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Range-separated methods combining a short-range density functional with long-range random phase
approximations �RPAs� with or without exchange response kernel are tested on rare-gas dimers and
the S22 benchmark set of weakly interacting complexes of Jurečka et al. �Phys. Chem. Chem. Phys.
8, 1985 �2006��. The methods are also compared to full-range RPA approaches. Both range
separation and inclusion of the Hartree–Fock exchange kernel largely improve the accuracy of
intermolecular interaction energies. The best results are obtained with the method called RSH
+RPAx, which yields interaction energies for the S22 set with an estimated mean absolute error of
about 0.5–0.6 kcal/mol, corresponding to a mean absolute percentage error of about 7%–9%
depending on the reference interaction energies used. In particular, the RSH+RPAx method is found
to be overall more accurate than the range-separated method based on long-range second-order
Møller–Plesset �MP2� perturbation theory �RSH+MP2�. © 2010 American Institute of Physics.
�doi:10.1063/1.3431616�

I. INTRODUCTION

Because the usual local or semilocal approximations of
Kohn–Sham density-functional theory �DFT�1,2 generally fail
to describe noncovalent intermolecular interactions, many
approaches have been proposed to remedy their deficiencies.
The most widely applied scheme is perhaps the so-called
DFT-D approach3–7 in which an empirical dispersion term is
added to usual density-functional approximations using dis-
persion coefficients generally determined from atomic refer-
ence data. There are some efforts to make the DFT-D ap-
proach less empirical, for example, by calculating dispersion
coefficients through the properties of the exchange hole8,9 or
from the local response approximation.10 Other more or less
empirical approaches include the use of parameterized atom-
centered nonlocal one-electron potentials11 or highly param-
etrized hybrid or double-hybrid density functionals �see, e.g.,
Refs. 12 and 13�. Nonempirical approaches include nonlocal
correlation functionals derived from response theory14–16

�possibly combined with long-range corrected exchange
functionals17–19�, DFT-based symmetry-adapted intermolecu-
lar perturbation theory �see, e.g., Ref. 20� and range-
separated DFT �see, e.g., Ref. 21�, in which a short-range
density functional is combined with a long-range explicit
many-body method such as second-order perturbation
theory,22 coupled-cluster theory23 or multi-reference second-
order perturbation theory.24

Recently, the random phase approximation �RPA� and
other related approximations to the electron correlation en-
ergy have gained revived interest, and in particular, they ap-

pear to be viable approaches to the description of weak in-
teractions in molecular and solid-state systems.25–37

However, RPA overestimates short-range correlations be-
tween particles,38 giving a too negative correlation energy,
which led Perdew and coworkers39–41 to propose the so-
called RPA+ scheme in which the RPA correlation energy is
corrected by a generalized gradient approximation �GGA�.
Also, in a Gaussian localized basis, RPA correlation energies
have a slow convergence with respect to the basis size.25

These known flaws of RPA can be cured by the range-
separated DFT scheme. Toulouse et al.42 developed a range-
separated method combining a long-range RPA-type ap-
proximation including the long-range Hartree–Fock
exchange kernel with a short-range density-functional ap-
proximation. Janesko et al.43–45 also implemented a range-
separated RPA scheme based on the ring coupled-cluster for-
mulation of RPA �Ref. 33� with no exchange kernel. In their
approach, the RPA correlation energy has been rescaled by
an empirical coefficient, and the range-separation parameter
has been optimized in order to improve agreement with ex-
periment.

While initial tests of the range-separated RPA methods
for rare-gas dimers and some small molecular complexes
show encouraging results,42–44 it is not clear how their per-
formance is for weak interactions between larger, biologi-
cally important molecules, the main targets for which these
hybrid methods were initially developed. In this work, we
apply range-separated RPA methods to the S22 test set of
Jurečka et al.46 The S22 set comprises seven hydrogen-
bonded systems, eight dispersion-bonded complexes, and
seven mixed complexes with electrostatic and dispersion in-
teractions. For completeness and comparison, we also in-
clude data for homonuclear rare-gas dimers.
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II. METHODS AND COMPUTATIONAL DETAILS

The theory of range-separated RPA was described in
Ref. 42. We give here only a brief overview. In a first step,
we perform a self-consistent range-separated hybrid �RSH�
calculation22

ERSH = min
�

����T̂ + V̂ne + Ŵee
lr ��� + EHxc

sr �n��	 , �1�

where T̂ is the kinetic energy operator, V̂ne is the nuclei-

electron potential operator, Ŵee
lr is a long-range electron-

electron interaction operator, EHxc
sr �n� is the associated short-

range Hartree-exchange-correlation density functional, and
� is a single-determinant wave function. The long-range in-
teraction is constructed with the error function,
wee

lr �rij�=erf��rij� /rij, where � is the range separation param-
eter, whose inverse gives the range of the short-range part of
the interaction. In this work, we take a fixed value
�=0.5 bohr−1, which seems to be a reasonable choice for a
variety of systems.47 Several approximations21,23,48–52 have
been proposed for the short-range exchange-correlation func-
tional Exc

sr �n�. Here, we use the short-range Perdew-Burke-
Ernzerhof �PBE� functional of Ref. 23. We have also tested
the short-range local-density approximation �LDA� func-
tional of Ref. 48, but since it gives similar results we report
here only data obtained with the short-range PBE functional.

