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I. INTRODUCTION

A. Working environment

The Theoretical Chemistry Laboratory (LCT) of Sorbonne University is a joint research unit

whose director is Professor Jean-Philip Piquemal. It comprises two research poles : Methods and

tools for quantum chemistry and Modelisation of complex systems. My internship took place in the

first one where I worked in the Theory of electronic structure group.

Due to the covid-19 crisis, we had to set up "working rituals" such as regular Skype calls and instant

chats. The main advantage to work on a theoretical project is that essentially the same work can be

done at home. Yet, the lack of a conventional working environment makes it difficult to complete

full work days and to create contacts with the research team and the laboratory workers in general.

This experience was an opportunity to work on my self-discipline and my autonomy in general

by planning reasonable work days and providing persistent efforts to seek for informations before

requesting answers from my supervisors.

Finally, I particularly want to thank Julien Toulouse and Emmanuel Giner for the time they spent

trying to explain and illustrate physical and mathematical concepts throught communication tools

not adapted to this kind of interactions and for their understanding regarding the time needed to

assimilate the knew concepts they introduced to me.

I also want to thank the LCT members for their welcome : seminars were the chance to discover a

tiny part of the broad field of quantum chemistry that I hope I can continue to explore in the coming

years.

B. Scientific introduction

Under the supervision of Julien Toulouse and Emmanuel Giner, I participated in the improve-

ment of the range-separated density functional theory (RS-DFT) and wave-function theory basis-set

error correction using density-functional theory methods which have been the object of a lot of

research these recent years.

The purpose of the internship was to implement the self-consistent field equations for the mul-

tideterminantal decomposition of the short-range exchange and correlation functionals for the

RS-DFT and the basis-set correction methods in the Quantum package programming environment.

Moreover, we test the use of on-top pair densities obtained from wave functions calculations
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to compare with that coming from the uniform electron gas (UEG) model. The latter has been

widely used by the community due to the relatively good compromise between the accuracy of the

results and a cheap computational cost. However, computational chemistry aims to reach chemical

accuracy, 1 kcal/mol≈ 4 kJ/mol, required to provide realistic theoretical prediction. Treating

realistic chemical systems, with growing sizes, within chemical accuracy motivated the use of

hybrid computational methods schemes. Limiting the use of UEG’s on-top pair density is supposed

to increase the accuracy but could also permit to extand the range of systems that we are able to study.

The report is organised as follows. In Sec. II, we recall the framework of the different methods

used in quantum chemistry. In particular, we introduce both wave-function and density-functional

theories. In Sec. III, we present the main hybrid methods used in the field : the range-separated den-

sity functional theory and the basis-set correction. Then, in Sec. IV, we develop the implementation

of the self-consistent field equations that will now include the calculations of the multideterminant

exchange and correlation functionals. Finally, in Sec. V, we apply the method to the calculation of

the Helium atom energy and the determination of the dissociation curve of the H2 molecule.

II. WAVE FUNCTION THEORY AND DENSITY FUNCTIONAL THEORY IN A

NUTSHELL1

A. The quantum many-electron problem

We consider here a system of N electrons and Nnucl nuclei described with an Hamiltonian H,

H = −

N∑
i=1

1
2
∇2

i −

Nnucl∑
A=1

1
2MA

∇2
A −

N∑
i=1

Nnucl∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>1

1
ri j

+

Nnucl∑
A=1

Nnucl∑
B>A

ZAZB

RAB
. (1)

In this equation, in atomic units, the first term is the kinetic energy operator of the electrons, the

second is the kinetic energy operator of the nuclei, the third represents the Coulomb attraction

between electrons and nuclei, the fourth is the repulsion between electrons and the fifth is the

repulsion between nuclei. Moreover, MA is the ratio of the mass of nucleus A to the mass of an

electron, and ZA is the atomic number of nucleus A.
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B. The Born-Oppenheimer approximation

In the Born-Oppenheimer approximation, due to the fact that nuclei are much heavier than

electrons (at least 3 orders of magnitude) we neglect the kinetic contribution of the nuclei compare

to that of the electrons. Accordingly, we now consider the electronic Hamiltonian :

Helec = −

N∑
i=1

1
2
∇2

i −

N∑
i=1

Nnucl∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>1

1
ri j
, (2)

with the Schrödinger equation :

HelecΨelec = EelecΨelec. (3)

In the following, we will not use the “elec“ label.

C. The antisymmetry of the wave function

To completely describe an electron, we need to specify its spin. To do so, we consider two spin

functions α(ω) and β(ω), corresponding to spin up and down, respectively. The variable ω is the

spin variable that leads to :

α(
1
2

) = 1, α(−
1
2

) = 0, β(
1
2

) = 0, and β(−
1
2

) = 1. (4)

Therefore, the wave function for an N-electron system depends on 4N coordinates denoted by

~xi = {~ri, ωi} for i = 1, ...,N. The wave function will thus be designated by Ψ(~x1, ~x2, ..., ~xN). It must

be antisymmetric with respect to the exchange of two coordinates :

Ψ(~x1, ..., ~xi, ...., ~x j, ...., ~xN) = −Ψ(~x1, ..., ~x j, ...., ~xi, ...., ~xN), (5)

which is well translated into the Slater determinant formalism.

D. Variational principle

The average energy associated with a given state Ψ is given by the formula :

E[Ψ] = 〈Ψ|Ĥ|Ψ〉, (6)

where Ψ is normalized, 〈Ψ|Ψ〉 = 1. The variational principle states that this energy is an upper

bound to the exact ground-state energy for any approximated wave function Ψ

E0 ≤ E[Ψ]. (7)
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The equality is reached when the function Ψ is the exact ground-state wave function Ψ0 which

minimizes the energy :

E0 = 〈Ψ0|Ĥ|Ψ0〉. (8)

E. Wave-function theory

Wave-function theory (WFT) aims to approximate Ψ0 using one of the numerous techniques

provided by the analysis of the quantum many-body problem, as for example the variational

principle and perturbation theories. We focus on the first one in the entire work presented here.

In this work, we only used variational wave functions and therefore for the sake of compactness of

the present report, we only introduce two different variational wave function ansatzes : Hartree-Fock

(HF) and configuration interaction (CI).

1. The Hartree-Fock approximation

In the HF approximation, the exact wave function Ψ0 is approximated by a unique Slater deter-

minant Φ which satisfies the antisymmetry property of any fermionic wave function. Accordingly,

the wave function is written as :

Ψ0(~x1, ~x2, ..., ~xN) ' ΦB(~x1, ~x2, ..., ~xN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~x1) ψ2(~x1) ... ψN(~x1)

ψ1(~x2) ψ2(~x2) ... ψN(~x2)

... ... ... ...

ψ1(~xN) ψ2(~xN) ... ψN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (9)

where ψi(~x) are orthonormal spin orbitals that are expanded on a one-electron basis set here referred

to as B :

ψi(~x) =

M∑
µ=1

cµ,iχµ(~x), (10)

where M is the number of basis functions, χµ(~x) are Gaussian-type-orbital basis functions and cµ,i

are coefficients optimized according to some energy minimization of approximated wave function

models.

This approximation is also referred to as the independent-electron approximation as the proba-

bility of finding two opposite spin electrons is simply the product of the individual probabilities.
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The HF approximation for the wave function leads to the following energy :

EHF
B = min

ΦB
〈ΦB|Ĥ|ΦB〉 = 〈ΦHF

B |Ĥ|Φ
HF
B 〉, (11)

where ΦHF
B

is the one determinant wave function that minimizes the energy with respect to the

spin orbitalsψi(~x). Therefore, the HF energy depends on the quality of the basis set B chosen for a

given calculation. Of course, due to the intrinsic approximated nature of the HF wave function, the

variational principle applies :

E0 ≤ EHF
B . (12)

In order to illustrate a typical HF calculation, we report in Fig. 1 the convergence of the HF energy

for the He atom with a sequence of basis sets of Dunning type2. As evidenced in Fig. 1, the HF

energy converges quite rapidly with respect to the basis set B, which is an appealing feature of the

HF model. Nevertheless, even when reaching the basis set convergence, an error of about 0.04 Ha

is obtained with respect to the estimated exact ground state energy of the He atom. Such an energy

difference is defined as the correlation energy,

Ecorr = E0 − EHF, (13)

which is a fundamental quantity in quantum chemistry. Because of the lack of correlation treatment

between electrons, this approximation is insufficient to describe many situations such as bond

dissociation of covalent and/or non-covalent nature.

