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Some references on molecular properties by response theory

Books:

� Roy McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, 1992.

� Stephan Sauer, Molecular Electromagnetism: A Computational Chemistry, Oxford
Graduate Texts, 2011.

� Patrick Norman, Kenneth Ruud, Trond Saue, Principles and Practices of Molecular

Properties: Theory, Modeling and Simulations, Wiley, 2018.

Review articles:

� M. Casida, Time-dependent density-functional theory for molecules and molecular solids,
Journal of Molecular Structure: THEOCHEM 914, 3, 2009.

� T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, K. Ruud, Recent
Advances in Wave Function-Based Methods of Molecular-Property Calculations,
Chemical Review 112, 543, 2012.

My lecture notes:
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Definition of static molecular properties

� Consider the isolated molecular Hamiltonian Ĥ0 = T̂ + V̂ne + Ŵee and apply a static
perturbation V̂ (x)

Ĥ(x) = Ĥ0 + V̂ (x)

where x represents the strength of the perturbation. The perturbation vanishes for
x = 0, i.e. V̂ (x = 0) = 0

� The perturbed energy for the perturbed state considered Ψ(x) (usually the ground
state) can be expanded with respect to x

E(x) =
〈Ψ(x)|Ĥ(x)|Ψ(x)〉

〈Ψ(x)|Ψ(x)〉
= E (0) + E (1)

x +
1

2
E (2)

x
2 + · · ·

where E (0) is the unperturbed energy and the energy derivatives with respect to x

E (1) =
dE

dx

∣
∣
∣
∣
x=0

; E (2) =
d2E

dx2

∣
∣
∣
∣
x=0

; etc...

are called static (or time-independent) molecular properties
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Examples of static molecular properties

� Geometrical derivatives: perturbation strengths x are the variations of the nuclei
positions Ri − R0

i (in the Born-Oppenheimer approximation). For example, the
molecular gradient and Hessian are

∂E

∂Ri

and
∂2E

∂Ri∂Rj

which are needed for geometry optimization and calculating harmonic vibrational
frequencies

� Electric properties: perturbation strengths x are the components of the external static
electric field Ei . For example, the electric dipole moment and polarizability are

∂E

∂Ei

∣
∣
∣
∣
E=0

= −µi and
∂2E

∂Ei∂Ej

∣
∣
∣
∣
E=0

= −αi,j

� NMR magnetic properties: perturbation strengths x are the nuclear magnetic dipole
moments ma and the external magnetic field B. For example, the NMR shielding
constants and spin-spin coupling constants are

∂2E

∂ma∂B
= −1 + σa and

∂2E

∂ma∂mb

= Ja,b

Similarly, we could define EPR hyperfine coupling constants and g values
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Numerical vs analytical differentiation

There are two ways of calculating energy derivatives:

� Numerical differentiation: the derivatives are calculated by finite differences or by

polynomial fitting

It is simple to implement.
The numerical precision is limited.
The computational efficiency is low.
It is not general. Usually, only real-valued and static perturbations can be done.

� Analytical differentiation: the derivatives are calculated explicitly from the analytical

expressions

It is difficult to implement.
The precision is higher.
The computational efficiency is higher.
It is more general. In particular, time-dependent perturbations are possible.

=⇒ Overall, analytical differentiation is preferable
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Sum-over-state expression from perturbation theory

� For“exact”wave functions (full configuration interaction in a basis), we can use
straightforward perturbation theory to find the expression of the energy derivatives

� For example, for a perturbation linear in x ,

Ĥ(x) = Ĥ0 + xV̂

the first-order energy derivative is

E (1) = 〈Ψ0|V̂ |Ψ0〉

and the second-order energy derivative is

E (2) = −2
∑

n 6=0

〈Ψ0|V̂ |Ψn〉〈Ψn|V̂ |Ψ0〉

En − E0

where {Ψn} and {En} are the eigenstates and eigenvalues of the unperturbed
Hamiltonian Ĥ0

� However, these expressions cannot be applied for methods like HF or KS DFT
=⇒ we need a more general response theory
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General static response theory (1/3)

� In an electronic-structure method, the energy E(x) is obtained by optimizing parameters
p = (p1, p2, ....) in an energy function E (x , p) for each fixed value of x . The energy is
thus

E(x) = E (x , po(x))

where po(x) are the optimal values of the parameters

Note that the optimization is not necessarily variational!

