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Why and how learning density-functional theory?

Density-functional theory (DFT) is:

� a practical electronic-structure computational method, widely used in quantum
chemistry and condensed-matter physics;

� an exact and elegant reformulation of the quantum many-body problem, which has
led to new ways of thinking in the field.

Classical books:

� R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, 1989.

� R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the

Quantum Many-Body Problem, Springer-Verlag, 1990.

� W. Koch and M. C. Holthausen, A Chemist’s Guide To Density Functional Theory,
Wiley-VCH, 2001.

My lecture notes:

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf

A book chapter:

J. Toulouse, in Density Functional Theory, edited by E. Cancès and G. Friesecke, Springer, 2023.

2/75

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf


Outline

1 Basic density-functional theory
Quantum many-electron problem
Universal density functional
Kohn-Sham method
Generalized Kohn-Sham method

2 Exact constraints for the exchange-correlation functional
Exact expressions for the exchange and correlation functionals
Uniform coordinate scaling
One-orbital spatial regions and self-interaction
Lieb-Oxford lower bound
Frontier orbital energies

3 Approximations for the exchange-correlation energy
Local-density approximation
Semilocal approximations
Single-determinant hybrid approximations
Multideterminant hybrid approximations
Dispersion corrections
Machine-learned density functionals
Benchmark

4 Time-dependent density-functional theory
Runge-Gross theorem
Linear-response TDDFT 3/75



Outline

1 Basic density-functional theory
Quantum many-electron problem
Universal density functional
The Hohenberg-Kohn theorem
Levy-Lieb constrained-search formulation

Kohn-Sham method
Decomposition of the universal functional
The Kohn-Sham equations
Practical calculations in an atomic basis
Extension to spin density-functional theory

Generalized Kohn-Sham method

4/75



Quantum many-electron problem

� We consider an N-electron system in the Born-Oppenheimer and non-relativistic
approximations.

� The electronic Hamiltonian in the position representation is, in atomic units,

Ĥ = −1

2

N∑

i

∇2
ri +

1

2

N∑

i

N∑

j 6=i

1

|ri − rj |
+

N∑

i

vne(ri )

where vne(ri ) = −
∑

α Zα/|ri − Rα| is the nuclei-electron interaction potential.

� Stationary states satisfy the time-independent Schrödinger equation

HΨ(x1, x2, ..., xN) = EΨ(x1, x2, ..., xN)

where Ψ(x1, x2, ..., xN) is a wave function written with space-spin coordinates
xi = (ri , σi ) (with ri ∈ R

3 and σi ∈ {↑, ↓}) which is antisymmetric with respect to the
exchange of two space-spin coordinates, and E is the associated energy.

� Using Dirac notations (representation-independent formalism):

Ĥ|Ψ〉 = E |Ψ〉 where Ĥ = T̂ + Ŵee + V̂ne
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Wave-function variational principle

� The ground-state electronic energy E0 can be expressed with the wave-function
variational principle

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉

where the minimization is over all N-electron (multi-determinant) wave functions Ψ
normalized to unity 〈Ψ|Ψ〉 = 1.

� DFT is based on a reformulation of this variational theorem in terms of the
one-electron density defined as

n(r) = N

∫

· · ·
∫

|Ψ(x, x2, ..., xN)|2 dσdx2...dxN

which is normalized to the electron number,
∫
n(r)dr = N.

Remark: Integration over a spin coordinate σ means a sum over the two values of σ, i.e.
∫

dσ =
∑

σ∈{↑,↓}.
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The Hohenberg-Kohn theorem

� Consider an electronic system with an arbitrary external local potential v(r) (that
bounds N electrons) in place of vne(r). For simplicity, we will assume that v(r) gives an
N-electron ground state which is not degenerate.

� For any such external potential v(r), the ground-state wave function Ψ can be obtained
by solving the Schrödinger equation, from which an associated ground-state density
n(r) can be deduced. Therefore, one has the mapping:

v(r) −−−−−→ n(r)

� In 1964, Hohenberg and Kohn showed that this mapping can be inverted, i.e. a
ground-state density n(r) determines the potential v(r) up to an arbitrary additive
constant:

n(r) −−−−−−−−−→
Hohenberg-Kohn

v(r) + const
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Proof of the Hohenberg-Kohn theorem (1/2)

This is a two-step proof by contradiction.

Consider two local potentials differing by more than an additive constant:

v1(r) 6= v2(r) + const

We have two Hamiltonians:

Ĥ1 = T̂ + Ŵee + V̂1 with a ground state Ĥ1|Ψ1〉 = E1|Ψ1〉 and ground-state density n1(r)

Ĥ2 = T̂ + Ŵee + V̂2 with a ground state Ĥ2|Ψ2〉 = E2|Ψ2〉 and ground-state density n2(r)

1 We first show that Ψ1 6= Ψ2:

Assume Ψ1 = Ψ2 = Ψ. Then we have:

(Ĥ1 − Ĥ2)|Ψ〉 = (V̂1 − V̂2)|Ψ〉 = (E1 − E2)|Ψ〉
or, in position representation,

(
N∑

i

[v1(ri )− v2(ri )]

)

Ψ(x1, x2, ..., xN) = (E1 − E2)Ψ(x1, x2, ..., xN)

If Ψ(x1, x2, ..., xN) 6= 0 for at least one fixed set of (σ1, σ2, ..., σN) and“almost”all
(r1, r2, ..., rN), which is true for “reasonably well behaved potentials”, then it implies that
v1(r)− v2(r) = const, in contradiction with the initial hypothesis.

=⇒ Intermediate conclusion: two local potentials differing by more than an
additive constant cannot have a common ground-state wave function.
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Proof of the Hohenberg-Kohn theorem (2/2)

2 We now show than n1 6= n2:

Assume n1 = n2 = n. Then, by the variational theorem, we have:

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2 + V̂1 − V̂2|Ψ2〉 = E2 +

∫

[v1(r)− v2(r)] n(r)dr

The strict inequality comes from the fact that Ψ2 cannot be a ground-state wave
function of Ĥ1, as shown in the first step of the proof.

So, we have shown

E1 < E2 +

∫

[v1(r)− v2(r)] n(r)dr

Symmetrically, by exchanging the role of system 1 and 2, we have the strict inequality

E2 < E1 +

∫

[v2(r)− v1(r)] n(r)dr

Adding the two inequalities gives the inconsistent result

E1 + E2 < E2 + E1

=⇒ Conclusion: there cannot exist two local potentials differing by more than an
additive constant which have a common ground-state density.
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The universal density functional and the variational property

� The Hohenberg-Kohn theorem can be summarized as

n −−−−−→ v −−−−−→ Ĥ −−−−−→ everything

v is a functional of the density n, i.e. v [n], and all other quantities as well.