To reduce this error, one might use one of the many post-Hartree-Fock methods available in quantum

chemistry which introduces in many different flavours the correlation effects in the wave function

and therefore estimates the correlation energy. We present below the full configuration interaction.

2. The full configuration interaction method

Within a given basis set B, in order to improve the description of the correlation effects, the

N-electron wave function is built as a linear combination of all Slater determinants that can be

generated from the one-electron basis set B. Such an approach is referred to as the full configuration

interaction (FCI). Usually, we express the FCI wave function as increasing substitution levels with

respect to the HF Slater determinant :

ΨFCI
B = cHFΦHF

B +

occ.∑
i

vir.∑
r

cr
iΦ

r
i +

occ.∑
i<j

vir.∑
r<s

crs
ij Φ

rs
ij + .... (14)
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Here ΦHF is the Hartree-Fock determinant, Φr
i is the Slater determinant where the spin-orbital i

occupied in the HF wave function is replaced by the orbital r unoccupied in the HF wave function,

Φrs
ij is the Slater determinant where the spin-orbitals i and j occupied in the HF wave function are

replaced by the orbitals r and s unoccupied in the HF wave function, and so on.

The coefficients of the Slater determinants are optimized using the variational principle of Eq. (6),

and the energy of the FCI wave function is formulated as :

EFCI
B = min

ΨB
〈ΨB|Ĥ|ΨB〉 = 〈ΨFCI

B |Ĥ|Ψ
FCI
B 〉. (15)

It is important to notice that the FCI is the exact solution of the Schrödinger equation within a

given basis set B. Therefore, at the FCI level, the "only" approximation remaining is the quality of

the basis set B.

In atomic systems or in organic chemical systems near their equilibrium geometries, the Hartree-

Fock determinant dominates the wave function but the contribution of the other Slater determinants

improves the energy estimation. Then, we have :

E0 ≤ EFCI
B ≤ EHF

B , (16)

and the FCI energy becomes exact only in the limit of a complete basis set (CBS)

E0 = lim
B→CBS

EFCI
B . (17)

3. One of the main problem of WFT : the basis set convergence

To illustrate the behaviour of the FCI energy we report in Fig. 1 the convergence of the FCI

energy for a sequence of Dunning basis sets. From Fig. 1 we observe that, unlike the HF energy,

the FCI energy tends towards the exact energy in the limit of a complete basis set. Nevertheless, we

also notice that the FCI energy is much more sensitive to the quality of the one-electron basis set

than the HF energy.

The reasons of the slow convergence of the FCI energy was initially pointed out by the seminal

work of Hylleraas4 on the He atom where it was shown that the exact wave function exhibits a

linear behaviour near the coalescence point (i.e. near r12 = |~r1 − ~r2| = 0) :

Ψ(~r1, r12) = Ψ(~r1, 0)
(
1 +

1
2

r12
)

+ O
((

r12
)2
)
, (18)
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FIG. 1. He ground-state energy with increasing one-electron basis-set size - HF vs FCI calculations ; exact

energy from Ref. 3

which is usually referred to as the electron-electron cusp. Therefore, Hylleraas shown that the

slow convergence of FCI energies is related to the slow convergence of the wave function in

the inter-electronic distance (i.e. r12) representation, which necessary involves two-body effects.

Instead of the wave function, one can have a look at the pair density which contains all necessary

information regarding the two-body properties of any wave function.

The pair density,

n2(~r1,~r2) = N(N − 1)
∫
|Ψ(~x1, ~x2, ..., ~xN)|2 dω1dω2d~x3...d~xN , (19)

is the probability density of finding two electrons at positions ~r1 and ~r2.

To give a pictorial illustration of this quantity, we computed the pair density obtained from FCI

wave functions in a sequence of Dunning basis sets for the helium atom. As the pair density is

function on R6 object and therefore quite hard to represent, we represent a section of the pair density

when two electrons are on a circle of radius 0.5 Å. The advantage of such section is that the pair

density can be represented directly in terms of the angle θ between ~r1 and ~r2 (see the representation

of the Helium atom in Fig. 2). We report in Fig. 2 the variation of the pair density at different levels

of calculations as a function of θ.

A striking feature appearing in Fig. 2 is that the Hartree-Fock wave function, ΨHF(~r1,~r2) =

φ1s(r1)φ1s(r2), leads to a constant pair density with respect to θ. This can be easily understood as

the pair density, which is the squared modulus of the wave function for a two-electron system, is

10
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FIG. 2. Left : Pair density of the He atom as a function of θ for two electrons on a circle of radius 0.5 Å at

different computational levels : HF, FCI for a sequence of Dunning basis sets, and the estimated exact pair

density obtained from Ref. 5. Right : Representation of the coordinate system of the He atom

proportional to the squared of 1s-type functions, which only depends on the radial coordinate.

On the other hand, the FCI wave functions which are multi-determinantal wave functions present a

very different behaviour : the pair density decreases when approaching the coalescence point. This

is a signature that the correlation effects brought by the FCI wave function tend to push electrons

away from one another, which is often called the Coulomb hole as it lowers the probability of

finding electrons at small r12 (or equivalently here at small θ). Another important aspect is the

behaviour of the pair density with the size of the basis set : the depth of the Coulomb hole increases

with the basis set, and no linear behaviour is obtained near θ = 0.

When reaching the CBS limit, one obtains the exact wave function which exhibits an electron-

electron cusp, i.e a linear dependence of the pair density with respect to θ.

The comparison with the exact wave function shows that the probability of finding two electrons at

the same point is overestimated using FCI calculations in finite basis sets.

To conclude this section, it should be mentioned that the computational cost of the FCI method

rapidly becomes prohibitive as the number of Slater determinant composing the FCI wave function

grows exponentially with the number of electrons in the system and basis functions in B. Therefore,

a wide variety of approximations to the FCI wave function have been developed in order to lower

the computational cost of WFT while maintaining its accuracy.
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F. Density-functional theory

1. The Levy-Lieb formulation of DFT

Density-functional theory (DFT) states that the energy of an N-electron system is deducible

from its ground-state one-electron density n(~r)

n(~r) = N
∫

...

∫
|Ψ(~x, ~x2, ...~xN)|2 dωd~x2d~x3...d~xN , (20)

according to the first Hohenberg-Kohn theorem6. Therefore, one can reformulate the variational

principle with respect to the density.

Minimizing the energy can be decomposed in two parts :

• Minimizing the energy for a fixed density n(~r), which means minimizing over the subset of

wave functions Ψ which yield a given density n (this is referred to as minΨ→n).

• Minimizing the energy with respect to all possible densities (this is referred to as minn).

FIG. 3. 1st step : in red, finding the mini-

mum energy state for each value of density

n1, n2 and n3; 2nd step : in blue, finding

the minimum energy state between selected

states Ψ2, Ψ5 and Ψ6

One can have a graphical representation of these two

steps in the Fig. 3 from Ref. 7.