The RSH scheme includes long-range Hartree and ex-

change energies from ���Ŵee
lr ��� as well as short-range Har-

tree, exchange and correlation energies from the density
functional EHxc

sr �n�. The only piece being left out is the long-
range correlation energy Ec

lr which needs to be added to the
RSH energy

E = ERSH + Ec
lr. �2�

The long-range correlation energy Ec
lr can be obtained pertur-

batively in different ways, for example, by second-order
Møller–Plesset �MP2� perturbation theory,22,53–55 coupled-
cluster theory,23,56 RPA-type approximations,42,43 or multiref-
erence second-order perturbation theory.24 In this work, we
focus on RPA-type approximations in which Ec

lr can be ex-
pressed as an integral over an adiabatic connection,42

Ec
lr = 


0

1

d�Wc,�
lr =

1

2



0

1

d��
iajb

�ij�ŵee
lr �ab��Pc,�

lr �iajb, �3�

where i , j and a ,b refer to occupied and virtual RSH orbitals,
respectively, �ij�ŵee

lr �ab� are long-range two-electron inte-
grals, and Pc,�

lr is the correlation part of the spin-singlet-
adapted two-particle density matrix calculated as25

Pc,�
lr = 2��A� − B��1/2M�

−1/2�A� − B��1/2 − 1� , �4�

with M�= �A�−B��1/2�A�+B���A�−B��1/2 and the singlet or-
bital rotation Hessians A� and B�. When only the long-range
Hartree kernel is included, A� and B� write

�A��iajb = ��a − �i��ij�ab + 2��aj�ŵee
lr �ib� , �5�

�B��iajb = 2��ab�ŵee
lr �ij� , �6�

where �i and �a are the RSH orbital eigenvalues. We will
refer to this method as RSH+RPA �which is equivalent to
the method called “LC-�LDA+dRPA in Refs. 43–45 in the
special case of the short-range LDA functional�. When the
long-range Hartree–Fock exchange kernel is also included,
A� and B� write

�A��iajb = ��a − �i��ij�ab + 2��aj�ŵee
lr �ib� − ��aj�ŵee

lr �bi� ,

�7�

�B��iajb = 2��ab�ŵee
lr �ij� − ��ab�ŵee

lr �ji� , �8�

and we will refer to this method as RSH+RPAx, as in Ref.
42. At second order in the electron-electron interaction, the
RSH+RPAx method reduces to the RSH+MP2 method of
Ref. 22. The RSH+RPA and RSH+RPAx methods are ex-
pected to supersede RSH+MP2 in situations where second-
order perturbation theory fails, i.e., when differences of the
occupied and virtual orbital energies are small.

The integration over the coupling constant � in Eq. �3�
can be performed accurately by a seven-point Gauss–
Legendre quadrature,25 at least for systems not dominated by
static correlation effects. In the case of RPA �without
exchange-correlation kernel�, this integration can also be per-
formed analytically leading to the so-called plasmon for-
mula, as recently emphasized by Furche.32 The reformulation
of RPA as a ring coupled-cluster-doubles theory by Scuseria
et al.,33 which is equivalent to the plasmon formula, is an-
other advantageous way of avoiding the numerical integra-
tion over �. Although there is also a plasmon formula for
RPA with the Hartree-Fock exchange kernel which appears
in the literature,33,57,58 due to the breaking of antisymmetry
of the two-particle density matrix �Pc,�

lr �iajb under exchange
of two indices, it does not provide the same correlation en-
ergy as Eq. �3� used here and in Ref. 42. Unfortunately, as far
as we know, the RPAx correlation energy of Eq. �3� cannot
be brought to a plasmon formula, and the adiabatic connec-
tion integral cannot be avoided. However, we show now that
it is possible to perform accurately the integration over � by
a single-point quadrature. By expanding the integrand in
powers of �,

Wc,�
lr = Wc

lr,�1�� + Wc
lr,�2��2 + Wc

lr,�3��3 + . . . , �9�

we can express the long-range correlation energy as the fol-
lowing expansion:

