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WFT in a nutshell ..

Basis set B ⇔ Hydrogen-like functions centered on atoms

Use Slater determinants for the Ne-particle basis set:
ΨB(r1, . . . , rNe) = ∑

I

cI ψ
B
I (r1, . . . , rNe)

Try to solve
Ĥ ΨB(r1, . . . , rNe) = E ΨB(r1, . . . , rNe)

A clear target: the FCI

EBFCI = min
ΨB

⟨ΨB∣T̂ + Ŵee + v̂ne ∣Ψ
B
⟩

ΨB a is a fully flexible wave function within B
Approximated WFT methods :

Who are ψBI ?
How to find cI ?
How to determine E ?
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3 questions leads to MANY WFT methods ...

(Some) Acronyms for Wave Function Theory ...

HF, MP2, CEPA-n, CISD(SC)2, CCSD(T), BCCD(T),
EOM-CCSD(T), PNO-CCSD(T), DLPNO-CCSD(T), ...

CASCI, CASSCF, MCSCF, MRMP2, XMCQDPT, CASPT2,
MS-CASPT2, NEVPT2, SC-NEVPT2, PC-NEVPT2,
QD-NEVPT2, JMMRPT2, ...

CIPSI, HBCI, MPS, DMRG, FCIQMC, iFCIQMC, ACI,
SORCI, DDCI, FOBOCI, ...

SS-MRCC, SU-MRCC, VU-MRCC, JM-MRCC,
Mk-MRCCSDT, ic-MRCC, ...
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Why so many acronyms ?

Do theoretical chemists love to produce more ? (ego issue ?)

Chemistry is very heterogeneous:

Different properties to compute (E , ∇⃗E , etc ...)
Different size of systems (101

→ 103 electrons)
Different states (ground/excited state, spin symmetry ...)
Different correlation (weak and/or strong)
Chemical accuracy (≈ 1 mH, 0.02 eV, 300 K)

Within B: what is the answer of selected CI to

Who are ψBI ?
How to find cI ?
How to determine E ?
What computational scaling with NB ?

What outside B ?
⇒ chemical accuracy and link with DFT
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Some history of selected CI in quantum chemistry

Selected CI: use a selection based on Ĥ
Natural idea (re)discovered and (slightly) improved MANY times

Bender, Davidson, 1969

Bender, Davidson, 1969

Malrieu et al, 1973 (CIPSI)

Buenker et al, 1978

Malrieu et al, 1983 (CIPSI)

Cimiraglia, 1985 (CIPSI)

Angeli et al, 1997 (CIPSI)

Hanrath et al, 2001

Sherill et al, 2005

Bunge et al, 2006

Ruedenberg et al, 2009
(CEEIS)

Toulouse group, 2013-2020
(CIPSI for QMC and
stochastic PT2)

Umrigar et al, 2016-2020
(HCI and stochastic PT2)

Liu et al, 2016 (iCI)

Evangelista et al, 2017
(ACI: CIPSI with another
name ... ?)

Hasegawa et al, 2017

...
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The concept of selection in WFT

Selection a priori:
You can predict exactly who are the ψBI
Ex: all singles and doubles on top of HF, CASCI space, etc ...
Ex: CISD, CCSD, CCSD(T), MP2, CASSCF, NEVPT2, ...

Selection without a priori
You cannot predict who are the ψBI
Ex: selection by perturbation, random walk in ψBI space, etc ...
Ex: selected CI (CIPSI, HCI, blablabla), FCI-QMC, etc ...
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Selection with ”A priori”

Not always adapted : user dependency /
Strong / weak correlation and their coupling ?
(CCSD(T) enough/adapted ?)
Choice of the active space ? (Am I missing physics ?)

