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Abstract The effective embedding potential introduced by Wesolowski and Warshel
[J. Phys. Chem., 97 (1993) 8050] depends on two electron densities: that of the
environment (nB) and that of the investigated embedded subsystem (n A). In this
work, we analyze this potential for pairs n A and nB , for which it can be obtained
analytically. The obtained potentials are used to illustrate the challenges in taking
into account the Pauli exclusion principle.
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1 Introduction

Computer simulation methods based on the idea of embedding are commonly
used in numerical simulations of condensed matter: solids, liquids, interfaces,
macromolecules (especially biomolecues), etc. The underlying concept behind the
embedding strategy is very simple – one part of a total system is selected to be
described by means of quantum mechanical descriptors such as orbitals whereas the
remaining part of the whole system is considered as a source of some additional
potential. Many strategies to construct embedding potentials are known in vari-
ous areas of computational chemistry and computational material sciences. Usu-
ally, the embedding potential is postulated taking into account system-dependent
parameters. Wesolowski and Warshel used the basic concepts of the
Hohenberg–Kohn–Sham density functional theory [1, 2]: the reference system of
non-interacting electrons, the functional of the kinetic energy in such a system
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(Ts[n]), and exchange-correlation functional (Exc[n]), the external potential vext (r),
and the exchange-correlation potential vxc[n](r) = δExc[n]

δn(r) to obtain one-electron
equations for embedded orbitals (Eqs. (20) and (21) in Ref. [3]):

[
−1

2
∇2+ vA

ext (r) +
∫

n A(r′)
|r′ − r|dr′+ vxc[n A](r) + vemb

K SC E D[n A, nB](r)

]
ϕA

i = εiϕ
A
i ,

(1)

where vemb
K SC E D[n A, nB](r) is a system-independent expression for the embedding

potential:

vemb
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|r′ − r|dr′ + (2)
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∣
∣∣∣
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and where n A denotes the density constructed from the embedded orbitals ϕi

Nocc∑

i

2|ϕi |2 = n A(r ) . (3)

Throughout this chapter, equations are written in atomic units. For the sake of
simplicity, equations are given for spin-compensated electron densities: hence the
factor 2 in Eq. (3). The acronym KSCED stands for the Kohn–Sham equations with
constrained electron density and is used to distinguish the two effective potentials
expressed as density functionals: the one in the considered one-electron equations,
which involves an additional constraint (see Eq. (5) below), from that in the Kohn–
Sham equations.

The above expression for the embedding potential, which was given explicitly in
Eq. (3) of Ref. [4], shows clearly that except for vB

ext (r) the position dependency of
every other term in vemb

K SC E D[n A, nB](r) is determined by the position dependency of
n A and nB . The symbol vnadd

t (r) will be used throughout this chapter the last two
terms in Eq. (2), i.e., for the difference:

vnadd
t [n A, nB](r) = δTs [n]

δn(r)

∣∣
∣∣
n=n A+nB

− δTs [n]

δn(r)

∣∣
∣∣
n=n A

, (4)

arising from the fact that the functional Ts[n] is not additive (see also the subsequent
sections).

The embedding potential given in Eq. (2) was obtained by requiring that the
ground-state energy of the total system including both the investigated subsystem
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described by means of Kohn–Sham orbitals and the environment is stationary for a
given choice for nB which is not optimized (frozen). For this reason, we refer col-
loquially to methods using Eq. (2) as frozen density functional theory (FDFT) [3],
frozen density embedding [5], etc. The derivation of Eq. (1) given in Ref. [3] (see
also Ref. [6]) provided a new interpretation of embedding methodology in numerical
simulations. Embedding calculations can be seen as the constrained optimization
problem with the following weak constraint imposed on the total density n:

C[n] ≥ 0, (5)

where C[n] = min(n − nB) and nB is the component of the electron total electron
density which is not subject to optimization.

Note that the most common constraints in Euler–Lagrange equation take the
form C[n] = 0, where C[n] is some density functional. For instance, the constraint
C[n] = ∫

n(r)dr − N = 0 is used in the derivation of the Kohn–Sham equations.
Additional constraints expressed as C[n] = 0 are also used in some computational
schemes such as the procedure to generate diabatic electronic states for the evalua-
tion of the rate of the electron-transfer reaction [7].

