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Some references on molecular properties by response theory

Books:
» Roy McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, 1992.

» Stephan Sauer, Molecular Electromagnetism: A Computational Chemistry, Oxford
Graduate Texts, 2011.

» Patrick Norman, Kenneth Ruud, Trond Saue, Principles and Practices of Molecular
Properties: Theory, Modeling and Simulations, Wiley, 2018.

Review articles:
» M. Casida, Time-dependent density-functional theory for molecules and molecular solids,
Journal of Molecular Structure: THEOCHEM 914, 3, 2009.

» T. Helgaker, S. Coriani, P. Jgrgensen, K. Kristensen, J. Olsen, K. Ruud, Recent
Advances in Wave Function-Based Methods of Molecular-Property Calculations,
Chemical Review 112, 543, 2012.
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e Static molecular properties
@ Definition and examples

4/31



Definition of static molecular properties

» Consider the isolated molecular Hamiltonian Ay = T + V,. + W.. and apply a static
perturbation V(x)

A(x) = Fy 4+ V(x)

where x represents the strength of the perturbation. The perturbation vanishes for
x=0,ie V(x=0)=0

» The perturbed energy for the perturbed state considered W(x) (usually the ground
state) can be expanded with respect to x

where £© s the unperturbed energy and the energy derivatives with respect to x

@2 4
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: =—|
dx |, _o dx2 |,

EW = etc...

are called static (or time-independent) molecular properties
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Examples of static molecular properties

» Geometrical derivatives: perturbation strengths x are the variations of the nuclei
positions R; — R? (in the Born-Oppenheimer approximation). For example, the
molecular gradient and Hessian are

o0& 5%E
and —
OR; ORiOR;

which are needed for geometry optimization and calculating harmonic vibrational

frequencies

» Electric properties: perturbation strengths x are the components of the external static
electric field E;. For example, the electric dipole moment and polarizability are

o€ &€

= —Uj d _—
IEi|e_o g " OEiOE] |g_o

= —ai;

» NMR magnetic properties: perturbation strengths x are the nuclear magnetic dipole
moments m, and the external magnetic field B. For example, the NMR shielding
constants and spin-spin coupling constants are

%€ d%E

om0 = L1t and Dmadm, 2P

Similarly, we could define EPR hyperfine coupling constants and g values 6/31



e Static molecular properties

@ General static response theory
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Numerical vs analytical differentiation

There are two ways of calculating energy derivatives:

» Numerical differentiation: the derivatives are calculated by finite differences or by
polynomial fitting
o It is simple to implement.
@ The numerical precision is limited.

e The computational efficiency is low.
o It is not general. Usually, only real-valued and static perturbations can be done.

» Analytical differentiation: the derivatives are calculated explicitly from the analytical
expressions

o It is difficult to implement.

@ The precision is higher.

e The computational efficiency is higher.

o It is more general. In particular, time-dependent perturbations are possible.

= Overall, analytical differentiation is preferable
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Sum-over-state expression from perturbation theory

» For “exact” wave functions (full configuration interaction in a basis), we can use
straightforward perturbation theory to find the expression of the energy derivatives

» For example, for a perturbation linear in x,
A(x) = o+ xV
the first-order energy derivative is
W = (Wo| V| Wo)

and the second-order energy derivative is

£@ _ Z (Wo VW) (Wa| V| Wo)

o Em— &

where {W,} and {&,} are the eigenstates and eigenvalues of the unperturbed
Hamiltonian Ho

» However, these expressions cannot be applied for methods like HF or KS DFT
=—> we need a more general response theory
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General static response theory (1/3)

» In an electronic-structure method, the energy £(x) is obtained by optimizing parameters
p = (p1, p2, -...) in an energy function E(x, p) for each fixed value of x. The energy is
thus

£(x) = E(x,p°(x))

where p°(x) are the optimal values of the parameters

Note that the optimization is not necessarily variationall

» Examples:
e HF and KS DFT: p are the orbital parameters (variational)

o MCSCEF: p are the coefficients of the configurations (variational) and the orbital
parameters (variational)

o CI: p are the coefficients of the configurations (variational) and the orbital
parameters (non variational)

o CC: p are the cluster amplitudes (non variational) and the orbital parameters (non
variational)
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General static response theory (2/3)

» The first-order derivative of £(x) with respect to x is

dé(x) 8E(%P ) ZaE(X,P op;
dx opi p=p° Ox
explicit dependence implicit dependence on x

» Op7/0x is called the linear-response vector and contains information about how the
wave function changes when the system is perturbed. It is not straightforward to
calculate it since we do not know explicitly the dependence of p? on x.