Thus, we rewrite the variational principle as :

E0 = min
n

(
min
Ψ→n
〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

)
, (21)

with the kinetic-energy operator T̂ , the electron-electron

interaction operator Ŵee, and the nuclei-electron interac-

tion operator V̂ne. An important point here is to notice

that the electron-nuclei interaction energy is expressed as

a very simple linear functional of the density :

〈Ψ|V̂ne|Ψ〉 =

∫
vne(~r)n(~r) d~r, (22)

where vne is the external potential specific to the system considered. Then we can reformulate the

minimization of the energy directly in terms of minimization over the densities,

E0 = min
n

(
F[n] +

∫
vne(~r)n(~r) d~r

)
. (23)
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where we have introduced the so-called Levy-Lieb universal density functional F[n], independent

from the external potential as

F[n] = min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉. (24)

The minimizing wave function will be denoted by Ψ[n]. Therefore, by defining the energy functional

E[n] as

E[n] = F[n] +

∫
vne(~r)n(~r) d~r, (25)

one can rewrite the energy minimization as

E0 = min
n

E[n] (26)

and the minimizing density n0 in Eq. (26)

n0 = argminE[n] (27)

is of course the exact ground state density.

To conclude this paragraph, it should be mentioned that obtaining reasonable approximations

for the functional F[n] is at the heart of many developments in DFT as will be illustrated in the

following paragraphs.

2. The Kohn-Sham formulation of DFT

The expression of F[n] given in Eq. (24) is extremely helpful to formalize DFT, but it is of no

use to perform actual calculations. An appealing formulation of F[n] was given by Kohn and Sham

(KS) in Ref. 8:

F[n] = Ts[n] + EHxc[n]. (28)

Here Ts[n] is the non-interacting kinectic-energy functional which can be defined with a constrained-

search formulation :

Ts[n] = min
Φ→n
〈Φ|T̂ |Φ〉, (29)

where Φ is a Slater determinant wave function. The Slater determinant minimizing Eq. (29) is

referred to as the Kohn-Sham wave function Φ[n]. The remaining effects from the interaction

between electrons are treated in the Hartree-exchange-correlation functional EHxc[n] which is

decomposed as :

EHxc[n] = EH[n] + Exc[n], (30)
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where,

EH[n] =
1
2

"
n(~r1)n(~r2)

r12
d~r1d~r2, (31)

is the Hartree energy representing the electrostatic repulsion of the charge distribution n(~r).

The remaining exhange-correlation functional is also decomposed as

Exc[n] = Ex[n] + Ec[n], (32)

where Ex[n] is the exchange energy functional evaluated from the Kohn-Sham wave function :

Ex[n] = 〈Φ[n]|Ŵee|Φ[n]〉 − EH[n], (33)

and Ec[n] is the correlation energy functional :

Ec[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Φ[n]|T̂ + Ŵee|Φ[n]〉. (34)

Therefore, the KS formulation of DFT can be reformulated as

E0 = min
n

(
Ts[n] + EHxc[n] +

∫
vne(~r)n(~r) d~r

)
= min

n

(
min
Φ→n
〈Φ|T̂ |Φ〉

)
+ ĒHxc[n] +

∫
vne(~r)n(~r)

)
,

(35)

but as the density n is the same than that of the Slater determinant Φ, one can combine the

minimizations over a minimization over Φ

E0 = min
Φ

(
〈Φ|T̂ + V̂ne|Φ〉 + EHxc[nΦ]

)
. (36)

Within such a formulation, provided that Exc[n] is known, the exact energy of a N-electron system

can be obtained by a minimization over a single Slater determinant. Therefore, the computational

cost is extremely reduced compared to approximations of WFT where a linear combination of

Slater determinants is introduced.

3. Illustration of the Kohn-Sham approach on the He atom and H2 molecule

The appealing feature of KS DFT is to provide the exact ground state energy and density

using a single Slater determinant formulation. Nevertheless, this scheme is based on an unknown

exchange-correlation functional, and therefore depends on the quality of the approximations for

this functional. Up to now, a large number of approximated exchange-correlation functionals have
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FIG. 4. He ground-state energy with increasing basis sets - KS-DFT vs FCI ; exact energy from Ref. 3

been developed, but throughout our work, we use the Perdew-Burke-Ernzerhof (PBE) exchange-

correlation functional9 to approximate Exc[n]. This choice is motivated by the fact that the PBE

functional was already used in very recent developments of new functionals by Julien Toulouse

and Emmanuel Giner.

In Fig. 4 below, we compare the convergence of the energy for the ground state of the Helium atom

using the FCI and KS PBE schemes. The latter presents a faster convergence with the basis set

compared to the FCI scheme. Nevertheless, the PBE approximation leads to a significant error

when reaching the converged energy.

To illustrate how PBE is not accurate enough to describe situations such as bond dissociation,

we report in Fig. 5 the dissociation curve of the H2 molecule. As apparent from Fig. 5, we remark

an underestimation of the energy at the equilibrium distance (about 10 mHa ' 0.3 eV) and at long

distances (about 73 mHa ' 1.9 eV).

III. HYBRID METHODS : THE BEST OF WFT AND KS-DFT

In Secs. II E and II F, we introduced advantages and drawbacks of both WFT and KS-DFT.

On the one hand, WFT offers a systematic way to improve the results using better basis sets, but

it converges too slowly. On the other hand, KS-DFT offers fast convergence with respect to the

basis set, but towards a wrong limit as the universal exchange-correlation functional is not known
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and therefore approximated in practice. Hybrid methods aim to take advantages of both methods.

We present two of them in this section : range-separated density functional theory and basis-set

correction.

A. Range-separated density functional theory

Range-separated density functional theory has been in development for nearly thirty years (see

Ref. 11 and references therein). It aims to take advantage of both KS-DFT and WFT : the semilocal

density-functional approximations12 are accurate at small interelectronic distances while WFT

calculations are more appropriate at long-range. As originally proposed by Savin in its seminal

paper13, the original Levy-Lieb functional of Eq. (28) can be written as follows11 :

F[n] =F lr,µ[n] + Ēsr,µ
Hxc[n] (37)

where the so-called long-range Levy-Lieb functional is defined as

F lr,µ[n] = min
Ψ→n
〈Ψ|T̂ + Ŵ lr,µ

ee |Ψ〉 (38)

where Ŵ lr,µ
ee (r12) =

∑
i> j wlr,µ

ee (r̂12) and wlr,µ
ee (r12) =

erf(µr12)
r12

is the so-called long-range interaction

tuned by the range-separation parameter µ, and the corresponding complementary short-range

Hartree-exchange-correlation functional is defined as

Ēsr,µ
Hxc[n] = F[n] − F lr,µ[n]. (39)

16



The advantage of introducing the long-range Levy-Lieb functional F lr,µ[n] is that it naturally

produces a wave function Ψlr,µ[n] associated to a given density n

Ψlr,µ[n] = argminΨ→n〈Ψ|T̂ + Ŵ lr,µ
ee |Ψ〉, (40)

and as the minimization in Eq. (38) contains the two-body operator Ŵ lr,µ
ee , Ψlr,µ[n] is necessary a

multi-determinant wave function as long as µ , 0. Therefore, this formalism naturally creates a

mathematical framework for DFT with a multi-determinant wave function that can take advantage

of both WFT and DFT. The complementary short-range Hartree-exchange-correlation part of F[n]

is being treated in a similar framework that the KS-DFT scheme. We decompose Ēsr,µ
Hxc[n] as in Sec.

II F for EHxc[n], and we get :

Ēsr,µ
Hxc[n] = Esr,µ

H [n] + Ēsr,µ
xc [n]. (41)

Here Esr,µ
H [n] is the short-range Hartree energy functional :

Esr,µ
H [n] =

1
2

"
n(~r1)n(~r2)wsr,µ

ee (r12) d~r1d~r2, (42)

where the short-range electron-electron interaction is wsr,µ
ee (r12) = 1/r12 − wlr,µ

ee (r12).

Similarly to what is done in the Kohn-Sham scheme (see Eq. (35)), one can recombine the

different minimization steps over the wave function and the density into a unique minimization over

the wave function

E0 = min
n

(
F[n] +

∫
vne(~r)n(~r)

)
= min

n

(
min
Ψ→n

(
〈Ψ| T̂ + Ŵ lr,µ

ee |Ψ〉
)

+ Ēsr,µ
Hxc[n] +

∫
vne(~r)n(~r) d~r

)
= min

Ψ

(
〈Ψ| T̂ + Ŵ lr,µ

ee + V̂ne|Ψ〉 + Ēsr,µ
Hxc[nΨ]

)
.