� The ground-state wave function Ψ is a functional of n, denoted by Ψ[n]. Hohenberg
and Kohn defined the universal density functional

F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉

and the total electronic energy functional

E [n] = F [n] +

∫

vne(r)n(r)dr

� Hohenberg and Kohn showed that we have a variational property giving the exact
ground-state energy

E0 = min
n

{

F [n] +

∫

vne(r)n(r)dr

}

The minimum is reached for the exact ground-state density n0(r) of the potential vne(r).
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Levy-Lieb constrained-search formulation

� In 1979 Levy, and later in 1983 Lieb, proposed to redefine the universal density
functional as

F [n] = min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉

where“Ψ→ n”means that the minimization is over all normalized N-electron
(multi-determinant) wave functions giving the density n.

� The variational property is easily obtained using the constrained-search formulation:

E0 =min
Ψ
〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

=min
n

min
Ψ→n
〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

=min
n

{

min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉+

∫

vne(r)n(r)dr

}

=min
n

{

F [n] +

∫

vne(r)n(r)dr

}

x Ψ1
x Ψ2

x Ψ3

x Ψ4

x Ψ5

x Ψ6

n1

n2 n3

� Hence, in DFT, we replace“min
Ψ

”by“min
n
”which is a tremendous simplification!

However, F [n] = T [n] +Wee[n] is very difficult to approximate, in particular the
kinetic energy part T [n].
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Kohn-Sham (KS) method: decomposition of the universal functional

� In 1965, Kohn and Sham proposed to decompose F [n] as

F [n] = Ts[n] + EHxc[n]

� Ts[n] is the non-interacting kinetic-energy functional:

Ts[n] = min
Φ→n
〈Φ|T̂ |Φ〉 = 〈Φ[n]|T̂ |Φ[n]〉

where the minimization is over normalized N-electron single-determinant wave
functions Φ giving the fixed density n. The minimizing single-determinant wave function
(assumed to be unique for simplicity) is called the KS wave function and is denoted by
Φ[n].

� The remaining functional EHxc[n] is called the Hartree-exchange-correlation functional.

� Any density n can be obtained from a single-determinant wave function, therefore the
Kohn-Sham decomposition does not introduce any approximation.
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Kohn-Sham (KS) method: variational principle

� The exact ground-state energy can then be expressed as

E0 =min
n

{

F [n] +

∫

vne(r)n(r)dr

}

=min
n

{

min
Φ→n
〈Φ|T̂ |Φ〉+ EHxc[n] +

∫

vne(r)n(r)dr

}

=min
n

min
Φ→n

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

=min
Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

and the minimizing single-determinant KS wave function gives the exact ground-state
density n0(r).

� Hence, in KS DFT, we replace“min
Ψ

”by“min
Φ

”which is still a tremendous

simplification! The advantage of KS DFT over pure DFT is that a major part of the
kinetic energy is treated explicitly with the single-determinant wave function Φ.

� KS DFT is similar to Hartree-Fock (HF)

EHF = min
Φ
〈Φ|T̂ + V̂ne + Ŵee|Φ〉

but in KS DFT the exact ground-state energy and density are in principle obtained!
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Kohn-Sham (KS) method: the Hartree-exchange-correlation functional

� EHxc[n] is decomposed as
EHxc[n] = EH[n] + Exc[n]

� EH[n] is the Hartree energy functional

EH[n] =
1

2

x n(r1)n(r2)

|r1 − r2|
dr1dr2

representing the classical electrostatic repulsion energy for the charge distribution n(r)
and which is calculated exactly.

� Exc[n] is the exchange-correlation energy functional that remains to approximate.
This functional is often decomposed as

Exc[n] = Ex[n] + Ec[n]

where Ex[n] is the exchange energy functional

Ex[n] = 〈Φ[n]|Ŵee|Φ[n]〉 − EH[n]

and Ec[n] is the correlation energy functional

Ec[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Φ[n]|T̂ + Ŵee|Φ[n]〉 = Tc[n] + Uc[n]

containing a kinetic contribution Tc[n] = 〈Ψ[n]|T̂ |Ψ[n]〉 − 〈Φ[n]|T̂ |Φ[n]〉
and a potential contribution Uc[n] = 〈Ψ[n]|Ŵee|Ψ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉.
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The Kohn-Sham equations (1/2)

� The single determinant Φ is constructed from a set of N orthonormal occupied
spin-orbitals χa(x) = ψa(r)α(σ) or χa(x) = ψa(r)β(σ).

� The total energy to be minimized is

E [{ψa}] =
N∑

a

∫

ψ∗
a (r)

(

−1

2
∇2 + vne(r)

)

ψa(r)dr + EHxc[n]

and the density is

n(r) =

N∑

a

|ψa(r)|2

� For minimizing over the orbitals {ψa} with the constraint of keeping the orbitals
orthonormalized, we introduce the Lagrangian

L[{ψa}] = E [{ψa}]−
N∑

a

εa

(∫

ψ∗
a (r)ψa(r)dr − 1

)

where εa is the Lagrange multiplier associated with the normalization condition of ψa(r).

� The Lagrangian must be stationary with respect to variations of the orbitals ψa(r)

δL
δψ∗

a (r)
= 0
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Interlude: Review on functional derivatives

� For a functional F : f 7→ F [f ] of the function f : x 7→ f (x), an infinitesimal variation δf
of f leads to an infinitesimal variation of F which can be expressed as

δF [f ] =

∫
δF [f ]

δf (x)
δf (x)dx

This defines the functional derivative of F [f ] with respect to f (x):
δF [f ]

δf (x)
Remark: For a function F (f1, f2, ...) of several variables f1, f2, ..., we have

dF =
∑

i

∂F

∂fi
dfi

δF [f ]/δf (x) is the analog of ∂F/∂fi for the case of an infinite continuous number of variables.

� For a functional F [f ] of a function f [g ](x) which is itself a functional of another
function g(x), we have the chain rule

δF

δg(x)
=

∫
δF

δf (x ′)

δf (x ′)

δg(x)
dx ′

Remark: It is the analog of the chain rule for a function F (f1, f2, ...) of several variables

fj (g1, g2, ...) which are themselves functions of other variables g1, g2, ...