Ec
lr = 


0

1

d�Wc,�
lr =

Wc
lr,�1�

2
+

Wc
lr,�2�

3
+

Wc
lr,�3�

4
+ . . . . �10�

Naively, one could think that a single-point quadrature for-
mula could only be exact up to first order in �. This is the
case, for example, when choosing the quadrature point

�̄=1 and weight 1
2 ,

Ec
lr � 1

2Wc,1
lr , �11�

or, slightly better, the point �̄=1 /2 and weight 1
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Ec
lr � Wc,1/2

lr . �12�

In fact, because the expansion of the integrand starts at first
order in � �i.e., we already know the value of the integrand at
the point �=0 which is zero�, there is a single-point
Radau-type59 quadrature formula that is exact up to second

order in �. Indeed, we find that the condition w�Wc
lr,�1��̄

+Wc
lr,�2��̄2�=Wc

lr,�1� /2+Wc
lr,�2� /3 is fulfilled for the point

�̄=2 /3 and weight w=3 /4,

Ec
lr � 3

4Wc,2/3
lr . �13�

Even better, in the case of the RSH+RPAx method, we can
use the long-range MP2 correlation energy, which corre-
sponds to the first-order term in �, Ec,MP2

lr =0
1d�Wc

lr,�1��

=Wc
lr,�1� /2, in order to find a single-point quadrature formula

that is exact up to third order in �. Indeed, imposing the

condition w�Wc
lr,�2��̄2+Wc

lr,�3��̄3�=Wc
lr,�2� /3+Wc

lr,�3� /4 leads to

the point �̄=3 /4 and weight w=16 /27, so we find

Ec
lr = Ec,MP2

lr + 

0

1

d��Wc,�
lr − 2Ec,MP2

lr ��

� Ec,MP2
lr +

16

27
�Wc,3/4

lr − 2Ec,MP2
lr 3

4
�

=
1

9
Ec,MP2

lr +
16

27
Wc,3/4

lr . �14�

Compared to the seven-point Gauss–Legendre quadrature,
the single-point quadrature formulas of Eq. �13� or Eq. �14�
significantly reduce the computational cost while introducing
only a negligible extra error, as shown later. We will use the
formula of Eq. �14� to check our RSH+RPAx results on the
S22 set with larger basis sets.

All calculations are done with a development version of
the MOLPRO 2008 program.60 The long-range RPA, RPAx, and
MP2 correlation energies are evaluated with RSH orbitals
obtained with the short-range PBE functional of Ref. 23. The
full-range RPA correlation energy is evaluated with Kohn–
Sham orbitals obtained with the usual PBE functional.61 The
full-range RPAx, MP2, and coupled-cluster with single,
double and perturbative triple excitations �CCSD�T�� for cor-
relation energies are calculated with Hartree–Fock orbitals.
We use the correlation-consistent basis sets of Dunning,62 or
modifications of them. Core electrons are kept frozen in the
RPA, RPAx, MP2, and CCSD�T� calculations �i.e. only ex-
citations of valence electrons are considered�. Basis set su-
perposition error �BSSE� is removed by the counterpoise
method.

For each rare-gas dimer interaction curve, we choose
16–19 intermolecular distances, with denser sampling
around equilibrium distances. For the S22 set, geometries of
the complexes are taken from Ref. 46 without reoptimization
for the different computational methods. The geometries of
the isolated monomers are fixed to those in the dimers; thus
the so-called monomer deformation energy is not included in
the interaction energy. Most of the calculations are done with
the same basis sets as those used for the CCSD�T� calcula-
tions in Ref. 46. The dependence of the interaction energies

on the size of basis set is checked by using larger basis sets.
For each method, mean error �ME�, mean absolute error
�MAE�, and mean absolute percentage error �MA%E� are
given using as a reference the CCSD�T� values extrapolated
to the complete basis set �CBS� limit.46

III. RESULTS AND DISCUSSION

A. Rare-gas dimers

We start with rare-gas dimers, which are frequently used
for initial tests of methods aiming at describing van der
Waals bonded systems. Figure 1 shows the interaction energy
curves of He2, Ne2, Ar2, and Kr2 calculated with aug-cc-
pV5Z basis sets. The accurate reference curves are from Ref.
63. Binding energies at the equilibrium distances obtained
with different methods are listed in Table I. We can see that
full-range RPA can hardly bind two He atoms and also
largely underestimates the binding energy of Ne2. Full-range
RPAx and RSH+RPA recover more than half of binding
energies for these two systems. RSH+RPAx significantly
further improves the results. For larger dimers, Ar2 and Kr2,
full-range RPA, full-range RPAx, and RSH+RPA all give
similar underestimated interaction energies, whereas RSH
+RPAx is clearly more accurate. This suggests that range
separation and inclusion of the exchange kernel in Eqs. �7�
and �8� are both important. For these systems, RSH+MP2
gives overall similarly accurate equilibrium binding energies
as RSH+RPAx.