(43)

By introducing the RS-DFT variational energy of Ψ as

E[Ψ] = 〈Ψ| T̂ + Ŵ lr,µ
ee + V̂ne|Ψ〉 + Ēsr,µ

Hxc[nΨ] (44)

one can rewrite the ground state energy as

E0 = min
Ψ

E[Ψ]. (45)

Of course, as the formulation in terms of minimization over the density of Eq. (26) is equivalent

with that where the minimization is performed over wave functions Ψ (see Eq. (45)), the density
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associated with the minimizing wave function of Eq. (45) is necessary the exact ground state

density.

The wave function Ψlr,µ[n0] minimizing Eq. (45) can be obtained by imposing that the functional

derivative of E[Ψ] with respect to Ψ vanishes, which translates into(
T̂ + V̂ne + Ŵ lr,µ

ee

)
|Ψlr,µ[n0]〉 +

δĒsr,µ
Hxc[nΨ]
δ〈Ψ|

∣∣∣∣∣
Ψ=Ψlr,µ[n0]

= E|Ψlr,µ[n0]〉, (46)

where δĒsr,µ
Hxc[nΨ]
δ〈Ψ|

∣∣∣∣∣
Ψ=Ψlr,µ[n0]

is the functional derivative of Ēsr,µ
Hxc[nΨ] with respect to 〈Ψ| evaluated at

Ψ = Ψlr,µ[n0]. By introducing the complementary Hartree-exchange-correlation potential operator

ˆ̄VHxc[n] =

∫
d~r n̂(~r)

δĒHxc[n]
δn(~r)

, (47)

where n̂(~r) is the density operator, Eq. (46) can be rewritten as an effective non-linear Schrödinger

equation

Ĥlr,µ[n0]|Ψlr,µ[n0]〉 = Eµ|Ψlr,µ[n0]〉, (48)

where the so-called long-range Hamiltonian Ĥlr,µ[n] is defined as

Ĥlr,µ[n] = T̂ + V̂ne + ˆ̄VHxc[n] + Ŵ lr,µ
ee . (49)

It should be pointed out here that the non-linearity of Ĥlr,µ[n] comes from its dependence on the

density of its solution Ψlr,µ[n] through ˆ̄VHxc[n]. Also, Eq. (49) admits two limits :

1. when µ→ 0, Ŵ lr,µ
ee → 0 and Elr,µ

Hxc[n]→ ĒHxc[n] and the RS-DFT equations become the usual

Kohn-Sham equations.

2. when µ → ∞, Ŵ lr,µ
ee → Ŵee and Ēlr,µ

Hxc[n] → 0 and the RS-DFT equations become the usual

WFT equations.

Of course, provided that full flexibility is given to the wave function Ψ in the minimization

of Eq. (45) and that the complementary functional Ēsr,µ
Hxc[n] is known, the results of RS-DFT are

independent of µ : the density provided by the lowest-energy eigenfunction of Ĥlr,µ[n0] remains the

exact ground state density n0 and the associated variational energy associated is the exact ground

state energy.

Therefore, as in usual KS-DFT, one needs to have an expression for the unknown Ēsr,µ
xc [n], which

can also be decomposed in different ways. In Secs. III B and III C, we introduce two of them :

the standard and the multideterminant decompositions into short-range exchange and correlation

energies functionals.
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B. Standard decomposition of Ēlr,µ
xc [n] : the Kohn-Sham determinant as reference

The standard decomposition of Ēsr,µ
xc [n], directly modeled on the decomposition of Ēxc[n] in Sec.

II F, is the following :

Ēsr,µ
xc [n] = Esr,µ

x [n] + Ēsr,µ
c [n], (50)

where Esr,µ
x [n] is the short-range exchange energy functional taken using the Kohn-Sham wave

function Φ[n] = Ψlr,µ=0[n] as reference :

Esr,µ
x [n] = 〈Φ[n]|Ŵsr,µ

ee |Φ[n]〉 − Esr,µ
H , (51)

and Ēsr,µ
c [n] is the short-range correlation energy functional :

Ēsr,µ
c [n] = Ec[n] − (〈Ψlr,µ[n]|T̂ + Ŵ lr,µ

ee |Ψ
lr,µ[n]〉 − 〈Φ[n]|T̂ + Ŵ lr,µ

ee |Φ[n]〉), (52)

with the correlation energy functional Ec[n] defined in Eq. (34). If we define the long-range

correlation energy as

Ēlr,µ
c [n] = 〈Ψlr,µ[n]|T̂ + Ŵ lr,µ

ee |Ψ
lr,µ[n]〉 − 〈Φ[n]|T̂ + Ŵ lr,µ

ee |Φ[n]〉, (53)

the short-range correlation functional of Eq. (52) can be rewritten as

Ēsr,µ
c [n] = Ec[n] − Ēlr,µ

c [n], (54)

which means that the short-range correlation functional is therefore a smaller quantity (in absolute

value) than the usual correlation functional.

In practice, both exchange and correlation terms need to be approximated due to the unknown

exchange and correlation pair densities. In the following work, we choose to approximate Eqs.

(51) and (52) with the short-range Perdew-Burke-Ernzerhof (srPBE) exchange and correlation

functionals defined in Refs. 14, 15 and 16 as :

Esr,µ,PBE
x [n] =

∫
esr,µ,PBE

x (n(~r),∇n(~r)) d~r, (55)

and

Ēsr,µ,PBE
c [n] =

∫
ēsr,µ,PBE

c (n(~r),∇n(~r)) d~r, (56)

where ∇n(~r) is the density gradient, esr,µ,PBE
x and ēsr,µ,PBE

c are the energy densities.
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C. Multi-determinant decomposition of Ēsr,µ
xc [n] : Ψlr,µ[n] as reference

1. The exact equations

Alternatively, Ēsr,µ
xc [n] can be decomposed into multideterminant short-range exchange and

correlation energy functionals as formulated in Ref. 17 :

Ēsr,µ
xc [n] = Esr,µ

x,md[n] + Ēsr,µ
c,md[n], (57)

where the short-range exchange is now defined from the multideterminant wave-function Ψlr,µ

in contrast to the standard definition in Eq. (51). Therefore, we define the multi-determinant

short-range exchange functional as

Esr,µ
x,md[n] = 〈Ψlr,µ[n]|Ŵsr,µ

ee |Ψ
lr,µ[n]〉 − Esr,µ

H , (58)

which is designed such that it recovers the expectation value of the short-range interaction on the

multi-determinant wave function Ψlr,µ and not on the Kohn-Sham Slater determinant Φ[n] as in

Eq. (51). The advantage of this decomposition is clearer for the multi-determinant short-range

correlation energy which is then

Ēsr,µ
c,md[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Ψlr,µ[n]|T̂ + Ŵ lr

ee|Ψ
lr,µ[n]〉. (59)

Within these definitions, the Levy-Lieb functional can be rewritten as

F[n] = F lr,µ[n] + Esr,µ
H + Esr,µ

x,md[n] + Ēsr,µ
c,md[n]

= 〈Ψlr,µ[n]|T̂ + Ŵee|Ψ
lr,µ[n]〉 + Ēsr,µ

c,md[n]
(60)

and therefore, provided that Ψlr,µ[n0] is known one can express the exact ground state energy as

E0 = F[n0] +

∫
vne(~r)n0(~r) d~r

= 〈Ψlr,µ[n0]|T̂ + Ŵee|Ψ
lr,µ[n0]〉 +

∫
vne(~r)n0(~r) d~r + Ēsr,µ

c,md[n0]

= 〈Ψlr,µ[n0]|Ĥ|Ψlr,µ[n0]〉 + Ēsr,µ
c,md[n0]

(61)

which has several advantages. First, as the wave function Ψlr,µ[n] is a multi-determinant wave

function, the multi-determinant correlation functional is a smaller quantity (in absolute value) with

respect to the usual short-range correlation functional. Second, as an RS-DFT calculation necessary

produces the wave function Ψlr,µ[n], computing the expectation value of the full interaction Ŵee
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is usually a quite simple task, and therefore one only needs to compute Ēsr,µ
c,md[n] for which an

approximation was recently proposed18. The following paragraph exposes the main results of this

approximation for the Ēsr,µ
c,md[n].

