

Introduction to density-functional theory

Julien Toulouse

Laboratoire de Chimie Théorique **Sorbonne Université** and **CNRS**, Paris, France

Course 5CI228 of Master 2 Chemistry Sorbonne Université, Paris

www.lct.jussieu.fr/pagesperso/toulouse/enseignement/presentation_dft_su_25.pdf

Why and how learning density-functional theory?

Density-functional theory (DFT) is:

- a practical electronic-structure computational method, widely used in quantum chemistry and condensed-matter physics;
- an exact and elegant reformulation of the quantum many-body problem, which has led to new ways of thinking in the field.

Classical books:

- ▶ R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1989.
- ▶ R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag, 1990. ▶ W. Koch and M. C. Holthausen, A Chemist's Guide To Density Functional Theory,
- My lecture notes:

Wiley-VCH, 2001.

A book chapter:

J. Toulouse, in Density Functional Theory, edited by E. Cancès and G. Friesecke, Springer, 2023.

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf

Outline

- Basic density-functional theory
 - Quantum many-electron problem
 - Universal density functional
 - Kohn-Sham method
 - Generalized Kohn-Sham method
- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower bound
 - Frontier orbital energies
- Approximations for the exchange-correlation energy
 - Local-density approximation
 - Semilocal approximations
 - Single-determinant hybrid approximations
 - Multideterminant hybrid approximations
 - Dispersion corrections
 - Machine-learned density functionals
 - Renchmark
- Time-dependent density-functional theory
 - Runge-Gross theorem
 - Linear-response TDDFT

Outline

- Basic density-functional theory
 - Quantum many-electron problem
 - Universal density functional
 The Hohenberg-Kohn theorem
 Levy-Lieb constrained-search formulation
 - Kohn-Sham method
 Decomposition of the universal functional
 The Kohn-Sham equations
 Practical calculations in an atomic basis
 Extension to spin density-functional theory
 - Generalized Kohn-Sham method

Quantum many-electron problem

- We consider an N-electron system in the Born-Oppenheimer and non-relativistic approximations.
- ▶ The electronic Hamiltonian in the position representation is, in atomic units,

$$\hat{H} = -\frac{1}{2} \sum_{i}^{N} \nabla_{\mathbf{r}_{i}}^{2} + \frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{i}^{N} v_{\text{ne}}(\mathbf{r}_{i})$$

where $v_{\mathsf{ne}}(\mathbf{r}_i) = -\sum_{\alpha} Z_{\alpha}/|\mathbf{r}_i - \mathbf{R}_{\alpha}|$ is the nuclei-electron interaction potential.

▶ Stationary states satisfy the **time-independent Schrödinger equation**

$$H\Psi(\mathbf{x}_{1},\mathbf{x}_{2},...,\mathbf{x}_{N}) = E\Psi(\mathbf{x}_{1},\mathbf{x}_{2},...,\mathbf{x}_{N})$$

where $\Psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$ is a wave function written with space-spin coordinates $\mathbf{x}_i = (\mathbf{r}_i, \sigma_i)$ (with $\mathbf{r}_i \in \mathbb{R}^3$ and $\sigma_i \in \{\uparrow, \downarrow\}$) which is antisymmetric with respect to the exchange of two space-spin coordinates, and E is the associated energy.

▶ Using **Dirac notations** (representation-independent formalism):

$$\hat{H}|\Psi
angle = E|\Psi
angle \hspace{0.5cm}$$
 where $\hat{H}=\hat{T}+\hat{W}_{ ext{ee}}+\hat{V}_{ ext{ne}}$

Wave-function variational principle

► The ground-state electronic energy E₀ can be expressed with the wave-function variational principle

$$E_0 = \min_{\Psi} \langle \Psi | \hat{H} | \Psi
angle$$

where the minimization is over all N-electron (multi-determinant) wave functions Ψ normalized to unity $\langle \Psi | \Psi \rangle = 1$.

▶ DFT is based on a reformulation of this variational theorem in terms of the one-electron density defined as

$$\textit{n}(\textbf{r}) = \textit{N} \int \cdots \int |\Psi(\textbf{x},\textbf{x}_2,...,\textbf{x}_N)|^2 \, d\sigma d\textbf{x}_2...d\textbf{x}_N$$

which is normalized to the electron number, $\int n(\mathbf{r})d\mathbf{r} = N$.

Remark: Integration over a spin coordinate σ means a sum over the two values of σ , i.e. $\int d\sigma = \sum_{\sigma \in \{\uparrow,\downarrow\}}.$

Outline

- Basic density-functional theory
 - Quantum many-electron problem
 - Universal density functional The Hohenberg-Kohn theorem Levy-Lieb constrained-search formulation
 - Kohn-Sham method
 Decomposition of the universal functional
 The Kohn-Sham equations
 Practical calculations in an atomic basis
 Extension to spin density-functional theory
 - Generalized Kohn-Sham method

The Hohenberg-Kohn theorem

- Consider an electronic system with an arbitrary external local potential $v(\mathbf{r})$ (that bounds N electrons) in place of $v_{ne}(\mathbf{r})$. For simplicity, we will assume that $v(\mathbf{r})$ gives an N-electron ground state which is not degenerate.
- For any such external potential $v(\mathbf{r})$, the ground-state wave function Ψ can be obtained by solving the Schrödinger equation, from which an associated **ground-state density** $n(\mathbf{r})$ can be deduced. Therefore, one has the mapping:

$$v(\mathbf{r}) \longrightarrow n(\mathbf{r})$$

▶ In 1964, Hohenberg and Kohn showed that this mapping can be inverted, i.e. a **ground-state density** $n(\mathbf{r})$ determines the potential $v(\mathbf{r})$ up to an arbitrary additive constant:

$$n(\mathbf{r}) \xrightarrow{\mathsf{Hohenberg-Kohn}} v(\mathbf{r}) + \mathsf{const}$$

Proof of the Hohenberg-Kohn theorem (1/2)

This is a two-step proof by contradiction.

Consider two local potentials differing by more than an additive constant:

$$v_1(\mathbf{r}) \neq v_2(\mathbf{r}) + \text{const}$$

We have two Hamiltonians:

$$\hat{H}_1 = \hat{T} + \hat{W}_{ee} + \hat{V}_1$$
 with a ground state $\hat{H}_1 | \Psi_1 \rangle = E_1 | \Psi_1 \rangle$ and ground-state density $n_1(\mathbf{r})$ $\hat{H}_2 = \hat{T} + \hat{W}_{ee} + \hat{V}_2$ with a ground state $\hat{H}_2 | \Psi_2 \rangle = E_2 | \Psi_2 \rangle$ and ground-state density $n_2(\mathbf{r})$

We first show that $\Psi_1 \neq \Psi_2$:

Assume $\Psi_1 = \Psi_2 = \Psi$. Then we have:

$$(\hat{H}_1-\hat{H}_2)|\Psi
angle=(\hat{V}_1-\hat{V}_2)|\Psi
angle=(E_1-E_2)|\Psi
angle$$

or, in position representation,

$$\left(\sum_{i=1}^{N} [v_1(\mathbf{r}_i) - v_2(\mathbf{r}_i)]\right) \Psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N) = (E_1 - E_2) \Psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$$

If $\Psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N) \neq 0$ for at least one fixed set of $(\sigma_1, \sigma_2, ..., \sigma_N)$ and "almost" all $(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$, which is true for "reasonably well behaved potentials", then it implies that $v_1(\mathbf{r}) - v_2(\mathbf{r}) = \text{const}$, in contradiction with the initial hypothesis.

⇒ Intermediate conclusion: two local potentials differing by more than an additive constant cannot have a common ground-state wave function.

Proof of the Hohenberg-Kohn theorem (2/2)

2 We now show than $n_1 \neq n_2$:

Assume $n_1 = n_2 = n$. Then, by the variational theorem, we have:

$$E_1 = \langle \Psi_1 | \hat{H}_1 | \Psi_1 \rangle < \langle \Psi_2 | \hat{H}_1 | \Psi_2 \rangle = \langle \Psi_2 | \hat{H}_2 + \hat{V}_1 - \hat{V}_2 | \Psi_2 \rangle = E_2 + \int [v_1(\mathbf{r}) - v_2(\mathbf{r})] \, n(\mathbf{r}) d\mathbf{r}$$

The strict inequality comes from the fact that Ψ_2 cannot be a ground-state wave function of \hat{H}_1 , as shown in the first step of the proof.

So, we have shown

$$E_1 < E_2 + \int [v_1(\mathbf{r}) - v_2(\mathbf{r})] n(\mathbf{r}) d\mathbf{r}$$

Symmetrically, by exchanging the role of system 1 and 2, we have the strict inequality

$$E_2 < E_1 + \int [v_2(\mathbf{r}) - v_1(\mathbf{r})] n(\mathbf{r}) d\mathbf{r}$$

Adding the two inequalities gives the inconsistent result

$$E_1 + E_2 < E_2 + E_1$$

⇒ Conclusion: there cannot exist two local potentials differing by more than an additive constant which have a common ground-state density.

The universal density functional and the variational property

▶ The Hohenberg-Kohn theorem can be summarized as

$$n \longrightarrow v \longrightarrow \hat{H} \longrightarrow \text{everything}$$

v is a functional of the density n, i.e. v[n], and all other quantities as well.

▶ The ground-state wave function Ψ is a functional of n, denoted by $\Psi[n]$. Hohenberg and Kohn defined the universal density functional

$$F[n] = \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle$$

and the total electronic energy functional

$$E[n] = F[n] + \int v_{ne}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$$

 Hohenberg and Kohn showed that we have a variational property giving the exact ground-state energy

$$E_0 = \min_{n} \left\{ F[n] + \int v_{ne}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} \right\}$$

The minimum is reached for the exact ground-state density $n_0(\mathbf{r})$ of the potential $v_{\rm ne}(\mathbf{r})$.

Levy-Lieb constrained-search formulation

 In 1979 Levy, and later in 1983 Lieb, proposed to redefine the universal density functional as

$$F[n] = \min_{\Psi
ightarrow n} \langle \Psi | \, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi
angle = \langle \Psi[n] | \, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi[n]
angle$$

where " $\Psi \to n$ " means that the minimization is over all normalized N-electron (multi-determinant) wave functions giving the density n.

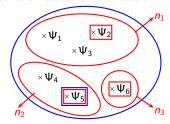
▶ The variational property is easily obtained using the constrained-search formulation:

$$E_{0} = \min_{\Psi} \langle \Psi | \hat{T} + \hat{W}_{ee} + \hat{V}_{ne} | \Psi \rangle$$

$$= \min_{n} \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{ee} + \hat{V}_{ne} | \Psi \rangle$$

$$= \min_{n} \left\{ \min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle + \int v_{ne}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} \right\}$$

$$= \min_{n} \left\{ F[n] + \int v_{ne}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} \right\}$$



Hence, in DFT, we replace "min" by "min" which is a **tremendous simplification**! However, $F[n] = T[n] + W_{ee}[n]$ is **very difficult to approximate**, in particular the kinetic energy part T[n].