� Examples:

HF and KS DFT: p are the orbital parameters (variational)

MCSCF: p are the coefficients of the configurations (variational) and the orbital
parameters (variational)

CI: p are the coefficients of the configurations (variational) and the orbital
parameters (non variational)

CC: p are the cluster amplitudes (non variational) and the orbital parameters (non
variational)
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General static response theory (2/3)

� The first-order derivative of E(x) with respect to x is

dE(x)

dx
=

∂E (x , po)

∂x
+
∑

i

∂E (x , p)

∂pi

∣
∣
∣
∣
p=po

∂po
i

∂x

︸ ︷︷ ︸
explicit dependence

on x

︸ ︷︷ ︸
implicit dependence on x

� ∂po
i /∂x is called the linear-response vector and contains information about how the

wave function changes when the system is perturbed. It is not straightforward to
calculate it since we do not know explicitly the dependence of po

i on x .

� If all the parameters are variational, the zero electronic gradient condition simplifies the
derivative

∂E (x , p)

∂pi

∣
∣
∣
∣
p=po

= 0 =⇒
dE(x)

dx
=

∂E (x , po)

∂x

i.e., we do not need the linear-response vector

� If all the parameters are variational, the second-order derivative of E(x) is then

d2E(x)

dx2
=

∂2E (x , po)

∂x2
+
∑

i

∂2E (x , p)

∂x∂pi

∣
∣
∣
∣
p=po

∂po
i

∂x

We need now the linear-response vector ∂po
i /∂x 11/31



General static response theory (3/3)

� To obtain the linear-response vector ∂po
i /∂x when all the parameters are variational, we

start from the stationary condition which is true for all x

∀x ,
∂E (x , p)

∂pi

∣
∣
∣
∣
p=po

= 0

� We can thus take the derivative of this equation with respect to x

∂2E (x , p)

∂x∂pi

∣
∣
∣
∣
p=po

+
∑

j

∂2E (x , p)

∂pi∂pj

∣
∣
∣
∣
p=po

∂po
j

∂x
= 0

or

∑

j

∂2E (x , p)

∂pi∂pj

∣
∣
∣
∣
p=po

∂po
j

∂x
= −

∂2E (x , p)

∂x∂pi

∣
∣
∣
∣
p=po

which are the linear-response equations

This is a linear system of equations for the linear-response vector ∂po
i /∂x

Since we are interested in energy derivatives evaluated at x = 0, we need to
calculate the unperturbed electronic Hessian ∂2E (x = 0, p)/∂pi∂pj
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Linear-response HF: Coupled-perturbed Hartree-Fock (CPHF) (1/3)

� The HF single-determinant wave function is parametrized by orbital rotation
parameters κ

|Φ(κ)〉 = e
κ̂(κ)|Φ〉

where eκ̂(κ) performs orbital rotations and is written with the orbital excitation operator

κ̂(κ) =

occ∑

a

vir∑

r

(

κar ĉ
†
r ĉa − κ∗

ar ĉ
†
a ĉr

)

For the static case, we can take real-valued orbital rotation parameters, i.e. κar = κ∗
ar

� Without perturbation, the HF energy function is

EHF(κ) =
〈Φ(κ)|Ĥ0|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉

� For linear response theory, we need first to calculate the HF electronic Hessian

∂2EHF(κ)

∂κar∂κbs

∣
∣
∣
∣
κ=0

= 2 (Aar,bs + Bar,bs)

where

Aar,bs = (εr − εa) δabδrs + 〈rb|as〉 − 〈rb|sa〉 and Bar,bs = 〈rs|ab〉 − 〈rs|ba〉

where εk are the HF spin orbital energies and 〈rb|as〉 are the two-electron Coulomb
integrals over the HF spin orbitals 14/31