» If all the parameters are variational, the zero electronic gradient condition simplifies the
derivative
OE(x,p)
ap,‘

d&(x) _ OE(x,p°)

=0 — dx ox

p=p°

i.e., we do not need the linear-response vector

» If all the parameters are variational, the second-order derivative of £(x) is then

d? S(X) Z 0?E(x,p) ap;
dx? 8)(2 Ox0pi _ . Ox

We need now the linear-response vector 9p; /Ox .



General static response theory (3/3)

» To obtain the linear-response vector 9p7/0x when all the parameters are variational, we
start from the stationary condition which is true for all x

9E(x,p)

3p,' e

p=p°

VX,

» We can thus take the derivative of this equation with respect to x

O?E(x,p) Z o _ 0
Ox0p;i | ,_po 6p,8pj ppo OX
or
ZaEX7p) %__82E(X,p)
7 opiOp;  |ppo OX Ox0pi |,_po

which are the linear-response equations

e This is a linear system of equations for the linear-response vector dp{ /dx

@ Since we are interested in energy derivatives evaluated at x = 0, we need to
calculate the unperturbed electronic Hessian 9>E(x = 0, p)/0p;dp;
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e Static molecular properties

@ Linear response HF and DFT
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Linear-response HF: Coupled-perturbed Hartree-Fock (CPHF) (1/3)

» The HF single-determinant wave function is parametrized by orbital rotation

parameters < A()
|P(r)) = e77|®)

where e*(*) performs orbital rotations and is written with the orbital excitation operator

occ vir
~ AT~ * AT A
R(k) = E E (na,cjca — Koy Jc,>
a r
For the static case, we can take real-valued orbital rotation parameters, i.e. ki = K3,

» Without perturbation, the HF energy function is

(O(K)| Fo|&(x))

Eue (k) = o (m)o(x))

» For linear response theory, we need first to calculate the HF electronic Hessian

82 EHF(K,)

=2 Aar S Bar S
al“iaraffbs =0 ( = 7b)

where
Aar,bs = (67 — €2) 0ab0rs + (rb|as) — (rb|sa) and B.r.bs = {(rs|ab) — (rs|ba)

where ¢, are the HF spin orbital energies and (rb|as) are the two-electron Coulomb
integrals over the HF spin orbitals 14/31



Linear-response HF: Coupled-perturbed Hartree-Fock (CPHF) (2/3)

» We consider the perturbation by a static electric field E. The perturbed HF energy is

(O(r)|Fo — ju - E|P(r))
(®(r)|®(k))

E|-":(E7 h?) =

where f1 is the dipole moment operator

» The CPHF electric dipole polarizability is

v) v) occ vir 2
cPHF _ O0°EnF _ 0”Enr 0°Enr
¥ = TPEGE |, [aEfan + ZZ BEDra

OFar
~=0 BEJ
» Since the explicit dependence of Exr(E, k) on E is linear, we have 0°Enr/OEOE; = 0

» The HF perturbed electronic gradient is

& Enr
OE;Okar

= 2(rliula)
=0

where (r|fij|a) are the transition dipole moment one-electron integrals
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Linear-response HF: Coupled-perturbed Hartree-Fock (CPHF) (3/3)

» The CPHF polarizability is thus

occ vir

CPHF 222 | ) 3liar

» The linear-response vector Ok, /OE; is obtained from the HF linear-response equations

occ vir

OKbs N
Z Z (Aar,bs + Bar,bs) 87Eb = <r|ﬂj|a>
b s J

» In vector/matrix notations, we obtain finally
CPHF -
af"" =2p (A+B) 'y

where p; is the vector of components u;j . = (r|fii|a) and A + B is the matrix of
elements Aar bs + Bar bs
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Linear-response KS-DFT: Coupled-perturbed Kohn-Sham (CPKS)