The results of a partial optimization of the total electron density in which nB(r)
is frozen depend on the choice made for nB(r). Unless also nB is included in the
optimization process (see for instance the f reeze-and-thaw procedure of Ref. [4]),
such partial minimization might lead to the total density which differs from the
true ground-state electron density of the whole system, no. If nB is chosen to be
such that n0(r) − nB(r) < 0 in some domains, the density, n A, obtained from
Eqs. (1) and (3) cannot be equal to the complementary density no − nB . Note that
non-negativity of the complementary density for any given nB cannot be verified
a priori. Moreover, the densities n A obtained from Eqs. (1) and (3) are pure-state
non-interacting v-representable by construction. It is also not possible a priori to tell
whether the density no − nB belongs to this class. These concerns can be avoided
here because vnadd

t [n A, nB] is a functional of two electron densities and it is a
well-defined quantity regardless n A + nB , n A, and nB are ground-state densities
of some non-interacting systems or not. Note that vnadd

t [n A, nB] is defined using the
functional Ts[n] for which extension exists (see Definitions and Notations section).

The embedding potential of Eq. (2) has been used as the basis for various com-
putational methods. In most of our own numerical simulations (see for instance
Refs. [8–11]), we use Eq. (1), and the partitioning of the total effective potential
into its environment-free and embedding components is rather a technical issue. The
orbital-free effective embedding potential given in Eq. (2) has been also used outside
the domain for which it was derived, i.e., in combination with wave-function-based
methods [12–14]. A detailed analysis of such a pragmatic combination of different
treatment of the electron–electron interactions in the embedding potential and in the
embedded component of the total electron density given in Ref. [15] revealed that it
leads to double counting of significant energy contributions if Hartree–Fock method
is used in combination with embedding potential given in Eq. (2). The same analyses
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showed that the magnitude of this double counting can be reduced or even entirely
eliminated if the embedded system is described by means of a multi-determinantal
“wavefunction.” More recently, it was demonstrated that Eq. (2) provides the exact
form of the potential to be used if the embedded object is described by means of
one-particle reduced density matrices and the corresponding functional [16].

It is worthwhile to recall here that the position dependency of vnadd
t (r) is not

explicit but it originates from the inhomogeneity of the densities n A and nB .
For the same potential, understood as a functional of n A and nB , the symbol
vnadd

t [n A, nB](r) or just (vnadd
t [n A, nB]) will be used. Such a distinction is of key

importance for practical applications of Eq. (1) as they require the use of approx-
imants to the functional vnadd

t [n A, nB]. Moreover, the use of Eq. (1) in the more
general framework of linear-response strategy for excited states involves functional
derivatives of vnadd

t [n A, nB] with respect to n A [10, 17].
In order to derive analytic forms of approximants to vnadd

t [n A, nB], various strate-
gies are possible. A straightforward one relies on some known approximants to Ts[n]
which are used to derive analytic expression for vnadd

t [n A, nB] [18, 12, 19]. Such a
strategy is based on the assumption that a reasonable approximant for Ts[n] leads
to a reasonable approximant to vnadd

t [n A, nB]. Our dedicated studies on the relation
between such approximants [18, 20–22] showed that this assumption is not founded
at least for the most common approximants. A more refined strategy relies on the
direct analysis of the quality of electron density obtained from a given approxi-
mant to vnadd

t [n A, nB] [18, 20–22] rather than on the performance of the parent
approximant to Ts[n]. Note that in calculations based on the Wesolowski–Warshel
embedding formalism the absolute values of Ts[n] obtained from an approximant to
this functional are not needed. This strategy lead us to the GGA97 approximant [21]
which was chosen as the remedy for erratic results obtained using the second-order
gradient expression for Ts[n] [18]. Finally, approximants to vnadd

t [n A, nB] can be
derived using exact properties of this functional as guidelines or imposed conditions.
This strategy uses such pairs of n A and nB for which the exact dependence of vnadd

