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Why and how learning density-functional theory?

Density-functional theory (DFT) is:
» a practical electronic-structure computational method, widely used in quantum

chemistry and condensed-matter physics;

» an exact and elegant reformulation of the quantum many-body problem, which has
led to new ways of thinking in the field.

Classical books:

» R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, 1989.

» R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the
Quantum Many-Body Problem, Springer-Verlag, 1990.

» W. Koch and M. C. Holthausen, A Chemist's Guide To Density Functional Theory,
Wiley-VCH, 2001.

My lecture notes:

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf
A book chapter:
J. Toulouse, in Density Functional Theory, edited by E. Canceés and G. Friesecke, Springer, 2023.
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@ Basic density-functional theory
@ Quantum many-electron problem

4/75



Quantum many-electron problem

» We consider an N-electron system in the Born-Oppenheimer and non-relativistic
approximations.

» The electronic Hamiltonian in the position representation is, in atomic units,

1N LN 1 N
51 2 1
H= 2Zvr,+2zz|r_rl+zvne(rl)
i i j#i i
where vie(ri) = — > Zo/|ri — Ra| is the nuclei-electron interaction potential.

» Stationary states satisfy the time-independent Schrédinger equation
HW(x1, X2, ..., xy) = EW(x1,X2, ..., Xn)

where W(xq, X2, ...,Xn) is a wave function written with space-spin coordinates
x; = (ri,07) (with r; € R® and o; € {1,]}) which is antisymmetric with respect to the
exchange of two space-spin coordinates, and E is the associated energy.

» Using Dirac notations (representation-independent formalism):

AlW) = E|[W)  where =T+ We + Vie
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Wave-function variational principle

» The ground-state electronic energy Ey can be expressed with the wave-function
variational principle

E = mJn(lll\I:”\IJ)

where the minimization is over all N-electron (multi-determinant) wave functions W
normalized to unity (V|W¥) = 1.

» DFT is based on a reformulation of this variational theorem in terms of the
one-electron density defined as

n(r) = N/~~-/|‘~I1(x7 X2, ..., xn)|* dodxo...dxy
which is normalized to the electron number, [ n(r)dr = N.

Remark: Integration over a spin coordinate o means a sum over the two values of o, i.e.

Jdo =3 0etr1y-
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@ Basic density-functional theory

@ Universal density functional
The Hohenberg-Kohn theorem
Levy-Lieb constrained-search formulation
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The Hohenberg-Kohn theorem

» Consider an electronic system with an arbitrary external local potential v(r) (that
bounds N electrons) in place of wne(r). For simplicity, we will assume that v(r) gives an
N-electron ground state which is not degenerate.

» For any such external potential v(r), the ground-state wave function W can be obtained
by solving the Schrédinger equation, from which an associated ground-state density
n(r) can be deduced. Therefore, one has the mapping:

v(r) —— n(r)
» In 1964, Hohenberg and Kohn showed that this mapping can be inverted, i.e. a

ground-state density n(r) determines the potential v(r) up to an arbitrary additive
constant:

_—
n(r) Hohenberg-Kohn V(I‘) + const
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Proof of the Hohenberg-Kohn theorem (1/2)

This is a two-step proof by contradiction.
Consider two local potentials differing by more than an additive constant:
vi(r) # vo(r) + const
We have two Hamiltonians:
Fiy = T 4 Wee + V1 with a ground state H1|W;) = E;|W1) and ground-state density ni(r)
Fy = T 4 Wee + Vs with a ground state Fb|W,) = E;|W,) and ground-state density na(r)

@ We first show that W; # Wy:
Assume W; = Wy, = W. Then we have:
(Fh = F)|W) = (Vi = )W) = (B — B)|W)

or, in position representation,

<Z[V1(I‘,’) — V2(l’,')]> \U(Xl,XQ, .‘.,XN) = (E1 — Ez)\U(Xl,Xz, ...,XN)

If W(x1,xX2,...,xn) # O for at least one fixed set of (o1, 02, ...,o0n) and “almost” all
(r1,r2,...,rn), which is true for “reasonably well behaved potentials”, then it implies that
vi(r) — va(r) = const, in contradiction with the initial hypothesis.

— Intermediate conclusion: two local potentials differing by more than an

additive constant cannot have a common ground-state wave function.
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Proof of the Hohenberg-Kohn theorem (2/2)

@® We now show than n; # ny:
Assume n; = n2 = n. Then, by the variational theorem, we have:

E; = <\|11|f:/1|\|11> < <W2|Fl1|\|’2> = <W2|F/2 + \A/l — \A/2|\Uz> =E + /[Vl(l‘) — V2(I’)] n(r)dr

The strict inequality comes from the fact that W, cannot be a ground-state wave
function of Hi, as shown in the first step of the proof.
So, we have shown
Ei < B>+ /[Vl(l’) — Vz(l’)] n(r)dr
Symmetrically, by exchanging the role of system 1 and 2, we have the strict inequality

E < E1 + /[VQ(r) — vi(r)] n(r)dr

Adding the two inequalities gives the inconsistent result
E+E<E+E

— Conclusion: there cannot exist two local potentials differing by more than an
additive constant which have a common ground-state density.

10/75



The universal density functional and the variational property

» The Hohenberg-Kohn theorem can be summarized as

n v A everything

v is a functional of the density n, i.e. v[n], and all other quantities as well.