Outline

- Basic density-functional theory
 - Quantum many-electron problem
 - Universal density functional The Hohenberg-Kohn theorem Levy-Lieb constrained-search formulation
 - Kohn-Sham method
 Decomposition of the universal functional
 The Kohn-Sham equations

 Practical calculations in an atomic basis
 Extension to spin density-functional theory
 - Generalized Kohn-Sham method

Kohn-Sham (KS) method: decomposition of the universal functional

▶ In 1965, Kohn and Sham proposed to decompose F[n] as

$$F[n] = T_{\rm s}[n] + E_{\rm Hxc}[n]$$

 $ightharpoonup T_s[n]$ is the non-interacting kinetic-energy functional:

$$T_{s}[n] = \min_{\Phi \to n} \langle \Phi | \hat{T} | \Phi \rangle = \langle \Phi[n] | \hat{T} | \Phi[n] \rangle$$

where the minimization is over normalized N-electron **single-determinant** wave functions Φ giving the fixed density n. The minimizing single-determinant wave function (assumed to be unique for simplicity) is called the **KS wave function** and is denoted by $\Phi[n]$.

- ▶ The remaining functional $E_{Hxc}[n]$ is called the Hartree-exchange-correlation functional.
- Any density *n* can be obtained from a single-determinant wave function, therefore the **Kohn-Sham decomposition does not introduce any approximation**.

Kohn-Sham (KS) method: variational principle

► The exact ground-state energy can then be expressed as

$$E_{0} = \min_{n} \left\{ F[n] + \int v_{ne}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} \right\}$$

$$= \min_{n} \left\{ \min_{\Phi \to n} \langle \Phi | \hat{T} | \Phi \rangle + E_{Hxc}[n] + \int v_{ne}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} \right\}$$

$$= \min_{n} \min_{\Phi \to n} \left\{ \langle \Phi | \hat{T} + \hat{V}_{ne} | \Phi \rangle + E_{Hxc}[n_{\Phi}] \right\}$$

$$= \min_{\Phi} \left\{ \langle \Phi | \hat{T} + \hat{V}_{ne} | \Phi \rangle + E_{Hxc}[n_{\Phi}] \right\}$$

and the minimizing single-determinant KS wave function gives the exact ground-state density $n_0(\mathbf{r})$.

- Hence, in KS DFT, we replace "min" by "min" which is still a tremendous simplification! The advantage of KS DFT over pure DFT is that a major part of the kinetic energy is treated explicitly with the single-determinant wave function Φ.
- ► KS DFT is similar to Hartree-Fock (HF)

$$E_{\mathsf{HF}} = \min_{\Phi} \langle \Phi | \, \hat{T} + \hat{V}_{\mathsf{ne}} + \hat{W}_{\mathsf{ee}} | \Phi \rangle$$

but in KS DFT the exact ground-state energy and density are in principle obtained!

Kohn-Sham (KS) method: the Hartree-exchange-correlation functional

 $ightharpoonup E_{Hxc}[n]$ is decomposed as

$$E_{\mathsf{Hxc}}[n] = E_{\mathsf{H}}[n] + E_{\mathsf{xc}}[n]$$

$E_{H}[n]$ is the **Hartree energy functional**

$$E_{\rm H}[n] = \frac{1}{2} \iint \frac{n({\bf r}_1)n({\bf r}_2)}{|{\bf r}_1 - {\bf r}_2|} {\rm d}{\bf r}_1 {\rm d}{\bf r}_2$$
 representing the classical electrostatic repulsion energy for the charge distribution $n({\bf r})$

representing the classical electrostatic repulsion energy for the charge distribution $n(\mathbf{r})$ and which is calculated exactly.

$$Arr$$
 $E_{xc}[n]$ is the **exchange-correlation energy functional** that remains to approximate. This functional is often decomposed as

where $E_{x}[n]$ is the **exchange energy functional**

$$E_{\mathsf{x}}[n] = \langle \Phi[n] | \hat{W}_{\mathsf{ee}} | \Phi[n] \rangle - E_{\mathsf{H}}[n]$$

 $E_{xc}[n] = E_x[n] + E_c[n]$

and
$$E_c[n]$$
 is the correlation energy functional
$$E_c[n] = \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Phi[n] | \hat{T} + \hat{W}_{ee} | \Phi[n] \rangle = T_c[n] + U_c[n]$$

 $E_{c}[n] = \langle \Psi[n] | T + W_{ee} | \Psi[n] \rangle - \langle \Phi[n] | T + W_{ee} | \Phi[n] \rangle = T_{c}[n] + U_{c}[n]$ containing a kinetic contribution $T_{c}[n] = \langle \Psi[n] | \hat{T} | \Psi[n] \rangle - \langle \Phi[n] | \hat{T} | \Phi[n] \rangle$

and a potential contribution $U_{\rm c}[n] = \langle \Psi[n] | \hat{W}_{\rm ee} | \Psi[n] \rangle - \langle \Phi[n] | \hat{W}_{\rm ee} | \Phi[n] \rangle$.

The Kohn-Sham equations (1/2)

 \triangleright The single determinant Φ is constructed from a set of N orthonormal occupied spin-orbitals $\chi_a(\mathbf{x}) = \psi_a(\mathbf{r})\alpha(\sigma)$ or $\chi_a(\mathbf{x}) = \psi_a(\mathbf{r})\beta(\sigma)$.

The **total energy** to be minimized is

$$E[\{\psi_a\}] = \sum_{a}^{N} \int \psi_a^*(\mathbf{r}) \left(-\frac{1}{2} \nabla^2 + v_{\text{ne}}(\mathbf{r}) \right) \psi_a(\mathbf{r}) d\mathbf{r} + E_{\text{Hxc}}[n]$$

and the density is

$$n(\mathbf{r}) = \sum_{a}^{N} |\psi_{a}(\mathbf{r})|^{2}$$

For minimizing over the orbitals $\{\psi_a\}$ with the constraint of keeping the orbitals orthonormalized, we introduce the Lagrangian

$$\mathcal{L}[\{\psi_{a}\}] = \mathcal{E}[\{\psi_{a}\}] - \sum_{a}^{N} arepsilon_{a} \left(\int \psi_{a}^{*}(\mathbf{r})\psi_{a}(\mathbf{r})\mathsf{dr} - 1
ight)$$

where ε_a is the Lagrange multiplier associated with the normalization condition of $\psi_a(\mathbf{r})$.

The Lagrangian must be **stationary** with respect to variations of the orbitals
$$\psi_a(\mathbf{r})$$

$$\frac{\delta \mathcal{L}}{\delta \psi^*(\mathbf{r})} = 0$$

Interlude: Review on functional derivatives

► For a **functional** $F: f \mapsto F[f]$ of the function $f: x \mapsto f(x)$, an infinitesimal variation δf of f leads to an infinitesimal variation of F which can be expressed as

$$\delta F[f] = \int \frac{\delta F[f]}{\delta f(x)} \delta f(x) dx$$

This defines the **functional derivative** of F[f] with respect to f(x): $\frac{\delta F[f]}{\delta f(x)}$

Remark: For a function $F(f_1, f_2, ...)$ of several variables $f_1, f_2, ...,$ we have

 $dF = \sum_{i} \frac{\partial F}{\partial f_{i}} \ df_{i}$

 $\delta F[f]/\delta f(x)$ is the analog of $\partial F/\partial f_i$ for the case of an infinite continuous number of variables.

For a functional F[f] of a function f[g](x) which is itself a functional of another function g(x), we have the **chain rule**

$$\frac{\delta F}{\delta g(x)} = \int \frac{\delta F}{\delta f(x')} \frac{\delta f(x')}{\delta g(x)} \mathrm{d}x'$$

Remark: It is the analog of the chain rule for a function $F(f_1, f_2, ...)$ of several variables $f_j(g_1, g_2, ...)$ which are themselves functions of other variables $g_1, g_2, ...$

$$\frac{\partial F}{\partial g_i} = \sum_j \frac{\partial F}{\partial f_j} \frac{\partial f_j}{\partial g_i}$$

The Kohn-Sham equations (2/2)

▶ We find for the functional derivative of the Lagrangian

$$0 = \frac{\delta \mathcal{L}}{\delta \psi_a^*(\mathbf{r})} = \left(-\frac{1}{2}\nabla^2 + v_{\mathsf{ne}}(\mathbf{r})\right)\psi_a(\mathbf{r}) + \frac{\delta E_{\mathsf{Hxc}}[n]}{\delta \psi_a^*(\mathbf{r})} - \varepsilon_a \psi_a(\mathbf{r})$$

• We calculate the term $\delta E_{\rm Hxc}[n]/\delta \psi_{\rm a}^*({\bf r})$ using the chain rule

$$\frac{\delta E_{\mathsf{Hxc}}[n]}{\delta \psi_{\mathsf{a}}^{*}(\mathbf{r})} = \int \frac{\delta E_{\mathsf{Hxc}}[n]}{\delta n(\mathbf{r}')} \frac{\delta n(\mathbf{r}')}{\delta \psi_{\mathsf{a}}^{*}(\mathbf{r})} \mathsf{d}\mathbf{r}' = v_{\mathsf{Hxc}}(\mathbf{r}) \psi_{\mathsf{a}}(\mathbf{r})$$

where we have used $\delta n(\mathbf{r}')/\delta \psi_a^*(\mathbf{r}) = \psi_a(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}')$ and we have introduced the Hartree-exchange-correlation potential $v_{\text{Hxc}}(\mathbf{r})$

$$v_{\mathsf{Hxc}}(\mathbf{r}) = \frac{\delta E_{\mathsf{Hxc}}[n]}{\delta n(\mathbf{r})}$$

which is itself a functional of the density.

We arrive at the KS equations

$$\left(-rac{1}{2}
abla^2 +
u_{
m ne}(\mathbf{r}) +
u_{
m Hxc}(\mathbf{r})
ight)\psi_{
m a}(\mathbf{r}) = arepsilon_{
m a}\psi_{
m a}(\mathbf{r})$$

The orbitals $\psi_a(\mathbf{r})$ are called the KS orbitals and ε_a are the KS orbital energies.

The Kohn-Sham equations and the Kohn-Sham Hamiltonian

▶ The KS orbitals are eigenfunctions of the KS one-electron Hamiltonian

$$\hat{h}_{\mathsf{s}} = -rac{1}{2}
abla^2 +
u_{\mathsf{s}}(\mathbf{r})$$

where $v_s(\mathbf{r}) = v_{ne}(\mathbf{r}) + v_{Hxc}(\mathbf{r})$ is the KS potential.

- Mathematically, the KS equations are a set of coupled self-consistent equations since the potential $v_{\text{Hxc}}(\mathbf{r})$ depends on all the occupied orbitals $\{\psi_a\}_{a=1,...N}$ through the density.
- Physically, \hat{h}_s defines the KS system which is a system of N non-interacting electrons in an effective external potential $v_s(\mathbf{r})$ ensuring that its ground-state density $n(\mathbf{r})$ is the same as the exact ground-state density $n_0(\mathbf{r})$ of the physical system of N interacting electrons.
- ▶ The KS equations also defines virtual KS orbitals $\{\psi_r\}_{r\geq N+1}$.