B. S22 test set

Although the rare-gas dimers usually constitute a good
initial test for a method describing noncovalent bonding,
they are still not sufficient to assess the reliability of a
method for applications to biologically interesting systems.64

It is necessary to include a few moderately large molecules
in a reliable test set. We have then taken the S22 set of
Jurečka et al.,46 which composes 22 weakly bonded molecu-
lar complexes, including seven hydrogen-bonded complexes
�HB7 subset�, eight weakly interacting complexes with pre-
dominant dispersion contributions �WI8 subset�, and seven
mixed complexes featuring multipole interactions �MI7 sub-
set�. We use the same names of the subsets introduced in Ref.
55. Recently, Marchetti and Werner did explicitly correlated
coupled-cluster calculations for the S22 set and found close
agreement with the original benchmark data.65 When this
paper is under review, Takatani et al.66 published a new
benchmark for the S22 test set, which is supposed to be more
accurate. We still use the original benchmark data in Ref. 46
for detailed comparisons, but the overall effects of using
other reference data are discussed at the end of this section.

1. Comparison of all the methods with small basis
sets

Interaction energies calculated with RPA, RSH+RPA,
RPAx, RSH+RPAx, MP2, RSH+MP2, and CCSD�T� are
given in Table II with the same relatively small basis sets as
those used for the CCSD�T� calculations in Ref. 46. The
basis sets used for the 22 complexes are not uniform because
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the size of complexes varies a lot. VTZ-fd basis sets are
obtained by removing the set of f functions and the set of
tight d functions from cc-pVTZ �for hydrogen the set of d
functions and the set of tight p functions are removed�. The
rightmost column contains CCSD�T�/CBS estimates taken
from Ref. 46, which serve as reference values. The MA%E
of each method for each subset and for the total S22 set are
also shown in Fig. 2.

For the hydrogen-bonded systems �HB7 subset�, full-
range RPA and RPAx underestimate the interaction energies
on average by about 25% and 13%, respectively. Range
separation greatly improves these two methods, the MA%E
of RSH+RPA and RSH+RPAx on this subset being 4.0%
and 5.1%, respectively. Note that all the range-separated
methods overestimate the interaction energies, whereas all
other methods underestimate them.

For the dispersion-bonded systems �WI8 subset�, accu-
rate treatment of correlation is crucial. While Hartree–Fock
calculations account roughly for two-thirds of the binding
energy in the complexes of the HB7 subset, it does not pre-
dict any bonded complex in the WI8 subset. As expected,
including short-range correlation does not help much. Except
for stacked uracil dimer, RSH calculations �without long-
range correlation� do not predict any bonded complex either.
Standard DFT calculations with the PBE functional do give
five bonded complexes out of eight, but the MA%E on the
WI8 subset is still larger than 100%. It is clear that a good,
physically well-founded description of long-range correla-
tion is absolutely necessary. Full-range RPA recovers nearly
half of the interaction energies for the complexes in the WI8
subset, except for the stacked indole-benzene complex for
which it gives zero binding. Full-range RPAx is similar in

FIG. 1. Interaction energy curves of rare-gas dimers calculated by the RPA, RSH+RPA, RPAx, and RSH+RPAx methods. Basis sets used are aug-cc-pV5Z.
Accurate curves are from Ref. 63.

TABLE I. Interaction energies �in mHartree� of rare-gas dimers at equilibrium distances from different methods
with aug-cc-pV5Z basis set. For RPA-type methods, the adiabatic connection integration is done by a seven-
point Gauss–Legendre quadrature. MA%Es are given.

Method He2 Ne2 Ar2 Kr2 MA%E

RPA �0.0021 �0.0366 �0.269 �0.388 62
RSH+RPA �0.0183 �0.0876 �0.308 �0.397 38
RPAx �0.0218 �0.0773 �0.289 �0.396 39
RSH+RPAx �0.0255 �0.1111 �0.420 �0.542 17
MP2 �0.0208 �0.0790 �0.483 �0.691 24
RSH+MP2 �0.0202 �0.1024 �0.484 �0.671 19
CCSD�T� �0.0313 �0.1179 �0.414 �0.575 10
Accuratea �0.0349 �0.1342 �0.455 �0.639 0

