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Why and how learning wave-function methods?

Understanding the different quantum-chemistry wave-function methods is important for:

� improving them and developing new ones;

� using them in applications in an appropriate way.

Recommended books:

� J.-L. Rivail, Éléments de chimie quantique à l’usage des chimistes, EDP Sciences /
CNRS Editions, 1999.

� G. Berthier, Nécessaire de chimie théorique, Ellipses, 2009.

� A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover Publications
Inc., NY, 1996.

� T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley, 2002.

My lecture notes:

� M1 course:
www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_qc.pdf

� M2 course:
www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_pt_cc.pdf
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The Hamiltonian and the many-electron wave function

� We consider an N-electron system (atom, molecule, solid) in the Born-Oppenheimer
and non-relativistic approximations.

� The electronic Hamiltonian in the position representation is, in atomic units,

Ĥ =

N∑

i

ĥ(ri ) +
1

2

N∑

i

N∑

j 6=i

1

|ri − rj |

where ĥ(ri ) = −(1/2)∇2
ri + vne(ri ) is the one-electron Hamiltonian including the

nuclei-electron interaction vne(ri ) = −∑

α Zα/|ri − Rα|.
� Stationary states satisfy the time-independent Schrödinger equation

ĤΨ(x1, x2, ..., xN) = EΨ(x1, x2, ..., xN)

where Ψ(x1, x2, ..., xN) is a wave function written with space-spin coordinates
xi = (ri , ωi ) (with ri ∈ R

3 and ωi ∈ {↑,↓}) and E is the associated energy.

� Because electrons are fermions, the wave function must be antisymmetric with respect
to the exchange of two space-spin coordinates

Ψ(..., xi , ..., xj , ...) = −Ψ(..., xj , ..., xi , ...)

� Using Dirac bra-ket notations, we write

Ĥ|Ψ〉 = E |Ψ〉
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The ground-state electronic energy and other properties

� The ground-state electronic energy E0 can be expressed with the variational principle

E0 = min
Ψ

〈Ψ|Ĥ|Ψ〉

where the minimization is over all N-electron antisymmetric wave functions Ψ
normalized to unity 〈Ψ|Ψ〉 = 1, and we recall that

〈Ψ|Ĥ|Ψ〉 =
∫ ∫

· · ·
∫

Ψ∗(x1, · · · , xN)ĤΨ(x1, · · · , xN) dx1 · · · dxN

� Properties (such as dipole moments or optical spectra) can be essentially obtained as
derivatives of the ground-state energy with respect to a perturbation.

� For systems containing heavy atoms, we need to include relativistic effects, e.g. using
the four-component Dirac Hamiltonian.

� For photochemistry studies, we sometimes need to go beyond the Born-Oppenheimer
approximation, e.g. calculating non-adiabatic couplings (or vibronic couplings) between
the electronic and nuclear vibrational states.

� We aim at about 1% accuracy on energy differences and other properties.
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Computational electronic-structure methods

� There are two main families of computational electronic-structure methods:
wave-function methods and density-functional theory.

� Wave-function methods directly try to approximate the wave function of a state of the

system.

� A hierachy of methods: Hartree-Fock, Configuration interaction, Perturbation
theory, Coupled-cluster theory, ...

� In principle, systematically improvable up to high accuracy
� But computationally costly

� Density-functional theory is based on a reformulation of the problem by expressing the

energy as a functional of the one-electron density.

� A plethora of approximate density functionals
� Reasonably low computational cost
� But not systematically improvable

� Both wave-function methods and density-functional theory are still actively developed
to improve accuracy and/or lower the computational cost.

� We may add a less used yet powerful family of methods known as quantum Monte
Carlo which use stochastic techniques to solve the Schrödinger equation.
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The Hartree-Fock wave function

� The Hartree-Fock (HF) method consists in approximating the ground-state wave
function Ψ0 as an antisymmetrized product of N spin orbitals {χi (x)}, denoted by Φ0,

Φ0(x1, x2, ..., xN) = A [χ1(x1)χ2(x2) · · ·χN(xN)]

with the antisymmetrizer A = 1/
√
N!

∑N!
n=1(−1)pn Pn where the sum is over the N!

permutations Pn of the space-spin coordinates {x1, ..., xN} and pn is the number of pair
inversions in Pn.

� Φ0(x1, x2, ..., xN) can be conveniently expressed as a Slater determinant

Φ0(x1, x2, ..., xN) =
1√
N!

∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN(xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣

� Often, shorthand notations are used: |Φ0〉 ≡ |χ1 χ2 · · · χN〉 ≡ |1 2 · · · N〉
� The spin orbitals are usually written as the product a spatial orbital ψi (r) and a spin

function α(ω) or β(ω)

χi (x) = ψi (r)α(ω) or χi (x) = ψi (r)β(ω)

with α(↑) = 1, α(↓) = 0 and β(↑) = 0, β(↓) = 1.

� The spin orbitals are taken as orthonormal: 〈χi |χj〉 =
∫
χ∗
i (x)χj(x)dx = δij
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The Hartree-Fock energy

� The HF electronic energy is written in terms of integrals over these spin orbitals (using
Slater’s rules for calculating expectation values over Slater determinants)

EHF[{χa}] = 〈Φ0|Ĥ|Φ0〉 =
N∑

a

haa +
1

2

N∑

a

N∑

b

〈ab||ab〉

where a and b refer to occupied spin orbitals in Φ0, haa are the one-electron integrals

haa = 〈χa|ĥ|χa〉 =
∫

dx χ∗
a (x) ĥ χa(x)

and 〈ab||ab〉 = 〈ab|ab〉 − 〈ab|ba〉 are the antisymmetrized two-electron integrals with

〈ij |kl〉 =
x

dx1dx2
χ∗
i (x1)χ

∗
j (x2)χk(x1)χl(x2)

|r1 − r2|
(in physicists’ notation)

� It is important to remember that the antisymmetrized integral 〈ab||ab〉 includes a direct
contribution 〈ab|ab〉 and an exchange contribution 〈ab|ba〉.

� The spin orbitals are determined by minimizing the HF energy subject to the spin-orbital
orthonormalization constraints

EHF = min
{χa}

〈χa|χb〉=δab

EHF[{χa}]
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The Hartree-Fock equations (1/2)

� Using the method of Lagrange multipliers for the constrained minimization, we introduce
the Lagrangian

L[{χa}] = EHF[{χa}]−
N∑

a

εa (〈χa|χa〉 − 1)

where εa is the Lagrange multiplier for the normalization constraint 〈χa|χa〉 = 1.

Remark: To derive the equations, we can momentarily drop the orthogonality constraints

〈χa|χb〉 = 0 for a 6= b.

� The Lagrangian must be stationary with respect to variations of the spin orbitals χa(x)

δL[{χa}]
δχ∗

a (x)
= 0

� Mathematical note: For a functional L : χ 7→ L[χ] of the function χ : x 7→ χ(x), an
infinitesimal variation δχ of χ leads to an infinitesimal variation of L which can be
expressed as

δL[χ] =

∫
δL[χ]

δχ(x)
δχ(x)dx

This defines the functional derivative of L[χ] with respect to χ(x):
δL[χ]

δχ(x)
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The Hartree-Fock equations (2/2)

� The stationary conditions lead to the (canonical) HF eigenvalue equations

f̂ χi (x) = εiχi (x)

giving occupied and virtual HF spin orbitals χi (x) and associated orbital energies εi .

� The one-electron HF Hamiltonian or Fock operator is

f̂ = ĥ + v̂HF

where v̂HF is the one-electron HF potential operator

v̂HF =

N∑

a

Ĵa − K̂a

composed of a Coulomb (or Hartree) operator and an exchange (or Fock) operator

Ĵaχi (x1) =

∫

dx2
χ∗
a (x2)χa(x2)

|r1 − r2|
χi (x1) and K̂aχi (x1) =

∫

dx2
χ∗
a (x2)χi (x2)

|r1 − r2|
χa(x1)

� The HF potential is a mean-field potential approximating the effect of the two-electron
interaction (1/2)

∑N

i

∑N

j 6=i 1/|ri − rj | in an average way.

� Since the HF potential depends the spin orbitals, the HF equations are a set of nonlinear
integro-differential equations that must be solved iteratively.

� The HF method is also called self-consistent field. 14/90



The Hartree-Fock orbital energies

� The (canonical) HF (occupied or virtual) orbital energies are

εi = 〈χi |f̂ |χi 〉 =
∫

χ∗
i (x) f̂ χi (x)dx = hii +

N∑

a

〈ia||ia〉

� To find the meaning of εi , let us remove an electron from the occupied spin orbital c.
Without relaxation of the orbitals, the new Slater determinant is

|ΦN−1
c 〉 = âc |Φ0〉 = |1 · · · (c − 1) (c + 1) · · · N〉

where âc is the annihilation operator of spin orbital c.