The Hartree-exchange-correlation potential

▶ Following the decomposition of $E_{Hxc}[n]$, the potential $v_{Hxc}(\mathbf{r})$ is also decomposed as

$$v_{\mathsf{Hxc}}(\mathbf{r}) = v_{\mathsf{H}}(\mathbf{r}) + v_{\mathsf{xc}}(\mathbf{r})$$

with the Hartree potential

$$v_{H}(\mathbf{r}) = \frac{\delta E_{H}[n]}{\delta n(\mathbf{r})} = \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

and the exchange-correlation potential

$$v_{\rm xc}(\mathbf{r}) = \delta E_{\rm xc}[n]/\delta n(\mathbf{r})$$

▶ The potential $v_{xc}(\mathbf{r})$ can be decomposed as

$$v_{xc}(\mathbf{r}) = v_{x}(\mathbf{r}) + v_{c}(\mathbf{r})$$

with the exchange potential $v_x(\mathbf{r}) = \delta E_x[n]/\delta n(\mathbf{r})$

and the correlation potential $v_c(\mathbf{r}) = \delta E_c[n]/\delta n(\mathbf{r})$

Practical calculations in an atomic basis (1/3)

▶ We consider a **basis of** K **atom-centered functions** $\{\phi_{\nu}\}$, e.g. GTO basis functions. The orbitals are expanded as

$$\psi_i(\mathbf{r}) = \sum_{
u}^{K} C_{
u i} \; \phi_{
u}(\mathbf{r})$$

Inserting this expansion in the KS equations

$$\hat{h}_{s}\psi_{i}(\mathbf{r})=\varepsilon_{i}\psi_{i}(\mathbf{r})$$

and multiplying on the left by $\phi_{\mu}^{*}(\mathbf{r})$ and integrating over \mathbf{r} , we arrive at the familiar SCF generalized eigenvalue equation

$$\sum_{\nu}^{K} F_{\mu\nu} C_{\nu i} = \varepsilon_{i} \sum_{\nu}^{K} S_{\mu\nu} C_{\nu i}$$

where $F_{\mu\nu} = \int \phi_{\mu}^*(\mathbf{r}) h_s \phi_{\nu}(\mathbf{r}) d\mathbf{r}$ are the elements of the KS Fock matrix and $S_{\mu\nu} = \int \phi_{\mu}^*(\mathbf{r}) \phi_{\nu}(\mathbf{r}) d\mathbf{r}$ are the elements of the overlap matrix.

Practical calculations in an atomic basis (2/3)

▶ The Fock matrix is calculated as $F_{\mu\nu} = H_{\mu\nu}^{\text{core}} + J_{\mu\nu} + V_{\text{xc},\mu\nu}$

 $m{ ext{ heta}}_{\mu
u}^{ ext{core}}$ are the one-electron integrals: $m{ heta}_{\mu
u}^{ ext{core}} = \int \phi_{\mu}^{*}(\mathbf{r}) \left(-rac{1}{2}
abla^{2} +
u_{ ext{ne}}(\mathbf{r})
ight) \phi_{
u}(\mathbf{r}) \mathrm{d}\mathbf{r}$

$$lacksquare$$
 $J_{\mu
u}$ is the Hartree potential matrix:

$$J_{\mu
u} = \int \phi_{\mu}^*(\mathbf{r}) \mathsf{v}_\mathsf{H}(\mathbf{r}) \phi_{
u}(\mathbf{r}) \mathsf{d}\mathbf{r} = \sum_{\lambda}^{N} \sum_{\gamma}^{N} P_{\lambda\gamma} \langle \mu\gamma |
u\lambda
angle$$

where $\langle \mu \gamma | \nu \lambda \rangle = \iint \frac{\phi_\mu^*(\mathbf{r}_1) \phi_\gamma^*(\mathbf{r}_2) \phi_\nu(\mathbf{r}_1) \phi_\lambda(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} \mathrm{d}\mathbf{r}_1 \mathrm{d}\mathbf{r}_2$ are the two-electron integrals and $P_{\lambda\gamma}=\sum C_{\lambda a}C_{\gamma a}^*$ is the density matrix.

ullet $V_{ ext{xc},\mu
u}$ is the exchange-correlation potential matrix: $V_{ ext{xc},\mu
u} = \int \phi_\mu^*(\mathbf{r}) v_{ ext{xc}}(\mathbf{r}) \phi_
u(\mathbf{r}) d\mathbf{r}$

The total electronic energy is calculated as

$$E = \sum_{\kappa} \sum_{k}^{\kappa} P_{\nu\mu} H_{\mu\nu}^{\mathsf{core}} + rac{1}{2} \sum_{\kappa} \sum_{k}^{\kappa} P_{\nu\mu} J_{\mu\nu} + E_{\mathsf{xc}}$$

► The density is calculated as $n(\mathbf{r}) = \sum_{k=1}^{K} \sum_{k=1}^{K} P_{\lambda \gamma} \phi_{\lambda}(\mathbf{r}) \phi_{\gamma}^{*}(\mathbf{r})$

Practical calculations in an atomic basis (3/3)

In the simplest approximation, the exchange-correlation energy functional has a local form

$$E_{xc}^{local} = \int f(n(\mathbf{r})) d\mathbf{r}$$

where $f(n(\mathbf{r}))$ has a complicated nonlinear dependence on the density $n(\mathbf{r})$.

▶ For example, in the local-density approximation (LDA), the exchange energy is

$$E_{x}^{LDA} = C_{x} \int n(\mathbf{r})^{4/3} d\mathbf{r}$$

where C_x is a constant, and the exchange potential is

$$v_{\mathsf{x}}^{\mathsf{LDA}}(\mathbf{r}) = \frac{4}{3} C_{\mathsf{x}} n(\mathbf{r})^{1/3}$$

► Therefore, the integrals cannot be calculated analytically, but are instead evaluated by numerical integration on a grid

$$V_{ ext{xc},\mu
u}pprox \sum_{k} w_k \; \phi_\mu^*(\mathbf{r}_k) v_{ ext{xc}}(\mathbf{r}_k) \phi_
u(\mathbf{r}_k) \qquad ext{and} \qquad E_{ ext{xc}}^{ ext{local}}pprox \sum_{k} w_k \; f(n(\mathbf{r}_k))$$

where \mathbf{r}_k and w_k are quadrature points and weights.

Extension to spin density-functional theory (1/2)

 For dealing with an external magnetic field, DFT has been extended from the total density to spin-resolved densities

$$n_{\sigma}(\mathbf{r}) = N \int \cdots \int |\Psi(\mathbf{r}\sigma, \mathbf{x}_2, ..., \mathbf{x}_N)|^2 d\mathbf{x}_2 ... d\mathbf{x}_N \quad \text{ with } \quad \sigma \in \{\uparrow, \downarrow\}$$

which integrate to the numbers of σ -spin electrons, i.e. $\int n_{\sigma}(\mathbf{r})d\mathbf{r} = N_{\sigma}$.

- Without magnetic fields, this is in principle not necessary. In practice, the dependence on the spin densities allows one to construct more accurate approximate exchange-correlation functionals for open-shell systems.
- ▶ The universal density functional is now defined as

$$F[n_{\uparrow}, n_{\downarrow}] = \min_{\Psi \to n_{\uparrow}, n_{\downarrow}} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle$$

where the search is over wave functions Ψ giving the fixed spin densities n_{\uparrow} and n_{\downarrow} .

▶ A **KS** method is obtained by decomposing $F[n_{\uparrow}, n_{\downarrow}]$ as

$$F[n_{\uparrow}, n_{\downarrow}] = T_{s}[n_{\uparrow}, n_{\downarrow}] + E_{H}[n] + E_{xc}[n_{\uparrow}, n_{\downarrow}]$$

where $T_s[n_\uparrow,n_\downarrow]$ is defined with a constrained search over (spin-unrestricted) Slater determinants Φ

$$T_{\mathsf{s}}[n_{\uparrow},n_{\downarrow}] = \min_{\Phi \to n_{\uparrow},n_{\downarrow}} \langle \Phi | \hat{T} | \Phi \rangle$$

Extension to spin density-functional theory (2/2)

The **exact ground-state energy** is expressed as

$$E_0 = \min_{\Phi} \left\{ \langle \Phi | \hat{T} + \hat{V}_{\mathsf{ne}} | \Phi \rangle + E_{\mathsf{H}}[n_{\Phi}] + E_{\mathsf{xc}}[n_{\uparrow,\Phi}, n_{\downarrow,\Phi}] \right\}$$

▶ Writing the spatial orbitals of the determinant as $\psi_{a\sigma}(\mathbf{r})$ (with indices explicitly including spin now), we have now the spin-dependent KS equations

$$\left(-\frac{1}{2}\nabla^2 + v_{\mathsf{ne}}(\mathbf{r}) + v_{\mathsf{H}}(\mathbf{r}) + v_{\mathsf{xc},\sigma}(\mathbf{r})\right)\psi_{\mathsf{a}\sigma}(\mathbf{r}) = \varepsilon_{\mathsf{a}\sigma}\psi_{\mathsf{a}\sigma}(\mathbf{r})$$

with the spin-dependent exchange-correlation potential and density

$$v_{ ext{xc},\sigma}(\mathbf{r}) = rac{\delta E_{ ext{xc}}[n_{\uparrow},n_{\downarrow}]}{\delta n_{\sigma}(\mathbf{r})} ext{ and } n_{\sigma}(\mathbf{r}) = \sum_{r=1}^{N_{\sigma}} \left|\psi_{a\sigma}(\mathbf{r})
ight|^{2}$$

The spin-dependent exchange functional $E_x[n_{\uparrow}, n_{\downarrow}]$ can be obtained from the spin-independent exchange functional $E_x[n]$ with the spin-scaling relation

spin-independent exchange functional
$$E_x[n]$$
 with the **spin-scaling relation**
$$E_x[n_\uparrow,n_\downarrow] = \frac{1}{2} \left(E_x[2n_\uparrow] + E_x[2n_\downarrow] \right)$$

Therefore, any approximation for the spin-independent exchange functional $E_x[n]$ can be easily extended to an approximation for the spin-dependent exchange functional

 $E_{x}[n_{\uparrow}, n_{\downarrow}]$. Unfortunately, there is no such relation for the correlation functional.