» The KS-DFT energy function is

(O(R) T + Voe| & (k)
(®(k)|®(x))

where Ey[p] is the Hartree density functional and E,[p] is the exchange-correlation
density functional

Exs-prt (k) = + En[po(x)] + Exc[pom)]

» The KS-DFT electronic Hessian has a similar expression as in HF

& Exs-orr(K)
- a_ _a = 2 Aar S Bar S
Bradrie | (Aar,bs + Bar.bs)
where
Aarbs = (6r — €2) 0ab0rs + (rblas) + (rb|fc|as) and  Barps = {(rs|ab) + (rs|f|ab)

where gy are the KS spin orbital energies, (rb|as) are the two-electron Coulomb integrals
over the KS spin orbitals, and (rb|fc|as) are the two-electron integrals over the

exchange-correlation kernel f(r1,r) = 6°E.c[p]/dp(r1)dp(r2)

» All the rest is identical to CPHF
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Example of calculations of polarizabilities

» If we neglect electron-electron interaction, we have Aur ps = (- — €2) 0a50,s and

B.r,bs = 0, and we obtain uncoupled Hartree-Fock (UCHF) or uncoupled Kohn-Sham
(UCKS) polarizabilities

» Spherically averaged polarizabilities of atoms at the UCHF/CPHF and UCKS/CPKS

occ vir

UCHF/UCKS _ 5 Z Z |u,

(alfi|r)
e,

levels (LDA functional, uncontracted d-aug-cc-pCV5Z basis sets):

UCHF CPHF UCKS CPKS Estimated exact
He 1.00 1.32 1.81 1.66 1.38
Ne 1.98 2.38 3.48 3.05 2.67
Ar 10.1 10.8 18.0 12.0 11.1
Kr 15.9 16.5 27.8 18.0 16.8
Be 30.6 45.6 80.6 43.8 37.8
Mg 55.2 81.6 122 71.4 71.3
Ca 125 185 277 149 157

Extracted from J. Toulouse, E. Rebolini, T. Gould, J. F. Dobson, P. Seal, and J. G. Angyén, J. Chem. Phys. 138, 194106 (2013)

18/31



e Static molecular properties
@ Definition and examples
@ General static response theory
@ Linear response HF and DFT

9 Dynamic molecular properties
@ Definition from the quasi-energy
@ Polarizability from dynamic response theory

@ Linear response TDHF and TDDFT

19/31



9 Dynamic molecular properties
@ Definition from the quasi-energy
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Time-dependent Schrodinger equation and quasi-energy

» We consider now a periodic time-dependent perturbation
I:I(t) = Fo+ xT Ve @t 4 x~ Uletiet
where x™ and x~ represent the perturbation strengths (ultimately x™ = x7)
» The associated wave function |W(t)) satisfies the time-dependent Schrédinger equation
N 971 -
H(t) —is-| |W(t)) =0
() - i | 19(0)

After extracting a phase factor, |W(t)) = e "7 ®|W(t)), it can be reformulated as

[fre) = 15| ey = FOwE) @)
where F(t) = dF/dt is the time-dependent quasi-energy.

» The quasi-energy Q is defined as the time average of ]-'(t) over a period T = 27 /w:

LT T () A iG] ()
0= 7 [ 4 PO =7 [ o ey

It satisfies a stationary principle similar to the time-independent one:

Ou(r)@Q = 0 < Y(t) is a solution to (1)
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Definition of dynamic molecular properties

» The quasi-energy can be expanded with respect to the perturbation strengths x™ and x~:
2