t
on position is available. For instance, the analysis of the behavior of vnadd

t [n A, nB]
for n A → 0 and

∫
nBdr = 2 led us to a new approximant referred to as NDSD

(non-decomposable approximant using second derivatives) [23] superior in accu-
racy to the GGA97 one. It is useful to recall here that a “shortcut strategy” can be
applied also in practice. It consists of using some analytic expression for vnadd

t (r)
which depends explicitly on position [24]. This way of overcoming flaws of existing
approximants to vnadd

t [n A, nB] proceeds without constructing any new approximant
to vnadd

t [n A, nB].
The principal objective of this work is to obtain the exact form of vt

nadd (r) for
some cases (choices n A and nB). The considered cases make it possible not only
to obtain vt

nadd (r) by means of the analytic inversion but also to illustrate the chal-
lenges to account for the Pauli exclusion principle by means of a multiplicative
potential which is the functional of two densities, vt

nadd [n A, nB]. In this work, no
approximant to vt

nadd [n A, nB] is constructed, but the obtained shapes of vt
nadd (r)

are to be used as guidelines for constructing approximants to vt
nadd [n A, nB] in the

future works.
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It is worthwhile to point out at this point that this work uses extensively the
inversion technique to obtain the external potential in a system of non-interacting
electrons (Kohn–Sham system) which yield a given arbitrarily chosen target elec-
tron density. Finding numerically the potential associated with a given arbitrarily
chosen target electron density is a well-known issue in density functional theory
[25–27] and was even used recently [28] for obtaining the embedding potential in an
alternative way to that given in Eq. (1). In this work, we analyze specific systems for
which the inversion can be made analytically. The analytical inversion applied here
cannot be seen, however, as an alternative to the numerical inversion techniques.

2 Definitions and Notations

The key quantity analyzed in this work is the potential vnadd
t (r) which is defined

as the difference between the functional derivatives of the functional Ts[n] at two
different densities, n. The kinetic energy obtained in Kohn–Sham calculations pro-
vides the numerical value of the functional Ts[n] defined in the Levy’s constrained
search [29]:

Ts[n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉 . (6)

Such a definition requires that n is pure-state non-interacting v-representable, i.e.,
it is a ground-state density of some non-interacting system. In the particular cases
analyzed later in this work, the density n A + nB belongs to this narrower class.
Unfortunately, pure-state non-interacting v-representability of n A cannot be assured.
Therefore, interpreting vt (r) as the functional vt [n A, nB] is justified only if either
both the densities n A + nB and n A are pure-state non-interacting v-representable or
if the definition of Ts[n] is extendable to a wider class. Owing to the Levy–Lieb
[30, 31] extension of Ts[n] for ensembles

Ts[n] = min
ωi ,Ψi

∑
i ωi |Ψi |2→n

∑

i

ωi 〈Ψi |T |Ψi 〉 , (7)

we shall not be concerned with the restriction of pure-state non-interacting
v-representability of the densities considered in this work. Throughout this work,
the following convention concerning notation for electron density is used:

nB is this component of the electron density which is not represented by means
of orbitals and which is not optimized,

n A denotes the density obtained from Eqs. (1) and (3),
n is just the sum of n A and nB ,
no is the exact total ground-state electron density.
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3 Analytical Results

3.1 Choice of the System for Obtaining vnadd[nA, nB]

A fictitious four-electron spherically symmetric system for which the exact Kohn–
Sham potential would read vK S = − 1

r is considered in this work. The identification
of the external potential vext (r ) which would correspond to such simple form of
the Kohn–Sham potential is of no concern for the present considerations. For the
purposes of the present analyses, it is crucial that the two doubly occupied Kohn–
Sham orbitals have the known exact analytic form of the hydrogenic wavefunctions
1s and 2s. Note that the considered Kohn–Sham potential is neither the exact nor
a reasonable approximant to the Kohn–Sham potential for a beryllium atom. The
model bears some resemblance to a model used for a different purpose (the excited
state of a two-electron system) in Ref. [32], Eq. (9). Although the analytical form
of the dependence of vnadd

t [n A, nB] on n A and nB is not obtained, the exact form of
vt

nadd (r) can be constructed analytically for various choices made for n A and nB in
the considered fictitious system. Below, the construction of vt

nadd (r) is outlined.
In this case, the total density of the Kohn–Sham system reads

no(r) = 2
(
φ2

1s + φ2
2s

)
, (8)

and the Kohn–Sham potential is

vK S = −1

r
. (9)