aReference 63.
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performance but slightly worsens the results. Range separa-
tion improves RPA but the remaining MA%E �about 46%�
remains quite large. A much more significant improvement is
obtained with RSH+RPAx, which reduces the MA%E to
about 28%. The two largest errors from the RSH+RPAx
method are for stacked indole-benzene and stacked adenine-
thymine, 3.5 and 4.4 kcal/mol, or 67% and 36%, respec-
tively. They seem quite large but are still smaller than the
basis set errors in CCSD�T�, which are 89% and 56%, re-
spectively. It turns out that at least half of the error is from
using too small basis sets �see next subsection�. With these
small basis sets, MP2 and RSH+MP2 give more accurate
interaction energies than RSH+RPAx with a MA%E on this
subset of about 24% and 15%, respectively, but this appar-

ently good performance can be mostly attributed to the basis
set error which partially cancels the MP2 overestimation of
the binding energies. The errors in MP2 and RSH+MP2 thus
tend to increase as the basis set is enlarged. In fact, on the
WI8 subset, the MA%E of MP2 extrapolated to CBS �Ref.
46� is 33%, and the MA%E of range-separated MP2 �with
local correlation and density fitting approximations� with
aug-cc-pVTZ basis55 is 24%. On the contrary, the errors in
RSH+RPAx tend to decrease when we use larger basis sets,
as it will be illustrated in the next section.

For the mixed complexes �MI7�, the errors are some-
where in between those for the HB7 and the WI8 subsets.
For RSH+RPAx, the largest error is for T-shaped indole-

TABLE II. Interaction energies �in kcal/mol� for the complexes of the S22 set from different methods with the relatively small basis sets used in Ref. 46. For
the RPA-type methods, the adiabatic connection integration is done by a seven-point Gauss–Legendre quadrature. The geometries of complexes and the
reference CCSD�T�/CBS estimates in the rightmost column are taken from Ref. 46. MEs, MAEs, and MA%Es are given.

No. Complex Basis seta RPA RSH+RPA RPAx RSH+RPAx MP2 RSH+MP2 CCSD�T� CCSD�T�/CBS

Hydrogen-bonded complexes �HB7�
1 �NH3�2 VQZ �2.31 �2.99 �2.72 �3.19 �3.00 �3.24 �2.96 �3.17
2 �H2O�2 VQZ �3.81 �5.21 �4.63 �5.38 �4.71 �5.42 �4.71 �5.02
3 formic acid dimer VTZ �14.94 �20.52 �17.50 �21.00 �16.89 �21.36 �16.90 �18.61
4 formamide dimer VTZ �12.85 �16.42 �14.51 �16.89 �14.25 �17.27 �14.36 �15.96
5 uracil dimer C2h VTZ-fd �15.70 �20.66 �18.28 �21.37 �17.86 �22.13 �17.90 �20.65
6 2-pyridoxine·2-aminopyridine VTZ-fd �12.82 �16.70 �14.03 �17.39 �15.08 �18.37 �14.42 �16.71
7 adenine·thymine WC VDZ �10.73 �15.51 �12.39 �16.08 �12.66 �16.79 �12.49 �16.37

ME 3.33 �0.22 1.78 �0.69 1.72 �1.16 1.82 0.00
MAE 3.33 0.52 1.78 0.77 1.72 1.16 1.82 0.00
MA%E 24.6% 4.0% 12.7% 5.1% 11.0% 7.6% 11.8% 0.0%

Complexes with predominant dispersion contribution �WI8�
8 �CH4�2 VQZ �0.29 �0.29 �0.28 �0.41 �0.42 �0.45 �0.44 �0.53
9 �C2H4�2 VQZ �0.92 �1.03 �1.00 �1.35 �1.42 �1.52 �1.31 �1.51
10 benzene·CH4 VTZ-fd �0.58 �0.87 �0.58 �1.14 �1.27 �1.51 �0.91 �1.50
11 benzene dimer C2h aVDZ �1.35 �1.27 �0.81 �2.04 �4.25 �4.08 �2.03 �2.73
12 pyrazine dimer VTZ-fd �1.64 �2.46 �1.40 �3.17 �4.94 �5.25 �2.46 �4.42
13 uracil dimer C2 VTZ-fd �6.16 �7.63 �5.88 �8.67 �8.52 �10.86 �7.24 �10.12
14 indole·benzene VDZ 0.01 �0.94 0.56 �1.73 �3.46 �4.30 �0.56 �5.22
15 adenine·thymine stack VDZ �4.21 �6.69 �4.04 �7.84 �8.10 �11.03 �5.40 �12.23

ME 2.89 2.14 3.10 1.49 0.74 �0.09 2.24 0.00
MAE 2.89 2.14 3.10 1.49 1.25 0.64 2.24 0.00
MA%E 57.9% 46.3% 62.4% 28.4% 24.2% 14.9% 39.2% 0.0%