» The ground-state wave function V is a functional of n, denoted by W[n]. Hohenberg
and Kohn defined the universal density functional

Flnl = (W[nl| T + Wee | W[n])

and the total electronic energy functional

E[r] = F[r] + / e

» Hohenberg and Kohn showed that we have a variational property giving the exact
ground-state energy

Eo = min {F[n] + / vne(r)n(r)dr}
The minimum is reached for the exact ground-state density no(r) of the potential vne(r).
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Levy-Lieb constrained-search formulation

» In 1979 Levy, and later in 1983 Lieb, proposed to redefine the universal density
functional as

Fln] = min(W|T + Wee|W) = (W[n]| T + Wee|W[n])

where “W — n" means that the minimization is over all normalized N-electron
(multi-determinant) wave functions giving the density n.

» The variational property is easily obtained using the constrained-search formulation:

E() = m&n<W| -/i— + Wee + Vné|w>

= min min (V| T + Wee + Vne|W)
V—n

n

=min {urp_lg(\llﬁ' + Wee| W) + / vne(r)n(r)dr}

= min {F[n] +/vne(r)n(r)dr}

» Hence, in DFT, we replace “mujn” by “min" which is a tremendous simplification!
n

However, F[n] = T[n] + Wee[n] is very difficult to approximate, in particular the
kinetic energy part T[n].
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@ Basic density-functional theory

@ Kohn-Sham method
Decomposition of the universal functional
The Kohn-Sham equations
Practical calculations in an atomic basis
Extension to spin density-functional theory
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Kohn-Sham (KS) method: decomposition of the universal functional

» In 1965, Kohn and Sham proposed to decompose F|[n] as
Fln] = Ts[n] + Enxe[n]
» T.[n] is the non-interacting kinetic-energy functional:
Toln] = min(@| 7o) = (®[]| TIo[n])
where the minimization is over normalized N-electron single-determinant wave
functions @ giving the fixed density n. The minimizing single-determinant wave function

(assumed to be unique for simplicity) is called the KS wave function and is denoted by
d[n].

» The remaining functional Eux[n] is called the Hartree-exchange-correlation functional.

» Any density n can be obtained from a single-determinant wave function, therefore the
Kohn-Sham decomposition does not introduce any approximation.
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Kohn-Sham (KS) method: variational principle

» The exact ground-state energy can then be expressed as
Ey = min {F[n] + / vne(r)n(r)dr}

n

= min {¢H|r)1<¢'|ﬂ¢> + Enixe[n] + / vne(r)n(r)dr}
= min min {(¢|7’ + Vie|®) + Ech["¢]}
=min {(¢|?' + Vie|®) + Ech[n¢]}

and the minimizing single-determinant KS wave function gives the exact ground-state
density no(r).
» Hence, in KS DFT, we replace “mu}n” by “m¢in” which is still a tremendous

simplification! The advantage of KS DFT over pure DFT is that a major part of the
kinetic energy is treated explicitly with the single-determinant wave function ®.

» KS DFT is similar to Hartree-Fock (HF)
Ene = min(®| T+ Vie + Wee|®)

but in KS DFT the exact ground-state energy and density are in principle obtained!
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Kohn-Sham (KS) method: the Hartree-exchange-correlation functional

| 2

Etixc[n] is decomposed as
Evixc[n] = En[n] + Ex[n]

Eu[n] is the Hartree energy functional

Eu[n] = 5 jj n(ri)n r2)drldr2

Ir—
representing the classical electrostatic repulsion energy for the charge distribution n(r)
and which is calculated exactly.

E,c[n] is the exchange-correlation energy functional that remains to approximate.
This functional is often decomposed as

Exc[n] = E{n] + Ec[n]
where E/[n] is the exchange energy functional
E[n] = (®[n]| Wee|®[n]) — En[n]
and Ec[n] is the correlation energy functional
Ec[n] = (W[n]| T + Wee|W[n]) — (®[n]| T + Wee|®[n]) = Te[n] + Ue[n]
containing a kinetic contribution T.[n] = (W[n]| T|W[n]) — (¢[n]ﬁ'\¢[n])

and a potential contribution Uc[n] = (W[n]|Wee|W[n]) — (®[n]| Wee|®[n]).
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The Kohn-Sham equations (1/2)

» The single determinant @ is constructed from a set of N orthonormal occupied
spin-orbitals x.(x) = ¢a(r)a(c) or xa(x) = 1a(r)B(0).

» The total energy to be minimized is
N
~ 1
Elfe] =3 [ 030) (=57 + ve0) ) + Bl
and the density is

n(r) = [ua(r)|?

» For minimizing over the orbitals {t),} with the constraint of keeping the orbitals
orthonormalized, we introduce the Lagrangian

L[{a}] = E[{¥a}] - zt:aa </ 3 (r)a(r)dr — 1)

where g, is the Lagrange multiplier associated with the normalization condition of ,(r).
» The Lagrangian must be stationary with respect to variations of the orbitals t.(r)
oL
dth3 (r)

=0
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Interlude: Review on functional derivatives

» For a functional F : f — F[f] of the function f : x — f(x), an infinitesimal variation &f
of f leads to an infinitesimal variation of F which can be expressed as
dF[f]

OF[f] = 3 (x) (x)dx

This defines the functional derivative of F[f] with respect to f(x): gf([)g

Remark: For a function F(fi, f2,...) of several variables fi, f5, ..., we have

dF = Z—df

OF[f]/6f(x) is the analog of OF /Of; for the case of an infinite continuous number of variables.

» For a functional F[f] of a function f[g](x) which is itself a functional of another
function g(x), we have the chain rule

OF _ [ OF SF(X) .
sg(x) ) of(x') og(x)

Remark: It is the analog of the chain rule for a function F(fi, f2,...) of several variables
fi(g1, &2, ...) which are themselves functions of other variables g1, g, ...

