3 5 -4.2572 100.9000 98.11 -1.0984 24.4685 99.58

N2 2 5 -4.2522 71.3488 98.79 -1.3105 43.1576 99.92
3 5 -4.9313 188.4132 99.37 -1.2668 35.7243 100.00

H2O 2 5 -3.8597 59.9484 97.39 -1.1968 38.9700 99.73
3 5 -4.6663 189.9653 97.64 -1.2053 40.4372 99.34

A.2 Extrapolation scheme

In Chapter 2, based on the exponential convergence of both the RSH and long-range MP2

energies we proposed an extrapolation formula for the total energy in the complete-basis-

set (BSE) limit based on three calculations in three successive basis sets of cardinal number

X, Y and Z (Y = X + 1 and Z = Y + 1) given by

E∞ = EXY Z =
E2
Y − EXEZ

2EY − EX − EZ
. (A.1)

In this section we compare two ways to apply the extrapolation scheme. The first one, pre-

sented in the chapter 2 is simply to apply the formula of Eq. (A.1) to the total RSH+lrMP2

energy

Etotal
XY Z = ERSH+lrMP2

XY Z , (A.2)
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and the second way to do this extrapolation is to extrapolate separately the RSH and the

long-range MP2 correlation energies

Etotal
XY Z = ERSH

XY Z + ElrMP2
c,XY Z . (A.3)

We compared these two ways of performing the three-point extrapolation. The results for

the long-range MP2 correlation energy calculated with only valence excitations are given in

Tab. A.3 and the results for the long-range MP2 correlation energy including excitations

from the core orbitals are presented in Tab. A.4. In each case we were interested to

compare the error of the extrapolation to the error of the energy evaluated at different

X. For the energy with only valence excitations (Tab. A.3) the results for the separated

and the global extrapolation are similar (or even equal). For the calculations including

the core excitations (Tab. A.4) we first consider the results for the global extrapolation.

In this case we obtain results that have negative errors and generally, in a similar way

to the valence-only calculations, the separated extrapolation shows an improvement with

respect to the calculation at X = 4. If we compare the global and separated way to do

the three-point extrapolations for the calculations with the core excitations we can see

that the results are close. We can conclude that there is no notable difference between

those two extrapolations at a chemical accuracy level and that the global extrapolation is

sufficient.
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Table A.3: Errors (in mhartree) on the total RSH+lrMP2 energy, E = ERSH + Elr,MP2
c , ob-

tained with cc-pVXZ basis sets form X = 2 to X = 5 (∆EX = EX − E6) and the errors
obtained with the three point extrapolation formula of Eq. (A.1) using X = 2, Y = 3, Z = 4
(∆EDTQ = EDTQ − E6 evaluated for the total energy (ERSH+lrMP2) or evaluated for RSH and
lrMP2 separately and recombined a posteriori (ERSH +ElrMP2

c ). The errors are calculated with
respect to the cc-pV6Z total energy for several values of the range-separation parameter µ (in
bohr−1). Only valence excitations are included in the MP2 calculations.

µ ∆EµD ∆EµT ∆EµQ ∆Eµ5 ∆EµDTQ ∆EµDTQ

ERSH+lrMP2 ERSH + ElrMP2
c

He 0.1 8.508 0.772 0.261 0.089 0.224 0.224
0.5 8.488 0.781 0.245 0.078 0.205 0.161
1.0 8.258 0.924 0.259 0.078 0.192 0.144

Ne 0.1 72.999 20.215 5.842 0.716 0.464 0.462
0.5 74.523 20.337 5.763 0.751 0.401 0.163
1.0 79.311 20.962 5.726 0.803 0.342 0.342

N2 0.1 47.061 13.026 4.136 0.853 0.993 0.992
0.5 51.581 13.406 4.090 0.810 1.083 1.083
1.0 61.053 15.108 4.513 0.868 1.337 1.303

H2O 0.1 54.861 15.229 5.005 0.857 1.451 1.451
0.5 55.850 14.736 4.499 0.726 1.105 1.102
1.0 61.013 15.212 4.423 0.724 1.099 1.087

Table A.4: Errors (in mhartree) on the total RSH+lrMP2 energy, E = ERSH +ElrMP2
c , obtained

with cc-pVXZ basis sets form X = 2 to X = 5 (∆EX = EX − E6) and the errors obtained
with the three point extrapolation formula of Eq. (A.1) using X = 2, Y = 3, Z = 4 (∆EDTQ =
EDTQ − E6) evaluated for the total energy (ERSH+lrMP2) or evaluated for RSH and lrMP2
separately and recombined a posteriori (ERSH +ElrMP2

c ). The errors are calculated with respect
to the cc-pV6Z total energy for several values of the range-separation parameter µ (in bohr−1).
Core and valence excitations are included in the MP2 calculations.

µ ∆EµD ∆EµT ∆EµQ ∆Eµ5 ∆EµDTQ ∆EµDTQ

ERSH+lrMP2 ERSH + ElrMP2
c

Ne 0.1 79.932 18.941 4.929 0.522 -0.240 -0.241
0.5 72.501 18.990 4.831 0.537 -0.263 -0.479
1.0 77.497 19.517 4.775 0.554 -0.250 -0.250

N2 0.1 43.528 10.237 2.334 0.459 -0.126 -0.127
0.5 48.079 10.451 2.285 0.413 0.021 0.020
1.0 57.942 12.118 2.677 0.467 0.227 0.222

H2O 0.1 52.875 13.897 4.132 0.680 0.868 0.867
0.5 53.936 13.789 3.527 0.521 0.539 0.536



Appendix B

Derivation of the exact-exchange

kernel

In this appendix, we present a detailed derivation of the exact-exchange (EXX) kernel

[1]. This has to be read together with Chapter 4.