Mixed complexes �MI7�
16 ethene·ethine VTZ �0.93 �1.31 �1.24 �1.47 �1.43 �1.60 �1.24 �1.53
17 benzene·H2O VTZ-fd �1.97 �2.87 �2.35 �3.10 �2.81 �3.41 �2.48 �3.28
18 benzene·NH3 VTZ-fd �1.24 �1.76 �1.39 �2.01 �1.99 �2.36 �1.63 �2.35
19 benzene·HCN VTZ-fd �2.99 �4.39 �3.78 �4.71 �4.41 �5.28 �3.71 �4.46
20 benzene dimer C2v aVDZ �1.71 �1.92 �1.65 �2.39 �3.10 �3.33 �2.21 �2.74
21 indole·benzene T-shape VDZ �2.57 �3.96 �2.90 �4.44 �4.51 �5.50 �3.21 �5.73
22 phenol dimer VTZ-fd �4.47 �6.28 �4.99 �6.81 �6.31 �7.72 �5.60 �7.05

ME 1.61 0.66 1.27 0.32 0.37 �0.29 1.01 0.00
MAE 1.61 0.66 1.27 0.39 0.47 0.36 1.01 0.00
MA%E 41.2% 17.9% 31.8% 9.8% 11.8% 8.9% 24.9% 0.0%

Total ME 2.62 0.92 2.10 0.42 0.93 �0.49 1.71 0.00
Total MAE 2.62 1.15 2.10 0.91 1.15 0.72 1.71 0.00
Total MA%E 42.0% 23.8% 36.9% 15.1% 16.0% 10.7% 25.9% 0.0%

aVDZ, aVDZ, VTZ, and VQZ stand for cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and cc-pVQZ, respectively. In the modified VTZ-fd basis set, the set of f functions
and the tight d functions are removed from cc-pVTZ basis �for hydrogen the set of d functions and the set of tight p functions are removed�.
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benzene, 1.3 kcal/mol or 23%. Again the larger part of the
error is from incomplete basis set, as it will be shown in the
next subsection.

Among the methods that we have investigated here,
RSH+RPAx and RSH+MP2 appear to be the most accurate
ones. We thus further investigate these two methods with
larger basis sets.

2. RSH+RPAx and RSH+MP2 results with larger
basis sets

For the largest systems in Table II, the stacked indole-
benzene and stacked adenine-thymine complexes, only the
cc-pVDZ basis set was used, and this corresponds to the two
largest errors in RSH+RPAx. Although range-separated
methods converge much faster with respect to basis size than
full-range methods,42 the cc-pVDZ basis set is so small that
we may suspect that those errors are mainly a consequence
of the incompleteness of the basis. We did RSH+RPAx and
RSH+MP2 calculations with larger augmented basis sets,
aug-cc-pVDZ and aug-cc-pVTZ, using the approximate
single-point quadrature of Eq. �14� for RSH+RPAx to keep
the computational cost acceptable, and the interaction ener-
gies are given in Table III. For the aug-cc-pVTZ basis set, as
the calculations are expensive, we use for the largest systems
the RSH+MP2 interaction energies with local correlation
and density fitting approximations calculated by Goll et al.55

and estimate the RSH+RPAx interaction energies
from the aug-cc-pVDZ calculations by the simple correction
formula, Eint�RSH+RPAx /aVTZ�=Eint�RSH+RPAx /
aVDZ�+ �Eint�RSH+MP2 /aVTZ�−Eint�RSH+MP2 /aVDZ��.
This correction can be checked for the complexes for which
we have the actual aug-cc-pVTZ calculations, and it appears
to work well.

We have also checked that the single-point quadrature
approximation does not introduce any significant error. By
recalculating the RSH+RPAx interaction energies of the S22
set with the single-point quadrature of Eq. �14� with the same
basis sets used in Table II and comparing to the interaction
energies of Table II, which were obtained from a seven-point
Gauss–Legendre quadrature, we find a ME of �0.004 kcal/
mol, or 0.11%. The largest difference is for stacked indole-
benzene, which is �0.014 kcal/mol, or 0.81%, still signifi-
cantly smaller than the error in the method itself. For
comparison, the less accurate other single-point quadrature
of Eq. �13� gives a ME of +0.07 kcal /mol, or 0.5%, still a
very good approximation.