- Basic density-functional theory
 - Quantum many-electron problem
 - Universal density functional
 The Hohenberg-Kohn theorem
 Levy-Lieb constrained-search formulation
 - Kohn-Sham method
 Decomposition of the universal functional
 The Kohn-Sham equations

 Practical calculations in an atomic basis
 Extension to spin density-functional theory
 - Generalized Kohn-Sham method

Generalized Kohn-Sham method

An important extension of the KS method is the **generalized Kohn-Sham** (GKS) method (1996) in which the universal density functional F[n] is decomposed as

 $\bar{S}[n]$ is the complementary density functional. E.g., in hybrids, $S[\Phi] = aE_{x}^{HF}[\Phi]$.

$$F[n] = \min_{\Phi \to n} \left\{ \langle \Phi | \hat{T} | \Phi \rangle + E_{\mathsf{H}}[n_{\Phi}] + S[\Phi] \right\} + \bar{S}[n]$$
 where $S[\Phi]$ is any (reasonable) functional of a single-determinant wave function Φ and

Defining the **GKS exchange-correlation functional**, $E_{xc}^S[\Phi] = S[\Phi] + \bar{S}[n_{\Phi}]$, we can express the **exact ground-state energy** as

$$E_0 = \min_{\Phi} \left\{ \langle \Phi | \hat{T} + \hat{V}_{ne} | \Phi \rangle + E_H[n_{\Phi}] + E_{xc}^S[\Phi] \right\}$$
 and any minimizing single-determinant wave function gives a ground-state density $n_0(\mathbf{r})$.

The corresponding **GKS equations** are

$$\left(-\frac{1}{2}\nabla^2 + v_{\mathsf{ne}}(\mathbf{r}) + v_{\mathsf{H}}(\mathbf{r}) + v_{\bar{\mathsf{S}}}(\mathbf{r})\right)\psi_{\mathsf{a}\sigma}(\mathbf{r}) + \frac{\delta S[\Phi]}{\delta \psi_{\mathsf{a}\sigma}^*(\mathbf{r})} = \varepsilon_{\mathsf{a}\sigma}\psi_{\mathsf{a}\sigma}(\mathbf{r})$$

where $v_{\bar{S}}(\mathbf{r}) = \delta \bar{S}[n]/\delta n(\mathbf{r})$ is a local potential and $\delta S[\Phi]/\delta \psi_{a\sigma}^*(\mathbf{r})$ generates a one-electron (possibly nonlocal) operator.

The GKS method gives much more freedom than the KS method (which corresponds to the special case S[Φ] = 0).

Outline

- Basic density-functional theory
 - Quantum many-electron problem
 - Universal density functional
 - Kohn-Sham method
 - Generalized Kohn-Sham method
- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower boundFrontier orbital energies
- Approximations for the exchange-correlation energy
 - Local-density approximation
 - Semilocal approximations
 - Single-determinant hybrid approximations
 - Multideterminant hybrid approximations
 - Dispersion corrections
 - Machine-learned density functionals
 - Benchmark
- Time-dependent density-functional theory
 - Runge-Gross theorem
 - Linear-response TDDFT

Outline

- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 The exchange and correlation holes
 The adiabatic connection
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower bound
 - Frontier orbital energies HOMO and LUMO energies Fundamental gap

The exchange-correlation hole

The pair density associated with the wave function $\Psi[n]$ is

$$n_2(\mathbf{r}_1,\mathbf{r}_2) = N(N-1) \int \cdots \int |\Psi[n](\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)|^2 d\sigma_1 d\sigma_2 d\mathbf{x}_3...d\mathbf{x}_N$$

which is a functional of the density. It is normalized to the number of electron pairs: $\iint n_2(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2 = N(N-1).$ It is proportional to the probability density of finding two electrons at positions $(\mathbf{r}_1, \mathbf{r}_2)$ with all the other electrons anywhere.

 $\langle \Psi[\emph{n}] | \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi[\emph{n}]
angle = rac{1}{2} \iint rac{\emph{n}_2 oldsymbol{(r}_1, r_2)}{| \emph{r}_1 - \emph{r}_2 |} \mathsf{dr}_1 \mathsf{dr}_2$

It can be used to express the electron-electron interaction energy

Mirroring the decomposition of
$$E_{\rm Hxc}[n]$$
, the pair density can be decomposed as
$$n_2({\bf r}_1,{\bf r}_2) = n({\bf r}_1)n({\bf r}_2) + n_{2,{\rm xc}}({\bf r}_1,{\bf r}_2)$$

▶ We also introduce the **exchange-correlation hole** $n_{xc}(\mathbf{r}_1, \mathbf{r}_2)$ by

we also introduce the exchange-correlation note
$$n_{xc}(\mathbf{r}_1, \mathbf{r}_2)$$

$$n_{2,xc}(\mathbf{r}_1, \mathbf{r}_2) = n(\mathbf{r}_1) n_{xc}(\mathbf{r}_1, \mathbf{r}_2)$$

It can be interpreted as the modification due to exchange and correlation effects of the conditional probability of finding an electron at \mathbf{r}_2 knowing that one has been found at \mathbf{r}_1 .

correlation effects

We have the exact constraints: $n_{xc}(\mathbf{r}_1,\mathbf{r}_2) \geq -n(\mathbf{r}_2)$ and $\int n_{xc}(\mathbf{r}_1,\mathbf{r}_2) d\mathbf{r}_2 = -1$

The exchange hole

Similarly, we define the **KS pair density** associated with the KS single determinant $\Phi[n]$

$$n_{2,\mathsf{KS}}(\mathbf{r}_1,\mathbf{r}_2) = N(N-1)\int \cdots \int |\Phi[n](\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)|^2 d\sigma_1 d\sigma_2 d\mathbf{x}_3...d\mathbf{x}_N$$

▶ It can be decomposed as

$$n_{2,KS}(\mathbf{r}_1,\mathbf{r}_2) = n(\mathbf{r}_1)n(\mathbf{r}_2) + n_{2,x}(\mathbf{r}_1,\mathbf{r}_2)$$

and we introduce the $exchange\ hole\ {\it n}_x({\bf r}_1,{\bf r}_2)$ by

 $n_{2,x}(\mathbf{r}_1,\mathbf{r}_2) = n(\mathbf{r}_1)n_x(\mathbf{r}_1,\mathbf{r}_2)$

which satisfies the exact constraints: $n_x(\mathbf{r}_1, \mathbf{r}_2) \ge -n(\mathbf{r}_2)$ and $\int n_x(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_2 = -1$ and $n_x(\mathbf{r}_1, \mathbf{r}_2) \le 0$

The exchange energy functional is the electrostatic interaction energy between an electron and its exchange hole:

$$E_{\mathbf{x}}[n] = \frac{1}{2} \iint \frac{n(\mathbf{r}_1)n_{\mathbf{x}}(\mathbf{r}_1, \mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2 = \int n(\mathbf{r}_1)\varepsilon_{\mathbf{x}}[n](\mathbf{r}_1) d\mathbf{r}_1$$

where $\varepsilon_{\rm x}[n]({\bf r}_1)$ is the exchange energy per particle. In approximate exchange density functionals, the quantity $\varepsilon_{\rm x}[n]({\bf r}_1)$ is usually what is approximated.

The correlation hole

The correlation hole is defined as the difference

$$n_{\mathrm{c}}(\mathbf{r}_{1},\mathbf{r}_{2}) = n_{\mathrm{xc}}(\mathbf{r}_{1},\mathbf{r}_{2}) - n_{\mathrm{x}}(\mathbf{r}_{1},\mathbf{r}_{2})$$

and satisfies the sum rule

$$\int n_{\rm c}(\mathbf{r}_1,\mathbf{r}_2)\mathrm{d}\mathbf{r}_2=0$$

which implies that the correlation hole has negative and positive contributions.

The potential contribution to the correlation energy can be written in terms of the correlation hole

$$U_{c}[n] = \frac{1}{2} \iint \frac{n(\mathbf{r}_{1})n_{c}(\mathbf{r}_{1},\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{1} d\mathbf{r}_{2}$$

But in order to express the total correlation energy $E_c[n] = T_c[n] + U_c[n]$ in a similar form, we need to introduce the adiabatic-connection formalism.

The adiabatic connection (1/3)

- ► The idea of the adiabatic connection is to have a continuous path between the non-interacting KS system and the physical system while keeping the ground-state density constant.
- ightharpoonup For this, we introduce a Hamiltonian depending on a **coupling constant** λ which switches on the electron-electron interaction

$$\hat{H}^{\lambda} = \hat{T} + \lambda \hat{W}_{ee} + \hat{V}^{\lambda}$$

where \hat{V}^{λ} is the external local potential imposing that the ground-state density is the same as the ground-state density of the physical system for all λ , i.e. $n^{\lambda}(\mathbf{r}) = n_0(\mathbf{r}), \forall \lambda$.

▶ By varying λ , we connect the KS non-interacting system ($\lambda = 0$) to the physical interacting system ($\lambda = 1$):

$$\underbrace{\hat{\mathcal{H}}^{\lambda=0}}_{\text{KS non-interacting}} \xleftarrow{0 \leq \lambda \leq 1} \underbrace{\hat{\mathcal{H}}^{\lambda=1}}_{\substack{\text{Physical interacting} \\ \text{system}}}$$

 \blacktriangleright We define a universal functional for each value of the parameter λ

$$\textit{F}^{\lambda}[\textit{n}] = \min_{\Psi \rightarrow \textit{n}} \langle \Psi | \, \hat{\textit{T}} + \lambda \, \hat{\textit{W}}_{\text{ee}} | \Psi \rangle = \langle \Psi^{\lambda}[\textit{n}] | \, \hat{\textit{T}} + \lambda \, \hat{\textit{W}}_{\text{ee}} | \Psi^{\lambda}[\textit{n}] \rangle$$

The adiabatic connection (2/3)

▶ The functional $F^{\lambda}[n]$ can be decomposed as

$$F^{\lambda}[n] = T_{s}[n] + E_{H}^{\lambda}[n] + E_{x}^{\lambda}[n] + E_{c}^{\lambda}[n]$$

▶ $E_{\rm H}^{\lambda}[n]$ and $E_{\rm x}^{\lambda}[n]$ are the Hartree and exchange functionals associated with the interaction $\lambda \hat{W}_{\rm ee}$ and are simply linear in λ

$$E_{\mathrm{H}}^{\lambda}[\mathbf{n}] = \lambda E_{\mathrm{H}}[\mathbf{n}]$$
 and $E_{\mathrm{x}}^{\lambda}[\mathbf{n}] = \lambda E_{\mathrm{x}}[\mathbf{n}]$

▶ The correlation functional $E_c^{\lambda}[n]$ is nonlinear in λ

$$\textit{E}_{c}^{\lambda}[\textit{n}] = \langle \Psi^{\lambda}[\textit{n}] | \, \hat{\textit{T}} + \lambda \, \hat{\textit{W}}_{ee} | \Psi^{\lambda}[\textit{n}] \rangle - \langle \Phi[\textit{n}] | \, \hat{\textit{T}} + \lambda \, \hat{\textit{W}}_{ee} | \Phi[\textit{n}] \rangle$$

We can get rid of \hat{T} by taking the derivative with respect to λ and using the Hellmann-Feynman theorem for the wave function $\Psi^{\lambda}[n]$

$$\frac{\partial \mathcal{E}_{\mathsf{c}}^{\lambda}[\textit{n}]}{\partial \lambda} = \langle \Psi^{\lambda}[\textit{n}] | \hat{\textit{W}}_{\mathsf{ee}} | \Psi^{\lambda}[\textit{n}] \rangle - \langle \Phi[\textit{n}] | \hat{\textit{W}}_{\mathsf{ee}} | \Phi[\textit{n}] \rangle$$