Z OF Of;
8& of;j gi
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The Kohn-Sham equations (2/2)

» We find for the functional derivative of the Lagrangian
oL 0 Eisc[N]

0= 50 = (—%VQ + Vne(r)> vl + T~ a(n)
» We calculate the term §Enx[n]/d7); (r) using the chain rule
0 Enixe[n] _ 0 Erixc[N] 5n(r') ;o
5030~ J Ton(r) s T Viixe (F)a(r)

where we have used dn(r')/5v} (r) = ¥a(r)d(r — r’) and we have introduced

the Hartree-exchange-correlation potential viix(r)

_ 5Ech[n]
Vch(l’) = T(I’)

which is itself a functional of the density.

» We arrive at the KS equations
-
=5V Voe(r) + ie(r) ) wa(F) = catbal(r)

The orbitals ¥,(r) are called the KS orbitals and ¢, are the KS orbital energies.
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The Kohn-Sham equations and the Kohn-Sham Hamiltonian

» The KS orbitals are eigenfunctions of the KS one-electron Hamiltonian

By = —%V2 + u(r)

where vs(r) = vne(r) + vixc(r) is the KS potential.

» Mathematically, the KS equations are a set of coupled self-consistent equations since the
potential vhxc(r) depends on all the occupied orbitals {t.}.=1,...n through the density.

» Physically, h, defines the KS system which is a system of N non-interacting electrons in
an effective external potential vs(r) ensuring that its ground-state density n(r) is the
same as the exact ground-state density no(r) of the physical system of N interacting
electrons.

» The KS equations also defines virtual KS orbitals {9 },>n1-
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The Hartree-exchange-correlation potential

» Following the decomposition of En[n], the potential iy (r) is also decomposed as
Vixe(r) = vi(r) + vic(r)

with the Hartree potential

and the exchange-correlation potential
Ve (r) = dExc[n]/dn(r)
» The potential v (r) can be decomposed as
Ve (1) = w(r) + ve(r)
with the exchange potential w(r) = dE[n]/dn(r)

and the correlation potential v.(r) = dEc[n]/dn(r)
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Practical calculations in an atomic basis (1/3)

» We consider a basis of K atom-centered functions {¢, }, e.g. GTO basis functions.
The orbitals are expanded as

Gi()) =3 Coi 4u(1)

» Inserting this expansion in the KS equations
hopi(r) = eipi(r)

and multiplying on the left by ¢y,(r) and integrating over r, we arrive at
the familiar SCF generalized eigenvalue equation

K K
Z F[JJ/ Cui = Eizs,u,u Cui

where Fu, = [ ¢},(r)hs¢, (r)dr are the elements of the KS Fock matrix and
Suv = [ ¢;,(r)¢.(r)dr are the elements of the overlap matrix.
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Practical calculations in an atomic basis (2/3)

» The Fock matrix is calculated as  Fu, = H 3 + Juw + Vie v

. « 1
» HS° are the one-electron integrals:  Hy® = /qbu(r) (—EVZ + vne(r)> o (r)dr
» Ju. is the Hartree potential matrix:

o = / S1 ()R (F)dr = 3737 Pos (uylvA)

@5 (r1) @5 (r2)du (r1)éa(ra)

dridr, are the two-electron
1 —

where (uy|vA) = JI

integrals and Py, = Z Cr.C va is the density matrix.

a

» Vi, is the exchange-correlation potential matrix:  Vic v = /d);(r)vxc(r)d)V(r)dr

» The total electronic energy is calculated as
K K 1 KK
E= 3 P+ 5303 P + E
N v N v

K

» The density is calculated as  n(r) = Z Z Pxyda(r) o5 (r)

A
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Practical calculations in an atomic basis (3/3)

» In the simplest approximation, the exchange-correlation energy functional has a local
form

Elel = / f(n(r))dr

where f(n(r)) has a complicated nonlinear dependence on the density n(r).

» For example, in the local-density approximation (LDA), the exchange energy is
ELPA — Cx/n(r)4/3dr
where C is a constant, and the exchange potential is

P () = g Cen(r)'/?

» Therefore, the integrals cannot be calculated analytically, but are instead evaluated by
numerical integration on a grid

Viewr & Wi ¢ (r)Vec(r)$u(r)  and EQ™ ~ Y wi £(n(ri))
k k

where ri and wy are quadrature points and weights.
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Extension to spin density-functional theory (1/2)

» For dealing with an external magnetic field, DFT has been extended from the total
density to spin-resolved densities

ne(r) = N/~~~/|\Il(ra,xz,...,xN)|2dX2...de with o€ {1,]}

which integrate to the numbers of o-spin electrons, i.e. [ no(r)dr = N,.

» Without magnetic fields, this is in principle not necessary. In practice, the dependence
on the spin densities allows one to construct more accurate approximate
exchange-correlation functionals for open-shell systems.

» The universal density functional is now defined as

Flm.n] =, min (VT + Weal)

where the search is over wave functions W giving the fixed spin densities ny and n,.
» A KS method is obtained by decomposing F[nq, n] as
Flny, n] = Ts[ny, n] + Ea[n] + Ecc[ny, ny]

where Tg[nt, ny] is defined with a constrained search over (spin-unrestricted) Slater

determinants ¢ .
Ti[nr,ny] = min (®|T|®)
®—nq,ny
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Extension to spin density-functional theory (2/2)

» The exact ground-state energy is expressed as
Eo = min { (| T + Vel ®) + Eulne] + Ecclnr,0, ni,o] |

» Writing the spatial orbitals of the determinant as ¥..(r) (with indices explicitly including
spin now), we have now the spin-dependent KS equations

1
<—§v2 + vne(r) + wi(r) + vxc,g(r)) Beo (1) = Eano(r)
with the spin-dependent exchange-correlation potential and density

0Esclm, o
o) = T and not) = 3 anto)

» The spin-dependent exchange functional E[n;, n;] can be obtained from the
spin-independent exchange functional E;[n] with the spin-scaling relation

Edm,m] = 3 (Ef2ni] + Ef2n])

Therefore, any approximation for the spin-independent exchange functional E;[n] can be
easily extended to an approximation for the spin-dependent exchange functional
E[ny, n;]. Unfortunately, there is no such relation for the correlation functional.
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@ Basic density-functional theory

@ Generalized Kohn-Sham method
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Generalized Kohn-Sham method

» An important extension of the KS method is the generalized Kohn-Sham (GKS)
method (1996) in which the universal density functional F[n] is decomposed as

Fln] = min {(®]T10) + Eulno] + S[®] } + 3]

where S[®] is any (reasonable) functional of a single-determinant wave function ® and
S[n] is the complementary density functional. E.g., in hybrids, S[®] = aE'f[®].