Linear-response HF: Coupled-perturbed Hartree-Fock (CPHF) (2/3)

� We consider the perturbation by a static electric field E. The perturbed HF energy is

EHF(E,κ) =
〈Φ(κ)|Ĥ0 − µ̂ · E|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉

where µ̂ is the dipole moment operator

� The CPHF electric dipole polarizability is

αCPHF
i,j = −

∂2EHF

∂Ei∂Ej

∣
∣
∣
∣
E=0

= −

[

∂2EHF

∂Ei∂Ej

+
occ∑

a

vir∑

r

∂2EHF

∂Ei∂κar

∣
∣
∣
∣
κ=0

∂κar

∂Ej

]

� Since the explicit dependence of EHF(E,κ) on E is linear, we have ∂2EHF/∂Ei∂Ej = 0

� The HF perturbed electronic gradient is

∂2EHF

∂Ei∂κar

∣
∣
∣
∣
κ=0

= −2〈r |µ̂i |a〉

where 〈r |µ̂i |a〉 are the transition dipole moment one-electron integrals
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Linear-response HF: Coupled-perturbed Hartree-Fock (CPHF) (3/3)

� The CPHF polarizability is thus

αCPHF
i,j =

occ∑

a

vir∑

r

2〈r |µ̂i |a〉
∂κar

∂Ej

� The linear-response vector ∂κar/∂Ej is obtained from the HF linear-response equations

occ∑

b

vir∑

s

(Aar,bs + Bar,bs)
∂κbs

∂Ej

= 〈r |µ̂j |a〉

� In vector/matrix notations, we obtain finally

αCPHF
i,j = 2 µ

T
i (A+ B)−1

µj

where µi is the vector of components µi,ar = 〈r |µ̂i |a〉 and A+ B is the matrix of
elements Aar,bs + Bar,bs
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Linear-response KS-DFT: Coupled-perturbed Kohn-Sham (CPKS)

� The KS-DFT energy function is

EKS-DFT(κ) =
〈Φ(κ)|T̂ + V̂ne|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉
+ EH[ρΦ(κ)] + Exc[ρΦ(κ)]

where EH[ρ] is the Hartree density functional and Exc[ρ] is the exchange-correlation
density functional

� The KS-DFT electronic Hessian has a similar expression as in HF

∂2EKS-DFT(κ)

∂κar∂κbs

∣
∣
∣
∣
κ=0

= 2 (Aar,bs + Bar,bs)

where

Aar,bs = (εr − εa) δabδrs + 〈rb|as〉+ 〈rb|fxc|as〉 and Bar,bs = 〈rs|ab〉+ 〈rs|fxc|ab〉

where εk are the KS spin orbital energies, 〈rb|as〉 are the two-electron Coulomb integrals
over the KS spin orbitals, and 〈rb|fxc|as〉 are the two-electron integrals over the

exchange-correlation kernel fxc(r1, r2) = δ2Exc[ρ]/δρ(r1)δρ(r2)

� All the rest is identical to CPHF
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Example of calculations of polarizabilities

� If we neglect electron-electron interaction, we have Aar,bs = (εr − εa) δabδrs and
Bar,bs = 0, and we obtain uncoupled Hartree-Fock (UCHF) or uncoupled Kohn-Sham
(UCKS) polarizabilities

α
UCHF/UCKS
i,j = 2

occ∑

a

vir∑

r

〈r |µ̂i |a〉〈a|µ̂j |r〉

εr − εa

� Spherically averaged polarizabilities of atoms at the UCHF/CPHF and UCKS/CPKS
levels (LDA functional, uncontracted d-aug-cc-pCV5Z basis sets):

UCHF CPHF UCKS CPKS Estimated exact

He 1.00 1.32 1.81 1.66 1.38
Ne 1.98 2.38 3.48 3.05 2.67
Ar 10.1 10.8 18.0 12.0 11.1
Kr 15.9 16.5 27.8 18.0 16.8