∂F

∂gi
=

∑

j

∂F

∂fj

∂fj

∂gi
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The Kohn-Sham equations (2/2)

� We find for the functional derivative of the Lagrangian

0 =
δL

δψ∗
a (r)

=

(

−1

2
∇2 + vne(r)

)

ψa(r) +
δEHxc[n]

δψ∗
a (r)

− εaψa(r)

� We calculate the term δEHxc[n]/δψ
∗
a (r) using the chain rule

δEHxc[n]

δψ∗
a (r)

=

∫
δEHxc[n]

δn(r′)

δn(r′)

δψ∗
a (r)

dr′ = vHxc(r)ψa(r)

where we have used δn(r′)/δψ∗
a (r) = ψa(r)δ(r − r′) and we have introduced

the Hartree-exchange-correlation potential vHxc(r)

vHxc(r) =
δEHxc[n]

δn(r)

which is itself a functional of the density.

� We arrive at the KS equations

(

−1

2
∇2 + vne(r) + vHxc(r)

)

ψa(r) = εaψa(r)

The orbitals ψa(r) are called the KS orbitals and εa are the KS orbital energies.
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The Kohn-Sham equations and the Kohn-Sham Hamiltonian

� The KS orbitals are eigenfunctions of the KS one-electron Hamiltonian

ĥs = −
1

2
∇2 + vs(r)

where vs(r) = vne(r) + vHxc(r) is the KS potential.

� Mathematically, the KS equations are a set of coupled self-consistent equations since the
potential vHxc(r) depends on all the occupied orbitals {ψa}a=1,...N through the density.

� Physically, ĥs defines the KS system which is a system of N non-interacting electrons in
an effective external potential vs(r) ensuring that its ground-state density n(r) is the
same as the exact ground-state density n0(r) of the physical system of N interacting
electrons.

� The KS equations also defines virtual KS orbitals {ψr}r≥N+1.
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The Hartree-exchange-correlation potential

� Following the decomposition of EHxc[n], the potential vHxc(r) is also decomposed as

vHxc(r) = vH(r) + vxc(r)

with the Hartree potential

vH(r) =
δEH[n]

δn(r)
=

∫
n(r′)

|r − r′|dr
′

and the exchange-correlation potential

vxc(r) = δExc[n]/δn(r)

� The potential vxc(r) can be decomposed as

vxc(r) = vx(r) + vc(r)

with the exchange potential vx(r) = δEx[n]/δn(r)

and the correlation potential vc(r) = δEc[n]/δn(r)
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Practical calculations in an atomic basis (1/3)

� We consider a basis of K atom-centered functions {φν}, e.g. GTO basis functions.
The orbitals are expanded as

ψi (r) =
K∑

ν

Cνi φν(r)

� Inserting this expansion in the KS equations

ĥsψi (r) = εiψi (r)

and multiplying on the left by φ∗
µ(r) and integrating over r, we arrive at

the familiar SCF generalized eigenvalue equation

K∑

ν

Fµν Cνi = εi

K∑

ν

Sµν Cνi

where Fµν =
∫
φ∗
µ(r)hsφν(r)dr are the elements of the KS Fock matrix and

Sµν =
∫
φ∗
µ(r)φν(r)dr are the elements of the overlap matrix.
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Practical calculations in an atomic basis (2/3)

� The Fock matrix is calculated as Fµν = H
core
µν + Jµν + Vxc,µν

� Hcore
µν are the one-electron integrals: H

core
µν =

∫

φ∗
µ(r)

(

−1

2
∇2 + vne(r)

)

φν(r)dr

� Jµν is the Hartree potential matrix:

Jµν =

∫

φ∗
µ(r)vH(r)φν(r)dr =

K∑

λ

K∑

γ

Pλγ〈µγ|νλ〉

where 〈µγ|νλ〉 =
x φ∗

µ(r1)φ
∗
γ(r2)φν(r1)φλ(r2)

|r1 − r2|
dr1dr2 are the two-electron

integrals and Pλγ =

N∑

a

CλaC
∗
γa is the density matrix.

� Vxc,µν is the exchange-correlation potential matrix: Vxc,µν =

∫

φ∗
µ(r)vxc(r)φν(r)dr

� The total electronic energy is calculated as

E =
K∑

µ

K∑

ν

PνµH
core
µν +

1

2

K∑

µ

K∑

ν

PνµJµν + Exc

� The density is calculated as n(r) =
K∑

λ

K∑

γ

Pλγφλ(r)φ
∗
γ(r)
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Practical calculations in an atomic basis (3/3)

� In the simplest approximation, the exchange-correlation energy functional has a local
form

E
local
xc =

∫

f (n(r))dr

where f (n(r)) has a complicated nonlinear dependence on the density n(r).

� For example, in the local-density approximation (LDA), the exchange energy is

E
LDA
x = Cx

∫

n(r)4/3dr

where Cx is a constant, and the exchange potential is

v
LDA
x (r) =

4

3
Cxn(r)

1/3

� Therefore, the integrals cannot be calculated analytically, but are instead evaluated by
numerical integration on a grid

Vxc,µν ≈
∑

k

wk φ
∗
µ(rk)vxc(rk)φν(rk) and E

local
xc ≈

∑

k

wk f (n(rk))

where rk and wk are quadrature points and weights.
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Extension to spin density-functional theory (1/2)

� For dealing with an external magnetic field, DFT has been extended from the total
density to spin-resolved densities

nσ(r) = N

∫

· · ·
∫

|Ψ(rσ, x2, ..., xN)|2 dx2...dxN with σ ∈ {↑, ↓}

which integrate to the numbers of σ-spin electrons, i.e.
∫
nσ(r)dr = Nσ.

� Without magnetic fields, this is in principle not necessary. In practice, the dependence
on the spin densities allows one to construct more accurate approximate
exchange-correlation functionals for open-shell systems.

� The universal density functional is now defined as

F [n↑, n↓] = min
Ψ→n↑,n↓

〈Ψ|T̂ + Ŵee|Ψ〉

where the search is over wave functions Ψ giving the fixed spin densities n↑ and n↓.