� The HF ionization potential (IP) for spin orbital c is then found to be

IPc = 〈ΦN−1
c |Ĥ|ΦN−1

c 〉 − EHF =
N∑

a 6=c

haa +
1

2

N∑

a 6=c

N∑

b 6=c

〈ab||ab〉 − EHF

= −hcc −
1

2

N∑

a 6=c

〈ac||ac〉 − 1

2

N∑

b 6=c

〈cb||cb〉 = −hcc −
N∑

a

〈ac||ac〉

� We arrive at Koopmans’ theorem for an occupied spin orbital c: IPc = −εc

� Similarly, Koopmans’ theorem states that the HF electron affinity (EA) for the virtual
spin orbital r , i.e. EAr = EHF − 〈ΦN+1

r |Ĥ|ΦN+1
r 〉 with |ΦN+1

r 〉 = â†r |Φ0〉 where â†r is the
creation operator for r , is given by

EAr = −εr
15/90
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Spin symmetry

� For an N-electron system, the total spin operator is Ŝ =
∑N

i ŝi , where ŝi is the spin
operator for electron i .

� The spin operators Ŝz and Ŝ2 commute with the nonrelativistic Hamiltonian, [Ĥ, Ŝz ] = 0
and [Ĥ, Ŝ2] = 0, i.e. Ŝz and Ŝ2 represent symmetries of the system.

� This implies that we can choose the eigenstates |Ψ〉 of H as simultaneously eigenstates
of Ŝz and Ŝ2:

Ĥ|Ψ〉 = E |Ψ〉 and Ŝz |Ψ〉 = MS |Ψ〉 and Ŝ
2|Ψ〉 = S(S + 1)|Ψ〉

� So far, we have considered a HF Slater determinant of the form |ΦUHF
0 〉 = |χ1χ2 · · ·χN〉

where each spin orbital is of the form χi = ψiα or χi = ψiβ but without any
restrictions on the spatial orbitals of different spins.

=⇒ This is called (spin-)unrestricted Hartree-Fock (UHF).

� The UHF Slater determinant is an eigenstate of Ŝz , but in general not an eigenstate of
Ŝ2

Ŝz |ΦUHF
0 〉 = MS |ΦUHF

0 〉 and Ŝ
2|ΦUHF

0 〉 6= S(S + 1)|ΦUHF
0 〉

� Thus, with UHF we generally have spin-symmetry breaking and the quantity
〈ΦUHF

0 |Ŝ2|ΦUHF
0 〉 − S(S + 1) measures spin contamination (for a state of exact spin S).
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Restricted Hartree-Fock for closed-shell states (1/2)

� In (spin-)restricted Hartree-Fock (RHF) for closed-shell states, the RHF Slater
determinant is

|ΦRHF
0 〉 = |ψ1α ψ1β ψ2α ψ2β · · ·ψN/2α ψN/2β〉 ≡ |1 1̄ 2 2̄ · · ·N/2 N/2〉

i.e., we have N/2 pairs of spin orbitals sharing the same spatial orbital.

� This RHF determinant is a proper eigenstate of both Ŝz and Ŝ2

Ŝz |ΦRHF
0 〉 = MS |ΦRHF

0 〉 and Ŝ
2|ΦRHF

0 〉 = S(S + 1)|ΦRHF
0 〉

with MS = 0 and S = 0, i.e. it is a spin singlet.

� By summing over the spin coordinates, we find the closed-shell RHF energy

ERHF = 2

N/2
∑

a

haa +

N/2
∑

a

N/2
∑

b

(

2 〈ab|ab〉
︸ ︷︷ ︸

Jab

−〈ab|ba〉
︸ ︷︷ ︸

Kab

)

where now a and b refer to occupied spatial orbitals, and we use the same notation as
before for the one-electron and two-electron integrals now in terms of the spatial orbitals

haa =

∫

dr ψ∗
a (r) ĥ ψa(r) and 〈ij |kl〉 =

x

dr1dr2
ψ∗

i (r1)ψ
∗
j (r2)ψk(r1)ψl(r2)

|r1 − r2|

� Note that chemists’ notation is also often used: (ik|jl) = 〈ij |kl〉
� Jab = 〈ab|ab〉 and Kab = 〈ab|ba〉 are the Coulomb and exchange integrals, respectively.
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Restricted Hartree-Fock for closed-shell states (2/2)

� The closed-shell RHF equations are

f̂ ψi (r) = εiψi (r)

where f̂ is now the closed-shell Fock operator

f̂ = ĥ +

N/2
∑

a

2Ĵa − K̂a

and Ĵa and K̂a are the Coulomb and exchange operators in terms of spatial orbitals

Ĵaψi (r1) =

∫

dr2
ψ∗

a (r2)ψa(r2)

|r1 − r2|
ψi (r1) and K̂aψi (r1) =

∫

dr2
ψ∗

a (r2)ψi (r2)

|r1 − r2|
ψa(r1)

� The (canonical) closed-shell RHF orbital energies are

εi = 〈ψi |f̂ |ψi 〉 =
∫

ψ∗
i (r) f̂ ψi (r)dr = hii +

N/2
∑

a

2Jia − Kia

� Remark: for open-shell states, if we still use pairs of spin-orbitals sharing the same
spatial orbital, we obtain (spin-)restricted open-shell Hartree-Fock (ROHF).

19/90



Outline

2 The Hartree-Fock method
The Hartree-Fock wave function and energy
The Hartree-Fock equations and orbital energies
Spin symmetry: UHF and RHF
RHF calculations in a basis set
Examples: He atom and H2 molecule
The electron correlation energy

20/90



RHF calculations in a basis set

� The spatial orbitals are expanded on a basis set {φµ(r)}µ=1,...,K

ψi (r) =
K∑

µ

Cµiφµ(r)

� In the basis, the RHF equations take the form a self-consistent generalized eigenvalue
matrix equation F Ci = εi S Ci

where Fµν =
∫
φ∗
µ(r) f̂ φν(r)dr are the elements of the closed-shell Fock matrix and

Sµν =
∫
φ∗
µ(r)φν(r)dr are the elements of the overlap matrix.

� The elements of the closed-shell Fock matrix are

Fµν = H
core
µν +

K∑

λ

K∑

σ

Pλσ

(

〈µσ|νλ〉 − 1

2
〈µσ|λν〉

)

where Hcore
µν =

∫
φ∗
µ(r)ĥφν(r)dr are the elements of the one-electron Hamiltonian and

Pλσ = 2
∑N/2

a CλaC
∗
σa are the elements of closed-shell density matrix.

� In practice, we use atom-centered Gaussian-type orbital (GTO) basis sets

φµ(r) =
∑

p

dpµ gp(r) with gp(r) = Np r
ℓp e

−αp r
2

Y
mp

ℓp
(θ, φ)

using spherical coordinates r = (r , θ, φ) around the nucleus center.

� In a straightforward implementation, the computational time of HF scales as O(K 4). 21/90



Outline

2 The Hartree-Fock method
The Hartree-Fock wave function and energy
The Hartree-Fock equations and orbital energies
Spin symmetry: UHF and RHF
RHF calculations in a basis set
Examples: He atom and H2 molecule
The electron correlation energy

22/90



Example of the He atom

� The ground-state RHF wave function of He atom is |ΦRHF
0 〉 = |1 1̄〉 , i.e. there is only

one spatial (1s) orbital ψ1(r) doubly occupied by two electrons of opposite spins.

� The ground-state RHF energy is

ERHF = 2h11 + 2J11 − K11 = 2h11 + J11

where we have used K11 = J11 = 〈11|11〉 = (11|11).
� The occupied (1s) orbital energy is

ε1 = h11 + 2J11 − K11 = h11 + J11

and the first virtual (2s) orbital energy is

ε2 = h22 + 2J12 − K12

� In the complete basis set (CBS) limit, the RHF energy is

ERHF = −2.8617... > Eexact = −2.9037... hartree

=⇒ we are missing dynamic (or weak) electron correlation.

and the occupied (1s) orbital energy is

ε1 = −0.9180... vs IPexact = 0.9037... hartree

=⇒ we are missing electron correlation for He and orbital relaxation for He+.
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Example of the H2 molecule (1/2)

� We consider the H2 molecule with a distance R between the two protons Ha and Hb.

� We work in a minimal basis set {φa(r), φb(r)}, composed of two identical 1s functions
centered on Ha and Hb, respectively.

� The ground-state RHF wave function is |ΦRHF
0 〉 = |1 1̄〉 ≡ |σgσg〉 where ψ1(r) ≡ ψσg(r)

is the doubly occupied σg bonding orbital.

� The ground-state UHF wave function is |ΦUHF
0 〉 = |ψ1α ψ2β〉 where ψ1(r) and ψ2(r)

are allowed to be different.

� Comparison RHF vs. UHF:
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� Around the equilibrium, RHF = UHF

and we are missing dynamic (or weak)
correlation.

