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in terms of first-order density matrices
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The density-functional correlation energy is given in terms of first-order density matrices. These are gener-
ated either by switching off the electron-electron interaction, or by a uniform scaling of the density. An
expression using Kohn-Sham exchange-only eigenvalues is also given.
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The existence of a universal electron-correlation-energy
functional was shown by Kohn and Sham [1]. There are a
few variants that define it, the most common one being (see,

e.g., [2])

En)= (UM T+ Ve W) = (W0 T+ Vo 9170,
6

where ¥ is the antisymmetric wave function yleldmg the
electron density n and minimizing (T+\V,.), T and V.,
being the operators for the kinetic energy and electron-
electron interaction, respectively.

It is well known that E ;. can be expressed in terms of the
coupling-constant-dependent second-order density matrix
P,(ry,rp;\) and the one obtained for A=0 [3-6]:

1 1
E [n]= fo d’\f d31’1d3r2’r‘;[1)2(1‘1,1‘2;)\)
—P,(ry,rp;A=0)]. 2

Following a proof given by Yasuhara [7] it will be shown
that the correlation-energy density functional can be ex-
pressed by using the first-order density matrices alone.

The constrained-search definition of the universal density
functional for scaled electron-electron interaction is

FMNn]l=(UNT+AV, | ). €)

The correlation-energy density functional for interaction
strength N can be defined as

ENn]=(WMT+AV | ¥H) = (Y= T+ AV, | ¥*=0)
— (WM T+ AV, | ¥ =), @)
For A=1, ENn]=E_[n] [cf. Eq. (1)].

The Hellmann-Feynman theorem can be applied to F*, as
the space of the wave functions ¥ is invariant with \ [8]:
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The second equality follows from Eq. (3). As our interest lies
in E, F* will be eliminated from the preceding equation by
the use of Eq. (4). For the left-hand side,

6F)‘ OEN
9N oA
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is obtained. Equation (6) can be then rewritten as

OE}

= ;\—(EZ‘+(\P"=°|T|\P"=°)—(‘I”‘If‘l‘l’)‘))- ®)

After division by \ and rearrangement, the above equation is

a (EX
aN\N) T

The integration between A=0 and A=1 yields

T (WNTYY) = (P =079 =0)).

d\ N .
Edn)=— [ SFEEH— (0= HR ). ©)

To obtain this result, Eqs. (1), (4), (5), and (7) were used,
together with

li Ee _ e 0 (10)
im—= =0.
r—0 N as0 9N

If it happens that for a certain value of A there is sudden
change in ¥, as long as F* remains continuous, the proof
can be repeated on each of the intervals, yielding the same
final result.

Please note that one has to take care when taking the limit
A—0 in the case of degeneracy. It may then well happen that
only one of the possible combinations of the degenerate
=0 is selected by the limiting process, and this is not a
single determinant. This happens, e.g., for the hydrogen mol-
ecule at infinite internuclear separation.

As the right-hand side (rhs) of Eq. (9) contains only the
monoelectronic operator T, it can be rewritten by using the
first-order density matrix

'yﬁ(rl,r{)= 2 d3r2"'d3qu’)\*
spins
X(rl, oo rN)\I’)\(ri, ‘e ,rN).
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This gives

1 11 1 _
Enl=y [\ [ PvRIEe) - R 0w)
r=r’

(11)

The preceding formula shows that the knowledge of
yM(r,r") is sufficient to obtain E,. Of course, it would also
be possible to work in momentum space, where the momen-
tum density could be replaced by y,),‘ , and a local operator
would substitute for V2,

Instead of using the first-order density matrices for a fixed
density and variable electron-electron interaction, it is pos-
sible to consider a series of first-order density matrices, ob-
tained with the full electron-electron interaction, but yielding
different electron densities. This can be shown by using the
uniform scaling properties (see, e.g., Ref. [2]).

Let ‘I’,,a be the antisymmetric wave function obtained by

uniform scaling from ¥*:

‘I’,,a= a2 ary, ..., ary). (12)

‘I’,,a yields the scaled density
n.(r)=ca’n(ar)

and minimizes (T+ aA\V,.) (for all wave functions yielding
n,). ¥, also produces the first-order density matrix

'y,‘f:(r,r')= a’ 'y,);(ar, ar’). (13)

An interesting choice for a is a=1/\. Then ¥, is minimiz-

ing (T+ V,.) and is thus the ground state wave function for
the system having ground state density n,. In this specific
case, Eq. (13) can be rewritten by using the first-order den-
sity matrix of the system with density n,,

A ny—3y3. =1 ’
Yp(r,r' )=\ Yrin (Ar,Ar’). (14)

The scaling transformation given in Eq. (12) can also be
applied to ¥*=°, which now yields ‘P,’;:O, the antisymmet-

ric wave function yielding n, and minimizing (f' Y. The cor-
responding first-order density matrix will be 'y,),‘=°. Choosing
again a=1/\, one obtains the equation

Yo () =Ny, - S(ArAr). (15)

A
Using Egs. (13) and (15) in Eq. (11) one obtains

1 (1 - -
Ec[n]=5 fo d)\f d%Vf,['yﬁ’l(r,r’)—'y""o(r,r’)]

N LSV)N
r=r’

(16)

In this equation N\ has the role of producing a family of
densities (starting from the reference density n by uniform
scaling), but no fictitious interaction is used.