� A KS method is obtained by decomposing F [n↑, n↓] as

F [n↑, n↓] = Ts[n↑, n↓] + EH[n] + Exc[n↑, n↓]

where Ts[n↑, n↓] is defined with a constrained search over (spin-unrestricted) Slater
determinants Φ

Ts[n↑, n↓] = min
Φ→n↑,n↓

〈Φ|T̂ |Φ〉
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Extension to spin density-functional theory (2/2)

� The exact ground-state energy is expressed as

E0 = min
Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + Exc[n↑,Φ, n↓,Φ]
}

� Writing the spatial orbitals of the determinant as ψaσ(r) (with indices explicitly including
spin now), we have now the spin-dependent KS equations

(

−1

2
∇2 + vne(r) + vH(r) + vxc,σ(r)

)

ψaσ(r) = εaσψaσ(r)

with the spin-dependent exchange-correlation potential and density

vxc,σ(r) =
δExc[n↑, n↓]

δnσ(r)
and nσ(r) =

Nσ∑

a

|ψaσ(r)|2

� The spin-dependent exchange functional Ex[n↑, n↓] can be obtained from the
spin-independent exchange functional Ex[n] with the spin-scaling relation

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓])

Therefore, any approximation for the spin-independent exchange functional Ex[n] can be
easily extended to an approximation for the spin-dependent exchange functional
Ex[n↑, n↓]. Unfortunately, there is no such relation for the correlation functional.
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Generalized Kohn-Sham method

� An important extension of the KS method is the generalized Kohn-Sham (GKS)
method (1996) in which the universal density functional F [n] is decomposed as

F [n] = min
Φ→n

{

〈Φ|T̂ |Φ〉+ EH[nΦ] + S [Φ]
}

+ S̄ [n]

where S [Φ] is any (reasonable) functional of a single-determinant wave function Φ and
S̄ [n] is the complementary density functional. E.g., in hybrids, S [Φ] = aEHF

x [Φ].

� Defining the GKS exchange-correlation functional, E S
xc[Φ] = S [Φ] + S̄ [nΦ] , we can

express the exact ground-state energy as

E0 = min
Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + E
S
xc[Φ]

}

and any minimizing single-determinant wave function gives a ground-state density n0(r).

� The corresponding GKS equations are
(

−1

2
∇2 + vne(r) + vH(r) + vS̄(r)

)

ψaσ(r) +
δS [Φ]

δψ∗
aσ(r)

= εaσψaσ(r)

where vS̄(r) = δS̄ [n]/δn(r) is a local potential and δS [Φ]/δψ∗
aσ(r) generates a

one-electron (possibly nonlocal) operator.

� The GKS method gives much more freedom than the KS method (which corresponds
to the special case S [Φ] = 0).
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The exchange-correlation hole

� The pair density associated with the wave function Ψ[n] is

n2(r1, r2) = N(N − 1)

∫

· · ·
∫

|Ψ[n](x1, x2, ..., xN)|2 dσ1dσ2dx3...dxN

which is a functional of the density. It is normalized to the number of electron pairs:
s

n2(r1, r2)dr1dr2 = N(N − 1). It is proportional to the probability density of finding
two electrons at positions (r1, r2) with all the other electrons anywhere.

� It can be used to express the electron-electron interaction energy

〈Ψ[n]|Ŵee|Ψ[n]〉 = 1

2

x n2(r1, r2)

|r1 − r2|
dr1dr2

� Mirroring the decomposition of EHxc[n], the pair density can be decomposed as

n2(r1, r2) = n(r1)n(r2) + n2,xc(r1, r2)
︸ ︷︷ ︸
independent
electrons

︸ ︷︷ ︸
exchange and

correlation effects

� We also introduce the exchange-correlation hole nxc(r1, r2) by

n2,xc(r1, r2) = n(r1)nxc(r1, r2)

It can be interpreted as the modification due to exchange and correlation effects of the
conditional probability of finding an electron at r2 knowing that one has been found at r1.

� We have the exact constraints: nxc(r1, r2) ≥ −n(r2) and
∫
nxc(r1, r2)dr2 = −1
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The exchange hole

� Similarly, we define the KS pair density associated with the KS single determinant Φ[n]

n2,KS(r1, r2) = N(N − 1)

∫

· · ·
∫

|Φ[n](x1, x2, ..., xN)|2 dσ1dσ2dx3...dxN

� It can be decomposed as

n2,KS(r1, r2) = n(r1)n(r2) + n2,x(r1, r2)

and we introduce the exchange hole nx(r1, r2) by

n2,x(r1, r2) = n(r1)nx(r1, r2)

nx(r1, r2)

0
r1

r2

which satisfies the exact constraints:

nx(r1, r2) ≥ −n(r2) and
∫
nx(r1, r2)dr2 = −1 and nx(r1, r2) ≤ 0

� The exchange energy functional is the electrostatic interaction energy between an
electron and its exchange hole:

Ex[n] =
1

2

x n(r1)nx(r1, r2)

|r1 − r2|
dr1dr2 =

∫

n(r1)εx[n](r1)dr1

where εx[n](r1) is the exchange energy per particle. In approximate exchange density
functionals, the quantity εx[n](r1) is usually what is approximated.
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The correlation hole

� The correlation hole is defined as the difference

nc(r1, r2) = nxc(r1, r2)− nx(r1, r2)

nc(r1, r2)

0
r1

r2

and satisfies the sum rule
∫

nc(r1, r2)dr2 = 0

which implies that the correlation hole has negative and positive contributions.

� The potential contribution to the correlation energy can be written in terms of the
correlation hole

Uc[n] =
1

2

x n(r1)nc(r1, r2)

|r1 − r2|
dr1dr2

But in order to express the total correlation energy Ec[n] = Tc[n] + Uc[n] in a similar
form, we need to introduce the adiabatic-connection formalism.
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The adiabatic connection (1/3)

� The idea of the adiabatic connection is to have a continuous path between the
non-interacting KS system and the physical system while keeping the ground-state
density constant.

� For this, we introduce a Hamiltonian depending on a coupling constant λ which
switches on the electron-electron interaction

Ĥ
λ = T̂ + λŴee + V̂

λ

where V̂ λ is the external local potential imposing that the ground-state density is the
same as the ground-state density of the physical system for all λ, i.e. nλ(r) = n0(r), ∀λ.