2. Current approximation for Ēsr,µ
c,md[n]

In the work of Ref. 18, the authors have introduced an interpolation between the asymptotic

large-µ behaviour of the Ēsr,µ
c,md[n] and the usual PBE Kohn-Sham correlation functional at µ = 0 .

The large µ behaviour of Ēsr,µ
c,md[n] is

Ēsr,µ
c,md[n] =

µ→∞

c
µ3

∫
d~r n2(~r) + ... (62)

where c = 2
√
π(1 −

√
π)/3 and n2(~r) = n2(~r,~r) is the exact on-top pair density of the system at

~r, which is nothing but the exact pair-density at coalescence at ~r. Eq. (62) was obtained by an

asymptotic expansion of the RS-DFT equations at large µ (See Refs. 18 and 19). The large µ

behaviour of Eq. (62) naturally introduces the on-top pair density which is a local quantity strongly

related to the correlation effects, which focusses an increasing attention in the recent development

in DFT20,21.

The interpolation proposed by the authors in Ref. 18 is :

Ēsr,µ,PBE
c,md [n, n2] =

∫
ēsr,µ,PBE

c,md (n(~r),∇n(~r), n2(~r)) d~r (63)

where the correlation energy density ēsr,µPBE
c,md is written as :

ēsr,µ,PBE
c,md (n,∇n, n2) =

ePBE
c (n,∇n)

1 + β(n,∇n, n2)µ3 (64)

β(n,∇n, n2) =
ePBE

c (n,∇n)
cn2

, (65)

and ePBE
c the correlation PBE energy density from Ref. 16 for µ = 0. An advantage of this

formulation is that the correlation energy vanishes when n2(~r) = 0. Therefore, the correlation

energy is found to be zero for all systems with a vanishing on-top pair density, such as one-electron

systems or dissociated H2.

As apparent in Eqs. (62) and (64), an important ingredient is the exact on-top pair density, a

quantity which is a priori unreachable in practice. Nevertheless, based on large-µ analysis of the

effective Schrödinger-like equation22, one can derive an estimation of the exact on-top pair density
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(which corresponds to the µ → ∞ limit) based on the knowledge of the on-top pair density at a

finite value µ :

n2(~r) ' nlr,µ
2 (~r)

(
1 +

2
√
πµ

)−1

, (66)

where nlr,µ
2 (~r) is the on-top pair density obtained from the wave function Ψlr,µ which is a quantity

that can be numerically computed. Such an extrapolation scheme can be qualitatively understood :

at a finite value of µ, the on-top pair density is obtained from a wave function Ψlr,µ which comes

from an effective Hamiltonian with a non divergent interaction, and therefore the exact on-top

pair density (which corresponds to the fully interacting system) is necessary lower than nlr,µ
2 (~r).

Therefore, the authors of Ref. 18 proposed to use the formula of Eq. (66) in the Eqs. (62) and (63)

to propose the so-called PBE-OT functional.

3. Open questions with the PBE-OT functional and main direction of the internship

As no explicit functional form of the exchange counterpart to Ēsr,µ
c,md[n] was available, the authors

in Ref. 18 could not perform an actual minimization of the energy using the exchange and correlation

multi-determinant functionals which use the on-top pair density. Instead they used the formula

given by the last right-hand side of Eq. (61) where they approximate the exact long-range wave

function Ψlr,µ[n0] by the lowest-energy eigenfunction of Ĥlr,µ[n] using the srPBE approximation for

the ˆ̄VHxc[n].

One of the main subject of the internship was to develop several approximations of the multi-

determinant exchange functional based on the same philosophy than that of the PBE-OT approxima-

tion : using the known large-µ asymptotic behaviour of the multideterminant short-range exchange

functional and interpolating it with a usual Kohn-Sham exchange functional at µ = 0.

D. Basis-set correction

The basis-set correction (BSC) method aims to correct the basis-set error of wave-function

theory with density-functional theory. This approach, very recently introduced by Emmanuel Giner,

Julien Toulouse and co-authors in Ref. 23, has led to several developments and applications during

the last two years24–27. One of the main idea of this theory is to map the effect of the basis set

incompleteness on the electron-electron interaction operator as a removal of the divergence of the

Coulomb interaction. Then, the non-divergent interaction is fitted with the long-range interaction
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used in RS-DFT and correlation functionals with multi-determinant reference of RS-DFT are used

to recover the missing correlation energy. In the following paragraph, we recall the main equations

of such a theory.

We assume that an one-electron basis set B is given, and such a basis is used to generate

N-electron wave functions ΨB. Then we re-express the ground-state universal Levy-Lieb functional

using the wave functions ΨB which are restricted to the Hilbert space generated by the basis B :

F[nB] = min
ΨB→nB

〈ΨB|T̂ + Ŵee|Ψ
B〉 + ĒB[nB], (67)

where nB refers to all the densities that can be obtained from any wave-function ΨB in the Hilbert

space generated by B and ĒB[nB] is a complementary density functional such as :

ĒB[nB] = min
Ψ→nB
〈Ψ|T̂ + Ŵee|Ψ〉 − min

ΨB→nB
〈ΨB|T̂ + Ŵee|Ψ

B〉. (68)

As originally proposed in Ref. 23, Eqs. (67) and (68) provide a natural path to formalise the basis

set incompleteness error as a density functional. As in all DFT frameworks, the explicit form of the

complementary functional is not known and the goal is therefore to look for approximations for

ĒB[nB].

In the following, we explain how to link the RS-DFT and BSC methods. To do so, we first focus on

the Coulomb electron-electron interaction within a basis set B. Then, we develop the use of a local

range-separation parameter µ(~r) as established in Ref. 23.

1. The effective electron-electron interaction

In Eq. 67, the Coulomb expectation value is written as 〈ΨB|Ŵee|Ψ
B〉 where, using the projection

operator PB onto the Hilbert space generated by the basisB, we obtain 〈ΨB|Ŵee|Ψ
B〉 = 〈ΨB|ŴB

ee|Ψ
B〉.

Here, ŴB
ee is the Coulomb operator projected in the basisBwhich can be written in second-quantized

form as

ŴB
ee =

1
2

∑
pqrs∈B

Vrs
pqâ†r â†s âqâp (69)

where the summation runs over all the orthonormal spin-orbitals within the basis set B, Vrs
pq are the

usual two-electron integrals and the â†p and âp are the creation and annihilation operators associated

to a given spin-orbital ψp(~r), respectively.

As shown in Ref. 23, one can rewrite the expectation 〈ΨB|ŴB
ee|Ψ

B〉 as an integral in real-space

〈ΨB|ŴB
ee|Ψ

B〉 =
1
2

"
fΨB(~r1,~r2) d~r1d~r2, (70)
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FIG. 6. He effective electron-electron interaction for different basis sets as a function of r12.
where fΨB(~r1,~r2) is given in Ref. 23 as

fΨB(~r1,~r2) =
∑

pqrsmn

ψp(~r1)ψq(~r2)Vrs
pqΓ

mn
rs ψm(~r1)ψn(~r2) (71)

and Γmn
rs is the pair-density tensor given by Γmn

rs = 〈ΨB|â†r â†s ânâm|Ψ
B〉.