Let us consider the following decomposition of no into the n A and nB components
which are obtained as the combinations of orbital densities:

n A(r) = 2
(
(1 − w)φ2

1s + wφ2
2s

)
, (10)

nB(r) = 2
(
wφ2

1s + (1 − w)φ2
2s

)
. (11)

At w = 0, the frozen density – nB – is that of the valence, the doubly occupied
2s orbital.

At w = 1, the frozen density – nB – is that of the core, i.e., that of the doubly
occupied 1s orbital.

As w increases from 0 to 1, the density nB evolves from that localized in the
valence to that localized in the core.

In this work, the effective potential which leads to the complementary density
n A(r) is constructed for several choices made for w and consequently for nB . Since
the potential obtained in this way has also the form given in Eqs. (1) and (2),
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vt
nadd (r) can be subsequently obtained. The subsequent sections concern the evolu-

tion of vnadd
t (r) as w changes.

3.2 Case I: nB Taken as Valence Electron Density

Let us first choose w = 0, i.e., nB = 2ϕ2s
2. The optimal n A obtained from Eq. (1)

with such a choice for nB equals the complementary density n A = 2ϕ1s
2 only if the

potential vnadd
t (r) disappears (or it is constant). Indeed, if vnadd

t = 0, the effective
potentials in either the Kohn–Sham equations for the total system or in Eq. (1) (for
the chosen nB) are the same. As a consequence, ϕ1s and ϕ2s are eigenvectors of
either equations and their eigenvalues are ordered in the same way. The lowest
eigenvalue corresponds to ϕ1s , whereas the ϕ2s is the solution which corresponds
to the excited state of the reference system of non-interacting electrons. Therefore,
the ground-state orbital obtained from Eq. (1) is also the square root of the target
density no − nB (modulo the phase factor). The Aufbau principle is not violated.
It is worthwhile to notice that despite the fact that the overlap between two orbital
densities n A = 2ϕ1s

2 and nB = 2ϕ2s
2 is non-zero, vnadd

t = 0 (or constant). The
simplest approximant to vnadd

t [n A, nB] derived from local density approximation
(i.e., Thomas-Fermi approximant for Ts[n]) leads to a non-negative vnadd

t [n A, nB] if
the densities do overlap. This indicates a systematic flaw of this approximant.

3.3 Case II: nB Taken as Valence Electron Density with Small
Admixture of Core Electron Density

Let us now consider the case when w is very small, but non-zero, i.e., transfer a very
small amount of the previous nB density from the valence shell to the core.

On the one hand, the density to be determined from Eq. (1) is now asymptotically
determined by the 2s density. As a consequence, its eigenvalue must be equal to that
of the 2s orbital, i.e., −1/8, in order to have a potential which asymptotically goes
to zero.

On the other hand, the potential cannot be changed in an important way to yield
essentially the same density as for w = 0.

The situation reminds of that of going from the system with N electrons to that of
N+1 electrons: in order to satisfy both requirements, the potential will be essentially
shifted by a “constant”, (−1/2)−(−1/8)), thus shifting the eigenvalue [33–36]. This
happens over all space, except for the asymptotic region, where the ϕ2s

2 dominates.
Coming into that region, the potential falls down, finally approaching 0.