Be 30.6 45.6 80.6 43.8 37.8
Mg 55.2 81.6 122 71.4 71.3
Ca 125 185 277 149 157

Extracted from J. Toulouse, E. Rebolini, T. Gould, J. F. Dobson, P. Seal, and J. G. Ángyán, J. Chem. Phys. 138, 194106 (2013)
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Time-dependent Schrödinger equation and quasi-energy

� We consider now a periodic time-dependent perturbation

Ĥ(t) = Ĥ0 + x
+
V̂ e

−iωt + x
−

V̂
†
e
+iωt

where x+ and x− represent the perturbation strengths (ultimately x+ = x−)

� The associated wave function |Ψ̄(t)〉 satisfies the time-dependent Schrödinger equation
[

Ĥ(t)− i
∂

∂t

]

|Ψ̄(t)〉 = 0

After extracting a phase factor, |Ψ̄(t)〉 = e−iF(t)|Ψ(t)〉, it can be reformulated as
[

Ĥ(t)− i
∂

∂t

]

|Ψ(t)〉 = Ḟ(t)|Ψ(t)〉 (1)

where Ḟ(t) = dF/dt is the time-dependent quasi-energy.

� The quasi-energy Q is defined as the time average of Ḟ(t) over a period T = 2π/ω:

Q =
1

T

∫ T

0

dt Ḟ(t) =
1

T

∫ T

0

dt
〈Ψ(t)|

[

Ĥ(t)− i ∂
∂t

]

|Ψ(t)〉

〈Ψ(t)|Ψ(t)〉

It satisfies a stationary principle similar to the time-independent one:

δΨ(t)Q = 0 ⇐⇒ Ψ(t) is a solution to (1)
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Definition of dynamic molecular properties

� The quasi-energy can be expanded with respect to the perturbation strengths x+ and x−:

Q = Q(0) +Q(10)
x

+ +Q(01)
x

− +
1

2
Q(20)

x
+2

+Q(11)
x

+
x

− +
1

2
Q(02)

x
−2

+ · · ·

where Q(0) = E (0) is the unperturbed energy and the quasi-energy derivatives

Q(10) =
∂Q

∂x+

∣
∣
∣
∣
x=0

; Q(01) =
∂Q

∂x−

∣
∣
∣
∣
x=0

; Q(20) =
∂2Q

∂x+2

∣
∣
∣
∣
x=0

; Q(11) = 2
∂2Q

∂x+∂x−

∣
∣
∣
∣
x=0

; etc...

are ω-dependent dynamic molecular properties

� We will consider the specific case of the electric dipole interaction perturbation

Ĥ(t) = Ĥ0 − E+ · µ̂ e−iωt − E− · µ̂ e+iωt

where µ̂ is the dipole moment operator and E+ = E− is the amplitude of the oscillating
electric field. The dynamic electric dipole polarizability is defined as:

αi,j(ω) = −
∂2Q

∂E−

i ∂E+
j

∣
∣
∣
∣
E=0

� Using time-dependent perturbation theory, we obtain the exact expression:

αi,j(ω) = −




∑

n 6=0

〈Ψ0|µ̂i |Ψn〉〈Ψn|µ̂j |Ψ0〉

ω − ωn

−
∑

n 6=0

〈Ψ0|µ̂j |Ψn〉〈Ψn|µ̂i |Ψ0〉

ω + ωn





where {Ψn} are the states of Ĥ0 and {ωn} are the excitation energies
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Polarizability from dynamic response theory (1/2)

� In a time-dependent electronic-structure method, the quasi-energy Q(E+,E−) is obtained
by plugging optimal parameters po(E+,E−) in a quasi-energy function Q(E+,E−; p)

Q(E+,E−) = Q(E+,E−; po(E+,E−))

� In contrast to the static case, the parameters now depend on time and take complex
values. They can be decomposed in Fourier modes

p = p+
e
−iωt + p−∗

e
+iωt

� We will consider only the case where all the parameters are variational, i.e. fulfilling the
stationary conditions

∂Q

∂p+∗

∣
∣
∣
∣
p=po

= 0 and
∂Q

∂p−∗

∣
∣
∣
∣
p=po

= 0
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Polarizability from dynamic response theory (2/2)

� Thanks to the stationarity of the parameters, only the explicit dependence on E+,E− in
Q contributes for first-order properties:

∂Q

∂E−

i

=
∂Q

∂E−

i

+

[
∂Q

∂p+

∂p+

∂E−

i

+
∂Q

∂p−

∂p−

∂E−

i

+ c.c.