The same expectation value can be written also as an integral in real-space

〈ΨB|Ŵee|Ψ
B〉 =

1
2

"
1

r12
n2,ΨB(~r1,~r2) d~r1d~r2 (72)

where n2,ΨB(~r1,~r2) is the pair density of the wave function ΨB. From Eqs. (70) and 72, we introduce

the effective electron-electron interaction in the basis B :

wΨB(~r1,~r2) =
fΨB(~r1,~r2)

n2,ΨB(~r1,~r2)
, (73)

which is not defined when the on-top pair density is zero. Moreover, it has been demonstrated in

Ref. 23 that

lim
B→CBS

wΨB(~r1,~r2) =
1

r12
, (74)

which guarantees that one recovers the usual Coulomb operator in the complete basis set limit.

To illustrate the dependance of the effective electron-electron interaction on the basis-set size,

we report in Fig. 6 the variation of wΨB(r12) for different basis-set sizes. There, we notice the

non-diverging behaviour of the interaction. In addition to that, the increase of the basis-set size

leads to an increase of the interaction value at coalescence.
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2. Linking RS-DFT and BSC

In RS-DFT, the value of the long-range electron-electron interaction at coalescence is finite

and depends on the choice of the range-separation parameter µ through wlr,µ
ee (r12 = 0) = 2

√
π
µ. We

have illustrated in the previous section the link between wΨB and the basis-set quality. As both wlr,µ
ee

and wΨB show a non-diverging behaviour at coalescence, we can fit wΨB using wlr,µ
ee and then link

RS-DFT and WFT due to the same physical behaviours of the electron-electron interaction they

use.

We look at the coalescence point for a given point ~r and choose µB(~r) such as wΨB(~r,~r) =

wlr,µB(~r)
ee (r12 = 0). Then, the local range-separation parameter is defined as :

µB(~r) =

√
π

2
wΨB(~r,~r). (75)

Finally, we make the following approximation :

wΨB(~r1,~r2) ' wlr,µB(~r1)
ΨB

(r12) =
erf(µB(~r1)r12)

r12
. (76)

Results from Ref. 23 show the validity of this approxmiation.

3. Approximation for ĒB

Once that we can fit the Coulomb interaction within a basis set B by a long-range interaction

with a range-separation parameter µB(~r) varying in space, we can approximate the unknown ĒB by

the correlation functional with multi-determinant reference developed in RS-DFT.

In practice we use the following approximation for the complementary density functional :

ĒBPBE[nB, nB2 ] =

∫
ēsr,µB(~r),PBE

c,md (nB(~r),∇nB(~r), nB2 (~r)) d~r (77)

where nB(~r),∇nB(~r), nB2 (~r), µB(~r) are respectively the density, density gradient, on-top pair density

and range-separation parameter evaluated for the wave-function ΨB restricted to the basis B and

ēsr,µB(~r),PBE
c,md (nB(~r),∇nB(~r), nB2 (~r)) is expressed as in Eq. (64) using a local range-separation parameter.
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IV. IMPLEMENTATION OF RANGE-SEPARATION DENSITY FUNCTIONAL

THEORY AND BASIS-SET CORRECTION WITH SELF-CONSISTENT FIELD

CALCULATIONS

Now that we have set the framework, we present the work done during this internship. The

purpose was to implement the self-consistent calculation of both methods : RS-DFT with multi-

determinant exchange/correlation functionals, and BSC. In addition, we allow the iterative calcu-

lation of the on-top pair density to compare this effect with the use of the uniform electron gas

approximation of the on-top pair density.

A. The multideterminant short-range exchange functional

Similarly to the developpement of the multideterminant correlation energy, it is possible to know

the asymptotic large µ behaviour of Esr,µ
x,md[n] :

Esr,µ
x,md[n] =

µ→∞

π

2µ2

∫
nlr,µ

2,xc(~r) d~r +
g3

µ3

∫
nlr,µ

2 (~r) d~r +
g4

µ4

∫
nlr,µ

2 (~r) d~r + ..., (78)

where nlr,µ
2,xc is the exchange-correlation on-top pair density defined from the on-top pair density

defined in Eq. (66) :

nlr,µ
2,xc = nlr,µ

2 (~r) − n(~r)2, (79)

the coefficient g3 is :

g3 =

√
π(4
√

2 − 5)
3

, (80)

and g4 is expressed as a sign-alternating series that we are not able to solve. Then, we choose to

neglect this last term in the present study.

The interpolation between the large µ behaviour and the usual KS-PBE exchange functional at

µ = 0 is formulated in a similar way than what was done in Ref. 18 :

Esr,µ,PBE
x,md [n, n2] =

∫
esr,µ,PBE

x,md (n(~r),∇n(~r), n2(~r)) d~r, (81)

with the exchange energy density esr,µ,PBE
x,md expressed as :

esr,µ,PBE
x,md (n,∇n, n2) =

ePBE
x (n,∇n)

1 + δ(n,∇(n), n2)µ + γ(n,∇n, n2)µ2 , (82)

where

γ(n,∇n) =
ePBE

x (n,∇n)
a n2,xc

, (83)
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and

δ(n,∇n) = −
bn2(n)γ(n,∇n)2

ePBE
x (n,∇n)

, (84)

with a = π/2, b = 2
√
π(2
√

2 − 1)/3, and ePBE
x the exchange PBE energy density from Ref. 16 for

µ = 0.

Therefore, similarly to what was done for the multi-determinant correlation functional, the interpo-

lation is done here for the exchange part such that one recovers the known exact large µ behaviour

of the multi-determinant exchange functional when µ→ ∞

Esr,µ,PBE
x,md [n, n2] ∼

µ→∞

π

2µ2

∫
nlr,µ

2,xc(~r) d~r +
g3

µ3

∫
nlr,µ

2 (~r) d~r, (85)

and that it tends towards the usual PBE exchange functional when µ→ 0

lim
µ→0

Esr,µ,PBE
x,md [n, n2] = EPBE

x [n]. (86)

B. The choice of the on-top pair density

The general formulation of the multi-determinant functionals of Eqs. (64) and (82) provides the

opportunity to use different forms for the on-top pair density as the functionals explicitly depend on

this variable. We use either the estimated exact on-top pair density n2 (using Eq. (66)) or the on-top

pair density from the uniform electron gas nUEG
2 . In this section, we provide the formulation of the

on-top pair density in the framework of the uniform electron gas model.

The UEG on-top pair density for closed-shell systems is approximated as follows28 :

nUEG
2 (n) ' n2g0(n) (87)

with g0, the on-top pair distribution function of the spin-unpolarized UEG parameterized as :

g0(n) '
1
2

(1 − Brs + Cr2
s + Dr3

s + Er4
s )e−drs (88)

with C = 0.08193, D = −0.01277, E = 0.001859, d = 0.7524, B = −2aHD − d, aHD ' −0.36583

and the Wigner-Seitz radius rs =
(

3
4πn

)1/3
.

Then, the exchange-correlation on-top pair density is :

nUEG
2,xc (n) = nUEG

2 (n) − n2. (89)
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To differentiate both uses we denominate the approximations with the acronyms md-srPBEUEG

(multideterminant short-range PBE using nUEG
2 ) and md-srPBEOT (multideterminant short-range

PBE using n2).