The potential can be explicitly calculated, by inverting Eq. (1). Let vs(r ) denote
the whole potential in this equation. This potential can be expressed as vK S[n](r ) +
vnadd

t [n A, nB](r ) (see Eq. (1)). For the considered system, vs(r ) can be obtained as

vs(r ) = 1

2

∇2√n − nB√
n − nB

+ constant , (12)
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r
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– 0.4

– 0.6

– 0.8

– 1.0

– 1.2

0.2

v

Fig. 1 The potential (v(r ) – bold line) obtained from Eq. (12) together with the Kohn–Sham poten-
tial (−1/r – lower dotted line) and the shifted Kohn–Sham potential (−1/r + 1/2 − 1/8 – upper
dotted line) obtained for w = 0.001, i.e., n A = 0.999n1s +0.001n2s and nB = 0.001n1s +0.999n2s

choosing the constant such that the potential goes to 0 when r → ∞. Note that both
vs(r ) and vK S(r ) are external potentials in a reference system of non-interacting
electrons which are associated with different densities – vs(r ) with n − nB whereas
vK S(r ) with n. In the chosen example, vK S(r ) = −1/r . The difference between the
two potentials obtained for w = 0.001 is shown in Fig. 1

vnadd
t (r) is shown in Fig. 2 for the same w = 0.001, together with 4πr2n A(r ). On

the scale of the plot, the contribution of the 2s density is not noticeable. For higher
values of w, it appears as a shoulder or for even higher values of w yields a second
maximum in 4πr2n A(r ).

As the contribution of the 2s density increases, the jump in vnadd
t (r ) is further

displaced toward the origin, as can be seen by comparing Figs. 1 and 3 which show
v(r ) for w = 0.001 and w = 0.01, respectively.

2 4 6 8 10
r

0.1

0.2

0.3

0.4

0.5

v nadd

Fig. 2 vnadd
t (r ) (bold line) −1/r , obtained for w = 0.001, i.e., n A = 0.999n1s + 0.001n2s and

nB = 0.001n1s + 0.999n2s . The arbitrarily normalized plot of 4πr2n A is also shown (thin line)
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2 4 6 8 10
r

– 1.2
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– 0.8

– 0.6

– 0.4

– 0.2

0.2

v

Fig. 3 The potential (v(r ) – bold line) obtained from Eq. (12) together with the Kohn–Sham poten-
tial (−1/r – lower dotted line) and the shifted Kohn–Sham potential (−1/r + 1/2 − 1/8 – upper
dotted line) obtained for w = 0.01, i.e., n A = 0.99n1s + 0.01n2s and nB = 0.01n1s + 0.99n2s

3.4 Case III: nB Taken as Valence Electron Density
with Noticeable Admixture of Core Electron Density

As the contribution of the 2s density to n A (i.e., the density to be determined from
Eq. (1)) increases, a bump starts to be apparent in the plot of the inverted potential
v(r ) (compare Figs. 3, 4, and 5).

The bump in v(r ) originates from the rapid variation of vnadd
t component (com-

pare Figs. 4 and 5 with Figs. 6 and 7, respectively).

2 4 6 8 10
r

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0.2

v

Fig. 4 The potential (v(r ) – bold line) obtained from Eq. (12) together with the Kohn–Sham poten-
tial (−1/r – lower dotted line) and the shifted Kohn–Sham potential (−1/r + 1/2 − 1/8 – upper
dotted line) obtained for w = 0.1, i.e., n A = 0.9n1s + 0.01n2s and nB = 0.1n1s + 0.9n2s
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2 4 6 8 10 r

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0.2

v

Fig. 5 The potential (v(r ) – bold line) obtained from Eq. (12) together with the Kohn–Sham poten-
tial (−1/r – lower dotted line) and the shifted Kohn–Sham potential (−1/r + 1/2 − 1/8 – upper
dotted line) obtained for w = 0.5, i.e., n A = 0.5n1s + 0.5n2s and nB = 0.5n1s + 0.5n2s

2 4 6 8 10
r

0.1

0.2

0.3

0.4

0.5
v nadd

Fig. 6 vnadd
t (r ) (bold line) −1/r , obtained for w = 0.9, i.e., n A = 0.9n1s + 0.1n2s and nB =

0.1n1s + 0.9n2s . The arbitrarily normalized plot of 4πr2n A is also shown (thin line)

3.5 Case IV: nB Taken as Core Electron Density with Small
Admixture of Valence Electron Density

The bump in v(r ) (or in vnadd
t ) gets more and more pronounced as w increases.