]

︸ ︷︷ ︸
= 0

� For second-order properties, the implicit dependence on E+,E− via the parameters
contributes. In particular, for the dynamic polarizability, we get:

αi,j(ω) = −
∂2Q

∂E−

i ∂E+
j

= −
∂2Q

∂p+∂E−

i

∂p+

∂E+
j

−
∂2Q

∂p−∂E−

i

∂p−

∂E+
j

� The linear-response vector (∂p+/∂E+
j , ∂p

−/∂E+
j ) is found from the linear-response

equations: 



∂2Q
∂p+∗∂p+

∂2Q
∂p+∗∂p−

∂2Q
∂p−∗∂p+

∂2Q
∂p−∗∂p−









∂p+

∂E+
j

∂p−

∂E+
j



 = −





∂2Q

∂E+
j
∂p+∗

∂2Q

∂E+
j
∂p−∗





� The dynamic polarizability has thus the general expression:

αi,j(ω) =





∂2Q

∂p+∂E
−

i

∂2Q

∂p−∂E
−

i





T



∂2Q
∂p+∗∂p+

∂2Q
∂p+∗∂p−

∂2Q
∂p−∗∂p+

∂2Q
∂p−∗∂p−





−1



∂2Q

∂E+
j
∂p+∗

∂2Q

∂E+
j
∂p−∗




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Linear-response time-dependent Hartree-Fock (TDHF)

� The TDHF quasi-energy function is

QTDHF(E
+,E−;κ) =

1

T

∫ T

0

dt
〈Φ(κ)|Ĥ(t)− i ∂

∂t
|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉

� After calculating all the derivatives of QTDHF with respect to the orbital rotation
parameters κar , we get the TDHF polarizability (for real-valued orbitals):

αTDHF
i,j (ω) =

(
µi

µi

)T [(
A B
B A

)

− ω

(
1 0
0 −1

)]−1(
µj

µj

)

where A and B are the same matrices introduced in static response theory (i.e., CPHF)

� The TDHF excitation energies ωn corresponds to the poles of αTDHF
i,j (ω) in ω (i.e., the

values of ω where αTDHF
i,j (ω) diverges). They are found by solving the pseudo-Hermitian

eigenvalue equation:
(

A B
B A

)(
Xn

Yn

)

= ωn

(
1 0
0 −1

)(
Xn

Yn

)

� The oscillator strengths can be calculated from the eigenvectors (Xn,Yn)

fn =
2

3
ωn

∑

i

[

(Xn + Yn)
T
µi

]2
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Linear-response time-dependent DFT (TDDFT)

� The TDDFT quasi-energy function is

QTDDFT(E
+,E−;κ) =

1

T

∫ T

0

dt

(

〈Φ(κ)|ĥ(t)− i ∂
∂t
|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉
+ EH[ρΦ(κ)]

)

+Qxc[ρΦ(κ)]

where ĥ(t) is the one-electron Hamiltonian and Qxc[ρ] is the exchange-correlation
quasi-energy functional depending on the time-dependent density ρ : t 7→ ρ(t)

� In practice, we always use the adiabatic approximation

Qxc[ρ] ≈
1

T

∫ T

0

dt Exc[ρ(t)]

where Exc[ρ] is the ground-state exchange-correlation functional (defined for a static ρ).