Targets essentially a polynomial subspace of FCI

Clear target: mathematical optimization ,
Compute only ⟨ψI∣Ĥ ∣ψJ⟩ ≠ 0 (exploit strong sparsity of Ĥ)

Complex parametrization ( eT̂ ∣HF⟩, ∑I cIe
T̂I

∣ψI⟩, etc ... )

Good properties: size extensivity/spin multiplet degeneracy
Ex: CISD died, CCSD took over because of size extensivity
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Selection without ”A priori”

When affordable: essentially the FCI solution ,
Very trusty and black box
Handle strong / weak correlation and their coupling

Targets the whole FCI space /
Exponentially large target
But ”not so many” ∣ψI⟩ matter at the end ...

No A priori knowledge: Linear parametrization
i.e. CI expansion, not CC expansion
Simple equations (CI + MRPT2 for instance )
Much less simple to make it efficient

If not converged:

Size consistency issue
Bad error cancellations for energy differences
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The CIPSI-like algorithm (1)

Starting with a guess WF: ∣Ψ(0)⟩ = ∑N(0)

I=1 cI∣ψI⟩

do k = 0, Niterations

1 Look at all connected determinants ∣µ⟩: ⟨µ∣Ĥ ∣Ψ(k)⟩ ≠ 0
⇒ single or double excitation on top of any ∣ψI⟩

2 Compute the perturbative energy contribution εµ
3 Sort all the ∣µ⟩ by energy contribution εµ
4 Select the ”n” most important ones

5 Diagonalize Ĥ in the new set of determinants :
N(k+1)

= N(k) + n

6 You have a new reference WF :
∣Ψ(k+1)

⟩ = ∑
N(k+1)

I=1 cI∣ψI⟩

end do
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The perturbative and variational energy

At a given iteration, one has a given ∣Ψ⟩:

Variational energy

EVar =
⟨Ψ∣Ĥ ∣Ψ⟩

⟨Ψ∣Ψ⟩

Second order Perturbative energy

EPT2 = ∑
µ

εµ

εµ =
(⟨µ∣Ĥ ∣Ψ⟩)

2

EVar − ⟨µ∣Ĥ ∣µ⟩

CIPSI energy ≡ EVar + EPT2

⇒ approximation of the FCI energy
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Example: a cyanine ground and excited state

Frozen core FCI:

18 e in 111 MOs

FCI space: ≈ 1024ψI

∆E stabilized within
0.02 eV ≈ 2 × 106ψI
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What can you obtain with CIPSI-like algorithms

FCI quality whatever the level of correlation for gd/excited

Modest basis (DZ) and molecules (4/5 non-hydrogen atoms)
(See Loos et al 2018, 2019 with ≈ 400 FCI transition energies)

Validation of methods in complex situations
(Loos et al 2019 for doubly exc states and Giner et al 2019
for Cu2+ systems)

QMC trial wave functions (a lot of litterature)

Large CASSCF calculations (Umrigar et al)

Caffarel / Chicago go in the direction of solid state

CIPSI available in QP2: stand-alone open source program
https://quantum-package.readthedocs.io/en/master/

A lot of WFT tools

All ingredients for DFT

Developer friendly

Check the Youtube videos :)
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Example: the CCSD(T) atomization energies for the G2 set
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Method MAD RMSD MAX CA

CCSD(T)/cc-pVDZ 14.29 16.21 36.95 2
CCSD(T)/cc-pVTZ 6.06 6.84 14.25 2
CCSD(T)/cc-pVQZ 2.50 2.86 6.75 9
CCSD(T)/cc-pV5Z 1.28 1.46 3.46 21

What are we missing ?

