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Many problem in science take the form

Find U in X such that:
F(U) =0



Many problem in science take the form

Find U in X such that:
F(U) =0

e.g. Hartree Fock of Kohn-Sham

Find M orbitals (¢9. ..., #?,) with corresponding lowest eigenvalues A}, . ..,

such that
HOp? = \0?, i=1,.... M,

where .
HO = 7'l[PO] — _EA + Vion + V(‘Ulll(/)o) -+ VX(‘(/)O)

with /)O = P[]



Many problem in science take the form

Find U in X such that:
F(U) =0

Solving this problem 1s impossible

hence classically we refer to discretisation

Find Uy 1n Xy such that:
Fn(Un) =0



Toy problem to start with (Dusson - M.)

Problem presentation: the Gross-Pitaevskii equation

Physical problem: Ground state of a system of bosons at very low temperature.

Two ways of seeing the problem: minimization problem — eigenvalue problem

Minimization problem: Energy functional minimization

| = inf{E(v), v e Hu(Q), /Qv2 = 1} with Q = (0, 1)

where E(v):%/Q|Vv|2—I—%/QVV2+%/Qv4, Vell p>1

Nonlinear eigenvalue problem

( (A + V + v*)u=\u
\
/u2:1.
. JQ

Setting: 1-Dimensional, Periodic Setting.

Remark: )\ is the smallest eigenvalue and is simple.
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Toy problem to start with (Dusson - M.)

Problem presentation: the Gross-Pitaevskii equation

Physical problem: Ground state of a system of bosons at very low temperature.

Two ways of seeing the problem: minimization problem — eigenvalue problem

Minimization problem: Energy functional minimization

| = inf{E(v), v e Hu(Q), /Qv2 = 1} with Q = (0, 1)

where E(v):%/Q|Vv]2—I-%/QVV2+%/Qv4, Vell p>1

Nonlinear eigenvalue problem

Find U in X such that:

( (A + V + v*)u=\u
F(U)=0 <

/u2:1.
\ Q

Setting: 1-Dimensional, Periodic Setting.

U= (u,\)

Remark: )\ is the smallest eigenvalue and is simple.



Toy problem to start with (Dusson - M.)

Resolution method

1- Space discretization: Planewave expansion.
Expansion in Fourier series:

u(x) = Z Ocex(x) where ex(x) = ™k~
k

Exact space: X = H%E(Q). Discretized space: Xy = Span{ex, |k| < N, k € N}.

Discretized
problem

Yvy EXN,/VUN°VVN—I—/ VUNVN—I—/ UR/VN—)\N/ uyvy = 0.
Q Q Q Q
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Toy problem to start with (Dusson - M.)

Resolution method

1- Space discretization: Planewave expansion.
Expansion in Fourier series:

u(x) = Z Ocex(x) where ex(x) = ™k~
k

Exact space: X = H%E(Q). Discretized space: Xy = Span{ex, |k| < N, k € N}.

Discretized
problem Vun € )</\”/QVL’N'VVN+/Q VUNVN‘l‘/Q U/?(/VN—AN/QUNVN = 0.
Find Uy in Xy such that: —Aun + HN[VUN n U?v] — Antn

Fn(Un) =0
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FN(U, )\) ~ FN(UN,AN) -+ DFN(UN,)\N)[(U, )\) — (uN,)\N)]
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Analysis
FN(U, )\) ~ FN(UN,AN) —+ DFN(UN,)\N)[(U, )\) — (uN,)\N)]

so that v — uny and A — A\n scale like
[DFN(UN,)\N)]_lFN(u, )\)

by using that
Rl s'\S) =0

his is A PRIORL analy
This

and
Hu — UNHHl -+ ‘)\ — )\N‘ S CH”LL — HNUHI_]l.



Toy problem to start with (Dusson - M.)

A priori analysis—Convergence results

Notations:

@ u: unique positive solution of the exact nonlinear eigenvalue problem
@ up: a minimizer of the discretized problem such that (uy, u);2 > 0.