� By varying λ, we connect the KS non-interacting system (λ = 0) to the physical
interacting system (λ = 1):

Ĥ
λ=0

︸ ︷︷ ︸
KS non-interacting

system

0≤λ≤1←−−−−−−−−−→ Ĥ
λ=1

︸ ︷︷ ︸
Physical interacting

system

� We define a universal functional for each value of the parameter λ

F
λ[n] = min

Ψ→n
〈Ψ|T̂ + λŴee|Ψ〉 = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉

34/75



The adiabatic connection (2/3)

� The functional Fλ[n] can be decomposed as

F
λ[n] = Ts[n] + E

λ
H [n] + E

λ
x [n] + E

λ
c [n]

� Eλ
H [n] and Eλ

x [n] are the Hartree and exchange functionals associated with the
interaction λŴee and are simply linear in λ

E
λ
H [n] = λEH[n] and E

λ
x [n] = λEx[n]

� The correlation functional Eλ
c [n] is nonlinear in λ

E
λ
c [n] = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉 − 〈Φ[n]|T̂ + λŴee|Φ[n]〉

� We can get rid of T̂ by taking the derivative with respect to λ and using the
Hellmann-Feynman theorem for the wave function Ψλ[n]

∂Eλ
c [n]

∂λ
= 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉
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The adiabatic connection (3/3)

� Reintegrating over λ from 0 to 1, and using Eλ=1
c [n] = Ec[n] and Eλ=0

c [n] = 0 (assuming
no degeneracies at λ = 0), we arrive at the adiabatic-connection formula

Ec[n] =

∫ 1

0

dλ 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉

� Introducing the correlation hole nλ
c (r1, r2) associated with the wave function Ψλ[n], the

adiabatic-connection formula can also be written as

Ec[n] =
1

2

∫ 1

0

dλ
x n(r1)n

λ
c (r1, r2)

|r1 − r2|
dr1dr2

� Introducing the λ-integrated correlation hole n̄c(r1, r2) =
∫ 1

0
dλ nλ

c (r1, r2), we finally write

Ec[n] =
1

2

x n(r1)n̄c(r1, r2)

|r1 − r2|
dr1dr2 =

∫

n(r1)εc[n](r1)dr1

where εc[n](r1) is the correlation energy per particle, which is the quantity usually
approximated in practice.
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Uniform coordinate scaling

� For a given density n, we consider the scaled density with a scaling factor γ > 0

nγ(r) = γ3
n(γr)

which preserves the number of electrons, i.e.
∫
nγ(r)dr =

∫
n(r)dr = N.

� It can be shown that the Hartree and exchange density functionals scale linearly in γ

EH[nγ ] = γEH[n] and Ex[nγ ] = γEx[n]

� The correlation density functional has the more complicated scaling

Ec[nγ ] = γ2
E

1/γ
c [n]

where E
1/γ
c [n] is the correlation density functional for coupling constant λ = 1/γ.
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High- and low-density limits

� In the high-density limit (γ →∞), the correlation functional goes to a constant, for
nondegenerate KS systems,

lim
γ→∞

Ec[nγ ] = E
GL2
c [n]

where EGL2
c [n] is the second-order Görling-Levy (GL2) correlation energy.

� This is also called the weak-correlation limit since Ec[n] ≪ Ex [n].

� Atomic and molecular systems are often close to the high-density limit. E.g., for the
ground-state density of He, Ec[n] = −0.0421 a.u. and limγ→∞ Ec[nγ ] = −0.0467 a.u..

� In the low-density limit (γ → 0), the Hartree-exchange-correlation functional goes to
zero linearly in γ

EHxc[nγ ] ∼
γ→0

γ W
SCE
ee [n]

where W
SCE
ee [n] = min

Ψ→n
〈Ψ|Ŵee|Ψ〉 is the strictly-correlated-electron (SCE) functional.

� This limit corresponds to a Wigner crystallization.

� This is also called the strong-correlation limit because Ec[n] ∼ Ex [n].
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One-orbital spatial regions and self-interaction

� For one-electron densities n1e(r) = |ψ1(r)|2 where ψ1 is the unique occupied KS orbital,
we have

Ex[n1e] = −EH[n1e] and Ec[n1e] = 0

� For opposite-spin two-electron densities n
↑↓
2e (r) = 2|ψ1(r)|2 where ψ1 is the unique

doubly occupied KS orbital, we have

Ex[n
↑↓
2e ] = −

1

2
EH[n

↑↓
2e ]

� For systems with more electrons, similar relations apply locally in one-orbital spatial
regions, i.e. in regions where only one occupied KS orbital is not zero. This situation
can be approximately realized in chemical systems (unpaired electron in a radical, and
electron pair in a single covalent bond, in a lone pair, or in a core orbital).

� If approximate exchange and correlation density functionals do not satisfy these
constraints, we say that they introduce a self-interaction error.
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Lieb-Oxford lower bound

� Lieb and Oxford derived a useful lower bound which can be expressed as

Ex[n] ≥ Exc[n] ≥ −CLO

∫

n(r)4/3dr

where the optimal (i.e., smallest) constant CLO (independent of the electron number N)
has been narrowed to 1.4442 ≤ CLO ≤ 1.5765.

� This bound is approached in the low-density limit.

� For one-electron densities and opposite-spin two-electron densities, specific tigher
bounds (i.e., with smaller CLO) are known.
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The HOMO energy and the ionization energy

� For clarity, we will explicitly indicate the dependence on the electron number N in this
section.

� For finite systems, the exact ground-state density of a N-electron system decays
exponentially for r = |r| → ∞ with an exponent related to the ionization energy
IN = EN−1

0 − EN
0

n
N(r) ∝

r→∞
e
−2
√

2IN r

� Choosing the constant in the KS potential so that it goes to zero at infinity, i.e.
lim|r|→∞ vN

s (r) = 0, it can be shown the density calculated from the KS orbitals decays
exponentially with an exponent related to the HOMO energy εNH

n
N(r) =

N∑

a

|ψa(r)|2 ∝
r→∞

e
−2
√

−2εN
H

r

� This implies that the KS HOMO energy is the opposite of the exact ionization
energy

εNH = −IN

� It is similar to Koopmans’ theorem for HF, except that here it is exact (no neglect of
correlation or orbital relaxation).
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The LUMO energy, the electron affinity, the derivative discontinuity

� Contrary to what one could have expected, the KS LUMO energy εNL is not the
opposite of the exact electron affinity AN = EN

0 − EN+1
0 but instead

εNL = −AN −∆N
xc

where ∆N
xc ≥ 0 is a constant.

� For the (N + 1)-electron system (with the same external potential vne), we have

εN+1
H = −IN+1 = −AN , so it means that

∆N
xc = εN+1

H − εNL
i.e., the constant ∆N

xc corresponds to the“jump”of the LUMO energy of the
N-electron system upon adding an electron so that the HOMO energy of the
(N + 1)-electron system correctly gives −IN+1.