» Defining the GKS exchange-correlation functional, E[®] = S[®] + S[ne] , we can
express the exact ground-state energy as

Eo = min {<¢|?+ Vne|®) + En[no] + Efc[q>]}

and any minimizing single-determinant wave function gives a ground-state density no(r).

» The corresponding GKS equations are
1 oS[®
<—§V2 + Vae(r) + vu(r) + V§(l’)) Yac(r) + 9]

()

where vz(r) = 65[n]/dn(r) is a local potential and §S[®]/5¢3,(r) generates a
one-electron (possibly nonlocal) operator.

= an'l/)ao (I‘)

» The GKS method gives much more freedom than the KS method (which corresponds

to the special case S[®] = 0).
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© Exact constraints for the exchange-correlation functional

@ Exact expressions for the exchange and correlation functionals
The exchange and correlation holes
The adiabatic connection
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The exchange-correlation hole

» The pair density associated with the wave function W[n] is
m(r1, 1) = N(N — 1)/---/|\U[n](x1,X2,...,xN)|2daldade3...de

which is a functional of the density. It is normalized to the number of electron pairs:
[J n2(r1, r2)dridr. = N(N — 1). It is proportional to the probability density of finding
two electrons at positions (ri,r2) with all the other electrons anywhere.

» It can be used to express the electron-electron interaction energy

(W[n]| Wee|W[n]) = 2” "2(’1”2)dr1dr2

I —
» Mirroring the decomposition of Eiix[n], the pair density can be decomposed as

m(r1,r2) = n(ri)n(rz2) + noxc(r, r2)

independent exchange and
electrons correlation effects

» We also introduce the exchange-correlation hole ny(ri,r2) by
I‘Iz,xc(l’l, I‘2) = I‘I(I’1)I7xc(|‘17 I’2)
It can be interpreted as the modification due to exchange and correlation effects of the
conditional probability of finding an electron at r» knowing that one has been found at r;.

» We have the exact constraints: nu(ri,r2) > —n(r2) and f Nec(r1, r2)dr, = —
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The exchange hole

» Similarly, we define the KS pair density associated with the KS single determinant ®[n]

ng’Ks(rl,rg) = N(N = 1)/ °o0 / |d>[n](x1,xz, ...,XN)‘2dCf1dO'2dX3...dXN

» It can be decomposed as Tnx(rl,rg)

r2

mks(ri, r2) = n(ri)n(r2) + nox(r1,r2) 0 r1

and we introduce the exchange hole n.(r1,r2) by
mx(r1,r2) = n(r1)ng(r, r2)

which satisfies the exact constraints:
n(r1,r2) > —n(r2) and [ nc(ri,r2)dr = —1 and nk(ri,r2) <0

» The exchange energy functional is the electrostatic interaction energy between an
electron and its exchange hole:

En] = 2ff '1)"X('1’r2)dr1dr2 Z/n(rl)sx[n](rl)drl

Ir1 — raf

where g4[n](r1) is the exchange energy per particle. In approximate exchange density
functionals, the quantity ex[n](r1) is usually what is approximated.
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The correlation hole

» The correlation hole is defined as the difference N\ ol SN
rn

nc(l'1, rz) = nxc(rl, l’z) - nx(rh l’z)

and satisfies the sum rule

/nc(rl,rg)drz =0

which implies that the correlation hole has negative and positive contributions.

» The potential contribution to the correlation energy can be written in terms of the
correlation hole

U [n] 2 ff n(rl fle |’1’r2)dl‘1dl‘2

ry — r2

But in order to express the total correlation energy Ec[n] = Tc[n] + U[n] in a similar
form, we need to introduce the adiabatic-connection formalism.
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The adiabatic connection (1/3)

» The idea of the adiabatic connection is to have a continuous path between the
non-interacting KS system and the physical system while keeping the ground-state
density constant.

» For this, we introduce a Hamiltonian depending on a coupling constant )\ which
switches on the electron-electron interaction

B = T+ Ao + 0

where V* is the external local potential imposing that the ground-state density is the
same as the ground-state density of the physical system for all ), i.e. n*(r) = no(r), V.

» By varying A\, we connect the KS non-interacting system (A = 0) to the physical
interacting system (A = 1):

£A=0 0<A<1 fa=1
H — H

KS non-interacting Physical interacting
system system

» We define a universal functional for each value of the parameter A

F[n] = goin (W T+ AWeeW) = ([0 T+ AW [1])
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The adiabatic connection (2/3)

» The functional F*[n] can be decomposed as

F[n] = Tuln] + Eq[n] + E[n] + EX[]

» E;j[n] and EJ[n] are the Hartree and exchange functionals associated with the
interaction AW, and are simply linear in A

Ei[n] = AEx[n]  and E.[n] = AE[n]

» The correlation functional E2[n] is nonlinear in )
EX[n] = (WA [A)| T + AWee| W [11]) — (@[n]| T + AWee|®[n1])
» We can get rid of T by taking the derivative with respect to A and using the
Hellmann-Feynman theorem for the wave function W™ [n]

