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TD 1: Hartree-Fock and Density-Functional Theory

We will apply Hartree-Fock and density-functional theories on a toy example of a ground-state calculation of the
helium atom. We will consider an one-electron basis made of two s-type Gaussian functions centered on the nucleus,
φs(r, α) = (2α/π)3/4e−αr2 , with the two exponents α1 = 3.8 and α2 = 0.5. Hartree atomic units are used everywhere.

1 Hartree-Fock

1.1 Hartree-Fock wave function and Hartree-Fock equations

1. Write down the Hartree-Fock (HF) ground-state wave function for He.

2. Recall the HF total energy expression and HF equations of an arbitrary closed-shell system in terms of spatial
orbitals.

3. Derive the algebraic HF equations of an arbitrary closed-shell system in a basis (Roothaan equations).

1.2 Integrals over basis functions

1. Recall the general definition of the overlap, one-electron and two-electron integrals over basis functions and their
symmetry properties with respect to permutation of the basis functions.

2. The expressions of the integrals over normalized s Gaussian basis functions (exponents α, β, γ and δ) for a single
atom (with nuclear charge Z) are:
- overlap integrals:

(A|B) =

(

2α

π

)3/4 (
2β

π

)3/4 (
π

α+ β

)3/2

- kinetic integrals:
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- nuclear-electron integrals:
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- two-electron integrals (in chemist’s notation):
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Calculate all the unique integrals for He for the two basis functions given previously.

1.3 Self-consistent-field iterations

1. Calculate the elements of the 2×2 core Hamiltonian matrix (i.e., the one-electron part of the Fock matrix). Obtain
an initial guess for the orbital coefficients by solving the generalized eigenvalue equation with neglect of the two-
electron part of the Fock matrix.

2. Calculate the elements of the 2 × 2 one-particle density matrix from the obtained occupied orbital coefficients,
calculate the two-electron part of the 2× 2 Fock matrix, and solve the generalized eigenvalue equation for the new
orbital coefficients. Calculate the current value of the HF total energy.

3. Iterate step 2 until convergence. The coefficients of the occupied orbital should converge to c1 = (0.300859, 0.811650).

4. Calculate the final HF total energy and its components (kinetic energy, nuclear-electron energy, and electron-electron
energy). Check whether the virial theorem is satisfied. Comment.

1



2 Density-functional theory

2.1 Kohn-Sham equations

1. Write down the total energy of an arbitrary closed-shell system in density-functional theory (DFT) within the Kohn-
Sham (KS) scheme in terms of spatial orbitals and the exchange-correlation density functional Exc[ρ]. Compare to
the HF energy expression.

2. Derive the KS equations of an arbitrary closed-shell system in terms of spatial orbitals. Explain how the exchange-
correlation potential vxc(r) is obtained from the exchange-correlation functional Exc[ρ].

3. Write down the algebraic KS equations of an arbitrary closed-shell system in a basis. In comparison to HF, what
additional quantities need to be calculated? How can the exchange-correlation potential contribution to the Fock
matrix be evaluated in practice?

4. Write down the expression of the HF exchange potential. How does it compare with the KS exchange potential
vx(r)?

2.2 Approximate density functionals

1. We consider the following approximate local density functionals:
- the Dirac (or Slater) exchange functional:

ED

x [ρ] = Cx

∫

ρ(r)4/3dr

with the constant Cx = −(3/4)(3/π)1/3.

- the Wigner correlation functional:

EW

c [ρ] =

∫

aρ(r)

b+ rs(r)
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with the Wigner-Seitz radius rs(r) = (3/(4πρ(r))1/3, and two constants a = −0.29 and b = 5.1. The Wigner
functional was constructed from the low-density limit of the correlation energy of the uniform electron gas.

Calculate the associated exchange and correlation potentials (by taking the functional derivatives) as a function of
the density ρ(r).

2. We perform a KS DFT calculation on the He atom (with the two basis functions given previously) using the
standard local-density approximation (LDA) for the exchange-correlation functional: Dirac exchange functional
+ Vosko-Wilk-Nusair (VWN) correlation functional (obtained from a parametrization of the accurate correlation
energy of the uniform electron gas). We obtain a total energy of ELDA = −2.71592 a.u.. The exchange and
correlation energies are ED

x = −0.866994 a.u. and EVWN
c = −0.112870 a.u.. The coefficients of the occupied orbital

are c1 = (0.295500, 0.815618). Calculate the “exact” exchange energy (i.e., the HF exchange energy expression) with
the LDA occupied orbital. Compare to the LDA exchange energy. The exact correlation energy is Eexact

c = −0.042
a.u.. Comment on the accuracy of LDA.

3. We consider now generalized-gradient approximations (GGA) of the form

EGGA

xc [ρ] =

∫

exc(ρ(r),∇ρ(r))dr

where the energy density exc is a function of the density ρ(r) and the gradient of the density ∇ρ(r).

Give the general expression of the exchange-correlation potential for a GGA functional.

4. We perform a KS DFT calculation using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, which
is a popular GGA functional. The total energy is EPBE = −2.770319 a.u., the exchange and correlation energies
are EPBE

x = −0.998401 a.u. and EPBE
c = −0.045508 a.u.. Comment on the accuracy of PBE.
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