� In the extension of DFT to fractional electron numbers, it can be shown that the
constant ∆N

xc corresponds to the uniform jump that the exchange-correlation
potential makes when going from N − δ electrons to N + δ electrons with δ → 0+

∆N
xc = v

N+δ
xc (r)− v

N−δ
xc (r) =

(
δExc[n]

δn(r)

)

N+δ

−
(
δExc[n]

δn(r)

)

N−δ

i.e. ∆N
xc is the derivative discontinuity in the exchange-correlation energy functional

Exc[n].
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Kohn-Sham frontier orbital energies: Graphical summary

εi

−IN

−AN

εNH

εNL

∆N
xc

εN+1
H = −AN = −IN+1

N N + 1
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Fundamental gap

� The fundamental gap of the N-electron system is defined as

E
N
gap = IN − AN

� In KS DFT, it can thus be expressed as

E
N
gap = εNL − εNH +∆N

xc

︸ ︷︷ ︸
KS gap

So the KS gap is not equal to the exact fundamental gap of the system, the
difference coming from the derivative discontinuity ∆N

xc.

� The derivative discontinuity ∆N
xc can represent an important contribution to the

fundamental gap. In the special case of open-shell systems, we have εNL = εNH , and thus
if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely
given by ∆N

xc.

48/75



Outline

1 Basic density-functional theory
Quantum many-electron problem
Universal density functional
Kohn-Sham method
Generalized Kohn-Sham method

2 Exact constraints for the exchange-correlation functional
Exact expressions for the exchange and correlation functionals
Uniform coordinate scaling
One-orbital spatial regions and self-interaction
Lieb-Oxford lower bound
Frontier orbital energies

3 Approximations for the exchange-correlation energy
Local-density approximation
Semilocal approximations
Single-determinant hybrid approximations
Multideterminant hybrid approximations
Dispersion corrections
Machine-learned density functionals
Benchmark

4 Time-dependent density-functional theory
Runge-Gross theorem
Linear-response TDDFT 49/75



Outline

3 Approximations for the exchange-correlation energy
Local-density approximation
Semilocal approximations
Generalized-gradient approximations
Meta-generalized-gradient approximations

Single-determinant hybrid approximations
Hybrid approximations
Range-separated hybrid approximations

Multideterminant hybrid approximations
Double-hybrid approximations
Range-separated double-hybrid approximations

Dispersion corrections
Semiempirical dispersion corrections
Nonlocal van der Waals density functionals

Machine-learned density functionals
Benchmark

50/75



Local-density approximation

� In the local-density approximation (LDA), introduced by Kohn and Sham (1965), the
exchange-correlation functional is approximated as

E
LDA
xc [n] =

∫

n(r)εUEGxc (n(r))dr

where εUEGxc (n) is the exchange-correlation energy per particle of the infinite uniform
electron gas (UEG) with the density n.

� The exchange energy per particle of the UEG can be calculated analytically

εUEGx (n) = Cx n
1/3 Dirac (1930) and Slater (1951)

� For the correlation energy per particle εUEGc (n) of the UEG, there are some parametrized
functions of n fitted to QMC data and imposing the high- and low-density expansions
(using the Wigner-Seitz radius rs = (3/(4πn))1/3)

εUEGc =
rs→0

A ln rs + B + C rs ln rs + O(rs) high-density limit or
weak-correlation limit

εUEGc =
rs→∞

a

rs
+

b

r
3/2
s

+
c

r 2s
+ O

(
1

r
5/2
s

)

low-density limit or
strong-correlation limit

The two most used parametrizations are VWN and PW92. Generalization to spin
densities εUEGc (n↑, n↓) is sometimes referred to as local-spin-density (LSD) approximation.
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Generalized-gradient approximations

� The next logical step beyond the LDA is to add the dependence on the gradient of the
density ∇n(r).

� From the 1980s, many generalized-gradient approximations (GGAs) have been
developed with the generic form

E
GGA
xc [n] =

∫

f (n(r),∇n(r))dr

� The function f is chosen so as to satisfy some exact constraints and often contains some
parameters fitted to experimental or theoretical data.

� The GGAs provide a big improvement over LDA for molecular systems.

� The GGAs are often called semilocal approximations, which means that they involve a
single integral on r using“semilocal information” through ∇n(r).

� For simplicity, we consider here only the spin-independent form, but in practice GGA
functionals are more generally formulated in terms of spin densities and their gradients

E
GGA
xc [n↑, n↓] =

∫

f (n↑(r), n↓(r),∇n↑(r),∇n↓(r))dr

� Examples of GGAs: B exchange functional (1988), LYP correlation functional (1988),
PBE exchange-correlation functional (1996)
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Meta-generalized-gradient approximations (1/2)

� The meta-generalized-gradient approximations (mGGAs) are of the generic form

E
mGGA
xc [n, τ ] =

∫

f (n(r),∇n(r),∇2
n(r), τ(r))dr

where ∇2n(r) is the Laplacian of the density and τ(r) is the non-interacting positive
kinetic energy density

τ(r) =
1

2

N∑

a

|∇ψa(r)|2

which, as we will see, contains useful information.

� A mGGA can be either considered as an implicit functional of the density in the KS
method, i.e. Exc[n] = EmGGA

xc [n, τΦ[n]], or more commonly as an explicit functional of a
single-determinant Φ in the GKS method, i.e. E S

xc[Φ] = EmGGA
xc [nΦ, τΦ].

� In the GKS method, a mGGA functional generates a non-multiplicative potential. But
don’t worry, this is allowed in GKS!

� Nowadays, ∇2n(r) is rarely used to construct mGGAs because it contains similar
information than τ(r).

� The mGGAs are considered as part of the family of semilocal approximations.

� The mGGAs provide a modest improvement over GGAs.
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Meta-generalized-gradient approximations (2/2)

� Motivations for introducing the variable τ(r):

� Short-range expansion of the spherically average exchange hole (for closed-shell systems):

ñx(r1, r12) = −
n(r1)

2
−

1

3

(

1

4
∇2n(r1)− 4τ(r1) +

|∇n(r1)|
2

8n(r1)

)

r212 + O(r412)

Thus τ(r) is needed to describe the curvature of the exchange hole.

� τ(r) can be used as an indicator of one-orbital spatial regions (regions containing one or
two electrons in a single orbital).
This is done by comparing τ(r) with the von Weizsäcker kinetic energy density

τW(r) =
|∇n(r)|2

8n(r)

which is the exact τ(r) for one and two electrons in a single orbital.