Theorem (Cances, Chakir, Maday)

Under previous assumption, it holds: ||uy — u||j1 —nN— 100 O.
There exists two constants € R, and C € R such that, for N large enough

Eigenfunction luy — ul|r < C min ||vy — Ul

vy €EXn

Energy Bllun — ullfp < E(uy) — E(u) < Clluy — ull3,

Eigenvalue  |\y — A < C (|luv — ullfn + [Jun — ul|;2)

Eigenfunction luny — ul|z < Clluy — ullgr min |[¢uy—u — Un ||
YNEXN

where for w € X', bV, is the unique solution to the adjoint problem:
Find V,, € ut such that Vv € u™, ((E"(u) =NV, v)y, » = (W, V)y, .
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F(UN, )\N) ~ F(u, )\) + DF(U, )\)[(UN, )\N) — (U, )\)]

and (uy — u, Ay — A) behaves as
DF(u, \) "' F(un, An)

using this time the fact that F(u, A\) = 0.



Analysis

Flun,\n) ~ F(u,A\) + DF(u, \)[(un, An) — (u, A)]

and (uy — u, Ay — A) behaves as
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Analysis

Flun,\n) ~ F(u,A\) + DF(u, \)[(un, An) — (u, A)]

and (uy — u, Ay — A) behaves as

DF(u, \) "' F(un, An)

using this time the fact that F(u, A\) = 0.

lun — ull g

VAN VAN VAN

(un; An) = (U, Ml g1« g

DF(u, \)
DF(u,\)
DF(u,\)

_1F(UN, )\N)H

—1

—1

H'X IR
L(H'xIR,H-'xIR)

L(HIXIR,H-!'XIR)

eS'\dUﬁ\
F(uy, AN)HH—FXIR

Anvuny + Auy — Vuy — U?\[HH—L



Analysis

Flun,\n) ~ F(u,A\) + DF(u, \)[(un, An) — (u, A)]

and (uy — u, Ay — A) behaves as

gut this \S

ro
not the onty \SPAP)“F (un; An)

using this time the fact that F(u, A\) = 0.

lun — ull g

VAN VAN VAN

(un; An) = (U, Ml g1« g

DF(u, \)
DF(u, \)]

DF(u,\)

_1F(UN, AN

—1

—1

L(H'xIR,H-'xIR)

L(H'xIR,H-1'xIR)

)HHlle
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Toy problem to start with (Dusson - M.)

Resolution method

1- Space discretization: Planewave expansion.
Expansion in Fourier series:

= Z Ocex(x) where ex(x) = ™k~

Exact space: X = H#(Q). Discretized space: Xy = Span{ex, |k| < N, k € N}.

Discretized
problem

Yvy € XN,/ VUN-VVN—I—/
Q

VUNVN—I—/ U,%,VN—)\N/ uyvy = 0.
Q Q Q

2- lterative resolution: Algorithm used to solve the equation on Xy :

1. |Initialization: Well-chosen pair (13, \3). .
[terations
2. _ Loop until convergence (||uk, — uf || small). / \

Linear Prob/IEm (uN, )\. )

Ny(=Auk + Vuk + (uih)2uk) = A et N/

k Dimension

Normalization uj, = Zl\,’{/,/||u,’§,||Lz
Rayleigh Quotient A, = [ V(uf)? + V/(uf)? + (uf)*.

3. - Approximate eigenfunction and eigenvalue (u,ff“t, /\ﬁ;’“t).



Toy problem to start with (Dusson - M.)

First a posteriori bound

Theorem: Guaranteed bound

Under the previous conditions, there exists a unique (&, A) in the ball
B((uf, AK), 2ve) such that F(&1, \) = 0 and

1T — gl + A = Ay| < 29 = Auy + Vo + (uy)® = Aguplla— (1)
Theorem: Ground state )
There exists a computable condition depending on ||i — u e, A = A5, uf,
AK,, ik, 13, guaranteeing that (&1, A) is the ground state (u, \) of our problem.
Key lemma:

If (u, \) is solution to the nonlinear eigenvalue problem, and is the smallest
eigenpair of the linear operator —A + V + u?, then (u, \) is the ground state.