OEX[n] - s i A A
oy = (WOIn]|Wee| W7 [n]) — {@[n]| Wee|P[n])
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The adiabatic connection (3/3)

> Reintegrating over \ from 0 to 1, and using £.='[n] = Ec[n] and E.=°[n] = 0 (assuming
no degeneracies at A = 0), we arrive at the adiabatic-connection formula

Ec[n] = /O dA (W 1] Wee W™ [n]) — (&[] Wee| &[]

» Introducing the correlation hole nl(r1,r2) associated with the wave function W*[n], the
adiabatic-connection formula can also be written as

Eln] = %/ d [ le)ne(re) g o,

1 — 1o

» Introducing the \-integrated correlation hole fic(r1,r2) = fol dA nd(r1,r2), we finally write

Eln =3 If n(rl)nc(rl,rz)drldr2 /n(l‘1)sc[n](r1)dr1

r1 — 12

where ec[n](r1) is the correlation energy per particle, which is the quantity usually
approximated in practice.
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© Exact constraints for the exchange-correlation functional

@ Uniform coordinate scaling
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Uniform coordinate scaling

» For a given density n, we consider the scaled density with a scaling factor v > 0
n(r) =+’n(3r)
which preserves the number of electrons, i.e. [n,(r)dr = [n(r)dr = N.

» It can be shown that the Hartree and exchange density functionals scale linearly in

Euln.] =Euln] and  Eln]=Edn]

» The correlation density functional has the more complicated scaling
21/~
E[n] = E"[n]

where Ecl/”‘"[n] is the correlation density functional for coupling constant A = 1/~.
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High- and low-density limits

» In the high-density limit (7 — o0), the correlation functional goes to a constant, for
nondegenerate KS systems,

. _ pGL2
Wh_)moo En,] = EZ"[n]

where ES™?[n] is the second-order Gorling-Levy (GL2) correlation energy.
» This is also called the weak-correlation limit since Ec[n] < Ex[n].

» Atomic and molecular systems are often close to the high-density limit. E.g., for the
ground-state density of He, Ec[n] = —0.0421 a.u. and lim, oo Ec[n,] = —0.0467 a.u..

» In the low-density limit (v — 0), the Hartree-exchange-correlation functional goes to
zero linearly in
SCE
EHXC[”“;’] 7:0 Y Wee [n]
where W2F[n] = Lnin<W|VAVee|\IJ) is the strictly-correlated-electron (SCE) functional.
—n

» This limit corresponds to a Wigner crystallization.

» This is also called the strong-correlation limit because E.[n] ~ Ex[n].
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© Exact constraints for the exchange-correlation functional

@ One-orbital spatial regions and self-interaction
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One-orbital spatial regions and self-interaction

» For one-electron densities ne(r) = |t1(r)|? where 91 is the unique occupied KS orbital,
we have

Eme] = —En[me] and  Ec[nie] =0

» For opposite-spin two-electron densities n) (r) = 2|¢1(r)|* where 11 is the unique
doubly occupied KS orbital, we have

1
Eln}] = —2Euln}

» For systems with more electrons, similar relations apply locally in one-orbital spatial
regions, i.e. in regions where only one occupied KS orbital is not zero. This situation
can be approximately realized in chemical systems (unpaired electron in a radical, and
electron pair in a single covalent bond, in a lone pair, or in a core orbital).

» If approximate exchange and correlation density functionals do not satisfy these
constraints, we say that they introduce a self-interaction error.
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© Exact constraints for the exchange-correlation functional

@ Lieb-Oxford lower bound
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Lieb-Oxford lower bound

» Lieb and Oxford derived a useful lower bound which can be expressed as
Efn] > Ee[n] > —Cio /n(r)4/3dr

where the optimal (i.e., smallest) constant CLo (independent of the electron number )
has been narrowed to 1.4442 < C o < 1.5765.

» This bound is approached in the low-density limit.

» For one-electron densities and opposite-spin two-electron densities, specific tigher
bounds (i.e., with smaller C o) are known.
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© Exact constraints for the exchange-correlation functional

@ Frontier orbital energies
HOMO and LUMO energies
Fundamental gap
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The HOMO energy and the ionization energy

>

For clarity, we will explicitly indicate the dependence on the electron number N in this
section.

For finite systems, the exact ground-state density of a N-electron system decays
exponentially for r = |r| — co with an exponent related to the ionization energy
Iv=E'"'—E}

nN(r) x e—21/21N r

r—oo

Choosing the constant in the KS potential so that it goes to zero at infinity, i.e.
lim e 500 sz(r) =0, it can be shown the density calculated from the KS orbitals decays
exponentially with an exponent related to the HOMO energy &/}

mE) = Y ()P o eV RS

r—oo

This implies that the KS HOMO energy is the opposite of the exact ionization
energy

N
EH = —IN

It is similar to Koopmans' theorem for HF, except that here it is exact (no neglect of
correlation or orbital relaxation).
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The LUMO energy, the electron affinity, the derivative discontinuity

» Contrary to what one could have expected, the KS LUMO energy ¢!’ is not the
opposite of the exact electron affinity Ay = E)Y — Eé\’“ but instead

N N
EL = —An — A>(<:
where AY >0 is a constant.

» For the (N + 1)-electron system (with the same external potential vhe), we have

5ﬁ+1 = —Inys1 = —An , so it means that

a = el - ef
i.e., the constant Al corresponds to the “jump” of the LUMO energy of the
N-electron system upon adding an electron so that the HOMO energy of the
(N + 1)-electron system correctly gives — /1.