Mainly short-range correlation effects of course

CCSD(T)+PBE/cc-pVTZ 0.85 1.11 2.64 36
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Collaborators on selected CI and WFT/DFT

selected CI

Anthony Scemama (LCPQ)
Michel Caffarel (LCPQ)
P. F. Loos (LCPQ)
Yan Garniron (LCPQ)

Anouar Benali (Chicago)

Kevin Gasperich (Chicago)

Anthony Ferté (LCPMR)

coupling WFT/DFT

Julien Toulouse (LCT)
P. F. Loos (LCPQ)
Barthélémy Pradines (LCT)

Anthony Ferté (LCPMR)
Rolland Assaraf (LCT)
Anthony Scemama (LCPQ)
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Exact conditions in WFT: the electron-electron cusp

Exact wave function Ψ(r1, . . . , rN) satisfies ∀ (r1, . . . , rN)

H Ψ(r1, . . . , rN) = E Ψ(r1, . . . , rN)

⎛

⎝

−

1

2

N

∑

i=1

∆ri +

N

∑

i=1

vne(ri) +∑
i>j

1

rij

⎞

⎠

Ψ(r1, . . . , rN) = E Ψ(r1, . . . , rN)

Divergence of coulomb interaction near r12 ≈ 0

lim
r12→0

1

r12
= +∞

H Ψ(r1, . . . , rN) must remain finite ∀ (r1, . . . , rN) :
⇒ The kinetic energy must compensate !
⇒ Discontinuity in first-derivative !

Cusp in the electronic wave function
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Exact conditions in WFT: the electron-electron cusp

Expansion of the exact Ψ around r12 ≈ 0:

Ψ(r1, r12) = Ψ(r1,0)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

System dependant

(1 +
1

2
r12

²

Universal !

+ . . . )

Valid for any fermionic systems

For instance the Uniform Electron Gaz

Expansion of truncated ΨB around r12 ≈ 0

ΨB(r1, r12) = ΨB(r1,0)(1 + 0 × r12
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

no cusp !

+ . . . )

One solution: F12 methods

ΨBF12
(r1, r12) = f (r12)ΨB(r1, r12)
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An aternative point of view on the cusp

Finite basis-set ⇔ ΨB no cusp

The cusp comes from a divergence in the interaction

ΨB could come from a non-divergent interaction

Truncation of B ⇔ Ŵ B
ee does not diverge !!

We know a DFT framework which looks like that ! :)
⇒ Range Separated DFT (RS-DFT)
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RS-DFT in a nutshell ...

Hybrid WFT/DFT scheme
(ex: range-separated hybrid)

WFT: Non diverging interaction

w lr
ee(r12;µ) =

erf(µ r12)

r12

µ: tunable parameter
No divergence ⇔ no cusp in WFT!
DFT: small r12 effects !
µ: controls the mixing between
WFT/DFT
Pb:

Self-interaction errors .. ?
which µ .. ?
choice of the functional .. ?
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WFT: Non diverging interaction

w lr
ee(r12;µ) =

erf(µ r12)

r12

µ: tunable parameter
No divergence ⇔ no cusp in WFT!
DFT: small r12 effects !
µ: controls the mixing between
WFT/DFT
Pb:

Self-interaction errors .. ?
which µ .. ?
choice of the functional .. ?
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Where we are going

Idea: taking RS-DFT only for basis set error

In practice

Formalism to merge WFT in B and DFT

Define properly a non diverging interaction within B

Fit it with the interaction used in RS-DFT

Use RS-DFT functionals ! :)
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The Levy-Lieb formalism of DFT

E0 = min
n(r)

{F [n(r)]
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

positive

+(vne∣n)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

negative

}

Nuclei-electron interaction energy:

(vne∣n) = ∫ dr vne(r) n(r)

⇒ system dependent

Levy-Lieb universal density functional:

F [n(r)] = min
Ψ→n(r)

⟨Ψ∣T̂ + Ŵee∣Ψ⟩

universal : holly grail of DFT !
Here Ψ is developed in a complete basis set
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Decomposition of F [nB(r)]

F [n] = min
Ψ→n

⟨Ψ∣T̂ + Ŵee∣Ψ⟩

We split F [n(r)] using B:

F [n(r)] = min
ΨB→n(r)

⟨ΨB∣T̂ + Ŵee∣Ψ
B
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

within B

+ ĒB[n(r)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

outside B

(1)