To express the EXX kernel we need to take the functional derivative with respect

to the time-dependent Kohn-Sham (KS) potential vKS(r, t) of the time-dependent EXX

(TDEXX) equation

∫ t

t0

dt′
∫

dr′χ0(r, t; r′, t′)vx(r′, t′) = Λx(r, t) (B.1)

with the Kohn-Sham linear-response function (for closed shell systems)

χ0(r, t; r′, t′) = 2(−i)
occ.∑

i

unocc.∑

a

ϕ∗i (r, t)ϕa(r, t)ϕ
∗
a(r
′, t′)ϕi(r′, t′) + c.c. (B.2)

and the right-hand-side term

Λx(r, t) =2(−i)
occ.∑

i

unocc.∑

a

ϕ∗i (r, t)ϕa(r, t)
∫ t

t0

dt′〈ϕa(t′)|V̂ NL
x (t′)|ϕi(t′)〉+ c.c. (B.3)

+ 2
occ.∑

i

unocc.∑

a

ϕ∗i (r, t)ϕa(r, t)×
〈ϕa|Û lr

x − Ûx|ϕi〉
εi − εa

+ c.c.

where V̂ NL
x (t) and ÛNL

x are the time-dependent and time-independent non-local exchange

potential operators and εk the orbital energies associated to the time-independent Kohn-

Sham orbital ϕk . We consider the TDEXX equation with the set of Kohn-Sham orbitals

satisfying the time-dependent Kohn-Sham equation
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i
d

dt
ϕi(r, t) =

[
−1

2
∇2 + vKS(r, t)

]
ϕi(r, t) (B.4)

at a given potential vKS(r, t). Time-dependent perturbation theory yields the derivative

of these orbitals with respect to the Kohn-Sham potential

δϕk(r, t)

δvKS(r′, t′)
=

all∑

l

ϕl(r, t)ϕ
∗
l (r
′, t′)ϕk(r

′, t′)θ(t− t′). (B.5)

We need to choose the point at which we will do the derivation of the TDEXX equation

with respect to the time-dependent KS potential. The equation we need to derive will be

composed of KS orbitals corresponding to the chosen KS potential. The point we consider

to do the derivative is

vKS(r, t) = uKS(r), (B.6)

where uKS(r) is the time-independent Kohn-Sham potential. In this special case vKS(r, t)

is no longer time-dependent and the TDEXX formalism simplifies to the static EXX for-

malism. In this special case the time-dependent Kohn-Sham orbitals only depend on time

by a phase factor

ϕi(r, t) = ϕi(r)e−iεk(t−t0). (B.7)

To be used in time-dependent linear-response density-functional theory, the kernel needs

to be expressed as a frequency-dependent quantity. We need to move from the time domain

to the frequency domain. The variation of the potential can be expressed as a function of

the frequency as

δvKS(r, t) =

∫ +∞

−∞
dω δvKS(r, ω)e−iωteηt, (B.8)

with

vKS(r,−ω) = v∗KS(r, ω), (B.9)

and we impose a convergence factor eηt with η → 0+ which guarantees that the variation

of the potential is real-valued. Considering Eqs. (B.8) and (B.7) we can express the

derivative of the KS orbitals with respect to the frequency-dependent KS potential
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δϕk(r, t)

δvKS(r′, ω)
= e−iωteηt

all∑

l

ϕl(r)e−iεk(t−t0) ϕ∗l (r
′)ϕk(r′)

εk − εl + ω + iη
(B.10)

and using these derivatives applied to Eq. (B.1) we can deduce after some calculations the

EXX kernel. The derivative of Eq. (B.1) with respect to vKS(r′′, ω) is

∫ t

t0

dt′
∫

dr′
(
δχ0(rt, r′t′)
δvKS(r′′, ω)

vx(r′, t′) + χ0(rt, r′t′)
δvx(r′, t′)
δvKS(r′′, ω)

)
=

δΛx(r, t)

δvKS(r′′, ω)
(B.11)

which can be rearranged as

∫ t

t0

dt′
∫

dr′χ0(r, t; r′, t′)
δvx(r′, t′)
δvKS(r′′, ω)︸ ︷︷ ︸

A

=
δΛx(r, t)

δvKS(r′′, ω)︸ ︷︷ ︸
B

−
∫ t

t0

dt′
∫

dr′
δχ0(r, t; r′, t′)
δvKS(r′′, ω)

vx(r′, t′)
︸ ︷︷ ︸

C

(B.12)

We first express the derivative of the left-hand-side term A of Eq. (B.12) in the frequency

domain by expressing the exchange potential in a similar way as the Kohn-Sham potential

[Eq. (B.8)]

δvx(r, t)

δvx(r′, ω)
= e−iωteηtδ(r− r′) (B.13)

and we can then simply express the derivative in A by applying a chain rule based on the

fact that in the linear-response regime variations of Fourier components of potentials or

densities are only coupled if they have the same frequency [2]

δvx(r, t)

δvKS(r′, ω)
=

∫
dr′′

δvx(r, t)

δvx(r′′, ω)

δvx(r′′, ω)

δvKS(r′, ω)
=

∫
dr′′

δvx(r′′, ω)

δvKS(r′, ω)
e−iωteηtδ(r− r′′). (B.14)

The left-hand-side term becomes

A =

∫
dr′
∫ t

t0

dt′χ0(r, t; r′, t′)× δvx(r′, ω)

δvKS(r′′, ω)
e−iωt

′
eηt

′
(B.15)

and integrating over t′ with the initial time t0 → −∞ it becomes

A = e−iωteηt
∫

dr′χ0(r, r′, ω)
δvx(r′, ω)

δvKS(r′′, ω)
, (B.16)
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with the Kohn-Sham linear-response function in the frequency domain

χ0(r, r′, ω) = 2
occ.∑

i

unocc.∑

a

ϕ∗i (r)ϕa(r)ϕ∗a(r
′)ϕi(r′)

εi − εa + ω + iη
+ 2

occ.∑

i

unocc.∑

a

ϕ∗a(r)ϕi(r)ϕ∗i (r
′)ϕa(r′)

εi − εa − ω − iη
.