» In the extension of DFT to fractional electron numbers, it can be shown that the
constant AY corresponds to the uniform jump that the exchange-correlation
potential makes when going from N — § electrons to N + & electrons with § — 0"

at = oy o = (Tl ()

i.e. AY is the derivative discontinuity in the exchange-correlation energy functional
Ex[n].
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Kohn-Sham frontier orbital energies: Graphical summary

Eij
—An + 5ﬁ+1 =—Ay = —Ins1
- AB
—— _.EL
Iy A — N
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Fundamental gap

» The fundamental gap of the N-electron system is defined as

Efo = In — An

» In KS DFT, it can thus be expressed as
EXo=el —ell +AY

KS gap

So the KS gap is not equal to the exact fundamental gap of the system, the
difference coming from the derivative discontinuity AX.

» The derivative discontinuity A can represent an important contribution to the
fundamental gap. In the special case of open-shell systems, we have el = &f, and thus
if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely
given by AN.
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© Approximations for the exchange-correlation energy
@ Local-density approximation
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Local-density approximation

» In the local-density approximation (LDA), introduced by Kohn and Sham (1965), the
exchange-correlation functional is approximated as

EPAIn] = / n(r)ese®(n(r))dr
where £45¢(n) is the exchange-correlation energy per particle of the infinite uniform

electron gas (UEG) with the density n.

» The exchange energy per particle of the UEG can be calculated analytically

e25%(n) = G n*/® Dirac (1930) and Slater (1951)

» For the correlation energy per particle EUEG(n) of the UEG, there are some parametrized
functions of n fitted to QMC data and imposing the high- and low-density expansions
(using the Wigner-Seitz radius r, = (3/(4mn))Y/?)

e — Alnrn+B+Crlinn+ O(rs) high-density limit or
rs—0 weak-correlation limit
UG _ 2 42 b + 0 low-density limit or
¢ rooo h rs3/2 5/2 strong-correlation limit

The two most used parametrizations are VWN and PW92. Generalization to spin

densities e?5(ny, n}) is sometimes referred to as local-spin-density (LSD) approximation.
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© Approximations for the exchange-correlation energy

@ Semilocal approximations
Generalized-gradient approximations
Meta-generalized-gradient approximations
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Generalized-gradient approximations

» The next logical step beyond the LDA is to add the dependence on the gradient of the
density Vn(r).

» From the 1980s, many generalized-gradient approximations (GGAs) have been
developed with the generic form

ESA[n] = / Al T

» The function f is chosen so as to satisfy some exact constraints and often contains some
parameters fitted to experimental or theoretical data.

» The GGAs provide a big improvement over LDA for molecular systems.

» The GGAs are often called semilocal approximations, which means that they involve a
single integral on r using “semilocal information” through Vn(r).

» For simplicity, we consider here only the spin-independent form, but in practice GGA
functionals are more generally formulated in terms of spin densities and their gradients

ESAmun] = [ £ (0)ma(e), Ve (e), T (1)

» Examples of GGAs: B exchange functional (1988), LYP correlation functional (1988),
PBE exchange-correlation functional (1996)

53/75



Meta-generalized-gradient approximations (1/2)

» The meta-generalized-gradient approximations (mMGGAs) are of the generic form
EZ“n.7] = [ F(n(e), Vn(e), Vn(e) ()

where V2n(r) is the Laplacian of the density and 7(r) is the non-interacting positive
kinetic energy density

(1) = 5 D Vi (r)P

which, as we will see, contains useful information.

» A mGGA can be either considered as an implicit functional of the density in the KS
method, i.e. Exc[n] = ER°A[n, To[,], or more commonly as an explicit functional of a
single-determinant ® in the GKS method, i.e. E5[®] = ET®A[ne, o).

» In the GKS method, a mGGA functional generates a non-multiplicative potential. But
don’t worry, this is allowed in GKS!

» Nowadays, V2n(r) is rarely used to construct mGGAs because it contains similar
information than 7(r).

» The mGGAs are considered as part of the family of semilocal approximations.

» The mGGAs provide a modest improvement over GGAs.
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Meta-generalized-gradient approximations (2/2)

» Motivations for introducing the variable 7(r):

» Short-range expansion of the spherically average exchange hole (for closed-shell systems):

n(r) 1 Vn(ry) P2
2 3 8n(r1)

1
Al o) = - (3720tr0) — ar(en) + ) o+ 00

Thus 7(r) is needed to describe the curvature of the exchange hole.

» 7(r) can be used as an indicator of one-orbital spatial regions (regions containing one or
two electrons in a single orbital).
This is done by comparing 7(r) with the von Weizsédcker kinetic energy density

[Vn(r)?
8n(r)

which is the exact 7(r) for one and two electrons in a single orbital.

™(r) =

» Examples of mGGAs: TPSS (2003), M06-L (2006), and SCAN (2015).
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© Approximations for the exchange-correlation energy

@ Single-determinant hybrid approximations
Hybrid approximations
Range-separated hybrid approximations
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Hybrid approximations

» In 1993, Becke proposed to mix Hartree-Fock (HF) exchange with GGA functionals in
a three-parameter hybrid (3H) approximation

EN®] = a EMF[®] + b ES[ne] + (1 — a — b) E-[ne] + ¢ ES[ne] + (1 — ¢) E-P*[no]
where a, b, and ¢ are empirical parameters. Example: B3LYP (a = 0.20)

» These hybrids are approximations within the GKS method. The term S[®] = aE}F[®]
generates a nonlocal HF exchange potential av}' (r,r'). Again, this is perfectly
allowed in the GKS method.

» Adding a fraction a of HF exchange decreases the self-interaction error, which tends to
favor too much delocalized electron densities. However, a too large a tends to increase
the static-correlation error (stretched chemical bonds, transition metal elements, ...).