0 =09 4 90+ 4 9OV~ %Q(zo)xﬂ 4oy %Q(oz)x ..
where Q@ = £0) is the unperturbed energy and the quasi-energy derivatives
09 99 >’Q
Ox+ Ox~ OxtOx~

s g =7

x=0

oY =

x=0

@ =

x=0

fo S

; etc...
x=0

Ox+2
are w-dependent dynamic molecular properties
» We will consider the specific case of the electric dipole interaction perturbation
F’(t) — FIO _ E+ . ﬂ efiwt —E . IAJ' e+iwt
where [ is the dipole moment operator and E* = E~ is the amplitude of the oscillating
electric field. The dynamic electric dipole polarizability is defined as:
aij(w) = —7829
" OE; OE;

E=0

» Using time-dependent perturbation theory, we obtain the exact expression:

3 (Wol [ Wn) (Wn|2j|Wo) T (Wo| 24 |Wn) (Wn|fii|Wo)

w—w w+w
n#0 n n#0 +wn

ajj(w) = —

where {W,} are the states of Fo and {w,} are the excitation energies 22731
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Polarizability from dynamic response theory (1/2)

» In a time-dependent electronic-structure method, the quasi-energy Q(E*, E™~) is obtained
by plugging optimal parameters p°(E*,E™) in a quasi-energy function Q(E*,E™; p)

Q(E",E")=Q(E",E";p°(E",E"))

» In contrast to the static case, the parameters now depend on time and take complex
values. They can be decomposed in Fourier modes
p= p+ e—lwt + pf* e+|wt
» We will consider only the case where all the parameters are variational, i.e. fulfilling the
stationary conditions

oQ 0Q
=0 and —— =0
P [ o "
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Polarizability from dynamic response theory (2/2)

» Thanks to the stationarity of the parameters, only the explicit dependence on E* E~ in
Q contributes for first-order properties:

0 0 oQ op* oQ 0

09 _ 09 (8% Q%

OE; OE; op* OE; Op~ OF;

=0

» For second-order properties, the implicit dependence on E*, E™ via the parameters
contributes. In particular, for the dynamic polarizability, we get:

T T OE OE p+aE oE ap aE 8E+

» The linear-response vector (8p*/8E+ op~ /BE+ is found from the linear-response
equations:

22Q 82Q opt 2°Q
= ¥ = np——
opT*opt opt*op 9E; _ OE;"0p
8%Q 2%Q 80: sz
< e =
op— *opt op— *op 3Ej BEj ap

» The dynamic polarizability has thus the general expression:

T _
BZQ 82Q 32Q 1 ?2Q
oisw) = | 25 FptFopT  optTop- OE; opT
WA 2°Q 9%Q 0%Q _oq
Op~ OE; op— *opt ap— *op— BEJ.Jer—*
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Linear-response time-dependent Hartree-Fock (TDHF)

» The TDHF quasi-energy function is

|A(t) — i 5o (k)
(®(r)|®(k))

QTDHF(E+,E7;I{):%/0 dt< (%)

» After calculating all the derivatives of Qtpnr with respect to the orbital rotation
parameters k.r, we get the TDHF polarizability (for real-valued orbitals):

T =il
TDHF( )= A B . 1 0 H;
;1,, B A 0o -1 i
where A and B are the same matrices introduced in static response theory (i.e., CPHF)

» The TDHF excitation energies w, corresponds to the poles of o] (w) in w (i.e., the
values of w where ;""" (w) diverges). They are found by solving the pseudo-Hermitian

eigenvalue equation:
A B X\ 1 0 X,
B A Y, )" “ o -1 Y,

» The oscillator strengths can be calculated from the eigenvectors (X,,Y,)

fo= Son > [Xo YT ]

1
27/31



Linear-response time-dependent DFT (TDDFT)

» The TDDFT quasi-energy function is

T 7 _ i@
Qroorr(EY, E714) = = /0 dt <<¢(”)h(t) oe k) | EH[pw]) + Qo]

T (®(r)|®(k))

where h(t) is the one-electron Hamiltonian and Q,[p] is the exchange-correlation
quasi-energy functional depending on the time-dependent density p : t — p(t)

» In practice, we always use the adiabatic approximation

Qull~ / dt Eclo(t)]

where Eic[p] is the ground-state exchange-correlation functional (defined for a static p).