Figs. 8 and 9 show v(r ) for w = 0.9 and for w = 0.99, respectively.
The origin of the dip in the density (and the bump in the potential needed to

produce it) is clear: the contribution of the 2s density to n A increases with w; at 100
per cent 2s density, one even has n A(r = 2) = 0.
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2 4 6 8 10
r

0.1

0.2

0.3

0.4

0.5

0.6
v nadd

Fig. 7 vnadd
t (r ) (bold line) −1/r , obtained for w = 0.5, i.e., n A = 0.5n1s + 0.5n2s and nB =

0.5n1s + 0.5n2s . The arbitrarily normalized plot of 4πr2n A is also shown (thin line)

2 4 6 8 10
r

–1.0

–0.5

0.5

1.0

v

Fig. 8 The potential (v(r ) – bold line) obtained from Eq. (12) together with the Kohn–Sham poten-
tial (−1/r – lower dotted line) and the shifted Kohn–Sham potential (−1/r + 1/2 − 1/8 – upper
dotted line) obtained for w = 0.9, i.e., n A = 0.1n1s + 0.9n2s and nB = 0.9n1s + 0.1n2s

3.6 Case V: nB Taken as Core Electron Density

At the first sight, it seems that when nB is the core electron density (nB = 2 · 1s2),
the density no − nB can be obtained from Eqs. (1) and (3) by putting vnadd

t (r ) = 0,
i.e., for v(r ) + vnadd

t (r ) = −1/r . Indeed, the orbital 2s is one of the eigenfunctions
in the equation

[− 1
2∇2 − 1/r

]
ϕ = εϕ. It is, however, not the lowest eigenvalue.

For vnadd
t (r ) = 0, Eqs. (1) and (3) would lead, therefore, to the total electron density

n A + nB = 4 · 1s2 which would violate the Pauli exclusion principle. Satisfying the
requirement that the ground-state orbital obtained from Eq. (1) yields such density
n A that n A = no −nB for nB being the core electron density must be reflected in the
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2 4 6 8 10
r

2

4

6

8

10

12
v

Fig. 9 The potential (v(r ) – bold line) obtained from Eq. (12) together with the Kohn–Sham poten-
tial (−1/r – lower dotted line) and the shifted Kohn–Sham potential (−1/r + 1/2 − 1/8 – upper
dotted line) obtained for w = 0.99, i.e., n A = 0.01n1s + 0.99n2s and nB = 0.99n1s + 0.01n2s

vnadd
t (r ) component of the total potential. The solution to this paradox is provided

by the existence of the bump which is transformed into a barrier that is infinitely
high and vanishingly thin. This barrier can be seen as a change in the boundary
conditions on the Schrödinger equation.

Figure 11 shows the appearance of the barrier-like character of vnadd
t (r ) for w =

0.999.
A final question remains to be clarified. The integral of n A on each of the seg-

ments (r between 0 and 2 and from 2 to infinity, respectively) is a non-integer
number. What is the wave function in such a case? In fact, in this case we have to
deal with two spatial regions: the inner sphere and the outer spherical shell. The 2s
orbital is an eigenfunction of the Hamiltonian on both segments and the eigenvalue
is, of course, the same (−1/8). To obtain the ground state with the density given,
we use the nodeless functions on each of the segments; next, we produce ensembles
with weights equal to the integral of the 2s orbital from 0 to 2 and from 2 to infinity
(0.053 and 0.947, respectively) and get the correct density.

vnadd
t (r ) evolves thus from vnadd

t (r ) = 0 at w = 0 to a delta-like potential
as w approaches 1. It is worthwhile to look more closely at the w = 0.5 case.
If w = 0.5, the not-optimized component of the electron density, nB , is exactly
the same as the target electron density n A = no − nB = 1/2no. The equation[− 1