� At dissociation, EUHF < ERHF, and
RHF is missing static (or strong)
correlation.
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Example of the H2 molecule (2/2)

� In the dissociation limit (R → ∞), we have

ψσg(r) =
1√
2
(φa(r) + φb(r))

and so the RHF wave function becomes

|ΦRHF
0 〉 = |σgσg〉 =

1

2

(

|ab̄〉+ |bā〉
︸ ︷︷ ︸

correct neutral terms

+ |aā〉+ |bb̄〉
︸ ︷︷ ︸

spurious ionic terms

)

and the RHF energy goes to

ERHF(H · · ·H) = 2haa
︸︷︷︸

2ERHF(H)

+
1

2
Jaa

︸︷︷︸
static correlation error

� In the dissociation limit (R → ∞), the UHF wave function becomes

|ΦUHF
0 〉 = |ab̄〉 or |ΦUHF

0 〉 = |bā〉
and the UHF energy correctly goes to

EUHF(H · · ·H) = 2haa = 2EUHF(H)

but we have spin contamination

〈ΦUHF
0 |Ŝ2|ΦUHF

0 〉 = 1 6= 0

due to spin-symmetry breaking of the UHF wave function which is a combination of a
singlet state and a triplet state.
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The electron correlation energy

� Let us repeat that the HF potential v̂HF is an one-electron mean-field potential
approximating the effect of the two-electron interaction (1/2)

∑N

i

∑N

j 6=i 1/|ri − rj | in an
average way.

� The effect of the electron-electron interaction beyond the HF approximation is called
electron correlation. The difference between the exact ground-state energy E0 and the
HF energy EHF is called the correlation energy

Ec = E0 − EHF

� Even though Ec is usually a small percentage of the total energy, it very often makes a
large and crucial contribution to energy differences (such as reaction energies, reaction
barrier heights, ...). It is therefore important to go beyond the HF approximation and
calculate the value of the correlation energy, which is the goal of the post-HF methods.

27/90
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A straightforward post-HF method: Full configuration interaction (FCI)

� In FCI, the wave function is expanded in terms of the HF determinant Φ0, the
singly excited determinants Φr

a, the doubly excited determinants Φrs
ab, and so on up

to N-fold excited determinants:

|ΨFCI〉 = c0|Φ0〉+
occ∑

a

vir∑

r

c
r
a |Φr

a〉+
occ∑

a<b

vir∑

r<s

c
rs
ab|Φrs

ab〉+
occ∑

a<b<c

vir∑

r<s<t

c
rst
abc |Φrst

abc〉+ · · ·

and the coefficients c = (c0, c
r
a , c

rs
ab, c

rst
abc , ...) are found by minimizing the FCI energy

EFCI = min
c
〈ΨFCI|Ĥ|ΨFCI〉 (with the normalization constraint 〈ΨFCI|ΨFCI〉 = 1), which

corresponds to diagonalizing Ĥ in the space spanned by all determinants.

� In a finite basis set, FCI gives an upper bound to the exact ground-state energy:
EFCI ≥ E0. In the limit of a complete basis set (K → ∞), FCI becomes exact:
EFCI = E0.

� The correlation energy Ec = E0 − EHF has a slow convergence with the basis size:
the error on Ec typically decreases as O

(
K−1

)
.

� Combinatorial explosion of number of determinants: Ndet =
(
2K
N

)
= O

(
(2K )N

)

=⇒ necessity to find low-power-scaling approximations

� To develop approximations to FCI, we identify two regimes of electron correlation:
dynamic (or weak) correlation and static (or strong) correlation.
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Post-HF methods for dynamic/weak correlation: single-reference methods

� Correlation is called “dynamic” or “weak” if c ra , c
rs
ab, ...≪ c0

=⇒ HF is a good starting point

� This corresponds to situations with a large HOMO-LUMO HF gap.
Example: He atom, H2 molecule at equilibrium distance.

� " Even if each coefficient is small, their total contribution can be large.

� For dynamic correlation, one considers“single-reference”methods which are
approximations to FCI assuming the predominance of the single HF determinant.

� Three main families of single-reference post-HF methods:

� Truncated configuration interaction (CI)
� Møller-Plesset (MP) perturbation theory (PT)
� Coupled-cluster (CC) theory
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Single-reference truncated configuration interaction (CI)

� The FCI wave function is truncated at a given excitation level, e.g. keeping only
single and double excitations (CISD):

|ΨCISD〉 = c0|Φ0〉+
occ∑

a

vir∑

r

c
r
a |Φr

a〉+
occ∑

a<b

vir∑

r<s

c
rs
ab|Φrs

ab〉

� The coefficients c = (c0, c
r
a , c

rs
ab) corresponding to the ground-state wave function are

found by minimizing the CISD energy (with the constraint of the normalization of the
wave function)

ECISD = min
c
〈ΨCISD|Ĥ|ΨCISD〉

which, according to the variational principle, gives ECISD ≥ EFCI.

� The CISD computational cost scales as O
(
K 6

)
.

� Serious shortcoming of truncated CI: it is not size-consistent.

� We prefer methods that satisfy the size-consistency property: the energy of a system
composed of two non-interacting fragments A and B is equal to the sum of the energies
of the separate fragments:

E (A · · ·B) = E (A) + E (B)

This property is important in chemistry. There is also the related size-extensity
property: E (N) ∝ N for N → ∞ which is important for extended systems.
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Single-reference Møller-Plesset (MP) perturbation theory

� Perturbation theory starting from the HF Hamiltonian: Ĥ = F̂ + V̂

� The first-order wave function includes only doubly excited determinants:

|Ψ(1)〉 =
occ∑

a<b

vir∑

r<s

c
rs,(1)
ab |Φrs

ab〉 with c
rs,(1)
ab = − 〈rs||ab〉

εr + εs − εa − εb

� The second-order energy gives the MP2 correlation energy:

E
MP2
c = 〈Φ0|V̂ |Ψ(1)〉 = −

occ∑

a<b

vir∑

r<s

|〈ab||rs〉|2
εr + εs − εa − εb

� MP2 is not variational (EMP2 can be lower than EFCI) but is size-consistent.

� The MP2 computational cost scales as O
(
K 5

)
.

� MP2 is a simple largely used post-HF method that often reasonably accounts for
dynamic/weak correlation.

� However, accuracy is limited by missing higher-order terms.
Including higher-order terms (MP3, MP4, etc...) can be computationally costly and the
series does not generally converge!
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Single-reference coupled-cluster (CC) theory

� In CC, the wave function is taken as an exponential of a truncated excitation
expansion, e.g. with single and double excitations (CCSD):

|ΨCCSD〉 = e
T̂1+T̂2 |Φ0〉

where T̂1 =
occ∑

a

vir∑

r

t
r
a â

†
r âa and T̂2 =

occ∑

a<b

vir∑

r<s

t
rs
ab â

†
r â

†
s âb âa are operators generating

singly and doubly excited determinants when acting on the HF wave function |Φ0〉.
� The CCSD wave function contains all excited determinants of the FCI wave

function, but the coefficients of triply, quadruply, etc.. excited determinants are
(antisymmetrized) products of the coefficients of singly and doubly excited determinants.

� The amplitudes tra and trsab are found by projecting the Schrödinger equation
Ĥ|ΨCCSD〉 = E |ΨCCSD〉 onto 〈Φr

a| and 〈Φrs
ab|.

� CCSD is not variational (ECCSD can be lower than EFCI) but is size-consistent.

� The CCSD computational cost scales as O
(
K 6

)
.

� CCSD is more accurate than MP2 because it contains higher-order terms.

� Possibility to perturbatively add the triple-excitation operator T̂3 in the expansion
=⇒ CCSD(T) which is often considered as the gold standard for dynamic/weak
correlation with computational cost scaling as O

(
K 7

)
.
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Post-HF methods for static/strong correlation: multi-reference methods

� Correlation is called “static” or “strong” if there are some coefficients in the FCI
expansion that are not small compared to c0 =⇒ HF is NOT a good starting point

� This corresponds to situations with a small HOMO-LUMO HF gap.
Example: Be atom, H2 molecule at dissociation, transition metals (Fe, Cu, etc...).

� Single-reference methods give too much importance to the HF determinant and
tend to fail for static/strong correlation (e.g., MP2 diverges for zero HOMO-LUMO
HF gap).

� Instead of HF, we use now the multiconfiguration self-consistent field (MCSCF)
method which is a multideterminant extension of HF:

EMCSCF = min
{cn,χi}

〈ΨMCSCF|Ĥ|ΨMCSCF〉 with |ΨMCSCF〉 =
∑

n

cn|Φn〉

Usually, we include all determinants |Φn〉 that can be generated from a small orbital
subspace, called complete active space (CAS) =⇒ accounts for static/strong
correlation but combinatorial explosion with the size of the active space!