(B.17)

Finally we apply a chain rule to the derivative of the exchange potential with respect to

the Kohn-Sham potential

δvx(r′, ω)

δvKS(r′′, ω)
=

∫
dr′′′

δvx(r′, ω)

δn(r′′′, ω)

δn(r′′′, ω)

δvKS(r′′, ω)

=

∫
dr′′′fx(r′, r′′′, ω)χ0(r′′′, r′′, ω) (B.18)

and A becomes

A = e−iωteηt
∫∫

dr′dr′′′χ0(r, r′, ω)fx(r′, r′′′, ω)χ0(r′′′, r′′, ω) (B.19)

We now consider the calculation of the right-hand side of Eq. (B.12)

δΛx(r, t)

δvKS(r′′, ω)︸ ︷︷ ︸
B

−
∫ t

t0

dt′
∫

dr′
δχ0(r, t; r′, t′)
δvKS(r′′, ω)

vx(r′, t′)
︸ ︷︷ ︸

C

(B.20)

and for every term we first insert the derivatives of the orbitals given in Eq. (B.10), then

after integrating upon t′ and some algebra, we obtain the following equations

C = 2e−iωteηt
occ.∑

i

unocc.∑

a

all∑

l

×
[(

ϕ∗l (r)ϕa(r)〈a|V̂x|i〉ϕ∗i (r′′)ϕl(r′′)
(εi − εl − ω − iη)(εi − εa)

+
ϕ∗i (r)ϕl(r)〈a|V̂x|i〉ϕ∗l (r′′)ϕa(r′′)

(εa − εl + ω + iη)(εi − εa)

+
ϕ∗i (r)ϕa(r)〈l|V̂x|i〉ϕ∗a(r′′)ϕl(r′′)

(εa − εl − ω − iη)(εi − εa + ω + iη)
+

ϕ∗i (r)ϕa(r)〈a|V̂x|l〉ϕ∗l (r′′)ϕi(r′′)
(εi − εl + ω + iη)(εi − εa + ω + iη)

)

−
(
ϕ∗a(r)ϕl(r)〈i|V̂x|a〉ϕ∗l (r′′)ϕi(r′′)

(εi − εl + ω + iη)(εa − εi)
+
ϕ∗l (r)ϕi(r)〈i|V̂x|a〉ϕ∗a(r′′)ϕl(r′′)

(εa − εl − ω − iη)(εa − εi)

+
ϕ∗a(r)ϕi(r)〈i|V̂x|l〉ϕ∗l (r′′)ϕa(r′′)

(εa − εl + ω + iη)(εa − εi + ω + iη)
+

ϕ∗a(r)ϕi(r)〈l|V̂x|a〉ϕ∗i (r′′)ϕl(r′′)
(εi − εl − ω − iη)(εa − εi + ω + iη)

)]
(B.21)
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where the summation over i, j runs over the occupied orbitals, a, b the unoccupied orbitals

and l all the orbitals. We can decompose B in three contributions as follows

B = 2(−i)
occ.∑

i

unocc.∑

a

ϕ∗i (r, t)ϕa(r, t)
δ
∫ t
t0
〈ϕa(t′)|V̂ NL

x (t′)|ϕi(t′)〉dt′
δvKS(r′′, ω)

+ c.c

︸ ︷︷ ︸
B1

+ 2(−i)
occ.∑

i

unocc.∑

a

δ (ϕ∗i (r, t)ϕa(r, t))
δvKS(r′′, ω)

∫ t

t0

〈ϕa(t′)|V̂ NL
x (t′)|ϕi(t′)〉dt′ + c.c

︸ ︷︷ ︸
B2

+ 2
∑

i

occ.
unocc.∑

a

δ (ϕ∗i (r, t)ϕa(r, t))
δvKS(r′′, ω)

× 〈ϕa|Û
NL
x − Ûx|ϕi〉
εi − εa

︸ ︷︷ ︸
B3

(B.22)

where

B1 =2e−iωteηt
occ.∑

ij

unocc.∑

a

all∑

l

×
[(

ϕ∗i (r)ϕa(r)〈l|V̂ NL
x |i〉ϕ∗a(r′′)ϕl(r′′)

(εa − εl − ω − iη)(εi − εa + ω + iη)
− ϕ∗i (r)ϕa(r)〈aj|li〉ϕ∗l (r′′)ϕj(r′′)

(εj − εl + ω + iη)(εi − εa + ω + iη)

−
ϕ∗i (r)ϕa(r)〈al|ji〉ϕ∗j (r′′)ϕl(r′′)

(εj − εl − ω − iη)(εi − εa + ω + iη)
+
ϕ∗i (r)ϕa(r)〈a|V̂ NL

x |l〉ϕ∗l (r′′)ϕi(r′′)
(εi − εl + ω + iη)(εi − εa + ω + iη)

)

−
(

ϕ∗a(r)ϕi(r)〈l|V̂ NL
x |a〉ϕl(r′′)ϕ∗i (r′′)

(εi − εl − ω − iη)(εa − εi + ω + iη)
− ϕ∗a(r)ϕi(r)〈ij|la〉ϕ∗l (r′′)ϕj(r′′)

(εj − εl + ω + iη)(εa − εi + ω + iη)

−
ϕ∗a(r)ϕi(r)〈il|ja〉ϕ∗j (r′′)ϕl(r′′)

(εj − εl − ω − iη)(εa − εi + ω + iη)
+

ϕ∗a(r)ϕi(r)〈i|V̂ NL
x |l〉ϕ∗l (r′′)ϕa(r′′)

(εa − εl + ω + iη)(εa − εi + ω + iη)

)]

(B.23)

B2 =2

occ.∑

i

unocc.∑

a

all∑

l

e−iωteηt×
[(

ϕ∗l (r)ϕa(r)〈a|V̂ NL
x |i〉ϕ∗i (r′′)ϕl(r′′)

(εi − εl − ω − iη)(εi − εa)
+
ϕ∗i (r)ϕl(r)〈 a|V̂ NL

x |i〉ϕ∗l (r′′)ϕa(r′′)
(εa − εl + ω + iη)(εi − εa)

)

−
(
ϕ∗l (r)ϕi(r)〈i|V̂ NL

x |a〉ϕ∗a(r′′)ϕl(r′′)
(εa − εl − ω − iη)(εa − εi)