ĒB[n(r)] is the complementary density functional for B:

ĒB[n(r)] = min
Ψ→n(r)

⟨Ψ∣T̂ + Ŵee∣Ψ⟩ − min
ΨB→n(r)

⟨ΨB∣T̂ + Ŵee∣Ψ
B
⟩

ĒB[n(r)] must recover what is missing in ΨB

ĒB[n(r)] not universal, but a functional of the density !
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ĒB[n(r)] must recover what is missing in ΨB
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Approximation of the FCI density

Using the previous decomposition:

E0 = min
n(r)

{ min
ΨB→n(r)

⟨ΨB∣T̂ + Ŵee∣Ψ
B
⟩+(vne∣n)+Ē

B
[n(r)]} (2)

Needs to perform a minimization over n(r)
But FCI densities are really good !
Evaluation of (2) at n(r) = nΨBFCI

(r): final equation

E0 ≈ ⟨ΨBFCI∣H ∣ΨBFCI⟩ + ĒB[nΨB
FCI

(r)] (3)

Only approximation here :

n0(r) ≈ nΨB
FCI

(r) much weaker than Ψ0 ≈ ΨBFCI

ĒB[nΨBFCI
(r)] must recover what is missing in B

⇒ a large part is short-range correlation effects !
Question: how to find ĒB[nΨB

FCI
(r)] ?
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FCI

(r)] (3)

Only approximation here :

n0(r) ≈ nΨB
FCI

(r) much weaker than Ψ0 ≈ ΨBFCI
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FCI

(r)] (3)

Only approximation here :

n0(r) ≈ nΨB
FCI

(r) much weaker than Ψ0 ≈ ΨBFCI
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Where we are going

Idea: taking RS-DFT only for basis set error

In practice

Formalism to merge WFT in B and DFT ,

Define properly a non diverging interaction within B

Fit it with the interaction used in RS-DFT

Use RS-DFT functionals
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The effective e-e interaction within B

Expectation value of Ŵee over ΨB as an integral real space

⟨ΨB∣Ŵee∣Ψ
B
⟩ =

1

2

x
dr1 dr2

1

∣r1 − r2∣
nΨB

2 (r1, r2)

Consider Ŵ B
ee =

1
2 ∑ijkl ∈ B V kl

ij â†
k â

†
l âj âi in real space

(operator in Fock space ⇔ distributions in real space)
Do some more math (distributions again ...) and end-up with

⟨ΨB∣Ŵ B
ee∣Ψ

B
⟩ =

1

2

x
dr1 dr2 fΨB(r1, r2),

fΨB(r1, r2) = ∑

ijklmn

V kl
ij Γkl

mn φi(r1)φj(r2)φm(r1)φn(r2)

as ⟨ΨB∣Ŵee∣Ψ
B
⟩ = ⟨ΨB∣Ŵ B

ee∣Ψ
B
⟩ one can write

x
dr1 dr2

1

∣r1 − r2∣
nΨB

2 (r1, r2) =

x
dr1 dr2 fΨB(r1, r2)

fΨB(r1, r2)

nΨB
2 (r1, r2)

nΨB

2 (r1, r2)
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ee =

1
2 ∑ijkl ∈ B V kl

ij â†
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ee∣Ψ

B
⟩ =

1

2

x
dr1 dr2 fΨB(r1, r2),

fΨB(r1, r2) = ∑

ijklmn

V kl
ij Γkl

mn φi(r1)φj(r2)φm(r1)φn(r2)

as ⟨ΨB∣Ŵee∣Ψ
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k â
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l âj âi in real space

(operator in Fock space ⇔ distributions in real space)

Do some more math (distributions again ...) and end-up with

⟨ΨB∣Ŵ B
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A few properties of WΨB(r1, r2)

WΨB(r1, r2) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

f
ΨB
(r1,r2)

nΨB
2 (r1,r2)