� Starting from MCSCF, remaining dynamic/weak correlation can be added with

multi-reference (MR) methods:

� MRCI (e.g., MRCISD): not size-consistent but used for very small systems
� MRPT (e.g., CASPT2, NEVPT2): fairly used but requires large enough CAS
� MRCC: several proposed methods but no consensual method yet
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General configuration interaction (1/2)

� Configuration interaction is a general post-HF method consists in expanding the wave
function in a set of Slater determinants:

|ΨCI〉 =
Ndet∑

I=1

cI |ΦI 〉

� The coefficients {cI} for the ground state are determined by minimizing the CI energy
with the normalization constraint 〈ΨCI|ΨCI〉 =

∑Ndet
I=1 |cI |2 = 1

ECI = min
{cI }

∑Ndet
I=1

|cI |
2=1

〈ΨCI|Ĥ|ΨCI〉

� The corresponding Lagrangian is

L[{cI}] = 〈ΨCI|Ĥ|ΨCI〉 − ECI

(

〈ΨCI|ΨCI〉 − 1
)

=

Ndet∑

I=1

Ndet∑

J=1

c
∗
I cJ〈ΦI |Ĥ|ΦJ〉 − ECI

( Ndet∑

I=1

|cI |2 − 1
)

where ECI acts as the Lagrange multiplier for the normalization constraint.
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General configuration interaction (2/2)

� The stationary condition on the Lagrangian L

∂L

∂c∗I
= 0

leads to the CI eigenvalue equation

Ndet∑

J=1

〈ΦI |Ĥ|ΦJ〉cJ = ECI cI

� In matrix form, the CI eigenvalue equation is








〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 · · · 〈Φ1|Ĥ|ΦNdet〉
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 · · · 〈Φ2|Ĥ|ΦNdet〉

...
...

. . .
...

〈ΦNdet |Ĥ|Φ1〉 〈ΦNdet |Ĥ|Φ2〉 · · · 〈ΦNdet |Ĥ|ΦNdet〉















c1
c2
...

cNdet








= ECI








c1
c2
...

cNdet








where the matrix elements 〈ΦI |Ĥ|ΦJ〉 can be expressed in terms of one-electron and
two-electron integrals.

� Solutions of the CI eigenvalue equation give approximations to the ground and excited
states.
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Spin/spatial symmetries in configuration interaction

� Slater determinants generally do not satisfy the spin and spatial symmetries of the state
considered.

� To impose spin/spatial symmetry and simplify the calculation, one can form
configuration state functions (CSFs) {|ΨI 〉}, i.e. fixed linear combinations of a few
Slater determinants having the spin and spatial symmetries of the state considered

|ΨI 〉 =
∑

J

dJ,I |ΦJ〉

and use them to expand the CI wave function

|ΨCI〉 =
NCSF∑

I=1

cI |ΨI 〉

� For example, for a closed-shell state, the singly excited determinants |Φr
a〉 and |Φr̄

ā〉
(where a and r refer to spatial orbitals) are eigenstates of Ŝz but not of Ŝ2. One can
form a spin-singlet adapted CSF as

|1Ψr
a〉 =

1√
2

(
|Φr

a〉+ |Φr̄
ā〉
)

which is an eigenstate of Ŝ2 with eigenvalue 0.
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Configuration interaction singles doubles (1/2)

� Ideally, one would like to perform CI using all Slater determinants that can be generated
with the considered basis set, i.e. full configuration interaction (FCI) which gives the
exact wave function within the basis set.

� But the total number of determinants explodes combinatorially:Ndet =
(
2K
N

)
= O

(
(2K )N

)

� For the vast majority of cases, one has thus to select a subset of determinants. This can
be done either on-the-fly for each system (selected CI) or according to a predetermined
truncation pattern (e.g., excitation levels).

� The most common truncation is to keep only singly and doubly excited determinants,
known as configuration interaction singles doubles (CISD):

|ΨCISD〉 = c0|Φ0〉+
occ∑

a

vir∑

r

c
r
a |Φr

a〉+
occ∑

a<b

vir∑

r<s

c
rs
ab|Φrs

ab〉

and again the coefficients (c0, c
r
a , c

rs
ab) for the ground state are found by minimizing the

CISD energy ECISD = 〈ΨCISD|Ĥ|ΨCISD〉 (with the constraint of the normalization of the
wave function).
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Configuration interaction singles doubles (2/2)

� We obtain a CISD eigenvalue equation with the following block structure:





〈Φ0|Ĥ|Φ0〉 〈Φ0|Ĥ|Φr
a〉 〈Φ0|Ĥ|Φrs

ab〉
〈Φr′

a′ |Ĥ|Φ0〉 〈Φr′

a′ |Ĥ|Φr
a〉 〈Φr′

a′ |Ĥ|Φrs
ab〉

〈Φr′s′

a′b′ |Ĥ|Φ0〉 〈Φr′s′

a′b′ |Ĥ|Φr
a〉 〈Φr′s′

a′b′ |Ĥ|Φrs
ab〉










c0

c ra
c rsab



 = ECISD





c0

c ra
c rsab





� A well-known simplication: when using HF orbitals, the matrix element between the HF
determinant and any singly determinant vanishes

〈Φ0|Ĥ|Φr
a〉 = 〈Φr′

a′ |Ĥ|Φ0〉 = 0

This is known as Brillouin’s theorem.

� The proof of Brillouin’s theorem is immediate:

〈Φ0|Ĥ|Φr
a〉 = har +

occ∑

b

〈ab||rb〉 = far = 0

since far is an off-diagonal matrix element of the Fock operator.

� Doubly excited determinants make the most important contribution to the
correlation energy. Singly excited determinants still contribute a little via their
interaction with the doubly excited determinants.
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Example of the He atom

� For the He atom, since there are only two electrons, CISD = FCI.

� FCI ground-state energy using a family of basis sets of increasing size denoted by
cc-pVXZ where X =D,T,Q,5,6:

Total energy (hartree)

cc-pVDZ -2.8876...
cc-pVTZ -2.9002...
cc-pVQZ -2.9024...
cc-pV5Z -2.9032...
cc-pV6Z -2.9034...

Exact -2.9037...

� The FCI total energy has a slow power-law convergence as O(X−3) = O(K−1).
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Example of the H2 molecule (1/2)

� For the H2 molecule, again since there are only two electrons, CISD = FCI.

� We work in a minimal basis set {φa(r), φb(r)}, composed of two identical 1s functions
centered on Ha and Hb, respectively. This leads to two RHF molecular orbitals:
- the bonding orbital: ψ1(r) ≡ ψσg(r)

- the antibonding orbital: ψ2(r) ≡ ψσu(r)

� In this basis, due to spatial symmetry, only two determinants contribute to the FCI
ground-state wave function, i.e. the RHF determinant |Φ0〉 = |1 1̄〉 and the doubly

excited determinant |Φ2 2̄
1 1̄〉 = |2 2̄〉,

|ΨFCI〉 = c1|1 1̄〉+ c2|2 2̄〉

� The FCI 2× 2 matrix eigenvalue equation is
(

〈1 1̄|Ĥ|1 1̄〉 〈1 1̄|Ĥ|2 2̄〉
〈2 2̄|Ĥ|1 1̄〉 〈2 2̄|Ĥ|2 2̄〉

)(
c1
c2

)

= EFCI

(
c1
c2

)

with matrix elements:

〈1 1̄|Ĥ|1 1̄〉 = ERHF = 2h11 + J11 and 〈2 2̄|Ĥ|2 2̄〉 = E2 = 2h22 + J22

and 〈1 1̄|Ĥ|2 2̄〉 = 〈2 2̄|Ĥ|1 1̄〉 = 〈1 1̄||2 2̄〉 = 〈1 1̄|2 2̄〉 = 〈1 1|2 2〉 = K12
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Example of the H2 molecule (2/2)

� In the minimal basis, the FCI ground-state energy is

EFCI =
1

2

(

ERHF + E2 −
√

(E2 − ERHF)2 + 4K 2
12

)

= ERHF +∆−
√

∆2 + K 2
12

where ∆ = (E2 − ERHF)/2

� FCI energy curve in the minimal basis:
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Exact

� FCI corrects RHF at dissociation by including static (or strong) correlation

� Around the equilibrium distance, we are still missing some dynamic (or weak)
correlation due to the minimal basis 47/90
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Lack of size-consistency of truncated configuration interaction (1/2)

� We say that a method is size-consistent if the calculated energy of a system composed
of two non-interacting fragments A and B is equal to the sum of the calculated energies
of the separate fragments:

E (A · · ·B) = E (A) + E (B)

� The most serious drawback of truncated CI methods is that they are not
size-consistent.

� Let us show this on the example of two H2 molecules in a minimal basis set separated by
an infinite distance:

H2
︸︷︷︸

fragment A

· · · · · · H2
︸︷︷︸

fragment B

� We have two spatial RHF orbitals located on A, denoted by 1A and 2A, and two spatial
RHF orbitals located on B, denoted by 1B and 2B . The RHF wave function of the total
system is |ΦA ···B

RHF 〉 = |1A 1̄A 1B 1̄B〉.
� The CISD wave function of the total system is

|ΨA ···B
CISD 〉 = c1|1A 1̄A 1B 1̄B〉+ c2|2A 2̄A 1B 1̄B〉+ c3|1A 1̄A 2B 2̄B〉

� all single excitations do not contribute by symmetry

� all other double excitations (e.g., |2A 2̄B 1B 1̄B〉) do not contribute because they
give zero matrix elements
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Lack of size-consistency of truncated configuration interaction (2/2)

� The CISD 3× 3 matrix eigenvalue equation is




2EA
RHF K12 K12

K12 EA
RHF + EA

2 0
K12 0 EA

RHF + EA
2









c1
c2
c3



 = E
A···B
CISD





c1
c2
c3





where EA
RHF = EB

RHF = 2h11 + J11 is the RHF energy of one fragment,
EA
2 = EB

2 = 2h22 + J22 is the energy of a double excitation of one fragment, and
K12 = 〈12|12〉 is the interaction integral between the orbitals 1 and 2 of one fragment.