C. The self-consistent field RS-DFT equation

We give the expression of the energy of the system in the framework of the RS-DFT :

E = min
Ψ

(
〈Ψ|T̂ + V̂ne + Ŵ lr,µ

ee |Ψ〉 + Esr,µ
H [nΨ] + Esr,µ

x,md[nΨ, n2,Ψ] + Ēsr,µ
c,md[nΨ, n2,Ψ]

)
. (90)

The minimizing wave function Ψlr,µ, obtained from the Euler-Lagrange equation associated with

the latter equation, satisfies the following Schrödinger-like equation29 :(
T̂ + V̂ne + Ŵ lr,µ

ee

)
|Ψlr,µ〉 +

δEsr,µ
H

δ〈Ψlr,µ|
+
δEsr,µ

x,md

δ〈Ψlr,µ|
+
δĒsr,µ

c,md

δ〈Ψlr,µ|
= Eµ|Ψlr,µ〉 (91)

the derivative of the Hartree energy functional being known, we focus on the multideterminant

exchange and correlation energy functionals. In practice, using the chain rule we get the general

form :
δĒsr,µ

y,md

δ〈Ψlr,µ|
=

∫ δĒsr,µ
y,md

δn(~r)
δn(~r)
δ〈Ψlr,µ|

+
δĒsr,µ

y,md

δn2(~r)
δn2(~r)
δ〈Ψlr,µ|

 d~r (92)

where the density, density gradient, and on-top pair density derivatives are formulated as :
δn(~r)
δ〈Ψlr,µ|

= n̂(~r)|Ψlr,µ〉, and
δn2(~r)
δ〈Ψlr,µ|

= n̂2(~r)|Ψlr,µ〉, (93)

where n̂(~r) and n̂2(~r) are the density and on-top pair density operators, respectively. Finally, the

equation to be solved is the following :(
T̂ + V̂ne + Ŵ lr,µ

ee + V̂sr,µ
H + V̂sr,µ

x,md + V̂sr,µ
c,md

)
|Ψlr,µ〉 = Ĥµ|Ψlr,µ〉 = Eµ|Ψlr,µ〉, (94)

where V̂sr,µ
H is the short-range Hartree potential operator :

V̂sr,µ
H =

∫ (
δEsr,µ

H

δn(~r)
n̂(~r)

)
d~r, (95)

V̂sr,µ
x,md is the multideterminant short-range energy potential operator that we express from Eq. (82) :

V̂sr,µ
x,md =

∫ δĒsr,µ
x,md

δn(~r)
n̂(~r) +

δĒsr,µ
x,md

δn2(~r)
n̂2(~r)

 d~r (96)

and V̂sr,µ
c,md is the multideterminant short-range correlation potential operator that we express from

Eq. (64) :

V̂sr,µ
c,md =

∫ δĒsr,µ
c,md

δn(~r)
n̂(~r) +

δĒsr,µ
c,md

δn2(~r)
n̂2(~r)

 d~r (97)
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D. The self-consistent field basis-set correction equation

Similarly, the Schrödinger-like equation to be solved for the basis-set convergence is the

following :

(
T̂B + V̂Bne + ŴB

ee + V̂B
)
|ΨB〉 = ĤB|ΨB〉 = EB|ΨB〉 (98)

where all the operators are projected in the Hilbert space generated by the basis set B, and V̂B is the

basis-set correction potential operator formulated as following according to Eq. (77) :

V̂B =

∫ (
δĒB

δn(~r)
n̂(~r) +

δĒB

δn2(~r)
n̂2(~r)

)
d~r. (99)

E. Implementation

Eqs. (94) and (98) are iterated until the non-linear potentials appearing in the non-linear

Hamiltonians Ĥµ and ĤB are such that it fullfil the eigenvalue equation. In practice, we implement

this self-consistent field equations in the Quantum Package programming environment. Both

algorithms can be summarized as follows, taking the exemple of the Helium atom.
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System : He→ By specifying the position(s)/configuration(s) of the nucleus(i)

One-electron basis-set : cc-pVTZ→ We use the Dunning basis-set.

Functional : md-srPBE→ Choice of the functional approximation.30

mu : 0.5 Bohr−1 → For RS-DFT calculations.

threshold : 0.00001 Ha→ Convergence threshold on the energy.

1. Calculation of the one determinant wave function Φ using the Hartree-Fock self-consistent

field equation.

2. Calculation of the full configuration interaction wave function with a self-consistent field

calculation.

3. Calculations of the density, density gradient and on-top pair density (the latter, when per-

forming calculations without the UEG approximation).

4. We build the Hamiltonian Ĥµ (RS-DFT) or ĤB (BSC).

5. We solve Eq. (94) (RS-DFT) or Eq. (98) (BSC).

6. We compare the obtained energy EStep 6 with the one obtained in Step 2 EStep 2. If |EStep 6 −

EStep 2| > threshold. We restart from Step 3 with the obtained wave function.

In the following, we present our test on the Helium atom and the H2 molecule using both RS-DFT

and BSC methods. We compare the use of the UEG approximation for the on-top pair density with

the one estimated from the wave function iteratively.

V. RESULTS AND DISCUSSION

A. Study of the RS-DFT energy approximations with the range separation parameter and

the basis set : the case of the He atom

In order to illustrate the dependency of the RS-DFT results on the range-separation parameter µ

, we report in Fig. 7 the variation of the ground state energy with the µ parameter. We notice that

for µ between 0.5 and 2 bohr−1, the energy decreases to a minimum. For µ = 1 bohr−1, we remark

that we reach a global minimum. For the cc-pVQZ basis set, for which the energies are almost

converged with respect to the basis-set size, we remark that this minimum is close to to the exact
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energy for the srPBE/lrFCI energy whereas it corresponds to an overestimation of the ground state

energy using the md-srPBEUEG approximation developed in the present work.

In view to study the dependency of the RS-DFT results on the basis-set size, we report in

Fig. 8, the variation of the estimation of the ground state energy with the basis-set size for two

different values of the parameter µ : 0.5 and 1 bohr−1. We compare the RS-DFT results with the

FCI and KS-DFT limits. For both values of µ, we notice that the energies converge faster than the

FCI energy and converge nearer to the exact energy than the KS-DFT energy. Nevertheless, the

important dependency of both approximations to the value of µ makes it difficult to chose a value

for a given system especially using the md-srPBEUEG approximation for which the minimum for

µ = 1 bohr−1 leads to an overestimation (in absolute value) of the ground state energy.

1. Understanding the md-srPBEUEG/lrFCI energy overestimation

In order to understand the overestimation of the total energy using the md-srPBEUEG approxi-

mation, we compare the energy components to the exact ones.

To begin with, we report in the first column of Tab. I the ground state energy obtained from

the self-consistent field (SCF) equations using both approximations : md-srPBEUEG/lrFCI and

srPBE/lrFCI. From Tab. I we observe an error with the SCF calculations using the former functional,

of about 7 mHa below the exact ground state energy, whereas the latter gives a very good estimate

of the exact ground state energy. Before looking to the energy components, we should ask ourselves

whether the eigenfunctions of Ĥµ (and therefore the properties that we can obtain from these

eigenfunctions) obtained for both approximated functionals are similar.

To do so, we use the self-consistent eigenfunction from the md-srPBEUEG/lrFCI approximation

to evaluate the srPBE/lrFCI variational energy : we report the value in the second column of Tab.

I. The difference between the obtained energy and the energy self-consistently computed using

the srPBE/lrFCI approximation are different from only 0.02 mHa, which is comparable to the

threshold of convergence of an SCF calculation. We did the same starting from the srPBE/lrFCI

eigenfunction to evaluate the md-srPBEUEG/lrFCI energy and report the result in the third column

of Tab. I : the energy difference is of the same order of magnitude. Here we conclude that both
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FIG. 7. He ground state energy variation with the range-separation parameter µ using the srPBE and md-

srPBEUEG approximations for the short range exchange and correlation energy functionals - top : cc-pVDZ

and cc-pVTZ ; bottom : cc-pVTZ and cc-pVQZ ; Exact energy from Ref. 3

self consistent calculations lead to very similar self-consistent eigenfunctions, at least in the sense

of the variational energy. This implies that both energy functionals have essentially the same

energy derivatives as they lead to very similar eigenfunctions. Therefore, the inaccuracy of the

md-srPBEUEG functional with respect to the srPBE functional can be seen as an error in the energy

rather than the energy derivative.