» We then obtain the same equations as in TDHF with the same matrices A and B as in
CPKS

Aarbs = (6r — €a) 0ap0rs + (rb|as) + (rb|fic|as) and  Barps = (rs|ab) + (rs|fi|ab)

In exact TDDFT the exchange-correlation kernel f,c should depend on w, but in the
adiabatic approximation it does not. This has the consequence that double or higher
electronic excitations are not described
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Tamm-Dancoff approximation (TDA)

» The Tamm-Dancoff approximation (TDA) corresponds to neglecting the matrix B.
The TDHF or TDDFT linear-response equations then simplifies to

A X, =wnX,

» In TDHF, the matrix A corresponds to the matrix of the Hamiltonian (shifted by the HF

energy) in the basis of the single-excited determinants: A, ps = (D5 o — Enr|d) .
We thus recover a configuration-interaction singles (CIS) calculation.

» In the TDA, we obtain excited-state wave functions as

occ vir

Vo) =D D Xoar|®))

where X, o is the coefficient for the single orbital excitation a — r. Usually, one orbital
excitation dominates over all the other orbital excitations, and this is used to “assign” the
excited-state state to this orbital excitation.
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Example of calculations of excitation energies

Valence and Rydberg excitation energies of the CO molecule (Sadlej+ basis set)

State Transition TDHF TDHF-TDA TDLDA TDLDA-TDA EOM-CCSD Expt
Valence excitation energies (eV)
3n 50 — 27* 5.28 5.85 5.95 6.04 6.45 6.32
39+ 1m — 27* 6.33 7.79 8.38 8.54 8.42 8.51
n 50 — 27 8.80 9.08 8.18 8.42 8.76 8.51
3A 1m — 27* 7.87 8.74 9.16 9.20 9.39 9.36
3y 1m — 27* 9.37 9.73 9.84 9.84 9.97 9.88
ly— 1r — 27" 9.37 9.73 9.84 9.84 10.19 9.88
A 1m — 27* 9.96 10.15 10.31 10.33 10.31 10.23
3n 4o — 27* 13.05 13.31 11.40 11.43 12.49
Rydberg excitation energies (eV)
3y+ 50 — 60 11.07 11.18 9.55 9.56 10.60 10.40
Iy+ 50 — 60 12.23 12.27 9.93 9.95 11.15 10.78
3yt 50 = 7o 12.40 12.42 10.26 10.26 11.42 11.30
Iy + 50 = 7o 12.78 12.79 10.47 10.50 11.64 11.40
3n 50 — 3w 12.52 12.60 10.39 10.39 11.66 11.55
n 50 — 37 12.87 12.88 10.48 10.50 11.84 11.53
lonization threshold: —epomo (eV)
15.11 15.11 9.12 9.12 15.58
Mean absolute deviations of excitation energies with respect to EOM-CCSD (eV)

Valence 0.89 0.49 0.37 0.33
Rydberg 0.93 0.97 1.21 1.19
Total 0.91 0.69 0.73 0.70

Extracted from E. Rebolini, A. Savin, and J. Toulouse, Mol. Phys. 111, 1219 (2013)
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Improving the approximations used in linear-response TDDFT

There are on-going efforts for improving the approximations used in linear-response
TDDFT:

| 2

Hybrid approximations (mixing HF exchange and DFT exchange) and range-separated
hybrid approximations (mixing long-range HF exchange and short-range DFT exchange)
improve the description of nonlocal excitations (e.g., Rydberg and charge transfer)

A number of double-hybrid approximations (mixing PT2 correlation and DFT
correlation) for TDDFT have been proposed

The TDDFT-like approach known as the Bethe-Salpeter equation (BSE), originally
coming from condensed-matter physics, is increasing applied to molecules. It is similar
to TDHF but with a screened HF exchange kernel accounting for correlation

Situations with static/strong correlation (bond dissociation, transition metals, conical
intersection, ...) are usually a problem in TDDFT with the usual approximations. A
number of approaches combining multideterminant wave function methods (e.g.,
MCSCF) with TDDFT are being developed.
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