B((ul, Ay ), 27€)

A posteriori error bound valid under explicit

and computable conditions. °
(u, A)
/ QA/z’Ys'
Unfortunately too coarse and very e (uk, AK)

restrictive conditions. state




Toy problem to start with (Dusson - M.)

Second a posteriori bound

Residual: Ry = —Augf, + Vuf, + (uf)® — Ak uf.

Theorem: Asymptotic error bound
If ||u— uf||g and [N\ — Ak | are small enough, then there exists a computable

constant « > 1 such that for N and k large enough, the following a posteriori
error bound holds:

lu—ufllm < a(||Rm|H-1 IOV + 3(uk)? = Ny — 1)l [ﬁHHNRxHH-I

(UKLl
&V = bl = vhll+ Bl — vl (1 i) | )

where e(u — u,’§,) > 0. Asymptotically, o goes to 1.
||u—u,’\‘l||H1—)0

Corollary: If ||(V + 3(uf,)?> — N5, —1)_||;~ =0,
lu— uflln < al Ry [l

o = 1 K

l1—e(u—upy)

Depends only on the residual R,’\‘,.

Better bound...but guaranteed only if the error is small enough.



Toy problem to start with (Dusson - M.)

Second a posteriori bound

Residual: Ry = —Augf, + Vuf, + (uf)® — Ak uf.

Theorem: Asymptotic error bound
If ||u— uf||g and [N\ — Ak | are small enough, then there exists a computable

constant « > 1 such that for N and k large enough, the following a posteriori
error bound holds:

lu—ufllm < a(||Rm|H-1 IOV + 3(uk)? = Ny — 1)l [ﬁHHNRxHH-I

(UKLl
&V = bl = vhll+ Bl — vl (1 i) | )

1 K . :
more accurate! O = T where €(u — uy) > 0. Asymptotically, o goes to 1.

N ||u—u,’\‘l||H1—)0
Corollary: If ||(V + 3(uf,)?> — N5, —1)_||;~ =0,
lu— uflln < al Ry [l

Depends only on the residual R,’\‘,.

Better bound...but guaranteed only if the error is small enough.



Toy problem to start with (Dusson - M.)

Error balance—Separation of error

Aim

@ Analyse the error bound

@ Find the origin of the error: space discretization and iterations
@ Be able to refine the right parameter at each step

@ Get the best compromise between space discretization and number of
iteration that minimizes the number of computations for a given accuracy.

Two error sources:

@ Size of the Fourier space 2N + 1.

@ Number of iterations k.

Therefore, we decompose the main residual into two computable parts

_ k k k—1\2, k _ yk—1, k-1
Rbisc = —Auy + Vuy + (uy ") uy — Ay Uy

Ricer = (uy)” = (uiy ")2uly — Aoy + Ay "oy

such that
RKI — Rdisc + Riter-

Y9A



Toy problem to start with (Dusson - M.)

Numerical simulations: Framework

The Fourier coefficients of the potential V are given by Vj = —

Potential
1

25

X 15|
>

05E




Toy problem to start with (Dusson - M.)

Exact solution

"Exact” solution

@ Calculated in a discrete space with N=500.

@ Norm of the residual:
IRy ||y—1 = 4.10713

Results no more precise than 10— 13

Algorithm convergence to the exact solution




Toy problem to start with (Dusson - M.)

Error balance algorithm

Initialization

0 0
(“N0 ) )‘No )

discretization strategy

One iteration
k=k+1

ko \k

(U’N 5 )‘N )

Discretization error .
[teration error
too large:
i too large
Increase N i

Compute
ETrTtot

errn, erry

else

erry > 0.1lerrg

ETrTtot < €

Return

(UJ?\/ }‘?\I)




Toy problem to start with (Dusson - M.)