The adiabatic connection (3/3)

▶ Reintegrating over λ from 0 to 1, and using $E_c^{\lambda=1}[n] = E_c[n]$ and $E_c^{\lambda=0}[n] = 0$ (assuming no degeneracies at $\lambda = 0$), we arrive at the **adiabatic-connection formula**

$$E_{
m c}[n] = \int_0^1 {
m d}\lambda \; \langle \Psi^{\lambda}[n]|\hat{W}_{
m ee}|\Psi^{\lambda}[n]
angle - \langle \Phi[n]|\hat{W}_{
m ee}|\Phi[n]
angle$$

▶ Introducing the correlation hole $n_c^{\lambda}(\mathbf{r}_1, \mathbf{r}_2)$ associated with the wave function $\Psi^{\lambda}[n]$, the adiabatic-connection formula can also be written as

$$E_{c}[n] = \frac{1}{2} \int_{0}^{1} d\lambda \iint \frac{n(\mathbf{r}_{1}) n_{c}^{\lambda}(\mathbf{r}_{1}, \mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{1} d\mathbf{r}_{2}$$

▶ Introducing the λ -integrated correlation hole $\bar{n}_c(\mathbf{r}_1,\mathbf{r}_2) = \int_0^1 d\lambda \; n_c^{\lambda}(\mathbf{r}_1,\mathbf{r}_2)$, we finally write

$$E_{c}[n] = \frac{1}{2} \iint \frac{n(\mathbf{r}_1)\overline{n}_{c}(\mathbf{r}_1, \mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2 = \int n(\mathbf{r}_1)\varepsilon_{c}[n](\mathbf{r}_1) d\mathbf{r}_1$$

where $\varepsilon_c[n](\mathbf{r}_1)$ is the correlation energy per particle, which is the quantity usually approximated in practice.

- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 The exchange and correlation holes
 The adiabatic connection
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower bound
 - Frontier orbital energies HOMO and LUMO energies Fundamental gap

Uniform coordinate scaling

▶ For a given density n, we consider the **scaled density** with a scaling factor $\gamma > 0$

$$n_{\gamma}(\mathbf{r}) = \gamma^3 n(\gamma \mathbf{r})$$

which preserves the number of electrons, i.e. $\int n_{\gamma}(\mathbf{r})d\mathbf{r} = \int n(\mathbf{r})d\mathbf{r} = N$.

 \blacktriangleright It can be shown that the Hartree and exchange density functionals scale linearly in γ

$$E_{\mathsf{H}}[n_{\gamma}] = \frac{\gamma}{\rho} E_{\mathsf{H}}[n]$$
 and $E_{\mathsf{x}}[n_{\gamma}] = \frac{\gamma}{\rho} E_{\mathsf{x}}[n]$

▶ The correlation density functional has the more complicated scaling

$$E_{\rm c}[n_{\gamma}] = {\gamma^2} E_{\rm c}^{1/\gamma}[n]$$

where $E_{\rm c}^{1/\gamma}[n]$ is the correlation density functional for coupling constant $\lambda=1/\gamma$.

High- and low-density limits

In the high-density limit $(\gamma \to \infty)$, the correlation functional goes to a constant, for nondegenerate KS systems,

$$\lim_{\frac{\gamma \to \infty}{}} E_{\rm c}[n_{\gamma}] = E_{\rm c}^{\rm GL2}[n]$$

where $E_c^{GL2}[n]$ is the second-order Görling-Levy (GL2) correlation energy.

- ▶ This is also called the **weak-correlation limit** since $E_c[n] \ll E_x[n]$.
- Atomic and molecular systems are often close to the high-density limit. E.g., for the ground-state density of He, $E_c[n] = -0.0421$ a.u. and $\lim_{\gamma \to \infty} E_c[n_{\gamma}] = -0.0467$ a.u..
- In the **low-density limit** ($\gamma \to 0$), the Hartree-exchange-correlation functional goes to zero linearly in γ

$$E_{\mathsf{Hxc}}[n_{\gamma}] \underset{\gamma \to 0}{\sim} \gamma \ W_{\mathsf{ee}}^{\mathsf{SCE}}[n]$$

where $W_{\text{ee}}^{\text{SCE}}[n] = \min_{\Psi \to n} \langle \Psi | \hat{W}_{\text{ee}} | \Psi \rangle$ is the strictly-correlated-electron (SCE) functional.

- ▶ This limit corresponds to a Wigner crystallization.
- ▶ This is also called the **strong-correlation limit** because $E_c[n] \sim E_x[n]$.

- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 The exchange and correlation holes
 The adiabatic connection
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower bound
 - Frontier orbital energies HOMO and LUMO energies Fundamental gap

One-orbital spatial regions and self-interaction

▶ For one-electron densities $n_{1e}(\mathbf{r}) = |\psi_1(\mathbf{r})|^2$ where ψ_1 is the unique occupied KS orbital, we have

$$E_{x}[n_{1e}] = -E_{H}[n_{1e}]$$
 and $E_{c}[n_{1e}] = 0$

► For opposite-spin two-electron densities $n_{2\mathrm{e}}^{\uparrow\downarrow}(\mathbf{r}) = 2|\psi_1(\mathbf{r})|^2$ where ψ_1 is the unique doubly occupied KS orbital, we have

$$E_{\mathrm{x}}[n_{\mathrm{2e}}^{\uparrow\downarrow}] = -rac{1}{2}E_{\mathrm{H}}[n_{\mathrm{2e}}^{\uparrow\downarrow}]$$

- ▶ For systems with more electrons, similar relations apply locally in one-orbital spatial regions, i.e. in regions where only one occupied KS orbital is not zero. This situation can be approximately realized in chemical systems (unpaired electron in a radical, and electron pair in a single covalent bond, in a lone pair, or in a core orbital).
- ▶ If approximate exchange and correlation density functionals do not satisfy these constraints, we say that they introduce a **self-interaction error**.

- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 The exchange and correlation holes
 The adiabatic connection
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower bound
 - Frontier orbital energies
 HOMO and LUMO energies
 Fundamental gap

Lieb-Oxford lower bound

▶ Lieb and Oxford derived a useful **lower bound** which can be expressed as

$$E_{\mathrm{x}}[n] \geq E_{\mathrm{xc}}[n] \geq -C_{\mathsf{LO}} \int \!\! n(\mathbf{r})^{4/3} \mathrm{d}\mathbf{r}$$

where the optimal (i.e., smallest) constant C_{LO} (independent of the electron number N) has been narrowed to $1.4442 \le C_{LO} \le 1.5765$.

- ▶ This bound is approached in the low-density limit.
- ► For one-electron densities and opposite-spin two-electron densities, specific tigher bounds (i.e., with smaller C_{LO}) are known.

- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 The exchange and correlation holes
 The adiabatic connection
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower bound
 - Frontier orbital energies HOMO and LUMO energies Fundamental gap

The HOMO energy and the ionization energy

- ► For clarity, we will explicitly indicate the dependence on the electron number *N* in this section.
- For finite systems, the exact ground-state density of a N-electron system decays exponentially for $r=|{\bf r}|\to\infty$ with an exponent related to the **ionization energy** $I_N=E_n^{N-1}-E_n^N$

$$n^N(\mathbf{r}) \underset{r \to \infty}{\propto} e^{-2\sqrt{2I_N} r}$$

► Choosing the constant in the KS potential so that it goes to zero at infinity, i.e. $\lim_{|\mathbf{r}|\to\infty} v_s^N(\mathbf{r}) = 0$, it can be shown the density calculated from the KS orbitals decays exponentially with an exponent related to the **HOMO energy** ε_H^N

$$n^{N}(\mathbf{r}) = \sum_{a=1}^{N} |\psi_{a}(\mathbf{r})|^{2} \underset{r \to \infty}{\propto} e^{-2\sqrt{-2\varepsilon_{H}^{N}} r}$$

► This implies that the KS HOMO energy is the opposite of the exact ionization energy

$$\varepsilon_{\rm H}^{\it N}=-\it I_{\it N}$$

▶ It is similar to Koopmans' theorem for HF, except that here it is exact (no neglect of correlation or orbital relaxation).

The LUMO energy, the electron affinity, the derivative discontinuity

Contrary to what one could have expected, the KS LUMO energy ε_L^N is not the opposite of the exact electron affinity $A_N = E_0^N - E_0^{N+1}$ but instead

$$\varepsilon_{\mathsf{L}}^{\mathsf{N}} = -A_{\mathsf{N}} - \Delta_{\mathsf{xc}}^{\mathsf{N}}$$

where $\Delta_{xc}^{N} \geq 0$ is a constant.

For the (N+1)-electron system (with the same external potential $v_{\rm ne}$), we have $\varepsilon_{\rm H}^{N+1}=-I_{N+1}=-A_N$, so it means that

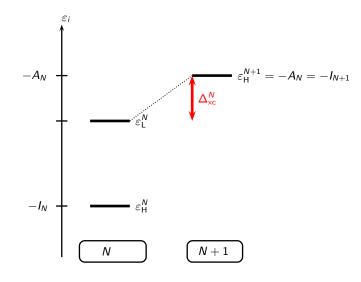
$$\Delta_{\mathsf{xc}}^{\mathit{N}} = arepsilon_{\mathsf{H}}^{\mathit{N}+1} - arepsilon_{\mathsf{L}}^{\mathit{N}}$$

- i.e., the constant Δ_{xc}^{N} corresponds to the "jump" of the LUMO energy of the N-electron system upon adding an electron so that the HOMO energy of the (N+1)-electron system correctly gives $-I_{N+1}$.
- In the extension of DFT to fractional electron numbers, it can be shown that the constant Δ_{xc}^N corresponds to the **uniform jump** that the **exchange-correlation potential** makes when going from $N-\delta$ electrons to $N+\delta$ electrons with $\delta \to 0^+$

$$\Delta_{\mathsf{xc}}^{N} = v_{\mathsf{xc}}^{N+\delta}(\mathbf{r}) - v_{\mathsf{xc}}^{N-\delta}(\mathbf{r}) = \left(\frac{\delta E_{\mathsf{xc}}[n]}{\delta n(\mathbf{r})}\right)_{\mathsf{xc}} - \left(\frac{\delta E_{\mathsf{xc}}[n]}{\delta n(\mathbf{r})}\right)_{\mathsf{xc}}$$

i.e. Δ_{xc}^N is the **derivative discontinuity** in the exchange-correlation energy functional $E_{xc}[n]$.

Kohn-Sham frontier orbital energies: Graphical summary



Fundamental gap

▶ The **fundamental gap** of the *N*-electron system is defined as

$$E_{\rm gap}^N = I_N - A_N$$

▶ In KS DFT, it can thus be expressed as

$$E_{\text{gap}}^{N} = \underbrace{\varepsilon_{\text{L}}^{N} - \varepsilon_{\text{H}}^{N} + \Delta_{\text{xc}}^{N}}_{\text{KS gap}} + \Delta_{\text{xc}}^{N}$$

So the KS gap is not equal to the exact fundamental gap of the system, the difference coming from the derivative discontinuity Δ_{xc}^N .