» In 1996, Becke proposed a simpler one-parameter hybrid (1H) approximation
EL[®] = a EF[®] + (1 - a) EX™[ne] + EZ™[no]
where EP™ and EP™ can be any semilocal density-functional approximations (DFAs).

» The optimal a is often around 0.25. Example: PBEO = HF/PBE hybrid with a = 0.25.

> A strategy is to use flexible EP™ and EP™ in a hybrid approximation and optimize
many parameters on molecular properties.
Example: B97 (13 parameters) and M06 and M06-2X (36 parameters).
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Range-separated hybrid (RSH) approximations

» Based on ideas of Savin (1996), Hirao and coworkers (2001) proposed a long-range
correction (LC) scheme

EXLCC[(D] — E)l(r,HF[q)] 4 Ejr,DFA[nq)] 4 ECDFA[n¢]

where
> EXI"HF[CD] is the HF exchange energy for the long-range electron-electron interaction
1

(e . . .
% replacing the Coulomb interaction o

E;"DFA[n] is a semilocal DFA exchange energy for the complement short-range

electron-electron interaction (semilocal DFAs are more accurate if limited to short-range
interactions),

> the range-separation parameter ;. (also sometimes denoted as w) is often taken as
1= 0.3 —0.5 bohr1.

Example: LC-wPBE

» In 2004, Yanai, Tew, and Handy introduced a more flexible decomposition called the
Coulomb-attenuating method (CAM)

EXCCAM[¢] =g E;r,HF[q)] + b E)l(r,HF[q)] + (1 _ 3) sr DFA[I'I¢] + (1 _ ) E)\(r,DFA[nd)] + EcDFA[n¢]
Examples: CAM-B3LYP, wB97X
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© Approximations for the exchange-correlation energy

@ Multideterminant hybrid approximations
Double-hybrid approximations
Range-separated double-hybrid approximations
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Double-hybrid approximations

» In 2006, Grimme introduced a two-parameter double-hybrid (2DH) approximation

EXPM = a, B[] 4 (1 — a) EX™[ne] + (1 — ac) EX[ne] + a EM'F?
where the MP2-like correlation energy EMP? is added a posteriori with the previously

calculated orbitals. Example: B2-PLYP (a, = 0.53 and a. = 0.27).

» The presence of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal
HF exchange.

» In 2011, Sharkas, Toulouse, and Savin showed that double hybrids can be understood as
approximations of a multideterminant extension of the KS method based on the
adiabatic-connection formalism in which the exact ground-state energy is written as

Eo = mjn {<w|? + Ve + AWee| W) + Eaxc[nw]}

where Ejj.[n] = (1 — A)Eu[n] + (1 — A)Ex[n] + EX[n] and E2[n] = Ec[n] — N> Ec[n1)].

» At second order of a non-linear Mgller-Plesset-like perturbation theory, and using
Ec[n1,] = Ec[n], we obtain a one-parameter double-hybrid (1DH) approximation

EM = A EfF[0] + (1 = A) EXP[ne] + (1 — A*)E2™ [ne] + N2 ENP?
» The multideterminant extension of the KS method can also be used to rigorously combine

wave-function methods such as MCSCF with DFT.
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Range-separated double-hybrid approximations

» In 1996, Savin introduced the range-separated multideterminant extension of the KS
scheme in which the exact ground-state energy is written as

By = min { (W T+ Vhe + WENW) + B[]}

where WL is the long-range electron-electron operator for the pair potential
erf(pun2)/n2 and Egi.[n] is the complementary short-range density functional.

» The approach can be used to rigorously combine any wave-function method with DFT.

» In 2005, Angyén, Gerber, Savin, and Toulouse introduced a range-separated
double-hybrid (RSDH) approximation (also called RSH4+MP2)

EXR;SDH _ E)I(r,HF[¢’] + E;r,DFA[nq)] + Ecsr,DFA[nq)] + Eclr,MPZ

» Obtained as second order of a non-linear Mgller-Plesset-like perturbation theory.
» Long-range MP2 is qualitatively correct for London dispersion interactions.

» Long-range MP2 has a fast convergence with the one-electron basis size.

» Extensions of this scheme to a more flexible CAM decomposition have also been
proposed.
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© Approximations for the exchange-correlation energy

@ Dispersion corrections
Semiempirical dispersion corrections
Nonlocal van der Waals density functionals
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Semiempirical dispersion corrections

» To explicitly account for London dispersion interactions, it has been proposed in the
2000s to add to the standard approximate functionals a semiempirical dispersion
correction of the form

C“ﬂ
Ed.sp = —S Z f(Rag)

a<pf

where

>

>

>

>

R, is the distance between a pair of atoms,
Cﬁaﬁ is the dispersion coefficient between these atoms,
f(Rag) is a damping function which tends to 1 at large R, and tends to 0 at small R,3,

s is a scaling parameter that can be adjusted for each approximate functional.

» The dispersion coefficients Cg‘ﬁ are empirically obtained from tabulated data.

» The most recent versions also includes Cé"ﬁ two-body terms and Cgo‘ﬁ"’ three-body terms.

» This approach was named “DFT-D" by Grimme. Examples of DFT-D functionals:
PBE-D, B97-D, B3LYP-D, wB97X-D, B2PLYP-D.

» There are also various proposals to make the determination of dispersion coefficients less
empirical, e.g. Becke and Johnson (2007), Tkatchenko and Scheffler (2009), Sato and
Nakai (2010).
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Nonlocal van der Waals density functionals

» Another approach to describe dispersion interactions is to add to the standard
approximate functionals a nonlocal van der Waals density functional of the form

EM'[n] = % [ Aer)n(e)(rs,v2)dradrs

where ¢(r1,r2) is a correlation kernel.