Error balance results

Error balance

102 p—
errN
errk
100 err, ,
- first guaranteed bound
—IIu-u:‘IIHu 120 Evolution of N
107 error in k
100}
10*F 80|
0
2 Z 60
L -6 .
10°F  errorin N a0l
20+t
10°F
o s
0 5 10 ) 15 20 25
10'10 -
10.12 1 1 1 1 1
0 5 10 15 20 25



Toy problem to start with (Dusson - M.)

Error balance results

Errors

10710

10-12

Error balance

error in k
= total error

errorin N

errN

errt ot

- first guaranteed bound
—llu-ull

120

100+

80+

Evolution of N

10 15 20 25
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Error balance results

Errors

10°

102

10
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108

10710

10-12

Error balance

more accurate !

errN

errt ot

- first guaranteed bound
—llu-ull

error i

tal error

- errorin N

120

100+

80+
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Evolution of N
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Error balance results

Errors

10°

102

10

10

108

10710

10-12

Error balance

more accurate !

errN

errt ot

- first guaranteed bound
—llu-ull

error i

tal error

- errorin N

120

100+

80+

20

Evolution of N

10 15 20 25



Toy problem to start with (Dusson - M.)

Error balance results

Error balance

more accurate !
N
errk
100 err, ,
- first guaranteed bound
—IIu-u:‘IlHu 120 - Evolution of N
102} error i
100+
tal error
10*F 80|
0
2 Z 60
- -6 -
10°-  errorin N ’ sl
108} gain of a factor 100 !! |
‘0 5 10 15 20 25
k
10710 \
-12 1 1 1 1 |
10 0 5 10 15 20 25



extension to Kohn Sham with

Eric Cances, Genevieve Dusson, Benjamin Stamm and Martin Vohralik
In a series of papers



What’s next ?



Next step

and beyond ...

We want now to incorporate the error due to the model]. ..

Indeed, what is of interest for us is the solution to the full, original, Schrodinger
equation. What is the link between Schrodinger and one of the feasible model.

@ Kohn Sham, DFT better correlation models

@ Hartree Fock post Hartree Fock methods

™7~



Balance the different sources of errors

- model error
- discretization (basis set) error
- resolution error
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and more

New basis set



New discretizations : hP-DG taking into account we know where the singularities are located

With Carlo Marcati



New discretizations : hP-DG taking into account we know where the singularities are located

With Carlo Marcati

forallk € N

> lld(z, o) 0% L2y < CuALE!,
|la|=k



New discretizations : hP-DG taking into account we know where the singularities are located

With Carlo Marcati new discretization with finite element methods




New discretizations : hP-DG taking into account we know where the singularities are located

With Carlo Marcati




New discretizations : hP-DG taking into account we know where the singularities are located

With Carlo Marcati

Figure 9.10 — Section of the solution for the HeH™ molecule, with outline of the three
dimensional mesh.



New discretizations : hP-DG taking into account we know where the singularities are located

With Carlo Marcati

Theorem 3. Let u, A be the solution to (4) and us, As be the solution to (11). Suppose that (7a), (7b), and
(81) hold. Then, for a space Xs with N degrees of freedom, there exists b > 0 such that

(83) lu — ug||pg < Ce™ N/
and
(84) A — Ag| < Ce oV

Furthermore, if (37) holds, then,
(85) A — Ag| < Ce 2NV



u
1.511e+01

11.333

7.9833

37776

=.0.4330-08

(a) (8)

FiGure 1. Left: mesh for the two dimensional approximation at a fixed refinement
step. Right: Numerical solution to (86) with V (z) = —r—3/2,



-4 L2 norm -4 L2 norm
10 0 --DG norm 10 0t --DG norm
~ L norm ~+ L norm
—[A = Agl —|A = X5
10°° 10°°
10710 10710
0 10 20 30 10 20 30 40
N1/3 N1/3
(a) (8)
-4 L norm
10 0 --DG norm
~+ L norm
— A = A4
1 0 '5 3
10 -10 |
10 20 30 40
Nl/3

(©)
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take home message
a priori .. no use but helps !

a posteriori.. allows to certify the results with
actual figures ! with accuracy

and even tell what to do to improve the
accuracy
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