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The one-electron equation for orbitals embedded in frozen electron density (Eqs.
20-21 in [Wesolowski and Warshel, J. Phys. Chem, 97 (1993) 8050]) in its exact
and approximated version is solved for an analytically solvable model system.
The system is used to discuss the role of the embedding potential in preventing
the collapse of a variationally obtained electron density onto the nucleus in the
case when the frozen density is chosen to be that of the innermost shell. The
approximated potential obtained from the second-order gradient expansion for
the kinetic energy prevents such a collapse almost perfectly but this results from
partial compensation of flaws of its components. It is also shown that that the
quality of a semi-local approximation to the kinetic-energy functional, a quantity
needed in orbital-free methods, is not related to the quality of the non-additive
kinetic energy potential - a key component of the effective embedding potential
in one-electron equations for embedded orbitals.
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9.1. Introduction

The basic formal results of Frozen-Density Embedding Theory (FDET), which is

of the greatest relevance to any multi-level computational methods, is the fact that

minimization of the Hohenberg-Kohn energy functional (EHK [n]) in the presence

of the constraint n ≥ nB , where nB is some given in advance (frozen) electron
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density, can be achieved by means of a suitably chosen embedding potential, i.e.,

a multiplicative (local) operator.1–4 Moreover, the non-electrostatic component

of this potential is the bi-functional depending on nB and nA, where nA is the

embedded electron density, i.e., the density which is to be optimized.

According to FDET, the exact embedding potential comprises a component

which is the functional derivative of the bi-functional of the non-additive kinetic

energy (
δTnad

s [nA,nB ]
δnA

). This component is the greatest relevance for the present vol-

ume. In principle, any approximation for the kinetic energy functional Ts[n] used

in OF-DFT can be trivially used to approximate also Tnads [nA, nB ] (see Eq. 9.1.5

below). Our numerical experience indicates, however, that the quality of any given

approximation to Ts[n] is not correlated with that of the resulting approximation for

Tnads [nA, nB ].
5,6 Turning back to FDET, its formal framework provides the basis

for a large variety of computational methods aiming at quantitative predictions of

the effect of environment on electronic structure of embedded species (see Ref. 13

or articles reviewed in chapters 10 and 11 in the present volume, for instance).

The key steps resulting in the development of FDET-based computational methods

and ther practical applications include: i) Introduction of the GGA97 approxi-

mation7 for the bi-functional of the non-additive kinetic potential and energy. The

GGA97 approximation to Tnads [nA, nB] eliminates to large extend the spurious com-

ponent of the non-additive kinetic potential occurring if this potential is obtained

from the gradient expansion of Ts[n] .
5 ii) Development of the gradient-expansion-

approximation based approximation for Tnads [nA, nB] (NDSD), which enforces one

of the exact properties of the bi-functional vnadt [nA, nB ] leading to an improvement

of the embedding potential near the nuclei in the environment.8 iii) Combining

the ground-state FDET with the linear-response time-dependent DFT strategy for

electronic excitations9,10. iv) The proof that the original orbital-free effective em-

bedding potential derived for embedding a reference system of non-interacting elec-

trons is also the optimal effective embedding potential for embedding interacting

systems2 or systems described by means of the first-order density matrix.3 These

developments were matched by the improvements of the numerical implementation

as well as techniques to generate the frozen electron density. Currently, the ADF

code11 provides the most advanced and flexible implementation of FDET based

methods. This implementation was made by Wesolowski (see for instance Refs. 10)

and subsequently developed by others.12 For the most recent implementations, see

Refs. 13 and 12. Several refinements and further advancements in both numerical

implementation as well as in the theory of embedding such as an efficient method to

account for dynamic response of the environment in evaluation of electronic excited

levels (see chapter 11 of this volume) or explicit corrections for erroneous behavior

of the embedding potential at dissociation,14 for instance, expanded the domain

of applicability of the orbital-free embedding potential. Unfortunately, similarly to

Kohn-Sham and orbital-free DFT formulation, the computational methods based

on FDET suffer from the fact that they rely on approximations for the needed
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density functionals and only in a few cases the analytical expressions for quantities

defined in FDET are available.8,14,15 The present chapter intends to fill the gap.