� The CISD ground-state energy is

E
A···B
CISD =

1

2

(

3EA
RHF + E

A
2 −

√

(EA
2 − EA

RHF)
2 + 8K 2

12

)

= 2EA
RHF +∆−

√

∆2 + 2K 2
12

where ∆ = (EA
2 − EA

RHF)/2

� It is not equal to twice the CISD ground-state energy of one fragment

E
A···B
CISD 6= 2EA

CISD = 2EA
RHF + 2∆− 2

√

∆2 + K 2
12

so CISD is not size-consistent.

� To recover size-consistency, one would need to add quadruple excitations in the
calculation of A · · ·B.
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General Rayleigh-Schrödinger perturbation theory (1/3)

� Consider a Hamiltonian Ĥλ depending on a coupling constant λ

Ĥ
λ = Ĥ

(0) + λV̂

where Ĥ(0) is a zeroth-order Hamiltonian operator and V̂ is a perturbation operator.
The“physical”Hamiltonian corresponds to λ = 1, i.e. Ĥ = Ĥλ=1.

� Ĥ(0) is chosen such that its eigenstates Φn and associated eigenvalues E
(0)
n are known

Ĥ
(0)|Φn〉 = E

(0)
n |Φn〉

and the eigenstates are chosen to be orthonormal, i.e. 〈Φn|Φm〉 = δn,m.

� We want to determine the eigenstates Ψλ
n and associated eigenvalues Eλ

n of the
Hamiltonian Ĥλ, e.g. for the ground state

Ĥ
λ|Ψλ

0 〉 = E
λ
0 |Ψλ

0 〉

� We assume that Eλ
0 and Ψλ

0 can be expanded in powers of λ

E
λ
0 = E

(0)
0 + λE

(1)
0 + λ2

E
(2)
0 + · · · and |Ψλ

0 〉 = |Ψ(0)
0 〉+ λ|Ψ(1)

0 〉+ λ2|Ψ(2)
0 〉+ · · ·

where Ψ
(0)
0 = Φ0.

� It is convenient to choose the so-called intermediate normalization for Ψλ
0 :

〈Φ0|Ψλ
0 〉 = 1 for all λ =⇒ 〈Φ0|Ψ(i)

0 〉 = 0 for all i ≥ 1
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General Rayleigh-Schrödinger perturbation theory (2/3)

� Insertion of the expansion of Ψλ
0 and Eλ

0 into the eigenvalue equation gives
(

Ĥ
(0) + λV̂

)(

|Φ0〉+ λ|Ψ(1)
0 〉+ λ2|Ψ(2)

0 〉+ · · ·
)

=
(

E
(0)
0 + λE

(1)
0 + λ2

E
(2)
0 + · · ·

)(

|Φ0〉+ λ|Ψ(1)
0 〉+ λ2|Ψ(2)

0 〉+ · · ·
)

� Looking at this equation order by order in λ, we recover at zeroth order

Ĥ
(0)|Φ0〉 = E

(0)
0 |Φ0〉

� At first order, we obtain

Ĥ
(0)|Ψ(1)

0 〉+ V̂ |Φ0〉 = E
(0)
0 |Ψ(1)

0 〉+ E
(1)
0 |Φ0〉

� Projecting this equation on the bra state 〈Φ0| gives the first-order energy correction

E
(1)
0 = 〈Φ0|V̂ |Φ0〉

� Projecting now on the bra states 〈Φn| for n 6= 0 gives

E
(0)
n 〈Φn|Ψ(1)

0 〉+ 〈Φn|V̂ |Φ0〉 = E
(0)
0 〈Φn|Ψ(1)

0 〉
leading to the first-order wave-function correction

〈Φn|Ψ(1)
0 〉 = − 〈Φn|V̂ |Φ0〉

E
(0)
n − E

(0)
0

=⇒ |Ψ(1)
0 〉 = −

∑

n 6=0

〈Φn|V̂ |Φ0〉
E

(0)
n − E

(0)
0

|Φn〉
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General Rayleigh-Schrödinger perturbation theory (3/3)

� Similarly, at second order, we obtain

Ĥ
(0)|Ψ(2)

0 〉+ V̂ |Ψ(1)
0 〉 = E

(0)
0 |Ψ(2)

0 〉+ E
(1)
0 |Ψ(1)

0 〉+ E
(2)
0 |Φ0〉

� Projecting this equation on the bra state 〈Φ0| gives the second-order energy correction

E
(2)
0 = 〈Φ0|V̂ |Ψ(1)

0 〉 = −
∑

n 6=0

|〈Φ0|V̂ |Φn〉|2

E
(0)
n − E

(0)
0

� Note that E
(2)
0 diverges if there is a state Φn (with n 6= 0) of energy E

(0)
n equals to E

(0)
0 ,

i.e. if the zeroth-order Hamiltonian Ĥ(0) has a degenerate ground state. In this case, one
must instead diagonalize the Hamiltonian in the degenerate space before applying
perturbation theory, which is known as degenerate perturbation theory.

� Similarly, one can show that the third-order energy correction has the following
expression

E
(3)
0 = 〈Φ0|V̂ |Ψ(2)

0 〉

=
∑

n,m 6=0

〈Φ0|V̂ |Φn〉〈Φn|V̂ |Φm〉〈Φm|V̂ |Φ0〉
(E

(0)
n − E

(0)
0 )(E

(0)
m − E

(0)
0 )

− E
(1)
0

∑

n 6=0

|〈Φ0|V̂ |Φn〉|2

(E
(0)
n − E

(0)
0 )2
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Møller-Plesset perturbation theory (1/5)

� Møller-Plesset (MP) perturbation theory is a particular case of Rayleigh-Schrödinger
perturbation theory for which the zeroth-order Hamiltonian is chosen to be the
Hartree-Fock (sometimes also simply called Fock) Hamiltonian

Ĥ
(0) = F̂

� The expression of F̂ in the position representation is

F (x1, x2, ..., xN) =

N∑

i

f (xi )

� The corresponding perturbation operator V̂ is thus the difference between the
electron-electron Coulomb interaction and the HF potential

V (x1, x2, ..., xN) =
1

2

N∑

i

N∑

i 6=j

1

|ri − rj |
−

N∑

i

vHF(xi )
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Møller-Plesset perturbation theory (2/5)

� The zeroth-order ground-state energy is given by the sum of occupied orbital energies

E
(0)
0 = 〈Φ0|F̂ |Φ0〉 =

occ∑

a

εa

� The first-order energy correction is the expectation value of the HF determinant over
the perturbation operator

E
(1)
0 = 〈Φ0|V̂ |Φ0〉

Therefore, the sum of the zeroth-order energy and first-order energy correction just gives
back the HF energy

E
(0)
0 + E

(1)
0 = 〈Φ0|F̂ + V̂ |Φ0〉 = EHF

� The second-order energy correction, also called the second-order Møller-Plesset
(MP2) correlation energy, is

E
(2)
0 = E

MP2
c = −

∑

n 6=0

|〈Φ0|V̂ |Φn〉|2

E
(0)
n − E

(0)
0

where Φn can be a priori single, double, triple, ... excited determinants.
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Møller-Plesset perturbation theory (3/5)

� In fact, since V̂ is at most a two-body operator, according to Slater’s rules, triple and
higher excitations with respect to Φ0 give vanishing matrix elements 〈Φ0|V̂ |Φn〉.

� In addition, it turns out that single excitations only give a vanishing contribution

〈Φ0|V̂ |Φr
a〉 =

occ∑

b

〈ab||rb〉 − 〈a|v̂HF|r〉 =
occ∑

b

〈ab||rb〉 −
occ∑

b

〈ab||rb〉 = 0

� It thus remains only the double excitations, Φn = Φrs
ab. Only the two-body part of the

perturbation operator gives a non-zero matrix element

〈Φ0|V̂ |Φrs
ab〉 = 〈ab||rs〉

and the zeroth-order energy corresponding to the doubly-excited determinants Φrs
ab is

E
(0)
n = E

rs,(0)
ab = E

(0)
0 + εr + εs − εa − εb

� We arrive at the following expression for the MP2 correlation energy

E
MP2
c = −

occ∑

a<b

vir∑

r<s

|〈ab||rs〉|2
εr + εs − εa − εb

= −1

4

occ∑

a,b

vir∑

r,s

|〈ab||rs〉|2
εr + εs − εa − εb

where we have used the antisymmetry property of the integrals, i.e.
〈ab||rs〉 = −〈ab||sr〉 = −〈ba||rs〉.
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Møller-Plesset perturbation theory (4/5)

� The MP2 correlation energy is always negative.