Comparison of Tables II and III shows that the interac-
tion energies of the complexes in the WI8 subset calculated
with the cc-pVDZ or VTZ-fd basis are seriously underesti-
mated. Note that the aug-cc-pVDZ basis is larger than the
VTZ-fd basis and expectedly appears to be of a better qual-
ity. By using consistent and larger basis sets in Table III, we
find that the errors for the complexes number 12–15 are re-
duced by about a factor of two or more than those from Table
II. Correspondingly, the MA%E of RSH+RPAx on the WI8
subset decreases from about 28% to 14% with aug-cc-pVTZ
basis. On the contrary, the MA%E of RSH+MP2 increases
from 15% to 24%, confirming that the good value in Table II
was due to a fortuitous compensation of errors. Even for
range-separated methods, including diffuse functions in the
basis sets for dispersion-bonded systems is essential, in order
to ensure a reasonable description of monomer polarizabil-
ities.

The evolution from Table II to Table III is similar for the
MI7 subset. For T-shaped indole-benzene, the error in RSH
+RPAx is reduced from 1.3 to 0.3 kcal/mol, or from 23% to
5%. On this subset, the MA%E of RSH+RPAx decreases
from 10% to 3.8% with aug-cc-pVTZ basis, while the
MA%E of RSH+MP2 increases from 9% to 17%.

The hydrogen-bonded systems are less sensitive to basis
sets than the dispersion-bonded systems. The overestimation
of the interaction energies by RSH+RPAx and RSH+MP2
for the HB7 subset is a bit reinforced with the augmented
basis sets of Table III. The most serious overestimation is for
the formic acid dimer, �2.6 and �3.0 kcal/mol with aug-cc-
pVTZ for RSH+RPAx and RSH+MP2, respectively. The
error is most likely due to a deficiency in the approximate
short-range density functional, because the RSH calculation
�without long-range correlation� predicts an interaction en-
ergy ��18.54 kcal/mol� already very close to the reference
value ��18.61 kcal/mol�. This conjecture is also supported
by the comparison between the MP2 and RSH+MP2 col-
umns in Table II. MP2 systematically underestimates,
whereas RSH+MP2 consistently overestimates interactions
in the HB7 subset, reflecting an overbinding feature of the
short-range functional that we used. This point has already
been remarked by Goll et al.55

Overall, with aug-cc-pVTZ basis, RSH+RPAx yields in-
teraction energies for the total S22 set with an estimated
MAE of 0.61 kcal/mol or MA%E of 8.6%, while RSH
+MP2 gives a MAE of 1.14 kcal/mol or MA%E of 17.1%.
Using the reference data by Marchetti and Werner65 would

FIG. 2. MA%Es for the S22 test set and for its three subsets from different
methods with the relatively small basis sets used in Ref. 46. The data are
from Table II.
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change these MAEs by less than 0.06 kcal/mol and corre-
sponding MA%Es by less than 1%. If we use the latest
benchmark from Takatani et al.,66 the MAE and MA%E for
RSH+RPAx reduce to 0.46 kcal/mol and 6.7%, respectively,
whereas the MAE and MA%E for RSH+MP2 increase to
1.18 kcal/mol and 19.1%, respectively.

IV. SUMMARY AND CONCLUSIONS

We have tested and compared four RPA-based methods,
namely, the full-range RPA and RPAx methods and the

range-separated RSH+RPA and RSH+RPAx methods, on
homonuclear rare-gas dimers and the S22 set of weakly in-
teracting intermolecular complexes of Jurečka et al.46 Both
range separation and inclusion of the Hartree–Fock exchange
response kernel largely improve the accuracy of the pre-
dicted interaction energies. The best method, RSH+RPAx,
gives satisfactory interaction energy curves of the rare-gas
dimers and yields interaction energies of the S22 set with an
estimated MAE of about 0.5–0.6 kcal/mol, corresponding to
a MA%E of about 7%–9% �depending on the reference in-
teraction energies used�, with adequate basis sets including

TABLE III. Interaction energies �in kcal/mol� for the complexes of the S22 set from the RSH+RPAx and
RSH+MP2 methods with augmented basis sets. �aVDZ and aVTZ stand for aug-cc-pVDZ and aug-cc-pVTZ,
respectively.� The adiabatic connection integration is done by the single-point quadrature of Eq. �14�. The
geometries of complexes and the reference CCSD�T�/CBS estimates in the rightmost column are taken from
Ref. 46. Italic numbers for RSH+MP2 with aVTZ basis were taken from Ref. 55. Italic numbers for RSH
+RPAx with aVTZ basis were estimated by Eint�RSH+RPAx /aVTZ�=Eint�RSH+RPAx /aVDZ�+ �Eint�RSH
+MP2 /aVTZ�−Eint�RSH+MP2 /aVDZ��. MEs, MAEs, and MA%Es are given.