We analyze in detail an analytically solvable case where all quantities defined in

FDET can be evaluated analytically and compared with approximated quantities

needed in practical simulations.

The key object in FDET is the orbital-free embedding potential which depends

on the quantum mechanical descriptor used for nA in order to optimize it. In the

case of embedding a non-interacting reference system, one-particle reduced density

matrix, and interacting wavefunction of the full Configuration Interaction form, this

potential reads (see for instance Eq. 3 in Ref. 16):

vembKSCED[nA, nB , v
B
ext](r⃗) = vBext(r⃗) +

∫
nB(r⃗

′)

|r⃗′ − r⃗|
dr⃗′ + (9.1.1)

δExc [n]

δn(r⃗)

∣∣∣∣
n(r⃗)=nA(r⃗)+nB(r⃗)

− δExc [n]

δn(r⃗)

∣∣∣∣
n(r⃗)=nA(r⃗)

+

δTs [n]

δn(r⃗)

∣∣∣∣
n(r⃗)=nA(r⃗)+nB(r⃗)

− δTs [n]

δn(r⃗)

∣∣∣∣
n(r⃗)=nA(r⃗)

,

where the functionals Exc[n] and Ts[n], are defined as in Kohn-Sham formulation

of Density Functional Theory.17 In the present considerations and in practical ap-

plications of Eq. 9.1.1, opposite to methods based on the Kohn-Sham theory, the

functional Ts[n] is considered as a density functional defined in the Levy-Lieb con-

strained search formulation18,19 because the Kohn-Sham orbitals are not available

for the total electron density.

Eq. 9.1.1 shows clearly that explicit quantum mechanical descriptors - such

orbitals - do not have to be known for the environment. The electron- and nuclear

charge densities of the environment provide sufficient information to generate the

embedding potential for any given nA(r⃗). For this reason, we refer to the potential

defined in Eq. 9.1.1 as the orbital-free embedding potential. Eq. 9.1.1 provides the

basis for various computational methods for multi-level simulations, such as the ones

reviewed in Chapters 10 and 11, but constructing in practice good approximations

to the potential defined in Eq. 9.1.1 represents the main challenge for the Frozen-

Density Embedding Theory.

If the embedded system is described by means of a reference system of non-

interacting electrons, nA(r⃗) is constructed from embedded orbitals (φi):

nA(r⃗) =

Nocc∑
i

2|φi|2 , (9.1.2)

which are obtained from one-electron equations for embedded orbitals (Eqs. 20-21
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in Ref. 1):[
−1

2
∇2 + vAext(r⃗) +

∫
nA(r⃗

′)

|r⃗′ − r⃗|
dr⃗′ + vxc[nA](r⃗) + vembKSCED[nA, nB , v

B
ext](r⃗)

]
φAi = ϵiφ

A
i

(9.1.3)

For the sake of simplicity, equations are given for spin-compensated electron den-

sities: hence the factor 2 in Eq. 9.1.2. The acronym KSCED in Eqs. 9.1.1 and

9.1.3 stands for the Kohn-Sham Equations with Constrained Electron Density and

is used to distinguish the effective potential and the orbitals in Eq. 9.1.3 from their

counterparts in the Kohn-Sham equations.