, if nΨB

2 (r1, r2) ≠ 0,

∞, otherwise,

WΨB(r1, r2) depends on ΨB

necessary finite at r12 = 0 when B is incomplete

Because of its very construction

lim
B→∞

WΨB(r1, r2) =
1

r12
∀ΨB
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Example Hellium with ΨB =FCI
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Example Hellium with ΨB =HF

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

r1 at (0.5,0.5,0.5)

r12

1/r12

WHF3Z(r1,r2)
WHF5Z(r1,r2)

E.Giner
Overview of selected configuration interaction and its coupling with DFT
31



Where we are going

Idea: taking RS-DFT only for basis set error

In practice

Formalism to merge WFT in B and DFT ,

Define properly a non diverging interaction within B ,

Fit it with the interaction used in RS-DFT

Use RS-DFT functionals
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Fit WΨB(r1, r2) with RS-DFT interaction

RS-DFT uses non diverging interaction tuned by µ

w lr
ee(r1, r2;µ) =

erf(µ r12)

r12

Fit WΨB(r1, r2) at coalescence, i.e. r1 = r2 = r

WΨB(r, r) = w lr
ee(r, r;µ)

Leads to µ(r) varying in space

µΨB(r) =

√

π

2
WΨB(r, r)

lim
B→∞

µΨB(r) = +∞ ∀ΨB and ∀ r
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Example Hellium with ΨB =FCI

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2

µ
(r

; 
F
C

I V
X

Z
) 

(b
o
h
r-

1
)

Distance to the nucleus r (bohr)

V2Z

V3Z

V4Z

V5Z

E.Giner
Overview of selected configuration interaction and its coupling with DFT
34



Example Hellium with ΨB =HF
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Where we are going

Idea: taking RS-DFT only for basis set error

In practice

Formalism to merge WFT in B and DFT ,

Define properly a non diverging interaction within B ,

Fit it with the interaction used in RS-DFT ,

Use RS-DFT functionals
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Approximation for the functional

Using RSDFT functionals

Use the multi determinantal correlation functionals
εmd
c (n;µ) (Toulouse et al)

Emd
c = ∫ dr εmd

c (n(r);µ)

lim
µ→∞

εmd
c (n;µ) = 0

Use the range separation parameter µΨB(r)

ĒB[n(r)] ≈ ∫ dr εmd
c (n(r);µΨB(r))

εmd
c (n;µ): LDA already existed, new PBE version recently

proposed (JCP, 2019)
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Final working equations

E0 ≈ EBFCI + ∫ dr εmd
c (nΨBFCI

(r);µΨBFCI
(r))

At the end of the day

µΨB(r) Automatically adapts to B

Correct limit at the Complete Basis Set limit

Use pre-existing DFT methodology

E.Giner
Overview of selected configuration interaction and its coupling with DFT
38



The total energy of the He atom
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Generalization to any wave function method

Exact framework works with FCI energies, densities and WF

E0 ≈ EBFCI + ∫ dr εmd
c (nΨB

FCI
(r);µΨB

FCI
(r))

What do you need is:

E0 ≈ EBX + ∫ dr εmd
c (nY(r);µΨB(r))

CIPSI calculations:

EBX : CIPSI energy ≈ EBFCI

nY(r): CIPSI density ≈ nΨB
FCI

(r)

ΨB: HF

CCSD(T) calculations:

EBX : CCSD(T) energy ≈ EBFCI

nY(r): HF density ≈ nΨB
FCI

(r)

ΨB: HF
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Example: CIPSI ionization potentials of the B-Ne series

 0

 5

 10

 15

 20

 5  6  7  8  9  10

E
rr

o
r 

(m
H

)

Nuclear charge

chemical accuracy
DZ

E.Giner
Overview of selected configuration interaction and its coupling with DFT
41



Example: CIPSI ionization potentials of the B-Ne series

 0

 5

 10

 15

 20

 5  6  7  8  9  10

E
rr

o
r 

(m
H

)