+
ϕ∗a(r)ϕl(r)〈i|V̂ NL

x |a〉ϕ∗l (r′′)ϕi(r′′)
(εi − εl + ω + iη)(εa − εi)

)]

(B.24)
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B3 =2e−iωteηt
occ.∑

i

unocc.∑

a

all∑

l

×
(
ϕ∗l (r)ϕa(r)ϕ∗i (r

′′)ϕl(r′′)
(i)(εi − εl − ω − iη)

e−i(εa−εi)(t−t0) 〈a|ÛNL
x − Ûx|i〉
εi − εa

+
ϕ∗i (r)ϕl(r)ϕ∗l (r

′′)ϕa(r′′)
(−i)(εa − εl + ω + iη)

e−i(εa−εi)(t−t0) 〈a|ÛNL
x − Ûx|i〉
εi − εa

+
ϕ∗l (r)ϕi(r)ϕ∗a(r

′′)ϕl(r′′)
(i)(εa − εl − ω − iη)

e−i(εi−εa)(t−t0) 〈i|ÛNL
x − Ûx|a〉
εi − εa

+
ϕ∗a(r)ϕl(r)ϕ∗l (r

′′)ϕi(r′′)
(−i)(εi − εl + ω + iη)

e−i(εi−εa)(t−t0) 〈i|ÛNL
x − Ûx|a〉
εi − εa

)
(B.25)

When decomposing the summation over l into a summation over j and b no term of B3

remains in the occupied-virtual/virtual-occupied space such as B3 does not contribute in

the expression of the EXX kernel.

We can combine the terms of Eq. (B.21) and Eq. (B.23). We remove the phase factor

that is common to all the remaining terms (A, B1, B2 and C) and after some algebra the

right-hand-side of Eq. (B.12) becomes

B1 +B2 − C = −2
occ.∑

ij

unocc.∑

a

all∑

l

×

(
ϕ∗i (r)ϕa(r)〈aj|li〉ϕ∗l (r′′)ϕj(r′′)

(εj − εl + ω + iη)(εi − εa + ω + iη)
+

ϕ∗i (r)ϕa(r)〈al|ji〉ϕ∗j (r′′)ϕl(r′′)
(εj − εl − ω − iη)(εi − εa + ω + iη)

+
ϕ∗a(r)ϕi(r)〈ij|la〉ϕ∗l (r′′)ϕj(r′′)

(εj − εl + ω + iη)(εi − εa − ω − iη)
+

ϕ∗a(r)ϕi(r)〈il|ja〉ϕ∗j (r′′)ϕl(r′′)
(εj − εl − ω − iη)(εi − εa − ω − iη)

)

+ 2

occ.∑

i

unocc.∑

a

all∑

l

×
[(

ϕ∗i (r)ϕa(r)〈l|V̂ NL
x − V̂x|i〉ϕ∗a(r′′)ϕl(r′′)

(εa − εl − ω − iη)(εi − εa + ω + iη)
+
ϕ∗i (r)ϕa(r)〈a|V̂ NL

x − V̂x|l〉ϕ∗l (r′′)ϕi(r′′)
(εi − εl + ω + iη)(εi − εa + ω + iη)

]

− ϕ∗a(r)ϕi(r)〈l|V̂ NL
x − V̂x|a〉ϕl(r′′)ϕ∗i (r′′)

(εi − εl − ω − iη)(εa − εi + ω + iη)
− ϕ∗a(r)ϕi(r)〈i|V̂ NL

x − V̂x|l〉ϕ∗l (r′′)ϕa(r′′)
(εa − εl + ω + iη)(εa − εi + ω + iη)

)

(
ϕ∗l (r)ϕa(r)〈a|V̂ NL

x − V̂x|i〉ϕ∗i (r′′)ϕl(r′′)
(εi − εl − ω − iη)(−i)(εi − εa)

+
ϕ∗i (r)ϕl(r)〈a|V̂ NL

x − V̂x|i〉ϕ∗l (r′′)ϕa(r′′)
(εa − εl + ω + iη)(−i)(εi − εa)

− ϕ∗l (r)ϕi(r)〈i|V̂ NL
x − V̂x|a〉ϕ∗a(r′′)ϕl(r′′)

(εa − εl − ω − iη)(−i)(εa − εi)
− ϕ∗a(r)ϕl(r)〈i|V̂ NL

x − V̂x|a〉ϕ∗l (r′′)ϕi(r′′)
(εi − εl + ω + iη)(−i)(εa − εi)

)]
.

(B.26)
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Splitting the summations over l in summations over b and j and considering only the terms

in the occupied-virtual and virtual-occupied space, this term becomes

B1 +B2 − C = −2
occ.∑

ij

∑

ab

×

(
ϕ∗i (r)ϕa(r)〈aj|bi〉ϕ∗b(r′′)ϕj(r′′)

(εj − εb + ω + iη)(εi − εa + ω + iη)
+

ϕ∗i (r)ϕa(r)〈ab|ji〉ϕ∗j (r′′)ϕb(r′′)
(εj − εb − ω − iη)(εi − εa + ω + iη)

+
ϕ∗a(r)ϕi(r)〈ij|ba〉ϕ∗b(r′′)ϕj(r′′)

(εj − εb + ω + iη)(εi − εa − ω − iη)
+

ϕ∗a(r)ϕi(r)〈ib|ja〉ϕ∗j (r′′)ϕb(r′′)
(εj − εb − ω − iη)(εi − εa − ω − iη)

)

+ 2
occ.∑

ij

unocc.∑

a

×
(
ϕ∗i (r)ϕa(r)〈j|V̂ NL

x − V̂x|i〉ϕ∗a(r′′)ϕj(r′′)
(εa − εj − ω − iη)(εi − εa + ω + iη)

−
ϕ∗a(r)ϕi(r)〈i|V̂ NL

x − V̂x|j〉ϕ∗j (r′′)ϕa(r′′)
(εa − εj + ω + iη)(εa − εi + ω + iη)

)