Eq. 9.1.1 shows clearly that, except for vBext(r⃗), the position dependency of each

other term in vembKSCED[nA, nB , v
B
ext](r⃗) is determined by the position dependency of

nA(r⃗) and nB(r⃗). These components of the potential are, therefore, functionals of

these two densities. In particular, the kinetic-energy functional dependent compo-

nent of the potential given in Eq. 9.1.1, for which the following short notation will

be used:

vnadt [nA, nB ] =
δTs [n]

δn(r⃗)

∣∣∣∣
n(r⃗)=nA(r⃗)+nB(r⃗)

− δTs [n]

δn(r⃗)

∣∣∣∣
n(r⃗)=nA(r⃗)

(9.1.4)

is also a functional nA(r⃗) and nB(r⃗). Throughout the present work, we apply

the following convention for any local quantity which is defined as a functional,

bi-functional, tri-functional, etc.: the symbol, v[f ](r⃗) or in short-hand notation

v[f ] denotes the correspondence between the quantities in square brackets (the

function f in this case) and the function v(r⃗), whereas the symbol v(r⃗) denotes not

a functional but a function which might be evaluated for some particular choice of

the arguments in the square brackets. Following this convention, vnadt [nA, nB ](r⃗) or

vnadt [nA, nB ] denote the bi-functional of the non-additive kinetic potential, whereas

vnadt (r⃗) denotes the non-additive kinetic potential evaluated for some particular

pair of the densities nA(r⃗) and nB(r⃗). We make this distinction, to underline that

knowing the potential vnadt (r⃗) for a particular pair of densities nA(r⃗) and nB(r⃗)

does not imply that the corresponding bi-functional vnadt [nA, nB ] is known.

The potential given in Eq. 9.1.4 is not only the component of the effective po-

tential in Eq. 9.1.3, i.e., the case where the embedded system is described by means

of the reference system of non-interacting electrons. It is also the component of the

exact embedding potential in cases were the embedded density nA(r⃗) is obtained in

other methods based on variational principle, in which the electron-electron inter-

actions are treated as: i) the expectation value of the exact Hamiltonian calculated

over a class of trial wavefunctions of the form ranging from Hartree-Fock- to full

CI wavefunction2 or ii) a functional depending on one-particle density matrix.3

In the context of FDET, it is convenient to introduce the bi-functional of the

non-additive kinetic energy:

Tnads [nA, nB ] = Ts[nA + nB]− Ts[nA]− Ts[nB] (9.1.5)
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The bi-functional Tnads [nA, nB ] represent one of the components of the total energy

of the system, whereas its functional derivative with respect to nA(r⃗) is vnadt (r⃗)

which can be expressed alternatively as:

vnadt [nA, nB ] =
δTnads [n, nB ]

δn(r⃗)

∣∣∣∣
n(r⃗)=nA(r⃗)

(9.1.6)

In practical applications of Eq. 9.1.3, vnadt [nA, nB ] needs to be approximated by

means of some approximation depending explicitly on the pair of electron densities

nA(r⃗) and nB(r⃗) (approximations are denoted with tildes in the present work).

vnadt [nA, nB ] ≈ ṽnadt [nA, nB] (9.1.7)

The above approximation leads to errors in the effective potential and consequently

to the deviation between the electron density obtained from Eq. 9.1.3 and the target

density no(r⃗)−nB(r⃗). Using such density in the evaluation of the total energy leads

also to errors which add to the errors due to the approximation to Tnads [nA, nB ].

It is worthwhile to underline here that due to the fact that computational methods

based on FDET hinge on approximations to the differences of the kinetic energy.

Approximations for the absolute value of neither the kinetic energy (T̃s[n]) nor the

kinetic potential (ṽt[n](r⃗) = δT̃s[n]
δn(r⃗) ) are not needed in FDET. There is no reason,

therefore, to expect a similar performance of a given approximation (T̃s[n]) in both

OF-DFT and in FDET frameworks.