▶ The derivative discontinuity Δ_{xc}^N can represent an important contribution to the fundamental gap. In the special case of open-shell systems, we have $\varepsilon_L^N = \varepsilon_H^N$, and thus if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely given by Δ_{xc}^N .

- Basic density-functional theory
 - Quantum many-electron problem
 - Universal density functional
 - Kohn-Sham method
 - Generalized Kohn-Sham method
- Exact constraints for the exchange-correlation functional
 - Exact expressions for the exchange and correlation functionals
 - Uniform coordinate scaling
 - One-orbital spatial regions and self-interaction
 - Lieb-Oxford lower bound
 - Frontier orbital energies
- Approximations for the exchange-correlation energy
 - Local-density approximation
 - Semilocal approximations
 - Single-determinant hybrid approximations
 - Multideterminant hybrid approximations
 - Dispersion corrections
 - Machine-learned density functionals
 - Renchmark
- Time-dependent density-functional theory
 - Runge-Gross theorem
 - Linear-response TDDFT

3 Approximations for the exchange-correlation energy

- Local-density approximation
- Semilocal approximations
 Generalized-gradient approximations
 Meta-generalized-gradient approximations
- Single-determinant hybrid approximations
 Hybrid approximations
 Range-separated hybrid approximations
- Multideterminant hybrid approximations
 Double-hybrid approximations
 Range-separated double-hybrid approximation
- Dispersion corrections
 Semiempirical dispersion corrections
 Nonlocal van der Waals density functionals
- Machine-learned density functionals
- Benchmark

Local-density approximation

exchange-correlation functional is approximated as $E_{xc}^{LDA}[n] = \int n(\mathbf{r}) \varepsilon_{xc}^{UEG}(n(\mathbf{r})) d\mathbf{r}$

▶ In the local-density approximation (LDA), introduced by Kohn and Sham (1965), the

$$E_{\rm xc}^{\rm LDA}[n] = \int n(\mathbf{r}) \varepsilon_{\rm xc}^{\rm OLG}(n(\mathbf{r})) d\mathbf{r}$$

where $\varepsilon_{xc}^{UEG}(n)$ is the exchange-correlation energy per particle of the infinite uniform **electron gas (UEG)** with the density n.

The exchange energy per particle of the UEG can be calculated analytically

$$\varepsilon_{\rm x}^{\sf UEG}(n) = C_{\rm x} \; n^{1/3}$$
 Dirac (1930) and Slater (1951)

For the correlation energy per particle $\varepsilon_c^{\text{UEG}}(n)$ of the UEG, there are some parametrized functions of n fitted to QMC data and imposing the high- and low-density expansions (using the Wigner-Seitz radius $r_s = (3/(4\pi n))^{1/3}$)

$$\varepsilon_{c}^{\text{UEG}} = A \ln r_{s} + B + C r_{s} \ln r_{s} + O(r_{s})$$
 high-density limit or weak-correlation limit
$$\varepsilon_{c}^{\text{UEG}} = \frac{a}{r_{s} \to \infty} \frac{a}{r_{s}} + \frac{b}{r_{s}^{3/2}} + \frac{c}{r_{s}^{2}} + O\left(\frac{1}{r_{s}^{5/2}}\right)$$
 low-density limit or strong-correlation limit

The two most used parametrizations are VWN and PW92. Generalization to spin densities $\varepsilon_c^{\text{UEG}}(n_{\uparrow}, n_{\downarrow})$ is sometimes referred to as local-spin-density (LSD) approximation.

strong-correlation limit

3 Approximations for the exchange-correlation energy

- Local-density approximation
- Semilocal approximations
 Generalized-gradient approximations
 Meta-generalized-gradient approximations
- Single-determinant hybrid approximations
 Hybrid approximations
 Range-separated hybrid approximations
- Multideterminant hybrid approximations
 Double-hybrid approximations
 Range-separated double-hybrid approximation
- Dispersion corrections
 Semiempirical dispersion corrections
 Nonlocal van der Waals density functionals
- Machine-learned density functionals
- Benchmark

Generalized-gradient approximations

▶ The next logical step beyond the LDA is to add the dependence on the gradient of the density $\nabla n(\mathbf{r})$.

► From the 1980s, many **generalized-gradient approximations (GGAs)** have been developed with the generic form

$$E_{\mathsf{xc}}^{\mathsf{GGA}}[n] = \int f(n(\mathbf{r}), \nabla n(\mathbf{r})) d\mathbf{r}$$

- ▶ The function *f* is chosen so as to satisfy some exact constraints and often contains some parameters fitted to experimental or theoretical data.
- ► The GGAs provide a big improvement over LDA for molecular systems.
- The GGAs are often called **semilocal** approximations, which means that they involve a single integral on $\bf r$ using "semilocal information" through $\nabla n(\bf r)$.

▶ For simplicity, we consider here only the spin-independent form, but in practice GGA

functionals are more generally formulated in terms of spin densities and their gradients

$$E_{ ext{xc}}^{\mathsf{GGA}}[n_{\uparrow},n_{\downarrow}] = \int f(n_{\uparrow}(\mathbf{r}),n_{\downarrow}(\mathbf{r}),
abla n_{\uparrow}(\mathbf{r}),
abla n_{\downarrow}(\mathbf{r}))d\mathbf{r}$$

► Examples of GGAs: B exchange functional (1988), LYP correlation functional (1988), PBE exchange-correlation functional (1996)

Meta-generalized-gradient approximations (1/2)

► The meta-generalized-gradient approximations (mGGAs) are of the generic form

$$E_{\text{xc}}^{\text{mGGA}}[n, \tau] = \int f(n(\mathbf{r}), \nabla n(\mathbf{r}), \nabla^2 n(\mathbf{r}), \tau(\mathbf{r})) d\mathbf{r}$$

where $\nabla^2 n(\mathbf{r})$ is the Laplacian of the density and $\tau(\mathbf{r})$ is the non-interacting positive kinetic energy density

$$au(\mathbf{r}) = rac{1}{2} \sum_{a}^{N} |
abla \psi_a(\mathbf{r})|^2$$

which, as we will see, contains useful information.

- ▶ A mGGA can be either considered as an implicit functional of the density in the KS method, i.e. $E_{xc}[n] = E_{xc}^{mGGA}[n, \tau_{\Phi[n]}]$, or more commonly as an explicit functional of a single-determinant Φ in the GKS method, i.e. $E_{xc}^{S}[\Phi] = E_{xc}^{mGGA}[n_{\Phi}, \tau_{\Phi}]$.
- ▶ In the GKS method, a mGGA functional generates a non-multiplicative potential. But don't worry, this is allowed in GKS!
- Nowadays, $\nabla^2 n(\mathbf{r})$ is rarely used to construct mGGAs because it contains similar information than $\tau(\mathbf{r})$.
- ▶ The mGGAs are considered as part of the family of semilocal approximations.
- ➤ The mGGAs provide a modest improvement over GGAs.

Meta-generalized-gradient approximations (2/2)

- ▶ Motivations for introducing the variable $\tau(\mathbf{r})$:
 - ▶ Short-range expansion of the spherically average exchange hole (for closed-shell systems):

$$\tilde{n}_{x}(\mathbf{r}_{1}, r_{12}) = -\frac{n(\mathbf{r}_{1})}{2} - \frac{1}{3} \left(\frac{1}{4} \nabla^{2} n(\mathbf{r}_{1}) - 4\tau(\mathbf{r}_{1}) + \frac{|\nabla n(\mathbf{r}_{1})|^{2}}{8n(\mathbf{r}_{1})} \right) r_{12}^{2} + O(r_{12}^{4})$$

Thus $\tau(\mathbf{r})$ is needed to describe the curvature of the exchange hole.

 τ (r) can be used as an indicator of **one-orbital spatial regions** (regions containing one or two electrons in a single orbital).

This is done by comparing $\tau(\mathbf{r})$ with the von Weizsäcker kinetic energy density

$$\tau^{\mathsf{W}}(\mathbf{r}) = \frac{|\nabla n(\mathbf{r})|^2}{8n(\mathbf{r})}$$

which is the exact $\tau(\mathbf{r})$ for one and two electrons in a single orbital.

Examples of mGGAs: TPSS (2003), M06-L (2006), and SCAN (2015).

3 Approximations for the exchange-correlation energy

- Local-density approximation
- Semilocal approximations
 Generalized-gradient approximations
 Meta-generalized-gradient approximations
- Single-determinant hybrid approximations Hybrid approximations Range-separated hybrid approximations
- Multideterminant hybrid approximations Double-hybrid approximations Range-separated double-hybrid approximations
- Dispersion corrections
 Semiempirical dispersion corrections
 Nonlocal van der Waals density functionals
- Machine-learned density functionals
- Benchmark

Hybrid approximations

In 1993, Becke proposed to mix Hartree-Fock (HF) exchange with GGA functionals in a three-parameter hybrid (3H) approximation $E_x^{3H}[Φ] = a E_x^{HF}[Φ] + b E_x^{GGA}[n_Φ] + (1 - a - b) E_x^{LDA}[n_Φ] + c E_c^{GGA}[n_Φ] + (1 - c) E_c^{LDA}[n_Φ]$

where *a*, *b*, and *c* are empirical parameters. Example: B3LYP (*a* = 0.20)

► These hybrids are approximations within the **GKS method**. The term *S*[Φ] = *aE*_x^{HF}[Φ] generates a **nonlocal HF exchange potential** *av*_{x,σ}^{HF}(**r**, **r**'). Again, this is perfectly

- Adding a fraction a of HF exchange decreases the self-interaction error, which tends to favor too much delocalized electron densities. However, a too large a tends to increase the static-correlation error (stretched chemical bonds, transition metal elements, ...).
- $E_{\mathrm{xc}}^{1\mathsf{H}}[\Phi] = a \, E_{\mathrm{x}}^{\mathsf{HF}}[\Phi] + (1-a) \, E_{\mathrm{x}}^{\mathsf{DFA}}[n_{\Phi}] + E_{\mathrm{c}}^{\mathsf{DFA}}[n_{\Phi}]$

In 1996, Becke proposed a simpler one-parameter hybrid (1H) approximation

- where E_x^{DFA} and E_c^{DFA} can be any semilocal density-functional approximations (DFAs).
- The optimal a is often around 0.25. Example: PBE0 = HF/PBE hybrid with a = 0.25.
 A strategy is to use flexible E_x^{DFA} and E_c^{DFA} in a hybrid approximation and optimize
 - many parameters on molecular properties.

 Example: B97 (13 parameters) and M06 and M06-2X (36 parameters).