+ 2

occ.∑

i

unocc.∑

ab

×
(
ϕ∗i (r)ϕa(r)〈a|V̂ NL

x − V̂x|b〉ϕ∗b(r′′)ϕi(r′′)
(εi − εb + ω + iη)(εi − εa + ω + iη)

− ϕ∗a(r)ϕi(r)〈b|V̂ NL
x − V̂x|a〉ϕb(r′′)ϕ∗i (r′′)

(εi − εb − ω − iη)(εa − εi + ω + iη)

)

(B.27)

We can finally define the exchange kernel by combining Eq. (B.19) and Eq. (B.27)

∫ ∫
dr2 dr3 χ0(r1, r2, ω) fx(r2, r3, ω) χ0(r3, r4, ω) = hx(r1, r4, ω) (B.28)

where the function hx(r, r′, ω) can be decomposed in four contributions

hx(r, r′, ω) =
∑

p=1,4

hpx(r, r′, ω). (B.29)

The first and the second contribution recover the two first lines of Eq. (B.27)

h1
x(r, r′′, ω) = 2

occ.∑

ij

unocc.∑

ab

×

(
ϕ∗i (r)ϕa(r)〈aj|bi〉ϕ∗b(r′′)ϕj(r′′)

(εj − εb + ω + iη)(εi − εa + ω + iη)
+

ϕ∗a(r)ϕi(r)〈ib|ja〉ϕ∗j (r′′)ϕb(r′′)
(εj − εb − ω − iη)(εi − εa − ω − iη)

)
(B.30)
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h2
x(r, r′′, ω) = 2

occ.∑

ij

unocc.∑

ab

×

(
ϕ∗i (r)ϕa(r)〈ab|ji〉ϕ∗j (r′′)ϕb(r′′)

(εj − εb − ω − iη)(εi − εa + ω + iη)
+

ϕ∗a(r)ϕi(r)〈ij|ba〉ϕ∗b(r′′)ϕj(r′′)
(εj − εb + ω + iη)(εi − εa − ω − iη)

)
(B.31)

and the third contribution to hx is given by

h3
x(r, r′′, ω) = −2

occ.∑

ij

unocc.∑

a

×
(
ϕ∗i (r)ϕa(r)〈j|V̂ NL

x − V̂x|i〉ϕ∗a(r′′)ϕj(r′′)
(εj − εa + ω + iη)(εi − εa + ω + iη)

+
ϕ∗a(r)ϕi(r)〈i|V̂ NL

x − V̂x|j〉ϕ∗j (r′′)ϕa(r′′)
(εj − εa − ω − iη)(εi − εa − ω − iη)

)

+2
occ.∑

i

unocc.∑

ab

×
(
ϕ∗i (r)ϕa(r)〈a|V̂ NL

x − V̂x|b〉ϕ∗b(r′′)ϕi(r′′)
(εi − εb + ω + iη)(εi − εa + ω + iη)

+
ϕ∗a(r)ϕi(r)〈b|V̂ NL

x − V̂x|a〉ϕ∗i (r′′)ϕb(r′′)
(εi − εb − ω − iη)(εi − εa − ω − iη)

)
. (B.32)

It is interesting to note that there is a difference here with the expression given by Görling

[1] where there is a fourth contribution h4
x(r, r′′, ω). In our derivation we did not include

this term to the expression of hx(r, r′′, ω) because it was not defined in the occupied-

virtual/virtual-occupied space.
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Résumé en français

Introduction générale

La théorie de la fonctionnelle de la densité a été introduite en 1964 par Hohenberg et

Kohn [1] comme une alternative à la résolution de l’équation de Schrödinger. La théorie

de la fonctionnelle de la densité peut être utilisée dans la pratique à travers le formalisme

proposé par Kohn et Sham [2]. Cette méthode est exacte dans la limite où la fonction-

nelle d’échange-corrélation exacte est connue. Cette fonctionnelle n’est hélas pas connue

et un enjeu majeur dans le domaine de la théorie de la fonctionnelle de la densité est

de développer des approximations de plus en plus précises pour cette fonctionnelle. La

première approximation pour cette fonctionnelle qui a été proposée et été utilisée comme

point de départ pour le développement de nouvelles fonctionnelles est l’approximation de

la densité locale (LDA). Cette approximation est basée sur un modèle simple, un gaz

homogène d’électrons, et repose sur l’idée de prendre en chaque point du système étudié

l’énergie d’échange-corrélation par particule égale à l’énergie d’échange-corrélation par par-

ticule du gaz homogène d’électrons de même densité. La paramétrisation la plus connue

a été proposée par Vosko et al.[3]. Bien que basée sur une approximation très simple, les

systèmes réels communément étudiés étant éloignés du gaz homogène d’électrons, la LDA

offre de bons résultats comparables voire meilleurs que les résultats obtenus avec Hartree-

Fock. La LDA est particulièrement efficace pour les propriétés moléculaires telles que la

structure d’équilibre mais échoue dans les calculs d’énergie, par exemple pour l’énergie de

liaison, avec une tendance à la sur-estimation. Un moyen pour améliorer la LDA est de

rajouter des informations sur l’inhomogénéité de la densité électronique, ceci étant rendu

possible en utilisant le gradient de la densité en plus de la densité pour définir la fonc-

tionnelle. Cette nouvelle famille de fonctionnelles est appelée approximation du gradient

généralisée (GGA). Un exemple de fonctionnelle GGA est B88 [4] pour l’échange et LYP [5]

pour la corrélation. Cette approximation peut encore être améliorée en prenant en compte

le Laplacien de la densité électronique et/ou la densité d’énergie cinétique qui nous per-

met de définir une nouvelle famille de fonctionnelles : meta-GGA. Une des approximations

meta-GGA les plus utilisées est TPSS [6]. LDA, GGA et meta-GGA forment un ensem-

ble d’approximations semi-locales car elles ne dépendent que de la densité électronique

121
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(ou du gradient de la densité électronique pour GGA ou de la dérivée des orbitales pour

meta-GGA) en un point de l’espace. Ces approximations semilocales donnent souvent une

bonne description de la corrélation dynamique de courte portée mais échouent à décrire

la corrélation statique et la corrélation dynamique de longue portée. De plus, ces approx-

imations présentent une erreur de self-interaction qui tend à favoriser une délocalisation

des électrons et induit une énergie totale trop basse.