Various methodologies based on the correspondence between the pair of electron

densities and the embedding potential given in Eq. 9.1.1, which use an inexpensively

calculated approximation for ṽnadt [nA, nB], were recently developed and applied in

numerical simulations of condensed matter (see Refs. 4,20–22 and chapters 10 and

11 of this volume). An obvious strategy is to use some approximation for Ts[n] and

to obtain the corresponding vnadt [nA, nB ] from Eq. 9.1.4. It is convenient to call

such approximations for Tnads [nA, nB ] - decomposable. Unfortunately, one cannot

count on fortuitous cancellation of errors in the approximated potentials ṽt[nA+nB]

and ṽt[nA] needed to evaluate ṽnadt [nA, nB ]. Our previous dedicated studies5,6 and

recent comprehensive benchmarking studies reported in Ref. 23 indicate, however,

that improvements in approximating Ts[n] do not necessarily lead to improvements

in vnadt [nA, nB ]. Therefore, one should rather consider the quest for an usable ap-

proximation for each of the two potentials, vnadt [nA, nB ] and vt[n], to represent

independent tasks. The following strategies to approximate vnadt [nA, nB ] are, in

principle, possible:

• Decomposable approximations.

For any approximation T̃s[n], for which the analytical expression for its func-

tional derivative ( δT̃s[n]
δn(r⃗) ) is known, the corresponding ṽnadt [nA, nB ] can be ob-
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tained in a straightforward manner as the difference of two analytic expressions:

vnadt [nA, nB ] ≈ ṽnadt [nA, nB ] =
δT̃s [n]

δn(r⃗)

∣∣∣∣∣
n(r⃗)=nA(r⃗)+nB(r⃗)

− δT̃s [n]

δn(r⃗)

∣∣∣∣∣
n(r⃗)=nA(r⃗)

(9.1.8)

This is the most commonly used strategy in the literature all quantities derivable

from a given approximation for Ts[n] are numerically available.

• Decomposable approximations for potential only.

For a given form of the potential ṽt[n] ≈ δTs[n]
δn(r⃗) , such that the corresponding ex-

pression for neither T̃s[n] nor ṽ
nad
t [nA, nB ] is known, one can construct trivially

the corresponding approximation for ṽnadt [nA, nB ].

vnadt [nA, nB ] ≈ ṽt[nA + nB]− ṽt[nA] (9.1.9)

The field of applicability of such approximations is, however, limited. In the

absence of the corresponding analytic expression for T̃nad[nA, nB ], it is not

possible to evaluate the total energy self-consistently with ṽnadt [nA, nB ] used in

Eq. 9.1.3. It is sufficient, though, for obtaining the ground-state density of the

embedded system as well as the embedded orbitals. In the present work, we

consider also such approximation to vnadt [nA, nB ] which is obtained from the

Chai-Weeks approximation24 for vt[n].

• Non-decomposable approximations.

This is a bottom-up approach starting from an approximation for vnadt [nA, nB]

and than constructing the corresponding approximation for Tnads [nA, nB ]:

vnadt [nA, nB ] ≈ ṽnadt [nA, nB ] =
δT̃nads [n, nB ]

δn(r⃗)

∣∣∣∣∣
n(r⃗)=nA(r⃗)

(9.1.10)

In this approach, the parent approximation for neither T̃s[n] nor its functional

derivative is constructed. The latter quantities are not directly needed in the

FDET-based methods because the approximations are used only for the dif-

ferences of such quantities. The NDSD approximation8 for Tnads [nA, nB ] was

constructed following this strategy.

• Non-decomposable approximations for the potential only.

In principle, one can construct only ṽt[nA, nB ] without constructing the corre-

sponding approximation to T̃nads [nA, nB ]. This would make possible to obtain

the embedded density and orbitals but not the total energy. To our knowledge,

no such constructions, were reported in the literature.

Since the accuracy of the used approximation ṽnadt [nA, nB ] is of key impor-

tance in FDET-based methods, this issue was subject of our previous studies based

on the comparisons between the electron density obtained using the analyzed ap-

proximation with the target electron density obtained if the approximation would

be exact.5–7 Such strategy to judge the adequacy of a given ṽnadt [nA, nB ] does not,
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however, involve the construction of the exact vnadt (r⃗). Moreover, the previous anal-

yses focused on cases where the overlap between nA(r⃗) and nB(r⃗) is small because

nA(r⃗) and nB(r⃗) were associated with different molecules in weak intermolecular