� Examples of mGGAs: TPSS (2003), M06-L (2006), and SCAN (2015).
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Hybrid approximations

� In 1993, Becke proposed to mix Hartree-Fock (HF) exchange with GGA functionals in
a three-parameter hybrid (3H) approximation

E
3H
xc [Φ] = a E

HF
x [Φ] + b E

GGA
x [nΦ] + (1− a− b) E LDA

x [nΦ] + c E
GGA
c [nΦ] + (1− c) E LDA

c [nΦ]

where a, b, and c are empirical parameters. Example: B3LYP (a = 0.20)

� These hybrids are approximations within the GKS method. The term S [Φ] = aEHF
x [Φ]

generates a nonlocal HF exchange potential avHF
x,σ(r, r

′). Again, this is perfectly
allowed in the GKS method.

� Adding a fraction a of HF exchange decreases the self-interaction error, which tends to
favor too much delocalized electron densities. However, a too large a tends to increase
the static-correlation error (stretched chemical bonds, transition metal elements, ...).

� In 1996, Becke proposed a simpler one-parameter hybrid (1H) approximation

E
1H
xc [Φ] = a E

HF
x [Φ] + (1− a) EDFA

x [nΦ] + E
DFA
c [nΦ]

where EDFA
x and EDFA

c can be any semilocal density-functional approximations (DFAs).

� The optimal a is often around 0.25. Example: PBE0 = HF/PBE hybrid with a = 0.25.

� A strategy is to use flexible EDFA
x and EDFA

c in a hybrid approximation and optimize
many parameters on molecular properties.
Example: B97 (13 parameters) and M06 and M06-2X (36 parameters).
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Range-separated hybrid (RSH) approximations

� Based on ideas of Savin (1996), Hirao and coworkers (2001) proposed a long-range
correction (LC) scheme

E
LC
xc [Φ] = E

lr,HF
x [Φ] + E

sr,DFA
x [nΦ] + E

DFA
c [nΦ]

where

� E
lr,HF
x [Φ] is the HF exchange energy for the long-range electron-electron interaction

erf(µr12)
r12

replacing the Coulomb interaction 1
r12

,

� E
sr,DFA
x [n] is a semilocal DFA exchange energy for the complement short-range

electron-electron interaction (semilocal DFAs are more accurate if limited to short-range
interactions),

� the range-separation parameter µ (also sometimes denoted as ω) is often taken as
µ ≈ 0.3− 0.5 bohr−1.

Example: LC-ωPBE

� In 2004, Yanai, Tew, and Handy introduced a more flexible decomposition called the
Coulomb-attenuating method (CAM)

E
CAM
xc [Φ] = a E

sr,HF
x [Φ] + b E

lr,HF
x [Φ] + (1− a) E sr,DFA

x [nΦ] + (1− b) E lr,DFA
x [nΦ] + E

DFA
c [nΦ]

Examples: CAM-B3LYP, ωB97X
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Double-hybrid approximations

� In 2006, Grimme introduced a two-parameter double-hybrid (2DH) approximation

E
2DH
xc = ax E

HF
x [Φ] + (1− ax) E

DFA
x [nΦ] + (1− ac)E

DFA
c [nΦ] + acE

MP2
c

where the MP2-like correlation energy EMP2
c is added a posteriori with the previously

calculated orbitals. Example: B2-PLYP (ax = 0.53 and ac = 0.27).

� The presence of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal
HF exchange.

� In 2011, Sharkas, Toulouse, and Savin showed that double hybrids can be understood as
approximations of a multideterminant extension of the KS method based on the
adiabatic-connection formalism in which the exact ground-state energy is written as

E0 = min
Ψ

{

〈Ψ|T̂ + V̂ne + λŴee|Ψ〉+ Ē
λ
Hxc[nΨ]

}

where Ēλ
Hxc[n] = (1− λ)EH[n] + (1− λ)Ex[n] + Ēλ

c [n] and Ēλ
c [n] = Ec[n]− λ2Ec[n1/λ].

� At second order of a non-linear Møller-Plesset-like perturbation theory, and using
Ec[n1/λ] ≈ Ec[n], we obtain a one-parameter double-hybrid (1DH) approximation

E1DH
xc = λ EHF

x [Φ] + (1− λ) EDFA
x [nΦ] + (1− λ2)EDFA

c [nΦ] + λ2EMP2
c

� The multideterminant extension of the KS method can also be used to rigorously combine
wave-function methods such as MCSCF with DFT.
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Range-separated double-hybrid approximations

� In 1996, Savin introduced the range-separated multideterminant extension of the KS
scheme in which the exact ground-state energy is written as

E0 = min
Ψ

{

〈Ψ|T̂ + V̂ne + Ŵ
lr
ee|Ψ〉+ Ē

sr
Hxc[nΨ]

}

where Ŵ lr
ee is the long-range electron-electron operator for the pair potential

erf(µr12)/r12 and Ē sr
Hxc[n] is the complementary short-range density functional.

� The approach can be used to rigorously combine any wave-function method with DFT.

� In 2005, Ángyán, Gerber, Savin, and Toulouse introduced a range-separated
double-hybrid (RSDH) approximation (also called RSH+MP2)

E
RSDH
xc = E

lr,HF
x [Φ] + E

sr,DFA
x [nΦ] + E

sr,DFA
c [nΦ] + E

lr,MP2
c

� Obtained as second order of a non-linear Møller-Plesset-like perturbation theory.

� Long-range MP2 is qualitatively correct for London dispersion interactions.

� Long-range MP2 has a fast convergence with the one-electron basis size.

� Extensions of this scheme to a more flexible CAM decomposition have also been
proposed.
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Semiempirical dispersion corrections

� To explicitly account for London dispersion interactions, it has been proposed in the
2000s to add to the standard approximate functionals a semiempirical dispersion
correction of the form

Edisp = −s
∑

α<β

f (Rαβ)
C

αβ
6

R6
αβ

where
� Rαβ is the distance between a pair of atoms,

� C
αβ
6 is the dispersion coefficient between these atoms,

� f (Rαβ) is a damping function which tends to 1 at large Rαβ and tends to 0 at small Rαβ ,

� s is a scaling parameter that can be adjusted for each approximate functional.

� The dispersion coefficients Cαβ
6 are empirically obtained from tabulated data.

� The most recent versions also includes Cαβ
8 two-body terms and C

αβγ
9 three-body terms.

� This approach was named“DFT-D”by Grimme. Examples of DFT-D functionals:
PBE-D, B97-D, B3LYP-D, ωB97X-D, B2PLYP-D.