Une façon d’améliorer de manière systématique les fonctionnelles approchées, princi-

palement en s’attachant à réduire l’erreur de self-interaction, est de combiner la théorie

de la fonctionnelle de la densité avec les méthodes de fonction d’onde en créant des ap-

proximations hybrides. La combinaison de ces deux méthodes peut être faite de différentes

manières. La méthode la plus simple est de faire une décomposition linéaire de l’interaction

coulombienne inter-électronique en deux contributions, une première fraction qui sera

traitée avec une méthode fonction d’onde et le reste qui sera traité avec une fonction-

nelle de la densité approchée.

1

r
=

λ

r︸︷︷︸
fonction d’onde

+
(1− λ)

r︸ ︷︷ ︸
fonctionnelle de la densité

.

Cette décomposition a été réalisée pour la première fois en 1993 par Becke qui a proposé une

décomposition de l’énergie d’échange half-and-half [7]: une moitié de l’échange est traité

par Hartree-Fock alors que la seconde moitié est traitée par une fonctionnelle d’échange

approchée, la corrélation étant traitée dans son intégralité en DFT. Cette approximation

a été suivie par une nouvelle approximation dont la paramétrisation est empirique et

qui contient une part moins importante d’échange Hartree Fock [8]. Ces approximations

consistant à introduire une fraction d’échange Hartree-Fock sont dites approximations

hybrides. Les versions modernes de ces approximations utilisent une fraction plus réduite

d’échange Hartee-Fock (20-25%). L’extension naturelle de cette approximation hybride est

de décomposer aussi le terme de corrélation, ceci étant fait en introduisant une fraction

d’énergie de corrélation calculée en utilisant une théorie de perturbation Møller-Plesset

au second ordre (MP2). Cette décomposition à été introduite à l’origine par Grimme

[9] et est qualifiée d’approximation double-hybride. Cette approximation double-hybride

permet d’utiliser une fraction plus importante d’échange Hartree-Fock (50-70%) que dans

les approximations hybrides sans trop perdre le bénéfice de la compensation d’erreur entre

les fonctionnelles d’échange et de corrélation. Cependant la méthode souffre des même

limitations que MP2 dans la description de certains phénomènes comme la corrélation

statique. La fraction d’énergie de corrélation calculée à l’aide d’une méthode fonction

d’onde peut être traitée en utilisant d’autres méthodes comme l’approximation de phases

aléatoires (RPA) [10]. Pour améliorer la description de la corrélation statique, la théorie
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de la fonctionnelle de la densité peut être associée ç la méthode du champ autocohérent

multi-configurationnel (MCSCF) [11].

Pour combiner la théorie de la fonctionnelle de la densité et les méthodes fonction d’onde

on peut aller au-delà de la combinaison linéaire avec la séparation de portée. Introduite

dans sa forme actuelle par Savin en 1996 [12] et consiste à décomposer l’interaction coulom-

bienne en une contribution de courte portée et une contribution de longue portée :

1

r
=

erf(µr)

r︸ ︷︷ ︸
fonction d’onde

+
1− erf(µr)

r︸ ︷︷ ︸
fonctionnelle de la densité

.

Cette transition est faite de manière progressive grâce à l’utilisation d’une fonction erreur

et peut être modulée grâce au paramètre de séparation de portée µ. Dans la pratique,

l’interaction de courte portée va être décrite en utilisant une fonctionnelle de la densité

approchée et l’interaction de longue portée va être décrite en utilisant une méthode basée

sur la fonction d’onde. Une version limitée à la séparation de portée de l’échange a été

proposée par Iikura et al.[13] en introduisant de l’échange de longue portée Hartree-Fock

alors que l’échange de courte portée et la corrélation sont traités par une fonctionnelle de

la densité. La séparation de portée peut aussi être appliquée à la corrélation, par exemple

en utilisant MP2 pour la corrélation de longue portée avec l’échange de longue portée

en Hartree Fock et une fonctionnelle d’échange et de corrélation de courte portée [14].

Cette décomposition peut aussi être effectuée en utilisant d’autres méthodes pour décrire

la corrélation de longue portée comme la RPA [15] ou la méthode coupled-cluster [16] qui

sont bien adaptées pour la description des interactions de dispersion de van der Waals.

Un traitement multi-configurationnel de la corrélation de longue portée peut aussi être

utilisé pour améliorer la description de la corrélation statique, par exemple en utilisant

une méthode MCSCF ou la théorie de la fonctionnelle de la matrice densité (DMFT) [17].

La théorie de la fonctionnelle de la densité a été étendue pour décrire les états excités

grâce à la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT). Dans

son formalisme de réponse linéaire, le terme clé de la TDDFT est le noyau d’échange-

corrélation qui comme le potentiel d’échange-corrélation en DFT doit être approché. Dans

le cas de la TDDFT, il faut apporter une approximation à la dépendance spatiale et à la

dépendance en fréquence du noyau d’échange-corrélation. L’approximation la plus simple

est l’approximation adiabatique semilocale, cette approximation est à la fois locale dans

le temps (ne dépendant pas de la fréquence) et dans l’espace. Elle offre cependant des

résultats raisonnables pour les énergies d’excitations de valence mais échoue dans la de-

scription de certains phénomènes comme les excitations multiples, les énergies d’excitation

de transfert de charge et les énergies d’excitation de Rydberg. Afin de contourner les lim-
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itations de l’approximation adiabatique semilocale, une stratégie consiste à étendre la

TDDFT à la séparation de portée. La décomposition du noyau d’échange en un noyau

d’échange Hartree-Fock de longue portée et un noyau d’échange de courte portée traité

avec une fonctionnelle de la densité approchée a été introduite par Tawada et al. [18] et

permet de corriger certains problèmes engendrés par l’approximation semilocale comme

la description des énergies d’excitation de Rydberg et des énergies d’excitation de trans-

fert de charge. La séparation de portée a ensuite été étendue au noyau de corrélation

en combinant un noyau de corrélation de courte portée traité par une fonctionnelle de la

densité avec une méthode de réponse linéaire MCSCF [25] ou DMFT [26]. L’introduction

de méthodes multi-configurationnelles pour traiter la longue portée permet d’améliorer la

description de la corrélation statique et la description des excitations doubles. On peut

aussi combiner le noyau de corrélation de courte portée avec un noyau de corrélation de

longue portée calculé en utilisant le formalisme des fonctions de Green à N corps [27] qui

permet d’introduire une dépendance en fréquence.