Nuclear charge

chemical accuracy
DZ
TZ

E.Giner
Overview of selected configuration interaction and its coupling with DFT
41



Example: CIPSI ionization potentials of the B-Ne series

 0

 5

 10

 15

 20

 5  6  7  8  9  10

E
rr

o
r 

(m
H

)

Nuclear charge

chemical accuracy
DZ
TZ
QZ

E.Giner
Overview of selected configuration interaction and its coupling with DFT
41



Example: CIPSI ionization potentials of the B-Ne series

 0

 5

 10

 15

 20

 5  6  7  8  9  10

E
rr

o
r 

(m
H

)

Nuclear charge

chemical accuracy
DZ
TZ
QZ
5Z

E.Giner
Overview of selected configuration interaction and its coupling with DFT
41



Example: CIPSI ionization potentials of the B-Ne series
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The G2 set with CCSD(T) and CCSD(T)+PBE
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The G2 set with CCSD(T) and CCSD(T)+PBE
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Statistical analysis of the G2 set with CCSD(T)+PBE

Method MAD RMSD MAX CA

CCSD(T)/cc-pVDZ 14.29 16.21 36.95 2
CCSD(T)/cc-pVTZ 6.06 6.84 14.25 2
CCSD(T)/cc-pVQZ 2.50 2.86 6.75 9
CCSD(T)/cc-pV5Z 1.28 1.46 3.46 21

CCSD(T)+PBE/cc-pVDZ 1.96 2.59 7.33 19
CCSD(T)+PBE/cc-pVTZ 0.85 1.11 2.64 36
CCSD(T)+PBE/cc-pVQZ 0.31 0.42 1.16 53

To compute the DFT part we need only

The HF one body density
The HF two body density for α/β pairs
The MP2 integrals

very cheap compared to CCSD(T)
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Application to excited states: doubly excited states
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Conclusion and work in progress

What we obtained

Proper theory to link basis set error and DFT
J. Chem. Phys. 149, 194301 (2018)

No cusp ⇔ non divergent interaction !
Automatic, simple and cheap
Correct limit when B is complete

Application to weak correlation, CCSD(T) and CIPSI
J. Phys. Chem. Let., 10, 2931-2937 (2019)

Application to excited states, J. Chem. Phys. 151, (2019)

What we’re doing now

Development of new functionals for strong correlation

Self-consistent formalism, properties, GW

Formal aspects, new formalisms to connect B and DFT
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Collaborators

Julien Toulouse (introduction to DFT, enthousiasm ...)

Roland Assaraf (distributions ...)

Barthelemy Pradines (self consistent version, GW ...)

PF Loos (excited states, GW ... )

Andreas Savin (stimulating discussions ...)
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Atomization energies with CIPSI/CCSD(T)
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Link with the ECMD functionals in RSDFT

Definition of ĒB[n(r)]

ĒB[n] = ⟨Ψ[n]∣T̂ + Ŵee∣Ψ[n]⟩ − ⟨ΨB[n]∣T̂ + Ŵee∣Ψ
B
[n]⟩

Ψ[n] = argmin⟨Ψ∣T̂ + Ŵee∣Ψ⟩, ΨB[n] = argmin⟨Ψ∣T̂B + Ŵ B
ee∣Ψ⟩

Definition of multi-determinant correlation functional
(ECMD) of Toulouse et. al.