Range-separated hybrid (RSH) approximations

 Based on ideas of Savin (1996), Hirao and coworkers (2001) proposed a long-range correction (LC) scheme

$$E_{\mathrm{xc}}^{\mathrm{LC}}[\Phi] = E_{\mathrm{x}}^{\mathrm{Ir},\mathrm{HF}}[\Phi] + E_{\mathrm{x}}^{\mathrm{sr},\mathrm{DFA}}[n_{\Phi}] + E_{\mathrm{c}}^{\mathrm{DFA}}[n_{\Phi}]$$

where

- ► $E_{\rm x}^{\rm lr,HF}[\Phi]$ is the HF exchange energy for the long-range electron-electron interaction $\frac{\rm erf}{\rm re}(\mu r_{12})$ replacing the Coulomb interaction $\frac{1}{\rm re}$,
- $E_x^{sr,DFA}[n]$ is a semilocal DFA exchange energy for the complement **short-range electron-electron interaction** (semilocal DFAs are more accurate if limited to short-range interactions),
- ▶ the range-separation parameter μ (also sometimes denoted as ω) is often taken as $\mu \approx 0.3 0.5 \text{ bohr}^{-1}$.

Example: LC- ω PBE

► In 2004, Yanai, Tew, and Handy introduced a more flexible decomposition called the Coulomb-attenuating method (CAM)

$$E_{\text{xc}}^{\text{CAM}}[\Phi] = a E_{\text{x}}^{\text{sr},\text{HF}}[\Phi] + b E_{\text{x}}^{\text{lr},\text{HF}}[\Phi] + (1-a) E_{\text{x}}^{\text{sr},\text{DFA}}[n_{\Phi}] + (1-b) E_{\text{x}}^{\text{lr},\text{DFA}}[n_{\Phi}] + E_{\text{c}}^{\text{DFA}}[n_{\Phi}]$$

Examples: CAM-B3LYP, ω B97X

3 Approximations for the exchange-correlation energy

- Local-density approximation
- Semilocal approximations
 Generalized-gradient approximations
 Meta-generalized-gradient approximations
- Single-determinant hybrid approximations
 Hybrid approximations
 Range-separated hybrid approximations
- Multideterminant hybrid approximations
 Double-hybrid approximations
 Range-separated double-hybrid approximations
- Dispersion corrections
 Semiempirical dispersion corrections
 Nonlocal van der Waals density functionals
- Machine-learned density functionals
- Benchmark

Double-hybrid approximations

In 2006, Grimme introduced a two-parameter double-hybrid (2DH) approximation

$$E_{
m xc}^{
m 2DH} = a_{
m x} \; E_{
m x}^{
m HF}[\Phi] + (1-a_{
m x}) \; E_{
m x}^{
m DFA}[n_{\Phi}] + (1-a_{
m c}) E_{
m c}^{
m DFA}[n_{\Phi}] + a_{
m c} E_{
m c}^{
m MP2}$$

where the MP2-like correlation energy E_c^{MP2} is added a posteriori with the previously calculated orbitals. Example: B2-PLYP ($a_x = 0.53$ and $a_c = 0.27$).

- ► The presence of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal HF exchange.
- ▶ In 2011, Sharkas, Toulouse, and Savin showed that double hybrids can be understood as approximations of a **multideterminant extension of the KS method** based on the adiabatic-connection formalism in which the exact ground-state energy is written as

$$E_0 = \min_{\Psi} \left\{ \langle \Psi | \hat{T} + \hat{V}_{\mathsf{ne}} + \lambda \hat{W}_{\mathsf{ee}} | \Psi \rangle + \bar{E}_{\mathsf{Hxc}}^{\lambda} [n_{\Psi}] \right\}$$
where \bar{E}^{λ} [p] = (1 -))Ev[p] + (1 -))E [p] + \bar{E}^{λ} [p] and \bar{E}^{λ} [p] = E[p] -)²E[p + 1

- where $\bar{E}_{\mathrm{Hxc}}^{\lambda}[n] = (1-\lambda)E_{\mathrm{H}}[n] + (1-\lambda)E_{\mathrm{x}}[n] + \bar{E}_{\mathrm{c}}^{\lambda}[n]$ and $\bar{E}_{\mathrm{c}}^{\lambda}[n] = E_{\mathrm{c}}[n] \lambda^2 E_{\mathrm{c}}[n_{1/\lambda}]$.
 - At second order of a non-linear Møller-Plesset-like perturbation theory, and using $E_c[n_{1/\lambda}] \approx E_c[n]$, we obtain a **one-parameter double-hybrid (1DH) approximation** $E_c^{\text{1DH}} = \lambda \ E_c^{\text{HF}}[\Phi] + (1 \lambda) \ E_c^{\text{DFA}}[n_{\Phi}] + (1 \lambda^2) E_c^{\text{DFA}}[n_{\Phi}] + \lambda^2 E_c^{\text{MP2}}$
 - ➤ The multideterminant extension of the KS method can also be used to rigorously combine wave-function methods such as MCSCF with DFT.

Range-separated double-hybrid approximations

► In 1996, Savin introduced the range-separated multideterminant extension of the KS scheme in which the exact ground-state energy is written as

$$\textit{E}_{0} = \min_{\Psi} \left\{ \left\langle \Psi \right| \hat{\textit{T}} + \hat{\textit{V}}_{\text{ne}} + \hat{\textit{W}}_{\text{ee}}^{\text{Ir}} |\Psi \rangle + \bar{\textit{E}}_{\text{Hxc}}^{\text{sr}} [\textit{n}_{\Psi}] \right\}$$

 ${
m erf}(\mu r_{12})/r_{12}$ and $ar{E}_{
m Hxc}^{
m sr}[n]$ is the complementary short-range density functional.

➤ The approach can be used to rigorously combine any wave-function method with DFT.

where \hat{W}_{ee}^{lr} is the long-range electron-electron operator for the pair potential

► In 2005, Ángyán, Gerber, Savin, and Toulouse introduced a range-separated

$$E_{\text{xc}}^{\text{RSDH}} = E_{\text{x}}^{\text{Ir},\text{HF}} [\Phi] + E_{\text{xc}}^{\text{sr},\text{DFA}} [n_{\Phi}] + E_{\text{c}}^{\text{sr},\text{DFA}} [n_{\Phi}] + E_{\text{c}}^{\text{Ir},\text{MP2}}$$

- ▶ Obtained as second order of a non-linear Møller-Plesset-like perturbation theory.
- ► Long-range MP2 is qualitatively correct for London dispersion interactions.
- ▶ Long-range MP2 has a fast convergence with the one-electron basis size.

double-hybrid (RSDH) approximation (also called RSH+MP2)

Extensions of this scheme to a more flexible CAM decomposition have also been proposed.

3 Approximations for the exchange-correlation energy

- Local-density approximation
- Semilocal approximations
 Generalized-gradient approximations
 Meta-generalized-gradient approximations
- Single-determinant hybrid approximations
 Hybrid approximations
 Range-separated hybrid approximations
- Multideterminant hybrid approximations
 Double-hybrid approximations
 Range-separated double-hybrid approximation
- Dispersion corrections
 Semiempirical dispersion corrections
 Nonlocal van der Waals density functionals
- Machine-learned density functionals
- Benchmark

Semiempirical dispersion corrections

 To explicitly account for London dispersion interactions, it has been proposed in the 2000s to add to the standard approximate functionals a semiempirical dispersion correction of the form

$$E_{\mathrm{disp}} = -s \sum_{lpha < eta} f(R_{lpha eta}) rac{C_6^{lpha eta}}{R_{lpha eta}^6}$$

where

- $ightharpoonup R_{\alpha\beta}$ is the distance between a pair of atoms,
- $ightharpoonup C_6^{\alpha\beta}$ is the dispersion coefficient between these atoms,
- lacksquare $f(R_{lphaeta})$ is a damping function which tends to 1 at large $R_{lphaeta}$ and tends to 0 at small $R_{lphaeta}$,
- s is a scaling parameter that can be adjusted for each approximate functional.
- ▶ The dispersion coefficients $C_6^{\alpha\beta}$ are empirically obtained from tabulated data.
- lacktriangle The most recent versions also includes $C_8^{lphaeta}$ two-body terms and $C_9^{lphaeta\gamma}$ three-body terms.
- ► This approach was named "DFT-D" by Grimme. Examples of DFT-D functionals:
- PBE-D, B97-D, B3LYP-D, ωB97X-D, B2PLYP-D.

 There are also various proposals to make the determination of dispersion coefficients less
 - empirical, e.g. Becke and Johnson (2007), Tkatchenko and Scheffler (2009), Sato and Nakai (2010).

Nonlocal van der Waals density functionals

► Another approach to describe dispersion interactions is to add to the standard approximate functionals a **nonlocal van der Waals density functional** of the form

$$E_{c}^{nl}[n] = \frac{1}{2} \iint n(\mathbf{r}_1) n(\mathbf{r}_2) \phi(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

where $\phi(\mathbf{r}_1, \mathbf{r}_2)$ is a correlation kernel.

- Two main families of such nonlocal correlation functionals exist: the "van der Waals density functionals" (vdW-DF) of Langreth, Lundqvist and coworkers and the Vydrov-Van Voorhis (VV) functionals.
- For example, the VV10 nonlocal correlation functional (2010) uses a theory-based kernel $\phi(\mathbf{r}_1, \mathbf{r}_2)$ with two adjustable parameters.
- Nonlocal van der Waals density functionals are less empirical but more computationally expensive than semiempirical dispersion corrections.
- **Examples** of functionals using VV10: ω B97X-V and ω B97M-V.

3 Approximations for the exchange-correlation energy

- Local-density approximation
- Semilocal approximations
 Generalized-gradient approximations
 Meta-generalized-gradient approximations
- Single-determinant hybrid approximations
 Hybrid approximations
 Range-separated hybrid approximations
- Multideterminant hybrid approximations
 Double-hybrid approximations
 Range-separated double-hybrid approximation
- Dispersion corrections
 Semiempirical dispersion corrections
 Nonlocal van der Waals density functionals
- Machine-learned density functionals
- Benchmark

Machine-learned density functionals

- ► Construction of exchange-correlation energy approximations using Machine Learning (ML) is a current topic of research.
- ▶ For example, such ML exchange-correlation energy approximations can be of the form

$$E_{\mathsf{xc}}^{\mathsf{ML}} = \int f_{\mathsf{ML}}[n, \nabla n, au, ...](\mathbf{r}) \, \mathrm{d}\mathbf{r}$$

where $f_{\rm ML}$ is a very complicated function performing various sequential transformations (including neural networks) of the different input features $(n, \nabla n, \tau, ...)$ and containing of the order of 10^5 parameters.

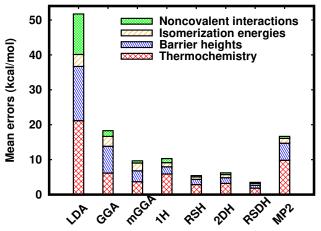
- ▶ A very large amount of reliable accurate data is necessary to optimize all the parameters.
- Example: DM21 (2021), Skala (2025)
- ▶ ML exchange-correlation approximations look very promising, but, as of 2025, they are not yet used in applications.