Dans cette thèse nous nous sommes intéressés à différents aspects des ces méthodes

hybrides fonction d’onde/fonctionnelle de la densité. Le premier chapitre sera un rappel

des bases de la théorie de la fonctionnelle de la densité et de la séparation de portée.

La suite de la thèse est décomposée en trois chapitres qui correspondront à trois projets

indépendants autour de l’hybridation entre théorie de la fonctionnelle de la densité et

fonction d’onde avec ou sans séparation de portée.

Convergence en base de la théorie de la fonctionnelle de la

densité avec séparation de portée

Dans ce chapitre nous nous sommes intéressés à l’étude de la convergence en base dans

le cas de la séparation de portée. La convergence en base a été étudiée dans des travaux

précédents pour différentes méthodes de fonction d’onde comme MP2, cette convergence

dans le cas des bases de Dunning étant polynomiale par rapport au nombre cardinal de

la base X [19]. Les méthodes à séparation de portée, qui combinent un traitement DFT

de la courte portée et un traitement fonction d’onde de la longue portée, ont montré

une convergence en base plus rapide que ce qui avait été observé précédemment pour les

méthodes sans séparation de portée. Ces résultats ont pu être observés pour différentes

méthodes fonction d’onde par exemple pour MP2 [20]. Le chapitre est décomposé en deux

études, tout d’abord une étude théorique en développement en ondes partielles et ensuite

l’extension de l’étude à la convergence dans les bases mono-atomiques de Dunning.
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Pour la première étude nous avons considéré le développement en ondes partielles, c’est-

à-dire que les bases sont définies par rapport au moment angulaire maximal. Dans ce

contexte nous nous sommes intéressés à l’étude de la convergence de l’interaction coulom-

bienne et de l’interaction de longue portée. Nous avons pu mettre en évidence que la

convergence de l’interaction de longue portée était plus rapide et pouvait être décrite par

une loi exponentielle alors que la convergence de l’interaction coulombienne est décrite par

une loi polynomiale.

Nous avons ensuite fait l’étude de la convergence en base dans les bases mono-atomiques

de Dunning, qui sont construites selon le développement en nombre quantique principal.

Dans cette partie, nous avons commencé par observer la convergence de la fonction d’onde

de l’hélium par rapport au nombre cardinal de la base. Ces résultats sont comparables aux

résultats obtenus avec la convergence des interactions coulombienne et de longue portée

dans le développement en ondes partielles avec une accélération de la convergence dans le

cas de l’interaction de longue portée. Dans un second temps, nous nous sommes intéressés

à la convergence de l’énergie de corrélation de longue portée calculée au niveau MP2 par

rapport au nombre cardinal de la base et nous avons pu confirmer que cette convergence

était exponentielle. Enfin, à la fin de ce chapitre, nous avons pu proposer une méthode

d’extrapolation pour l’énergie dans la limite de la base complète.

Méthode auto-cohérente de théorie de la fonctionnelle de la

densité double-hybride en utilisant une méthode OEP

Dans ce chapitre nous nous sommes intéressés aux fonctionnelles double hybrides, in-

troduites par Grimme [9]. Ces fonctionnelles combinent une fraction d’échange Hartree

Fock et une fraction de corrélation MP2 avec le complément d’échange et de corrélation

traité en DFT. Dans notre étude nous avons plus particulièrement considéré la fonction-

nelle double hybride à un paramètre (1DH) proposée par Sharkas et al. [21]. Dans sa

forme que nous appellerons standard l’approximation double hybride est en fait calculée

en deux étapes : tout d’abord un calcul auto-cohérent sans la partie MP2, puis l’ajout a

posteriori de l’énergie MP2 calculée avec les orbitales et les énergies orbitalaires du cal-

cul précédent. Dans ce cas, l’énergie MP2 n’est pas obtenue de manière auto-cohérente.

Une approximation auto-cohérente récente a été proposée par Peverati et Head-Gordon

[22] en 2013 dans laquelle les orbitales sont optimisées en présence du terme MP2. Cette

nouvelle approximation a permit une amélioration des calculs des systèmes en couche ou-

verte. Dans cette étude nous avons considéré une nouvelle façon d’inclure le terme MP2

dans la double hybride de manière auto-cohérente en utilisant la méthode du potentiel

effectif optimisé (OEP) [23]. Nous nous sommes particulièrement intéressés à comparer
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les performances de ces deux approximations double-hybrides (standard et auto-cohérent)

pour le calcul de propriétés atomiques et moléculaires tels que le potentiel d’ionisation ou

l’affinité électronique. Une première partie de ce chapitre est consacrée à la présentation

des méthodes utilisées dans ce chapitre et particulièrement sur le calcul de 1DH auto-

cohérent utilisant la méthode OEP. Comme les propriétés auxquelles nous nous sommes

intéressés dans ce chapitre ne peuvent pas forcément être obtenues directement à l’aide de

calculs 1DH nous avons eu recours à l’utilisation d’un nombre d’occupation fractionnaire

dans le cas de l’approximation 1DH standard.

Dans la seconde partie du chapitre nous avons pu comparer différentes propriétés sur

quelques systèmes atomiques et moléculaires. Nous avons pu constater que pour les

énergies totales et les potentiels d’ionisation l’auto-cohérence n’apporte pas d’améliorations.