Ēµ[n] = ⟨Ψ[n]∣T̂ + Ŵee∣Ψ[n]⟩ − ⟨Ψµ
[n]∣T̂ + Ŵee∣Ψ

µ
[n]⟩

Ψ[n] = argmin⟨Ψ∣T̂ + Ŵee∣Ψ⟩, Ψµ
[n] = argmin⟨Ψ∣T̂ + Ŵ µ

ee∣Ψ⟩

Make a link between ΨB and Ψµ

The way to make a link: connect Ŵ B
ee and Ŵ µ

ee
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B
[n]⟩
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PES of N2 in AVXZ (X=D,T)
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PES of H10 in VXZ (X=D,T)
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The effective operator in practice

Ŵ B
ee =

1

2
∑

ijkl ∈ B

V kl
ij â†

k â
†
l âj âi , â†

k = ∫ dr1φk(r1)Ψ̂†
(r1)

Ŵ B
ee = ∫ dr1dr2dr1′dr2′w

B
ee(r1, r2, r1′ , r2′)Ψ̂†

(r1)Ψ̂†
(r2)Ψ̂(r2′)Ψ̂(r1′)

wBee(r1, r2, r1′ , r2′) = ∑

ijkl ∈ B

V kl
ij φk(r1)φl(r2)φj(r2′)φi(r1′)

Here wBee(r1, r2, r1′ , r2′) MUST NOT be considered as function as

lim
B→∞

wBee(r1, r2, r1′ , r2′) = δ(r1 − r1′)δ(r2 − r2′)
1

r12

The diagonal elements wBee(r1, r2, r1, r2) do not make sense ...
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The effective operator in practice

wBee(r1, r2, r1′ , r2′) MUST be considered as a distribution
Therefore, one MUST integrate wBee(r1, r2, r1′ , r2′) over functions

⟨ΨB∣Ŵ B
ee∣Ψ

B
⟩ = ∫ dr1dr2dr1′dr2′ w

B
ee(r1, r2, r1′ , r2′)

⟨ΨB∣Ψ̂†
(r1)Ψ̂†

(r2)Ψ̂(r2′)Ψ̂(r1′)∣Ψ
B
⟩

= ∫ dr1dr2dr1′dr2′ w
B
ee(r1, r2, r1′r2′)n

ΨB

2 (r1, r2, r1′r2′)

Apply the distribution wBee(r1, r2, r1′ , r2′), integrate over r1′ and r2′

⟨ΨB∣Ŵ B
ee∣Ψ

B
⟩ =∫ dr1dr2(∫ dr1′dr2′w

B
ee(r1, r2, r1′r2′)n

ΨB

2 (r1, r2, r1′r2′))

=∫ dr1dr2 fΨB(r1, r2)
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Why HF is such a good approximation for µ ?

WΨB(r1, r2) =
fΨB(r1, r2)

nΨB
2 (r1, r2)

Everything is within fΨB(r1, r2)

The explicit form for fΨB(r1, r2) for ΨB =HF for α/β electrons

fHF(r1, r2) = ∑

k∈α

∑

l∈β

∑

ij∈B

V kl
ij φi(r1)φj(r2)φk(r1)φl(r2) (4)

∑ij∈B⇔ one sees ”all the basis B”

Integrals involved V ab
ij like in usual MP2 calculations

Dominant effect to quantify the quality of the basis set

E.Giner
Overview of selected configuration interaction and its coupling with DFT
53



Finite basis-set approximation for the exact density

In actual calculation: finite one-electron basis set B
⇒ search over a subet of densities nB(r)

EB0 = min
nB(r)

{F [nB(r)] + (vne∣n
B
)}

nB0 (r) is the density giving the lowest energy

n0(r) might not be representable within B
⇒ EB0 ≥ E0

In practice fast convergence of the density with B

n0(r) ≈ nB0 (r)

E0 ≈ EB0
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What about DFT and the basis set ?

How does DFT works ?

expresses the two-body density with one-body density

n2(r1, r2) = n(r1)n(r2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

System dependant

+nxc(r1, r2,n,∇n, ...)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

quite universal

Example: LDA nxc(n) is taken from the electron gas

nxc(r1, r2) when r12 ≈ 0 ⇔ electron cusp ⇔ universal !
⇒ short-range correlation effects well reproduced !

n converges rapidly with B

Long-range correlation effects are less universal ...
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