� We then obtain the same equations as in TDHF with the same matrices A and B as in
CPKS

Aar,bs = (εr − εa) δabδrs + 〈rb|as〉+ 〈rb|fxc|as〉 and Bar,bs = 〈rs|ab〉+ 〈rs|fxc|ab〉

In exact TDDFT the exchange-correlation kernel fxc should depend on ω, but in the
adiabatic approximation it does not. This has the consequence that double or higher
electronic excitations are not described
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Tamm-Dancoff approximation (TDA)

� The Tamm-Dancoff approximation (TDA) corresponds to neglecting the matrix B.
The TDHF or TDDFT linear-response equations then simplifies to

A Xn = ωnXn

� In TDHF, the matrix A corresponds to the matrix of the Hamiltonian (shifted by the HF

energy) in the basis of the single-excited determinants: Aar,bs = 〈Φr
a|Ĥ0 − EHF|Φ

s
b〉 .

We thus recover a configuration-interaction singles (CIS) calculation.

� In the TDA, we obtain excited-state wave functions as

|Ψn〉 =
occ∑

a

vir∑

r

Xn,ar |Φ
r
a〉

where Xn,ar is the coefficient for the single orbital excitation a → r . Usually, one orbital
excitation dominates over all the other orbital excitations, and this is used to“assign”the
excited-state state to this orbital excitation.
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Example of calculations of excitation energies

Valence and Rydberg excitation energies of the CO molecule (Sadlej+ basis set)

State Transition TDHF TDHF-TDA TDLDA TDLDA-TDA EOM-CCSD Expt
Valence excitation energies (eV)

3Π 5σ → 2π∗ 5.28 5.85 5.95 6.04 6.45 6.32
3Σ+ 1π → 2π∗ 6.33 7.79 8.38 8.54 8.42 8.51
1Π 5σ → 2π∗ 8.80 9.08 8.18 8.42 8.76 8.51
3∆ 1π → 2π∗ 7.87 8.74 9.16 9.20 9.39 9.36
3Σ− 1π → 2π∗ 9.37 9.73 9.84 9.84 9.97 9.88
1Σ− 1π → 2π∗ 9.37 9.73 9.84 9.84 10.19 9.88
1∆ 1π → 2π∗ 9.96 10.15 10.31 10.33 10.31 10.23
3Π 4σ → 2π∗ 13.05 13.31 11.40 11.43 12.49

Rydberg excitation energies (eV)
3Σ+ 5σ → 6σ 11.07 11.18 9.55 9.56 10.60 10.40
1Σ+ 5σ → 6σ 12.23 12.27 9.93 9.95 11.15 10.78
3Σ+ 5σ → 7σ 12.40 12.42 10.26 10.26 11.42 11.30
1Σ+ 5σ → 7σ 12.78 12.79 10.47 10.50 11.64 11.40
3Π 5σ → 3π 12.52 12.60 10.39 10.39 11.66 11.55
1Π 5σ → 3π 12.87 12.88 10.48 10.50 11.84 11.53

Ionization threshold: −ǫHOMO (eV)
15.11 15.11 9.12 9.12 15.58

Mean absolute deviations of excitation energies with respect to EOM-CCSD (eV)
Valence 0.89 0.49 0.37 0.33
Rydberg 0.93 0.97 1.21 1.19
Total 0.91 0.69 0.73 0.70

Extracted from E. Rebolini, A. Savin, and J. Toulouse, Mol. Phys. 111, 1219 (2013)
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Improving the approximations used in linear-response TDDFT

There are on-going efforts for improving the approximations used in linear-response
TDDFT:

� Hybrid approximations (mixing HF exchange and DFT exchange) and range-separated
hybrid approximations (mixing long-range HF exchange and short-range DFT exchange)
improve the description of nonlocal excitations (e.g., Rydberg and charge transfer)

� A number of double-hybrid approximations (mixing PT2 correlation and DFT
correlation) for TDDFT have been proposed

� The TDDFT-like approach known as the Bethe-Salpeter equation (BSE), originally
coming from condensed-matter physics, is increasing applied to molecules. It is similar
to TDHF but with a screened HF exchange kernel accounting for correlation

� Situations with static/strong correlation (bond dissociation, transition metals, conical
intersection, ...) are usually a problem in TDDFT with the usual approximations. A
number of approaches combining multideterminant wave function methods (e.g.,
MCSCF) with TDDFT are being developed.
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