3 Approximations for the exchange-correlation energy

- Local-density approximation
- Semilocal approximations
 Generalized-gradient approximations
 Meta-generalized-gradient approximations
- Single-determinant hybrid approximations
 Hybrid approximations
 Range-separated hybrid approximations
- Multideterminant hybrid approximations
 Double-hybrid approximations
 Range-separated double-hybrid approximation
- Dispersion corrections
 Semiempirical dispersion corrections
 Nonlocal van der Waals density functionals
- Machine-learned density functionals
- Benchmark

Benchmark of exchange-correlation approximations

Mean errors on large sets of molecular energetic data (nearly 5000 data points) for one of the "best" approximation in each family:



GGA = B97-D3(BJ); **mGGA** = B97M-rV; **1H** = M06-2X-D3; **RSH** = ω B97M-V; **2DH** = DSD-PBEPBE-D3(BJ); **RSDH** = ω B97M(2)

Data from N. Mardirossian and M. Head-Gordon, Journal of Chemical Physics **148**, 241736 (2018) and N. Mardirossian and M. Head-Gordon, Molecular Physics **115**, 2315 (2017).

- Time-dependent density-functional theory
 - Runge-Gross theorem
 - Linear-response TDDFT

- Time-dependent density-functional theory
 - Runge-Gross theorem
 - Linear-response TDDFT

Time-dependent density-functional theory (TDDFT)

Consider the time-dependent electronic Schrödinger equation with an external time-dependent potential $\hat{V}(t)$

$$irac{\partial |\Psi(t)
angle}{\partial t} = \left(\hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} + \hat{V}(t)
ight)|\Psi(t)
angle$$

Similarly to the Hohenberg-Kohn theorem, **Runge and Gross** (1984) showed that, for a given initial wave function $\Psi(0)$, the time-dependent density $n(\mathbf{r},t)$ determines the time-dependent potential $v(\mathbf{r},t)$ up to an arbitrary additive time function:

$$n(\mathbf{r},t) \xrightarrow{\mathsf{Runge-Gross}} v(\mathbf{r},t) + c(t)$$

▶ We can thus set up a time-dependent non-interacting KS system

$$irac{\partial \psi_{a}(\mathbf{r},t)}{\partial t} = \left(-rac{1}{2}
abla^{2} + v_{\mathrm{s}}(\mathbf{r},t)
ight)\psi_{a}(\mathbf{r},t)$$

where the time-dependent KS potential $v_{\rm s}({\bf r},t)=v({\bf r},t)+v_{\rm Hxc}({\bf r},t)$ reproduces the evolution of the exact density as $n({\bf r},t)=\sum_a^N|\psi_a({\bf r},t)|^2$.

- Time-dependent density-functional theory
 - Runge-Gross theorem
 - Linear-response TDDFT

Linear-response TDDFT

Let us consider a time-periodic potential of frequency ω . In Fourier space, a variation of the KS potential $v_s(\mathbf{r}_1,\omega)$ caused by a variation of the density $n(\mathbf{r}_2,\omega)$ can be written as

$$\frac{\delta v_{s}(\mathbf{r}_{1},\omega)}{\delta n(\mathbf{r}_{2},\omega)} = \frac{\delta v(\mathbf{r}_{1},\omega)}{\delta n(\mathbf{r}_{2},\omega)} + \frac{\delta v_{Hxc}(\mathbf{r}_{1},\omega)}{\delta n(\mathbf{r}_{2},\omega)}$$

► This can be rewritten as

$$\chi_{\mathsf{s}}^{-1}(\mathbf{r}_1,\mathbf{r}_2,\omega) = \chi^{-1}(\mathbf{r}_1,\mathbf{r}_2,\omega) + f_{\mathsf{Hxc}}(\mathbf{r}_1,\mathbf{r}_2,\omega)$$

where

- $\qquad \qquad \chi_{\rm S}({\bf r}_1,{\bf r}_2,\omega) = \delta {\it n}({\bf r}_1,\omega)/\delta {\it v}_{\rm S}({\bf r}_2,\omega) \text{ is the KS non-interacting linear-response function}$
- $\chi(\mathbf{r}_1,\mathbf{r}_2,\omega)=\delta n(\mathbf{r}_1,\omega)/\delta v(\mathbf{r}_2,\omega)$ is the interacting linear-response function
- $f_{\text{Hxc}}(\mathbf{r}_1, \mathbf{r}_2, \omega) = \delta v_{\text{Hxc}}(\mathbf{r}_1, \omega) / \delta n(\mathbf{r}_2, \omega)$ is the Hartree-exchange-correlation kernel
- ▶ The interacting linear-response function $\chi(\mathbf{r}_1,\mathbf{r}_2,\omega)$ is thus found from the **Dyson-like** response equation

$$\chi^{-1}(\mathbf{r}_1, \mathbf{r}_2, \omega) = \chi_s^{-1}(\mathbf{r}_1, \mathbf{r}_2, \omega) - f_{\mathsf{Hxc}}(\mathbf{r}_1, \mathbf{r}_2, \omega)$$

or, equivalently,

$$\chi(\mathbf{r}_1, \mathbf{r}_2, \omega) = \chi_{\mathsf{s}}(\mathbf{r}_1, \mathbf{r}_2, \omega) + \iint \mathsf{d}\mathbf{r}_3 \mathsf{d}\mathbf{r}_4 \; \chi_{\mathsf{s}}(\mathbf{r}_1, \mathbf{r}_3, \omega) \; f_{\mathsf{Hxc}}(\mathbf{r}_3, \mathbf{r}_4, \omega) \; \chi(\mathbf{r}_4, \mathbf{r}_2, \omega)$$

Excitation energies from linear-response TDDFT

where the matrices $\mathbf{A}(\omega)$ and $\mathbf{B}(\omega)$ are

$$\chi_{\rm s}({\bf r}_1,{\bf r}_2,\omega) = \sum_{\sigma \in \sigma} \sum_{r=1}^{\rm occ} \sum_{r=1}^{\rm vir} \left[\frac{\psi_{\rm a\sigma}^*({\bf r}_1)\psi_{\rm r\sigma}({\bf r}_1)\psi_{\rm r\sigma}^*({\bf r}_2)\psi_{\rm a\sigma}({\bf r}_2)}{\omega - (\varepsilon_r - \varepsilon_{\rm a}) + i0^+} - \frac{\psi_{\rm r\sigma}^*({\bf r}_1)\psi_{\rm a\sigma}({\bf r}_1)\psi_{\rm a\sigma}^*({\bf r}_2)\psi_{\rm r\sigma}({\bf r}_2)}{\omega + (\varepsilon_r - \varepsilon_{\rm a}) + i0^+} \right]$$

▶ Similarly, $\chi(\mathbf{r}_1, \mathbf{r}_2, \omega)$ has poles at the exact excitation energies $\omega_n = E_n - E_0$.

$$(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_{\sigma \in \{\uparrow,\downarrow\}} \sum_a \sum_r \left[\frac{\omega - (\varepsilon_r - \varepsilon_a) + i0^+}{\omega + (\varepsilon_r - \varepsilon_a)^-} - \frac{\omega + (\varepsilon_r - \varepsilon_a)^-}{\omega + (\varepsilon_r - \varepsilon_a)^-} \right]$$

$$(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_{\sigma \in \{+, +\}} \sum_{a} \sum_{r} \left[\frac{\varphi_{a\sigma}(\mathbf{r}_1) \varphi_{r\sigma}(\mathbf{r}_2) \varphi_{a\sigma}(\mathbf{r}_2)}{\omega - (\varepsilon_r - \varepsilon_a) + i0^+} - \frac{\varphi_{r\sigma}(\mathbf{r}_1) \varphi_{a\sigma}(\mathbf{r}_2)}{\omega + (\varepsilon_r - \varepsilon_a) + i0^+} \right]$$

• Writing $\chi^{-1}(\omega) = \chi_s^{-1}(\omega) - f_{Hxc}(\omega)$ in the spin-orbital tensor-product basis $\{\psi_a^*\psi_r, \psi_r^*\psi_a\}$

 $\chi^{-1}(\omega) = - \begin{bmatrix} \begin{pmatrix} \mathbf{A}(\omega) & \mathbf{B}(\omega) \\ \mathbf{B}(-\omega)^* & \mathbf{A}(-\omega)^* \end{pmatrix} - \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{bmatrix} \end{bmatrix}$

 $[\mathbf{A}(\omega)]_{ar,bs} = (\varepsilon_r - \varepsilon_a)\delta_{ab}\delta_{rs} + \langle rb|f_{Hxc}(\omega)|as\rangle$ $[\mathbf{B}(\omega)]_{ar\ bs} = \langle rs|f_{\mathsf{Hxc}}(\omega)|ab\rangle$

The excitation energies ω_n can be calculated from the generalized eigenvalue equation

 $\begin{pmatrix} \mathbf{A}(\omega_n) & \mathbf{B}(\omega_n) \\ \mathbf{B}(-\omega_n)^* & \mathbf{A}(-\omega_n)^* \end{pmatrix} \begin{pmatrix} \mathbf{X}_n \\ \mathbf{Y}_n \end{pmatrix} = \omega_n \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X}_n \\ \mathbf{Y}_n \end{pmatrix}$

74/75

$$\sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{$$

The Hartree-exchange-correlation kernel

 In linear-response TDDFT, the key quantity to be approximated is the Hartree-exchange-correlation kernel

$$f_{\mathsf{Hxc}}(\mathbf{r}_1, \mathbf{r}_2, \omega) = \frac{\delta v_{\mathsf{Hxc}}(\mathbf{r}_1, \omega)}{\delta n(\mathbf{r}_2, \omega)}$$

It can be decomposed as

$$f_{\mathsf{Hxc}}(\mathbf{r}_1,\mathbf{r}_2,\omega) = f_{\mathsf{H}}(\mathbf{r}_1,\mathbf{r}_2) + f_{\mathsf{xc}}(\mathbf{r}_1,\mathbf{r}_2,\omega)$$

where the Hartree kernel is simply $f_H(\mathbf{r}_1, \mathbf{r}_2) = 1/|\mathbf{r}_1 - \mathbf{r}_2|$.

ightharpoonup In almost all TDDFT calculations, the frequency dependence of f_{xc} is neglected, which is called the **adiabatic approximation**

$$f_{\rm xc}({\bf r}_1,{\bf r}_2,\omega)\approx \frac{\delta v_{\rm xc}({\bf r}_1)}{\delta n({\bf r}_2)}=\frac{\delta^2 E_{\rm xc}[n]}{\delta n({\bf r}_1)\delta n({\bf r}_2)}$$
 with the notorious consequence that only single-electron excitations are taken into

account (double excitations and higher are missing).

► To describe nonlocal excitations, such as charge-transfer excitations, range-separated hybrid approximations are often used. The kernel has then the expression

$$f_{\rm xc}=f_{\rm x}^{\rm lr,HF}+f_{\rm x}^{\rm sr,DFA}+f_{\rm c}^{\rm DFA}$$
 where $f_{\rm x}^{\rm lr,HF}$ is the long-range HF exchange kernel.

75/75