� There are also various proposals to make the determination of dispersion coefficients less
empirical, e.g. Becke and Johnson (2007), Tkatchenko and Scheffler (2009), Sato and
Nakai (2010).
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Nonlocal van der Waals density functionals

� Another approach to describe dispersion interactions is to add to the standard
approximate functionals a nonlocal van der Waals density functional of the form

E
nl
c [n] =

1

2

x

n(r1)n(r2)φ(r1, r2)dr1dr2

where φ(r1, r2) is a correlation kernel.

� Two main families of such nonlocal correlation functionals exist: the“van der Waals
density functionals” (vdW-DF) of Langreth, Lundqvist and coworkers and the
Vydrov-Van Voorhis (VV) functionals.

� For example, the VV10 nonlocal correlation functional (2010) uses a theory-based kernel
φ(r1, r2) with two adjustable parameters.

� Nonlocal van der Waals density functionals are less empirical but more computationally
expensive than semiempirical dispersion corrections.

� Examples of functionals using VV10: ωB97X-V and ωB97M-V.
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Machine-learned density functionals

� Construction of exchange-correlation energy approximations using Machine Learning
(ML) is a current topic of research.

� For example, such ML exchange-correlation energy approximations can be of the form

E
ML
xc =

∫

fML[n,∇n, τ, ...](r) dr

where fML is a very complicated function performing various sequential transformations
(including neural networks) of the different input features (n,∇n, τ, ...) and containing
of the order of 105 parameters.

� A very large amount of reliable accurate data is necessary to optimize all the parameters.

� Example: DM21 (2021), Skala (2025)

� ML exchange-correlation approximations look very promising, but, as of 2025, they are
not yet used in applications.
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Benchmark of exchange-correlation approximations

Mean errors on large sets of molecular energetic data (nearly 5000 data points) for one of
the“best”approximation in each family:
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Time-dependent density-functional theory (TDDFT)

� Consider the time-dependent electronic Schrödinger equation with an external
time-dependent potential V̂ (t)

i
∂|Ψ(t)〉
∂t

=
(

T̂ + Ŵee + V̂ (t)
)

|Ψ(t)〉

� Similarly to the Hohenberg-Kohn theorem, Runge and Gross (1984) showed that, for a
given initial wave function Ψ(0), the time-dependent density n(r, t) determines the
time-dependent potential v(r, t) up to an arbitrary additive time function:

n(r, t) −−−−−−→
Runge-Gross

v(r, t) + c(t)

� We can thus set up a time-dependent non-interacting KS system

i
∂ψa(r, t)

∂t
=

(

−1

2
∇2 + vs(r, t)

)

ψa(r, t)

where the time-dependent KS potential vs(r, t) = v(r, t) + vHxc(r, t) reproduces the
evolution of the exact density as n(r, t) =

∑N

a |ψa(r, t)|2.
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Linear-response TDDFT

� Let us consider a time-periodic potential of frequency ω. In Fourier space, a variation of
the KS potential vs(r1, ω) caused by a variation of the density n(r2, ω) can be written as

δvs(r1, ω)

δn(r2, ω)
=
δv(r1, ω)

δn(r2, ω)
+
δvHxc(r1, ω)

δn(r2, ω)

� This can be rewritten as

χ−1
s (r1, r2, ω) = χ−1(r1, r2, ω) + fHxc(r1, r2, ω)

where

� χs(r1, r2, ω) = δn(r1, ω)/δvs(r2, ω) is the KS non-interacting linear-response function

� χ(r1, r2, ω) = δn(r1, ω)/δv(r2, ω) is the interacting linear-response function

� fHxc(r1, r2, ω) = δvHxc(r1, ω)/δn(r2, ω) is the Hartree-exchange-correlation kernel

� The interacting linear-response function χ(r1, r2, ω) is thus found from the Dyson-like
response equation

χ−1(r1, r2, ω) = χ−1
s (r1, r2, ω)− fHxc(r1, r2, ω)

or, equivalently,

χ(r1, r2, ω) = χs(r1, r2, ω) +
x

dr3dr4 χs(r1, r3, ω) fHxc(r3, r4, ω) χ(r4, r2, ω)
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Excitation energies from linear-response TDDFT

� The KS linear-response function has poles at the KS (de-)excitation energies

χs(r1, r2, ω) =
∑

σ∈{↑,↓}

occ∑

a

vir∑

r

[
ψ∗

aσ(r1)ψrσ(r1)ψ
∗
rσ(r2)ψaσ(r2)

ω − (εr − εa) + i0+
− ψ∗

rσ(r1)ψaσ(r1)ψ
∗
aσ(r2)ψrσ(r2)

ω + (εr − εa) + i0+

]

� Similarly, χ(r1, r2, ω) has poles at the exact excitation energies ωn = En − E0.

� Writing χ−1(ω) = χ−1
s (ω)− fHxc(ω) in the spin-orbital tensor-product basis {ψ∗

aψr , ψ
∗
r ψa}

χ
−1(ω) = −

[(
A(ω) B(ω)

B(−ω)∗ A(−ω)∗
)

− ω
(

1 0
0 −1

)]

where the matrices A(ω) and B(ω) are

[A(ω)]ar,bs = (εr − εa)δabδrs + 〈rb|fHxc(ω)|as〉

[B(ω)]ar,bs = 〈rs|fHxc(ω)|ab〉

� The excitation energies ωn can be calculated from the generalized eigenvalue equation
(

A(ωn) B(ωn)
B(−ωn)

∗ A(−ωn)
∗

)(
Xn

Yn

)

= ωn

(
1 0
0 −1

)(
Xn

Yn

)
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The Hartree-exchange-correlation kernel

� In linear-response TDDFT, the key quantity to be approximated is the
Hartree-exchange-correlation kernel

fHxc(r1, r2, ω) =
δvHxc(r1, ω)

δn(r2, ω)

� It can be decomposed as

fHxc(r1, r2, ω) = fH(r1, r2) + fxc(r1, r2, ω)

where the Hartree kernel is simply fH(r1, r2) = 1/|r1 − r2|.
� In almost all TDDFT calculations, the frequency dependence of fxc is neglected, which is

called the adiabatic approximation

fxc(r1, r2, ω) ≈
δvxc(r1)

δn(r2)
=

δ2Exc[n]

δn(r1)δn(r2)

with the notorious consequence that only single-electron excitations are taken into
account (double excitations and higher are missing).

� To describe nonlocal excitations, such as charge-transfer excitations, range-separated
hybrid approximations are often used. The kernel has then the expression

fxc = f
lr,HF
x + f

sr,DFA
x + f

DFA
c

where f lr,HFx is the long-range HF exchange kernel.
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