An alternative equation can be obtained by adding and
subtracting

ANDREAS SAVIN 52

f d>rvo(r)n(r)

from the rhs of Eq. (11), where v is a local potential; v
should not depend on specific parameters of the molecule or
crystal studied, but may depend on the density. Such a po-
tential could be the Kohn-Sham exchange-only potential.
One then has

1d\ A BIPYPE -
Ednl== [ (@4 o9 — (@ =07+ Dy =)
)
with
N
‘A/O=i§1 vo(ry).

WY* can be written as a sum of Slater determinants, ® 75
Yr=3,c}®;, each &, being constructed with the eigen-
functions ¢; of

(_%V2+v0)¢i=ei¢i, (18)
yielding

(TMNT+ f’o!‘l')‘)zsz ) * el DT+ Vo | D)

=; |} 1@, T+ Vo| @)

The last equality holds because (®,;|T+ V,|®x) becomes
zero for J#K by using Eq. (18). As

(@ T+Vo|®@))= 2; f1.€i5

where f;; is the occupation number of the orbital ¢; in
®; . Finally, introducing

f?=; |C}\|2f1,1

and
1d\ -
vi== | (=17,
0
one gets
Efn]=2 ve;. (19)

A further extension is possible for modified Hamiltonians,
such as those used in Ref. [9]. Here one has to replace 7 by
T+ W where W is a two-body operator. Of course, the ob-
tained formula will not require knowledge of the first-order
density matrices alone, but also of that of the second-order
density matrices generated by using T+W.

The proof given for Eq. (9) can be extended to ensembles,
by replacing (¥*-.-¥*) by a sum over the states of the
ensemble with corresponding weights. Another extension of
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the proof given above is possible for certain classes of wave
functions that satisfy the Hellmann-Feynman theorem, al-
lowing another combination of multideterminantal wave-
function methods with density functional methods. One
might consider Eq. (11) as justification of the success of one
such scheme, which exploits some knowledge about the most
important natural orbitals (the orbitals diagonalizing the first-
order density matrix) [10].

Traditionally (see, e.g., [5]) the local-density and related
approximations are explained as modeling the exchange-
correlation hole. Finding a good model for the exchange-
correlation hole is made difficult by the fact that
N-representability is difficult to satisfy in general [11]. On
the other hand, the N-representability conditions for first-
order density matrices are easily taken into account (see, e.g.,
[12]) by using
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y(r,r'>=§ vioX(r)pi(r'),

where ¢;(r) are orthonormal (natural) orbitals and v; their
occupation numbers. One may thus expect that the equations
presented in this paper could be useful in modeling E [n]
via Eq. (11). Another possibility would be to model the dis-
tribution of the v; in Eq. (19).
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completion of this work I was informed that Mel Levy and
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[13])

[1] W. Kohn and L. Sham, Phys. Rev. A 140, 1133 (1965).

[2] M. Levy, Phys. Rev. A 43, 4637 (1991).

[3] Langreth and Perdew [4] and Gunnarsson and Lundqvist [5]
have shown such a relationship for the exchange-correlation
density functional; the proof is easily modified for the
correlation-only case (see, e.g., Ref. [6] or Ref. [2]).

[4] D. C. Langreth and J. P. Perdew, Solid State Commun. 17,
1425 (1975). ,

[5] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274
(1976).

[6] H. Stoll and A. Savin, in Density Functional Methods in Phys-
ics, edited by R. M. Dreizler and J. da Providencia (Plenum,
New York, 1985), p. 177.

[7] H. Yasuhara, Lett. Nuovo Cimento 12, 412 (1975).

[8] One might as well consider applying the Hellmann-Feynman

theorem to the expression of the energy, and to consider the
effect due to the change of the external potential needed to
conserve the density (cf. Ref. [5]).

[9] A. Savin and H.-J. Flad, Int. J. Quantum Chem. (to be pub-
lished).

[10] A. Savin, Int. J. Quantum Chem. S 22, 59 (1988).

[11] For example, taking care of the proper normalization of the
exchange-correlation hole led to considerable improvement
when the effects of the gradient of the electron density were
considered, as can be seen, e.g., in J. P. Perdew, Physica B 172,
1 (1991).

[12] E. R. Davidson, Reduced Density Matrices in Quantum Chem-
istry (Academic Press, New York, 1976), p. 51.

[13] M. Levy and A. Gorling, following paper, Phys. Rev. A 52,
1808 (1995).