» Two main families of such nonlocal correlation functionals exist: the “van der Waals
density functionals” (vdW-DF) of Langreth, Lundqvist and coworkers and the
Vydrov-Van Voorhis (VV) functionals.

» For example, the VV10 nonlocal correlation functional (2010) uses a theory-based kernel
@(r1,r2) with two adjustable parameters.

» Nonlocal van der Waals density functionals are less empirical but more computationally
expensive than semiempirical dispersion corrections.

» Examples of functionals using VV10: wB97X-V and wB97M-V.
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© Approximations for the exchange-correlation energy

@ Machine-learned density functionals
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Machine-learned density functionals

» Construction of exchange-correlation energy approximations using Machine Learning
(ML) is a current topic of research.

» For example, such ML exchange-correlation energy approximations can be of the form
Edt = /fML[n, Vn,,..](r)dr

where fy is a very complicated function performing various sequential transformations
(including neural networks) of the different input features (n, Vn, 7, ...) and containing
of the order of 10° parameters.

» A very large amount of reliable accurate data is necessary to optimize all the parameters.
» Example: DM21 (2021), Skala (2025)

» ML exchange-correlation approximations look very promising, but, as of 2025, they are
not yet used in applications.
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© Approximations for the exchange-correlation energy

@ Benchmark
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Benchmark of exchange-correlation approximations

Mean errors on large sets of molecular energetic data (nearly 5000 data points) for one of
the “best” approximation in each family:
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Data from N. Mardirossian and M. Head-Gordon, Journal of Chemical Physics 148, 241736 (2018)
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@ Time-dependent density-functional theory

69/75



@ Time-dependent density-functional theory
@ Runge-Gross theorem
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Time-dependent density-functional theory (TDDFT)

» Consider the time-dependent electronic Schrodinger equation with an external
time-dependent potential V/(t)

o|v(t))
ot

i

= (T + Wee t V(1)) 1W(2)

» Similarly to the Hohenberg-Kohn theorem, Runge and Gross (1984) showed that, for a
given initial wave function W(0), the time-dependent density n(r, t) determines the
time-dependent potential v(r, t) up to an arbitrary additive time function:

n(r,t) ——— v(r, t) + c(t)

Runge-Gross

» We can thus set up a time-dependent non-interacting KS system

iadja(r» t) =

ot (—%Vz +u(r, t)) balr, 1)

where the time-dependent KS potential vs(r, t) = v(r, t) + vix(r, t) reproduces the
evolution of the exact density as n(r,t) = 3" |1, (r, t)[.
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@ Time-dependent density-functional theory

@ Linear-response TDDFT
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Linear-response TDDFT

» Let us consider a time-periodic potential of frequency w. In Fourier space, a variation of
the KS potential vs(r1,w) caused by a variation of the density n(r2,w) can be written as
Ove(r,w)  Oov(r,w) | Ovixe(ri,w)
dn(ra,w)  on(rz,w) dn(ra,w)

» This can be rewritten as

—il —il
Xs (ri,r2,w) = x (r1,r2,w) + fuxc(rs, r2, w)
where
> xs(r1,r2,w) = dn(ry,w)/dvs(rz,w) is the KS non-interacting linear-response function
» x(ri,r2,w) =3dn(r1,w)/dv(r2,w) is the interacting linear-response function
> frxc(r1, 12, w) = dvhxc(r1, w)/dn(r2, w) is the Hartree-exchange-correlation kernel
» The interacting linear-response function x(r1, r2,w) is thus found from the Dyson-like
response equation
=il =il
X (r,r2,w) = xs " (r, 2, w) — fiaxe(rn, r2,w)

or, equivalently,
X(r1, £z, ) = Xs(r1, 12, ) + [ [ drsdra xo(r1, F5, ) (s, s, w) X(ra, 2, )
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Excitation energies from linear-response TDDFT

» The KS linear-response function has poles at the KS (de-)excitation energies

)= 30 3030 Yl (st YoMl

oe{t,l} a 7

» Similarly, x(r1,r2,w) has poles at the exact excitation energies w, = E, — Eq.

w— (er —ea) +i0 w+ (er —ea) + 00

> Writing x 7' (w) = x5} (w) — fuxc(w) in the spin-orbital tensor-product basis {34,, 17, }

1 _ A(w) B(w) iy 1 0
X (w) = [( B(—w)* A(-w)* ) ( 0 -1 )}
where the matrices A(w) and B(w) are
[A(w)]ar,bs = (5r - 5a)6ab6rs + <rb|fH><c(w)|35>

[B(w)]ar,bs = <r5‘ foc(w)lab>

» The excitation energies w, can be calculated from the generalized eigenvalue equation

(s} ac) )% )==(o 5)(%)
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The Hartree-exchange-correlation kernel

» In linear-response TDDFT, the key quantity to be approximated is the
Hartree-exchange-correlation kernel

5VHXC(I’1, UJ)

free(r1, 12, 0) = n(ra, w)

» It can be decomposed as
frixc(r1, r2, w) = fu(ri, r2) + fie(ri, r2, w)
where the Hartree kernel is simply fi(ri,r2) = 1/|r1 — r2].

» In almost all TDDFT calculations, the frequency dependence of £ is neglected, which is
called the adiabatic approximation

Ovie(r 62Exc[n
&c(rl,rg,w) ~ xc( 1) _ xc[ ]
dn(r2) on(r1)dn(r2)
with the notorious consequence that only single-electron excitations are taken into
account (double excitations and higher are missing).

» To describe nonlocal excitations, such as charge-transfer excitations, range-separated
hybrid approximations are often used. The kernel has then the expression

Ir,HF sr,DFA DFA
fie = % _|'7c><7 +ﬁ:

where ;"1 is the long-range HF exchange kernel.
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