Complex

RSH+RPAx RSH+MP2

CCSD�T�/CBSNo. aVDZ aVTZ aVDZ aVTZ

Hydrogen-bonded complexes �HB7�
1 �NH3�2 �3.07 �3.19 �3.13 �3.25 �3.17
2 �H2O�2 �5.33 �5.41 �5.37 �5.45 �5.02
3 formic acid dimer �20.81 �21.18 �21.20 �21.57 �18.61
4 formamide dimer �17.03 �17.22 �17.44 �17.64 �15.96
5 uracil dimer C2h �21.80 �22.00 �22.62 �22.82 �20.65
6 2-pyridoxine·2-aminopyridine �17.81 �17.55 �18.86 �18.60 �16.71
7 adenine·thymine WC �17.29 �17.15 �18.26 �18.12 �16.37

ME �0.95 �1.03 �1.48 �1.57 0.00
MAE 0.98 1.03 1.50 1.57 0.00
MA%E 6.5% 6.6% 9.3% 10.0% 0.0%

Complexes with predominant dispersion contribution �WI8�
8 �CH4�2 �0.42 �0.45 �0.46 �0.48 �0.53
9 �C2H4�2 �1.28 �1.38 �1.45 �1.55 �1.51
10 benzene·CH4 �1.23 �1.32 �1.62 �1.71 �1.50
11 benzene dimer C2h �2.05 �2.21 �4.08 �4.24 �2.73
12 pyrazine dimer �3.78 �3.85 �5.97 �6.04 �4.42
13 uracil dimer C2 �9.38 �9.57 �11.76 �11.95 �10.12
14 indole·benzene �3.70 �3.71 �6.95 �6.96 �5.22
15 adenine·thymine stack �10.97 �10.57 �15.11 �14.71 �12.23

ME 0.68 0.65 �1.14 �1.17 0.00
MAE 0.68 0.65 1.18 1.19 0.00
MA%E 17.4% 14.4% 22.8% 23.7% 0.0%

Mixed complexes �MI7�
16 ethene·ethine �1.48 �1.54 �1.62 �1.68 �1.53
17 benzene·H2O �3.16 �3.33 �3.49 �3.68 �3.28
18 benzene·NH3 �2.11 �2.24 �2.49 �2.63 �2.35
19 benzene·HCN �4.54 �4.77 �5.13 �5.38 �4.46
20 benzene dimer C2v �2.39 �2.55 �3.33 �3.49 �2.74
21 indole·benzene T-shape �5.17 �5.46 �6.55 �6.84 �5.73
22 phenol dimer �7.07 �7.11 �8.05 �8.09 �7.05

ME 0.17 0.02 �0.50 �0.66 0.00
MAE 0.20 0.14 0.50 0.66 0.00
MA%E 6.0% 3.8% 11.9% 16.6% 0.0%

Total ME 0.00 �0.08 �1.05 �1.14 0.00
Total MAE 0.62 0.61 1.06 1.14 0.00
Total MA%E 10.3% 8.6% 15.1% 17.1% 0.0%
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diffuse functions. The RSH+RPAx method is found to be
overall more accurate than the simpler RSH+MP2 method,
although the latter remains a very reasonable approach for
weak intermolecular interactions.

As RSH+RPAx still seems to underestimate systemati-
cally interaction energies for stacked complexes and to over-
estimate the strength of hydrogen bonds, further refinements
to this approach are desired. One may improve the short-
range density functional, for example by using a meta-GGA
form.52 One may improve the long-range correlation energy
by using other variants or extensions of RPA-type
approximations.67,68 One may adjust the value of the separa-
tion parameter, which was fixed to �=0.5 bohr−1 in this
study. Finally, one may refine the form for the decomposition
of the electron-electron interaction.21,69–71

Although our current implementation remains expensive
compared to standard DFT calculations, we have shown that
the computational cost of the adiabatic connection integra-
tion can be reduced by using an approximate single-point
quadrature �Eq. �13� or Eq. �14�� without any significant loss
of precision. In view of the recent progress in the develop-
ment of efficient RPA algorithms,32,33 further computational
improvements of the RSH+RPAx method or other closely
related variants can be expected. Nevertheless, the tests per-
formed with our current implementation have already dem-
onstrated that RSH+RPAx is a feasible method and provides
a reasonable description to non-covalent bonding in medium
to large sized complexes, including biomolecules.

Note added in proof: While proofreading the manuscript,
a paper has been published online, Podeszwa et al., Phys.
Chem. Chem. Phys., DOI:10.1039/b926808a �2010�, report-
ing an improved set of S22 reference interaction energies.
Using these data the MAE and MA%E for RSH�RPAx be-
come 0.49 kcal/mol and 7.0%, and for RSH�MP2, 1.19
kcal/mol and 19.1%, respectively. These deviations are very
similar to those found with respect to the data of Ref. 66.
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