� It diverges to −∞ if one energy denominator εr + εs − εa − εb is zero. This happens for
systems with zero HF HOMO-LUMO gap, in which case MP perturbation theory cannot
be applied.

� The MP2 energy is

EMP2 = EHF + E
MP2
c

Since it is not a variational theory, EMP2 is not necessarily above EFCI.

� Similarly, it can be shown, after much work, that the third-order Møller-Plesset (MP3)
energy correction has the following expression

E
(3)
0 =

1

8

occ∑

a,b,c,d

vir∑

r,s

〈ab||rs〉〈rs||cd〉〈cd ||ab〉
(εr + εs − εa − εb)(εr + εs − εc − εd)

+
1

8

occ∑

a,b

vir∑

r,s,t,u

〈ab||rs〉〈rs||tu〉〈tu||ab〉
(εr + εs − εa − εb)(εt + εu − εa − εb)

+
occ∑

a,b,c

vir∑

r,s,t

〈ab||rs〉〈cs||tb〉〈rt||ac〉
(εr + εs − εa − εb)(εr + εt − εa − εc)

The calculation of the third- or higher-order terms is often considered as not worthwhile
in comparison with coupled-cluster methods for example.
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Møller-Plesset perturbation theory (5/5)

� The MP2 correlation energy can be rewritten as the sum of a direct and exchange term

E
MP2
c = −1

2

occ∑

a,b

vir∑

r,s

〈ab|rs〉〈rs|ab〉
εr + εs − εa − εb

+
1

2

occ∑

a,b

vir∑

r,s

〈ab|rs〉〈rs|ba〉
εr + εs − εa − εb

� These terms can be represented by Feynman diagrams (also called Goldstone
diagrams in quantum chemistry)

EMP2
c = a r s b + a

s r
b

� When starting from an unrestricted HF calculation, MP perturbation theory is correctly
size consistent at each order. In terms of diagrams, this comes from the fact that each
diagram contributing to the perturbative expansion of the energy is made of a single
linked piece. Unlinked diagrams do not contribute. This is known as the linked-cluster
theorem.
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The exponential ansatz (1/5)

� In coupled-cluster (CC) theory, one starts by an exponential ansatz for the CC wave
function

|ΨCC〉 = e
T̂ |Φ0〉

where |Φ0〉 is the HF wave function, and T̂ is the cluster (excitation) operator which
is the sum of cluster operators of different excitation levels

T̂ = T̂1 + T̂2 + · · ·+ T̂N

� T̂1 is the cluster operator for the single excitations

T̂1 =
occ∑

a

vir∑

r

t
r
a â

†
r âa

where tra are the single-excitation cluster amplitudes to be determined.

We have used the second-quantization formalism:

� âa is the annihilation operator of the spin orbital a

� â
†
r is the creation operator of the spin orbital r

� When the operator â†r âa acts on the HF single determinant |Φ0〉, it generates the

single-excited determinant |Φr
a〉 = â

†
r âa|Φ0〉
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The exponential ansatz (2/5)

� Similarly, T̂2 is the cluster operator for the double excitations

T̂2 =
occ∑

a<b

vir∑

r<s

t
rs
ab â

†
r â

†
s âb âa

where trsab are the double-excitation cluster amplitudes to be determined.

When the operator â†r â
†
s âb âa acts on the HF single determinant |Φ0〉, it generates the

double-excited determinant |Φrs
ab〉 = â†r â

†
s âb âa|Φ0〉.

� And so on up to the T̂N cluster operator for N-fold excitations.
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The exponential ansatz (3/5)

� To understand the action of the operator eT̂ on the HF wave function |Φ0〉, one can
expand the exponential and rearrange the operators in terms of excitation levels

e
T̂ = 1̂ + T̂ +

T̂ 2

2!
+

T̂ 3

3!
+ · · ·+ T̂N

N!
= 1̂ + Ĉ1 + Ĉ2 + · · ·+ ĈN

where the operator Ĉ1 generates single excitations, Ĉ2 generates double excitations, etc.

� Noting that the cluster operators T̂1, T̂2, ..., T̂N commute with each other, we find for
example for the first four excitation operators

Ĉ1 = T̂1

Ĉ2 = T̂2 +
1

2
T̂

2
1

Ĉ3 = T̂3 + T̂1T̂2 +
1

6
T̂

3
1

Ĉ4 = T̂4 + T̂1T̂3 +
1

2
T̂

2
2 +

1

2
T̂

2
1 T̂2 +

1

24
T̂

4
1

and so on.
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The exponential ansatz (4/5)

� The CC wave function has thus the same form as the FCI wave function
(with intermediate normalization, i.e. c0 = 1)

|ΨCC〉 =|Φ0〉+
occ∑

a

vir∑

r

c
r
a |Φr

a〉+
occ∑

a<b

vir∑

r<s

c
rs
ab|Φrs

ab〉

+

occ∑

a<b<c

vir∑

r<s<t

c
rst
abc |Φrst

abc〉+
occ∑

a<b<c<d

vir∑

r<s<t<u

c
rstu
abcd |Φrstu

abcd〉+ · · ·

with coefficients related to the cluster amplitudes by

c
r
a = t

r
a

c
rs
ab = t

rs
ab + t

r
a ∗ tsb

c
rst
abc = t

rst
abc + t

r
a ∗ tstbc + t

r
a ∗ tsb ∗ ttc

c
rstu
abcd = t

rstu
abcd + t

r
a ∗ tstubcd + t

rs
ab ∗ ttucd + t

r
a ∗ tsb ∗ ttucd + t

r
a ∗ tsb ∗ ttc ∗ tud and so on.

Here, ∗ means an antisymmetric product with respect to exchange of indices:

t
r
a ∗ tsb = t

r
at

s
b − t

r
bt

s
a

t
r
a ∗ tstbc = t

r
at

st
bc − t

r
bt

st
ac + t

r
c t

st
ab − t

s
at

rt
bc + t

s
bt

rt
ac − t

s
c t

rt
ab + t

t
at

rs
bc − t

t
bt

rs
ac + t

t
c t

rs
ab

t
r
a ∗ tsb ∗ ttc = t

r
at

s
bt

t
c − t

r
at

s
c t

t
b − t

r
bt

s
at

t
c − t

r
c t

s
bt

t
a + t

r
c t

s
at

t
b + t

r
bt

s
c t

t
a and so on.
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The exponential ansatz (5/5)

� Thus, the CC wave function contains all excited determinants, just as the FCI wave
function.

� If the cluster operator T̂ is not truncated, the CC wave function is just a nonlinear
reparametrization of the FCI wave function with the same number of parameters.
Optimizing the cluster amplitudes t = (tra , t

rs
ab, t

rst
abc , ...) so as to minimize the total energy

would lead to the FCI wave function.

� The interest of the CC approach only appears when the cluster operator is truncated.
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Truncation of the cluster operator

� For example, let us consider coupled-cluster singles doubles (CCSD)

T̂ = T̂1 + T̂2

� The expansion of eT̂ gives

e
T̂ = 1̂ + T̂1 +

(

T̂2 +
1

2
T̂

2
1

)

+

(

T̂1T̂2 +
1

6
T̂

3
1

)

+

(
1

2
T̂

2
2 +

1

2
T̂

2
1 T̂2 +

1

24
T̂

4
1

)

+ · · ·

� The CCSD wave function has the same form as the FCI wave function, i.e. it contains
all excited determinants, but with coefficients now given by

c
r
a = t

r
a

c
rs
ab = t

rs
ab + t

r
a ∗ tsb

c
rst
abc = t

r
a ∗ tstbc + t

r
a ∗ tsb ∗ ttc

c
rstu
abcd = t

rs
ab ∗ ttucd + t

r
a ∗ tsb ∗ ttucd + t

r
a ∗ tsb ∗ ttc ∗ tud and so on.

� The coefficients of the triple excitations c rstabc are now only approximated by products of
single- and double-excitation amplitudes tra and tstbc , and similarly for all higher-level
excitations.

� In comparison with the CISD wave function, the CCSD wave function has many more
excited determinants but the same number of free parameters t = (tra , t

rs
ab) to optimize!
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Truncation of the cluster operator: size-consistency

� Contrary to truncated CI, truncated CC is size-consistent, which directly stems from
the exponential form of the CC wave function.