To further analyze the differences between the energy obtained using the md-srPBEUEG and

srPBE functionals, we report the exchange and correlation energies evaluated from one of the
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FIG. 8. He ground state energy variation with the basis set size using the srPBE and md-srPBEUEG

approximations for the short range exchange and correlation energy functionals : top : µ = 0.5 bohr−1 ;

bottom : µ = 1 bohr−1 ; Exact energy from Ref. 3

self-consistent eigenfunctions (here, we choose the md-srPBEUEG/lrFCI one) in Tab. II. We

compare this energies with the exact multideterminant exchange and correlation energies according

to Eqs. (58) and (61). The exact correlation energy is evaluated from the exact ground state energy

that we assume to be −2.903724 Ha according to Ref. 3.

In the framework of the md-srPBEUEG approximation, the exchange energy provides a relative

error of 1% whereas the correlation energy provides a relative error of 12%. Therefore one could

conclude that the approximation to multi-determinant exchange energy is of better quality than that

of the correlation energy. Nevertheless, when one looks at the absolute error one observes that the

33



md-srPBEUEG exchange energy overestimates the exact exchange energy by 4.7 mH, whereas

the correlation counterpart gives an error of 2.9 mH. Therefore, one can conclude that the error is

somehow equally distributed in absolute value among the exchange and correlation energy, even if

the error coming from the exchange energy is larger probably because of its larger weight on the

total energy.

2. Dependance of the short-range exchange energy functional on the choice of the on-top

pair density

From the ground state wave functions obtained from SCF calculations using md-srPBEUEG/lrFCI,

we compute the estimation of the short-range exchange and correlation energies using Eq. (64) and

(82) and we compare it with the exact formulations for the different on-top pair densities introduced

in Sec. IV B. We report the results in Tab. II.

The md-srPBEOTextrap energies (using the extrapolated on-top pair density according to Eq.

(66)) lead to relative errors of 15% for the exchange energy and 4% for the correlation energy

: the correlation energy is improved using the on-top pair density based on the self-consistent

eigenfunction contrary to the exchange energy. It should be notice that an error of 15% on the

exchange energy leads to about 50 mHa of error in absolute value, which is one order of magnitude

more inaccurate than the multi-determinant exchange energy computed with the on-top pair density

coming from the UEG. This results is somehow counterintuitive as one could expect that the on-top

pair density coming from the UEG would be less accurate than that coming from a wave function

computed for the specific system of study.

Finally, to illustrate the effect of the extrapolation of the on-top pair density, we report in the first

column of Tab. II the estimation of the exchange and correlation energy from the on-top pair

density nlr,µ
2 . Clearly, estimating the exchange energy using the extrapolated on-top pair density

does not improve the results compare to the non-extrapolated on-top pair density. Nevertheless, the

extrapolation slightly improves the estimation of the correlation energy.

To summarize this study on the helium atom, we can conclude that the use of the UEG on-top

pair density provides the best estimate for the exchange part of the multi-determinant functionals,

and that the on-toppair density coming from the eigenfunctions of Ĥµ gives better estimate for the

correlation counterpart. These results will lead us to more detailed studies of the exchange and
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correlation holes in order to better understand this unexpected discrepancy of behaviour.

RS-DFT SCF result EsrPBE[ΨWF] Emd-srPBEUEG[ΨWF]

WF : md-srPBEUEG -2.911076 -2.903766

WF : srPBE -2.903788 -2.911053

E0 : Exact energy -2.903724

TABLE I. He ground-state energy (in Hartree, basis-set : cc-pVTZ, mu=1) using different approximations.

The first column corresponds to SCF calculations using a given functional, the second and third column cor-

respond to the evaluation of the variational energy with one functional using the self-consistent eigenfunction

obtained with the other functional.

Esr,µ,PBEOTlr
x,md Esr,µ,PBEOTextrap

x,md Esr,µ,PBEUEG
x,md Eexact

x,md = 〈ΨWF|Ŵsr,µ
ee |Ψ

WF〉 − Esr,µ
H

-0.346554 (R.E. = 12%) -0.354575 (R.E. = 15%) -0.311970 (R.E. = 1%) -0.307603

Ēsr,µ,PBEOTlr
c,md Ēsr,µ,PBEOTextrap

c,md Ēsr,µ,PBEUEG
c,md Ēexact

c,md = E0 − 〈Ψ
WF|Ĥ|ΨWF〉

-0.025840 (R.E. = 6%) -0.025283 (R.E. = 4%) -0.027263 (R.E.= 12%) -0.024279

TABLE II. He multideterminant short-range exchange and correlation energies (in Hartree, basis set : cc-

pVTZ, mu=1 bohr−1) : comparison between the on-top pair density based on the uniform electron gas

approximation and the on-top pair densities from Eq. (66) (OTlr : nlr,µ
2 (~r), OTextrap : n2(~r)) - WF =

md-srPBEUEG - R.E. = relative error

B. H2 dissociation curve

In this section, we compute the H2 molecule dissociation curve using RS-DFT approximations.

We compare the multideterminant self-consistent solutions with the best approximation made

until now : the use of the srPBE/lrFCI eigenfunction to evaluate the correlation energy from the

extrapolated on-top pair density that we note srPBE/lrFCI+PBEOT.

We report in Fig. 9 the dissociation curve of the H2 molecule using different approximations. In

Fig. 9, we remark that the energies for large internuclear distances are improved using srPBE/lrFCI

and md-srPBEUEG/lrFCI approximations compare to the KS-DFT dissociation curve, especially

using the multideterminant short-range functionals. Nevertheless, the energies are still to high at

dissociation compared to the exact case and the srPBE/lrFCI+PBEOT result.
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Around the equilibrium distance, the different approximations provide reasonable energies. How-

ever, the md-srPBEUEG/lrFCI approximation still provides too low energies.
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FIG. 9. H2 dissociation curve (around the equilibrium distance) - Basis-set : cc-pVTZ

C. The basis-set correction method to overcome the dependence on the range-separation

parameter

1. Energy convergence with the basis-set size

We compare the convergence in energy in the BSC and RS-DFT methods. As stated in Sec. III D,

the BSC method approximates the complementary density functional with the multideterminant

short-range correlation energy with a range-separation parameter µB(~r) estimated for each space
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FIG. 10. He energy with increasing basis-set size using different DFT-WFT hybrid methods (SCF calcula-

tions).

point.

In Fig.10, we remark that the BSC method leads to converged energy widely close to the exact

energy compared to the RS-DFT approximations. Moreover, we notice a fast convergence with the

basis-set size compared to the FCI calculations. Finally, the use of an on-top pair density estimated

from the wave function leads to reasonable results.

2. H2 dissociation curve

In Fig. 11, we report the difference between the ground state energy evaluated with BSC

approximations and the exact energy. The difference with the FCI approximation is also presented.

There, we remark that the BSC calculations are more accurate than the FCI calculation. To be more

precise, adding self-consistency leads to results relatively more precise as the energy shift at the

equilibrium distance (marked with the black vertical line), is about 0.25 mHa. In addition to that,

we notice that the use of the exact on-top pair density leads to accurate results which will allow us

to consider a wider range of systems using the BSC method.
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VI. CONCLUSION

We have investigated the performance of the self-consistent field calculation of two WFT-DFT

hybrid methods : the range-separated DFT and the basis-set correction. The implementation of this

schemes needed the development of a multideterminant short-range exchange energy functional,

using different flavours of on-top pair densities: the one coming from the UEG, and the one coming

from the approximated eigenfunctions for the specific system under study.

Tests of the SCF RS-DFT scheme on the He atom and the H2 molecule revealed constantly too

low energies. Tests on the energy components made us conclude that the multi-determinant

short-range exchange functional is the main source of the errors. We noticed that the exchange

multi-determinant functional is much better described using the on-top pair density from the UEG

than the one coming from Ψlr,µ which was really unexpected. A road to explore would be to extend

the large-mu expansion of Esr,µ
x,md to the next term proportional to 1/µ4, but further studies are needed

to find a way to approximate the g4 constant.

A major outcome of the work presented here is the good accuracy of the energy obtained using

a self-consistent equation with the basis-set correction method. Moreover, the self-consistent
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calculations are feasable without the uniform gas electron model which allows us to extend our

range of systems to study.
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