2∇2 + v(r )
]
ϕ = εϕ, where v(r ) is the potential shown in Fig. 5, leads to such

eigenfunction that 2ϕ2 = no/2. It is worthwhile to notice that no orbital represen-
tation of the density nB has been used so far in our considerations. In the w = 0.5
case, one can trivially represent also nB by means of an orbital given by the square
root of nB = 1/2no. Since n A = nB the two “orbitals” are the same (module phase
factor) and are obviously strongly non-orthogonal. Nevertheless, Eq. (1) still leads to
the exact ground-state electron density for the total system. This example illustrates
that the embedded orbitals obtained from Eq. (1) and orbitals obtained from some
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Fig. 10 vnadd
t (r ) (bold line) −1/r , obtained for w = 0.9, i.e., n A = 0.9n1s + 0.1n2s and nB =

0.1n1s + 0.9n2s . The arbitrarily normalized plot of the radial density, 4πr2n A, is also shown (thin
line). The upper and lower figures show the same potential at different ranges

reconstruction of the assumed density nB represent different objects which should
not be confused with any wave function representation of the total system.

4 Conclusions

In the embedding formalism introduced by Wesolowski and Warshel [3], the total
electron density is partitioned into two components. One of them is not optimized
(frozen) and the other is subject to optimization. The optimized component is treated
in a Kohn–Sham-like way, i.e., by means of a reference system of non-interacting
electrons. The multiplicative potential in one-electron equations for embedded
orbitals, Eq. (1) or Eqs. (20) and (21) of Ref. [3], differs from the Kohn–Sham
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Fig. 11 vnadd
t (r ) (bold line) −1/r , obtained for w = 0.999, i.e., n A = 0.999n1s + 0.001n2s and

nB = 0.001n1s + 0.999n2s . The arbitrarily normalized plot of the radial density, 4πr2n A, is also
shown (thin line)

potential by an additional term arising from non-additivity of the kinetic energy,
vnadd

t (r ). The question arises how such multiplicative potential takes into account
the Pauli exclusion principle. In particular, if the non-optimized component of the
total density coincides with the orbital density of the lowest lying Kohn–Sham
orbital of the whole system, how to avoid that the complementary density obtained
from Eq. (1) collapses on the not-optimized one?

A simple example is analyzed of the case when the exact effective potential in
one-electron equations for embedded orbitals (Eqs. (20) and (21) of Ref. [3]) can be
obtained analytically. The Kohn–Sham orbitals for the considered total system are
the hydrogenic functions 1s and 2s. For particularly partitioned total density of such
system, in which the not-optimized component of the electron density is a mixture of
1s and 2s orbital densities, the exact potential in Eq. (1) can be obtained analytically.
In the considered examples, the density n A obtained from Eq. (1) complements
perfectly the chosen not-optimized one, nB , so they add to the exact ground-state
density. Depending on the choice for nB and n A resulting from it the following
situations are observed:

� If n A is the density that is given by the lowest-lying orbital the Kohn–Sham
potential for the whole system coincides with the effective potential in Eq. (1).
No additional potential is needed (vnadd

t (r ) = 0).
� If n A is essentially given by the lowest-lying orbital, with only a small admixture

of the higher-lying orbtials, the additional potential is mainly shifted in the region
of interest; this shift aligns the orbital energy of the lower-lying orbital to that of
the higher-lying one, allowing the mixing of the densities of different states.
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� As the contribution to n A due to the higher-lying level increases, a bump shows
up in the nodal region of the corresponding orbital (density). The bump forbids
electrons to enter the region close to the node of the high-lying orbital.

� If n A is the density of the high-lying orbital, the bump is transformed into an
infinite barrier and an ensemble description has to be used for n A. In this case,
vnadd

t (r ) becomes an infinitely high barrier of vanishing thickness.

Turning back to the issue of developing approximants to vnadd
t [n A, nB], i.e., rep-

resenting the potential vnadd
t (r) as functional of the two electron densities with-

out introducing any explicit position-dependency, the analytic results obtained in
this work exposed rather serious difficulties if one would aim at some univer-
sal, system- and also partitioning-independent approximant to vnadd

t [n A, nB]. For
instance, the obtained shapes of the vnadd

t (r) indicate that this potential changes
abruptly with minor modifications of n A and nB . Moreover, examples were given
where vnadd

t [n A, nB] �= vnadd
t [nB, n A] = const and the densities n A and nB do

overlap and are far from uniform.
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