� Proof: consider a system composed of two infinitely separated (and thus
non-interacting) fragments A and B:

Ĥ = ĤA + ĤB

� If the HF calculation is size-consistent, the HF wave function is multiplicatively separable:
|ΦA···B

0 〉 = |ΦA
0 〉 ⊗ |ΦB

0 〉 (where ⊗ is the antisymmetric tensor product)

� Because the orbitals of each fragments do not overlap, the cluster operator of the system
is additively separable: T̂A···B = T̂A + T̂B

� We can then show that the CC wave function is multiplicatively separable:

|ΨA···B
CC 〉 =eT̂

A···B

|ΦA···B
0 〉

=eT̂
A+T̂B

|ΦA
0 〉 ⊗ |ΦB

0 〉

=eT̂
A

|ΦA
0 〉 ⊗ eT̂

B

|ΦB
0 〉

=|ΨA
CC〉 ⊗ |ΨB

CC〉

� This implies that the CC energy is additively separable:

ECC(A · · ·B) =〈ΨA···B
CC |ĤA + ĤB |Ψ

A···B
CC 〉

=〈ΨA
CC|ĤA|Ψ

A
CC〉〈Ψ

B
CC|Ψ

B
CC〉+ 〈ΨA

CC|Ψ
A
CC〉〈Ψ

B
CC|ĤB |Ψ

B
CC〉

=ECC(A) + ECC(B)
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The coupled-cluster energy and the coupled-cluster equations (1/4)

� We consider in all the following an arbitrary truncation level of the cluster operator.

� The most natural way to calculate the CC amplitudes t and CC energy would be by
using the variational method:

E
var
CC = min

t
〈ΨCC|Ĥ|ΨCC〉

with the constraint 〈ΨCC|ΨCC〉 = 1.

However, the CC wave function includes all excited determinants up to N-fold
excitations which contribute to the expectation value, giving too complex equations to
be efficiently solved.

� A more convenient approach for obtaining the CC amplitudes and CC energy is the
projection method: we require that ΨCC satisfies the Schrödinger equation

(Ĥ − ECC)|ΨCC〉 = 0

projected onto the space spanned by 〈Φ0|, 〈Φr
a|, 〈Φrs

ab|, 〈Φrst
abc |,...

〈Φ0|(Ĥ − ECC)|ΨCC〉 = 0

〈Φr
a|(Ĥ − ECC)|ΨCC〉 = 0

〈Φrs
ab|(Ĥ − ECC)|ΨCC〉 = 0

〈Φrst
abc |(Ĥ − ECC)|ΨCC〉 = 0 and so on.
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The coupled-cluster energy and the coupled-cluster equations (2/4)

� Remember the expansion of |ΨCC〉 in terms of determinants

|ΨCC〉 =|Φ0〉+
occ∑

a

vir∑

r

c
r
a |Φr

a〉+
occ∑

a<b

vir∑

r<s

c
rs
ab|Φrs

ab〉+
occ∑

a<b<c

vir∑

r<s<t

c
rst
abc |Φrst

abc〉+ · · ·

with intermediate normalization, i.e. 〈Φ0|ΨCC〉 = 1 .

� We see that the first projected equation, 〈Φ0|(Ĥ − ECC)|ΨCC〉 = 0, gives the CC energy

ECC = 〈Φ0|Ĥ|ΨCC〉 = 〈Φ0|Ĥ|Φ0〉+
occ∑

a

vir∑

r

c
r
a〈Φ0|Ĥ|Φr

a〉+
occ∑

a<b

vir∑

r<s

c
rs
ab〈Φ0|Ĥ|Φrs

ab〉

in which, according to Slater’s rules, triple and higher excitations do not contribute.

� It turns out that the single-excitation term does not contribute thanks to Brillouin’s

theorem 〈Φ0|Ĥ|Φr
a〉 = 0 . We thus obtain the CC correlation energy

E
CC
c = ECC − EHF =

occ∑

a<b

vir∑

r<s

c
rs
ab〈Φ0|Ĥ|Φrs

ab〉 =
occ∑

a<b

vir∑

r<s

(trsab + t
r
a ∗ tsb)〈ab||rs〉

� Except in the uninteresting case where the cluster operator T̂ is not truncated, the CC
energy obtained with the projection method is not identical to the one that would have
been obtained with the variational method: ECC 6= E

var
CC . 72/90



The coupled-cluster energy and the coupled-cluster equations (3/4)

� The other projected equations determine the CC amplitudes

〈Φr
a|(Ĥ − ECC)e

T̂ |Φ0〉 = 0

〈Φrs
ab|(Ĥ − ECC)e

T̂ |Φ0〉 = 0

〈Φrst
abc |(Ĥ − ECC)e

T̂ |Φ0〉 = 0 and so on.

which are known as the unlinked CC amplitude equations.

� They represent a system of coupled nonlinear equations for the amplitudes tra , t
rs
ab, t

rst
abc ,

etc.

� To have the same number of equations as the number of unknown amplitudes, the
projection space must correspond to the truncation level of the cluster operator. For
example, for determining the CCSD amplitudes, one needs to consider projection onto
single- and double-excited determinants only.
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The coupled-cluster energy and the coupled-cluster equations (4/4)

� In practice, it is often more convenient to write the CC amplitude equations is a different

way, by first multiplying from the left by the operator e−T̂ in the Schrödinger equation
before projecting on the excited determinants

〈Φr
a|e−T̂

Ĥe
T̂ |Φ0〉 = 0

〈Φrs
ab|e−T̂

Ĥe
T̂ |Φ0〉 = 0

〈Φrst
abc |e−T̂

Ĥe
T̂ |Φ0〉 = 0 and so on.

which are known as the linked CC amplitude equations.

� Although equivalent to the unlinked equations, the linked equations have the advantage
of leading to more compact expressions which are manifestly size-consistent and at
most quartic in the amplitudes (at any truncation level).

� This last feature comes from the fact that the Baker-Campbell-Hausdorff (BCH)

expansion of e−T̂ ĤeT̂ exactly terminates at fourth order because Ĥ contains at most a
two-electron operator:

e
−T̂

Ĥe
T̂ = Ĥ + [Ĥ, T̂ ] +

1

2!
[[Ĥ, T̂ ], T̂ ] +

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ] +

1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ]
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Example: coupled-cluster doubles (1/3)

� As an example, we now write down the complete equations in the case of
coupled-cluster doubles (CCD).

� In this case, the cluster operator only contains double excitations

T̂ = T̂2

� The CCD wave function thus contains double-excited determinants, quadruple-excited
determinants, ...

|ΨCCD〉 = |Φ0〉+
occ∑

a<b

vir∑

r<s

t
rs
ab|Φrs

ab〉+
occ∑

a<b<c<d

vir∑

r<s<t<u

(trsab ∗ ttucd)|Φrstu
abcd〉+ · · ·

where the coefficients of the quadruple excitations are given by the antisymmetrized
product of the coefficients of the double excitations, and so on.

� The CCD correlation energy is given by

E
CCD
c =

occ∑

a<b

vir∑

r<s

t
rs
ab〈ab||rs〉

76/90



Example: coupled-cluster doubles (2/3)

� The double-excitation amplitudes trsab can be determined from the unlinked CC
amplitude equations:

〈Φrs
ab|(Ĥ − ECCD)|ΨCCD〉 = 0

� After expanding ΨCCD, we get:

〈Φrs
ab|Ĥ|Φ0〉+

occ∑

c<d

vir∑

t<u

〈Φrs
ab|Ĥ − ECCD|Φtu

cd〉ttucd +

occ∑

c<d

vir∑

t<u

〈Φrs
ab|Ĥ|Φrstu

abcd〉(trsab ∗ ttucd) = 0

� Using 〈Φrs
ab|Ĥ|Φ0〉 = 〈rs||ab〉 and 〈Φrs

ab|Ĥ|Φrstu
abcd〉 = 〈cd ||tu〉,

and inserting ECCD = EHF + ECCD
c gives

〈rs||ab〉+
occ∑

c<d

vir∑

t<u

〈Φrs
ab|Ĥ − EHF|Φtu

cd〉ttucd +
occ∑

c<d

vir∑

t<u

〈cd ||tu〉(trsab ∗ ttucd − t
rs
abt

tu
cd) = 0

� The remaining matrix element is more complicated to calculate, but can be done with a
bit of method and patience. We get:

〈Φrs
ab|Ĥ − EHF|Φtu

cd〉 = (εr + εs − εa − εb)δa,cδb,dδr,tδs,u

+〈rs||tu〉δa,dδb,d + 〈cd ||ab〉δr,tδs,u
+〈ds||ub〉δa,cδr,t − 〈cs||ub〉δa,dδr,t
−〈ds||tb〉δa,cδr,u + 〈cs||tb〉δa,dδr,u
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Example: coupled-cluster doubles (3/3)

� The final CCD amplitude equations are:

〈rs||ab〉+ (εr + εs − εa − εb)t
rs
ab +

vir∑

t<u

〈rs||tu〉ttuab +
occ∑

c<d

〈cd ||ab〉trscd

+
occ∑

d

vir∑

u

〈ds||ub〉truad −
occ∑

c

vir∑

u

〈cs||ub〉truca −
occ∑

d

vir∑

t

〈ds||tb〉ttrad +
occ∑

c

vir∑

t

〈cs||tb〉ttrca

+
occ∑

c<d

vir∑

t<u

〈cd ||tu〉(trsab ∗ ttucd − t
rs
abt

tu
cd) = 0

which are quadratic equations for t to be solved iteratively.