Nous avons même pu constater que dans le cas du potentiel d’ionisation une bonne première

approximation pouvait être obtenue en ne considérant que l’énergie de l’orbitale la plus

haute occupée (HOMO) calculée sans le terme MP2. Dans le cas de l’affinité électronique,

il est intéressant de noter que la double hybride auto-cohérente permet d’avoir une ap-

proximation raisonnable pour l’énergie de l’orbitale LUMO même si elle a une tendance

à surestimer l’affinité électronique. Nous avons ensuite étudié les potentiels d’échange-

corrélation et de corrélation obtenus avec la 1DH auto-cohérente. Les potentiels obtenus

donnent de bons résultats et sont un compromis entre la fonctionnelle BLYP seule qui a

un mauvais comportement dans la limite asymptotique et la théorie de la perturbation

au second-ordre auto-cohérent (OEP-GL2) qui montre une tendance à surestimer le po-

tentiel. Enfin, nous avons considéré les densités de corrélation qui de la même manière

que les potentiels donnent de bons résultats et sont un bon compromis entre BLYP et le

OEP-GL2.

Étude du noyau d’échange-corrélation de courte portée

La théorie de la fonctionnelle dépendante du temps, dans son formalisme de réponse

linéaire dépend du noyau d’échange corrélation. L’approximation majoritairement utilisée

dans la pratique est l’approximation adiabatique semilocale. Malgré de bon résultats

pour les énergies d’excitation électronique de basse énergie, cette approximation connait

d’importantes limitations pour décrire les énergies d’excitation de transfert de charge,

de Rydberg et les excitations doubles. Une manière de contourner ces limitations de

l’approximation adiabatique semilocale consiste à étendre la TDDFT à la séparation de

portée. En pratique le noyau d’échange-corrélation de courte portée reste cependant traité

à l’aide d’une approximation adiabatique semilocale. Dans ce chapitre, nous nous sommes

intéressé à la dépendance en fréquence du noyau d’échange-corrélation de courte portée

pour voir si l’utilisation de l’approximation adiabatique à courte portée est suffisante.
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Pour étudier le noyau d’échange de courte portée nous avons dans un premier temps

étendu la méthode de TDDFT d’échange exact à la séparation de portée et défini le

noyau d’échange exact de courte portée. Nous avons ensuite étudié le développement

asymptotique de noyau dans la limite où µ→∞. Nous avons pu voir que dans cette limite

le premier terme du développement asymptotique n’est pas dépendant de la fréquence et

est local. Nous avons finalement considéré deux systèmes modèles : H2 et He dans la base

cc-pVDZ pour comparer le comportement des noyau d’échange exact de courte portée,

LDA de courte portée et le premier terme du développement à µ→∞.

Dans un second temps nous nous sommes intéressés au noyau de corrélation de courte

portée. Dans ce cas le noyau de corrélation exact n’est pas connu de manière analytique

dans le cas général et nous avons choisi d’étudier un système modèle : H2 en base minimale.

Nous avons dans un premier temps calculé de manière analytique le noyau de corrélation

de courte portée exact à partir des résultats d’un calcul d’interaction de configurations

complète (FCI) dans la base minimale. Nous avons ensuite évalué les résultats obtenus

dans la base STO-3G.

Conclusion et perspectives

Nous nous sommes donc intéressés tout au long de cette thèse aux approximations

hybrides entre les méthodes basées sur la fonction d’onde et la théorie de la fonctionnelle

de la densité en considérant deux façons de décomposer l’interaction électronique : de

manière linéaire ou par la séparation de portée.

Dans le premier chapitre, au travers de l’étude de la convergence en base de la méthode

avec séparation de portée nous avons mis en évidence l’accélération de la convergence qui

devient exponentielle. Cette étude nous a permis de proposer une méthode d’extrapolation

de l’énergie en base complète. Tous les résultats présentés ont été obtenus pour l’énergie de

corrélation calculée au niveau MP2 mais des résultats similaires sont attendus si d’autres

méthodes sont utilisées pour décrire la corrélation de longue portée. De plus dans cette

étude nous avons remarqué que les bases de Dunning utilisée n’étaient pas optimisées pour

effectuer les calculs avec séparation de portée. Une façon de poursuivre ce travail pourrait

être de définir des bases optimisées pour les calculs avec séparation de portée.

Dans le second chapitre nous nous sommes intéressés à une méthode alternative pour

traitée les approximations double-hybride de manière auto-cohérente basée sur la méthode

OEP. Les résultats que nous avons obtenus sont encourageants, particulièrement pour la

description des affinités électroniques, de l’énergie de la LUMO et des potentiels (échange
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corrélation et corrélation) et densités. Plusieurs pistes peuvent être envisagées pour con-

tinuer ce travail : dans un premier temps étendre l’étude en intégrant plus de systèmes

et en comparant les résultats obtenus avec d’autres méthodes comme celle proposée par

Peverati et Head-Gordon. Une autre étape serait d’étendre cette approximation double-

hybride auto-cohérente à la séparation de portée. Enfin il serait aussi intéressant d’étendre

cette approximation à la description des états excités en appliquant la TDDFT dans son

formalisme de réponse linéaire à l’approximation de double-hybride auto-cohérente.

Enfin dans le dernier chapitre nous nous sommes intéressés à l’étude des noyaux d’échange

et de corrélation de courte portée. Combinant une approche théorique et des calculs sur

des systèmes tels que H2 ou He nous avons montré que l’approximation semilocale pour le

noyau d’échange de courte portée devenait exacte dans la limite où µ. Cette étude a ensuite

été étendue au noyau de corrélation de courte portée qui nous a permit de voir que même

dans le cas du noyau de corrélation de courte portée l’approximation adiabatique n’était

pas exacte et que le terme dépendant en fréquence était encore plus important dans la limite

de dissociation de H2. Pour continuer cette étude il serait intéressant de calculer le terme

suivant dans le développement asymptotique du noyau d’échange exact de courte portée

pour obtenir le terme en 1/µ4 qui devrait voir apparaitre la dépendance en fréquence.

Un travail d’implémentation permettrait aussi de décrire des systèmes plus grands pour

étudier l’approximation adiabatique semilocale dans des exemples plus compliqués, par ex-

emple avec des excitations doubles pour les noyaux d’échange et de corrélation de courte

portée.
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