� Let us consider now the expansion of the amplitudes in powers of the electron-electron
interaction: trsab = t

rs,(1)
ab + t

rs,(2)
ab + · · · . The first-order amplitudes are given by

〈rs||ab〉+ (εr + εs − εa − εb)t
rs,(1)
ab = 0 =⇒ t

rs,(1)
ab = − 〈rs||ab〉

εr + εs − εa − εb

Inserting this expression of t
rs,(1)
ab in the expression of the correlation energy, we get:

occ∑

a<b

vir∑

r<s

t
rs,(1)
ab 〈ab||rs〉 = −

occ∑

a<b

vir∑

r<s

|〈ab||rs〉|2
εr + εs − εa − εb

= E
MP2
c

Thus, CCD correctly reduces to MP2 at second order in the e-e interaction.
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Coupled-cluster methods in practice: CCSD and CCSD(T)

� The first level of CC approximation commonly used is coupled-cluster singles doubles
(CCSD):

T̂ = T̂1 + T̂2

� CCSD is correct up to third order in the e-e interaction

� The CCSD computational cost scales as O(N2
occN

4
vir)

� To obtain more accurate results, it is important to add the effect of the triple-excitation
operator T̂3 perturbatively, which is known as coupled-cluster singles doubles and
perturbative triples (CCSD(T)):

� The second-order triple-excitation amplitudes t
rst,(2)
abc are calculated non-iteratively

from the CCSD double-excitation amplitudes trsab

� Parts of the fourth-order and fifth-order energy corrections involving the
triple-excitation amplitudes are calculated and added to the CCSD energy

ECCSD(T) = ECCSD + E
(4)
T + E

(5)
ST

� The CCSD(T) computational cost scales as O(N3
occN

4
vir)
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Benchmark on atomization energies

Atomization energies (in kJ/mol) of 16 small molecules: H2, CH2, CH4, H2O, NH3, HF,
N2, F2, CO, HCN, C2H2, C2H4, CH2O, HNO, CO2, O3

Normal distribution of errors for HF, MP2, CCSD, and CCSD(T) with different basis sets
(DZ, TZ, QZ, 5Z, 6Z):

With largest basis set (6Z): HF MP2 CCSD CCSD(T)
Mean error (in kJ/mol) -423.1 29.7 -37.3 -4.7
Standard deviation (in kJ/mol) 179.3 36.8 29.4 3.8

From T. Helgaker, High-Accuracy Quantum Chemistry, Lecture at UPMC, 2012 and

T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley, 2002.

81/90



Benchmark on reaction enthalpies

Reaction enthalpies and their errors (in kJ/mol) of 14 reactions for B3LYP and CCSD(T):

B3LYP CCSD(T) Exp.
CH2 + H2 → CH4 -543 1 -543 1 -544(2)
C2H2 + H2 → C2H4 -208 -5 -206 -3 -203(2)
C2H2 + 3H2 → 2CH4 -450 -4 -447 -1 -446(2)
CO + H2 → CH2O -34 -13 -23 -2 -21(1)
N2 + 3H2 → 2NH3 -166 -2 -165 -1 -164(1)
F2 + H2 → 2HF -540 23 -564 -1 -563(1)
O3 + 3H2 → 3H2O -909 24 -946 -13 -933(2)
CH2O + 2H2 → CH4 + H2O -234 17 -250 1 -251(1)
H2O2 + H2 → 2H2O -346 19 -362 3 -365(2)
CO + 3H2 → CH4 + H2O -268 4 -273 -1 -272(1)
HCN + 3H2 → CH4 + NH3 -320 0 -321 -1 -320(3)
HNO + 2H2 → H2O + NH3 -429 15 -446 -2 -444(1)
CO2 + 4H2 → CH4 + 2H2O -211 33 -244 0 -244(1)
2CH2 → C2H4 -845 -1 -845 -1 -844(3)

From T. Helgaker, High-Accuracy Quantum Chemistry, Lecture at UPMC, 2012 and

T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley, 2002.
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Benchmark on the dissociation energy curve of N2

Dissociation energy curve of N2 with cc-pVDZ basis set (with respect to the relative
internuclear distance R/Re where Re = 2.074 bohr):

From T. Kinoshita, O. Hino, and R. J. Bartlett, Journal of Chemical Physics 123, 074106 (2005)

or R. J. Bartlett, WIREs Computational Molecular Science 2, 126 (2012).
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Slater’s rules for matrix elements

Matrix elements where Φ0 is a reference Slater determinant, Φr
a is a single-excited

determinant, and Φrs
ab is a double-excited determinant made of spin orbitals {|i〉} which

are orthonormal 〈i |j〉 = δi,j :

� Zero-electron operator (overlap):

〈Φ0|Φ0〉 = 1 〈Φ0|Φr
a〉 = 0 〈Φ0|Φrs

ab〉 = 0

� One-electron operator: Ô1 =
∑N

i ĥ(xi )

〈Φ0|Ô1|Φ0〉 =
occ∑

a

〈a|ĥ|a〉 〈Φ0|Ô1|Φr
a〉 = 〈a|ĥ|r〉 〈Φ0|Ô1|Φrs

ab〉 = 0

� Two-electron operator: Ô2 =
∑N

i

∑N

j>i 1/rij

〈Φ0|Ô2|Φ0〉 =
1

2

occ∑

a

occ∑

b

〈ab||ab〉 〈Φ0|Ô2|Φr
a〉 =

occ∑

b

〈ab||rb〉

〈Φ0|Ô2|Φrs
ab〉 = 〈ab||rs〉

All matrix elements between Φ0 and triple- or higher-excited determinants are zero.
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Gaussian basis sets

In quantum chemistry, we usually use Gaussian-type orbital (GTO) basis sets.

� The atom-centered Gaussian primitive functions are of the form

gp(r) = Np r
ℓp e

−αp r
2

Y
mp

ℓp
(θ, φ)

using spherical coordinates r = (r , θ, φ) around the nucleus center.

� The basis functions are generally fixed linear combinations (called contractions) of
primitive functions:

φµ(r) =
∑

p

dpµ gp(r)

� Many such GTO basis sets have been optimized for each atom. Widely used for
wave-function calculations is the family of Dunning’s correlation-consistent polarized
valence basis sets denoted by cc-pVXZ where X =D,T,Q,5,6.

� Example for the C atom:

Basis set cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z
Core basis functions 1s 1s 1s 1s 1s
Valence basis functions 2s+2p 3s+3p 4s+4p 5s+5p 6s+6p
Polarization basis functions 1d 2d+1f 3d+2f+1g 4d+3f+2g+1h 5d+4f+3g+2h+1i

Total number of basis functions (K ∝ X3) 14 30 55 91 140

� There are also basis sets augmented with diffuse basis functions: aug-cc-pVXZ

� There are also basis sets with more core basis functions for core correlation: cc-pCVXZ
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The formalism of second quantization (1/2)

Second quantization is a very convenient formalism for dealing with many-body quantum
systems. In particular, for electrons, it allows one to incorporate the antisymmetry property
of the wave functions directly into an algebra of operators.

We consider a set of spin orbitals {|i〉} which are orthonormal, 〈i |j〉 = δi,j .

� Vaccum state:
We define a vaccum state |vac〉 containing zero electron and normalized to one:
〈vac|vac〉 = 1.

� Creation and annihilation operators:
At each spin orbital i , we associate a creation operator â†i which acts on |vac〉 to create
the state |i〉 corresponding to one electron in the spin orbital i

â
†
i |vac〉 = |i〉

At each spin orbital i , we also associate an annihilation operator âi which gives back
the vaccum state |vac〉 when acting on the state |i〉

âi |i〉 = |vac〉

The creation operator â†i is the adjoint of the annihilation operator âi , and vice versa.

If we try to create a spin orbital that has already been created, we get zero: â†i |i〉 = 0.
If we try to annihilate a spin orbital that has not been created, we get zero: âi |vac〉 = 0.
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The formalism of second quantization (2/2)

� Many-electron states:
A many-electron state is created by acting sucessively with several creation operators
on the vaccum state. For example, acting with the creation operator â†1 , â

†
2 , ..., â

†
N gives

a state corresponding to a Slater determinant with N electrons occupying the spin
orbitals labeled by 1, 2, ...,N:

â
†
1 â

†
2 · · · â†N |vac〉 = |1 2 · · · N〉 = |Φ0〉

� Excitation operators:
Excited determinants can be conveniently expressed as excitation operators acting on
the reference determinant |Φ0〉. For example, the operator â†r âa generates a single
excitation and the operator â†r â

†
s âb âa generates a double excitation:

â
†
r âa|Φ0〉 = |Φr

a〉 and â
†
r â

†
s âb âa|Φ0〉 = |Φrs

ab〉 and so on.

� Fermionic anticommutation rules:
The previous rules imply that the creation and annihilation operators obey the fermionic
anticommutation relations:

{â†i , â
†
j } = â

†
i â

†
j + â

†
j â

†
i = 0

{âi , âj} = âi âj + âj âi = 0

{âi , â†j } = âi â
†
j + â

†
j âi = δi,j
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