complexes. This excluded such important case where nB(r⃗) corresponds to fully oc-

cupied inner shell whereas nA(r⃗) comprises contributions from the valence electrons

and the potential vnadt [nA, nB ] is sufficiently repulsive to stop the valence electrons

to collapse on the core region. The present work is intended to fill this gap. To

this end, we use an artificial system for which the exact potential vnadt (r⃗) can be

obtained analytically for particularly chosen nB(r⃗).
15 The considered model system

comprises four electrons with spin-compensated density, it is spherically symmetric,

and its exact Kohn-Sham potential reads:

vKS(r) = −1

r
. (9.1.11)

Note that such a system does not correspond to any real atom. It is defined by

its Kohn-Sham potential and not the external potential. Nevertheless, it can be

used for the analysis of various density functionals. It is important to make the

distinction between such an artificial system as the one considered here and the

Be atom for which the Kohn-Sham potential comprises the nuclear attraction term

−4/r, the repulsive Coulomb term, as well as the exchange-correlation component.

It behaves as −1/r only far from the nucleus.

For the considered system, the two doubly occupied Kohn-Sham orbitals are

just hydrogenic functions: ϕ1s and ϕ2s and the ground-state electron density reads:

no(r⃗) = 2
(
ϕ21s + ϕ22s

)
, (9.1.12)

Concerning the choice for nB(r⃗), we limit the analysis to cases where no(r⃗) −
nB(r⃗): i) is non-negative, ii) integrates to 2, and iii) is spin-compensated. These

are necessary conditions that the density no(r⃗) − nB(r⃗) can be obtained from the

ground-state wavefunction for some potential vs(r⃗) (Chapter 12 deals with the issue

of the admissibility of the frozen density in more detail.) The potential vs(r⃗) can

be constructed by inverting analytically the Kohn-Sham equation associated with

the density no(r⃗)− nB(r⃗).
15 [

−1

2
∇2 + vs(r⃗)

]
φ = ϵφ (9.1.13)

In the above equation vs(r) is such potential, for which the lowest-energy solution

φ is such that 2|φ|2 = no − nB. This potential reads thus:

vs(r⃗) =
1

2

∇2
√
no(r⃗)− nB(r⃗)√
no(r⃗)− nB(r⃗)

+ constant , (9.1.14)

where the constant can be chosen such that the potential goes to 0 when r → ∞.

Comparing Eqs. 9.1.3 and 9.1.13 provides a link between the potential vs(r)

which can be obtained analytically and vnadt [nA, nB ](r) - the quantity of crucial

interest in this study. To lead to the same density, the effective potential in Eq.
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9.1.3 and vs(r⃗) must be equal (up to a constant). From that it follows that, up to

a constant,

vnadt (r) = vs(r) +
1

r
. (9.1.15)

The above analytic construction of vnadt (r⃗) can be made for any density

no(r⃗) − nB(r⃗) comprising two spin-compensated electrons and is not restricted to

the case considered here (spherical symmetry and
∫
nB(r⃗)dr⃗ = 2). Note also that

the construction of the external potential vext(r⃗) in a real, i.e., interacting system

with the same ground state density given in Eq. 9.1.12 is not involved in the above

analytical construction of the exact vnadt (r) . The choices for nB(r⃗) in the above

system considered in this work, are made in view of practical numerical simulations.

If nB(r⃗) is chosen to be electron density of the core electrons, the potential vnadt (r)

stops the density nA(r⃗) derived from Eq. 9.1.3 from collapsing into the core. Such

cases have been reported8,14 for simulations using instead of the exact vnadt (r) some

approximations to the functional vnadt [nA, nB]. For more properties of the exact

potential vnadt [nA, nB ](r) in the considered model system, see Ref. 15. The consid-

ered system, provides a simple illustration for the role of the potential vnadt [nA, nB]

in preventing such a collapse. If the electron density of the 1s shell is chosen as

nB (i.e., nB(r⃗) = 2φ2
1s), neglecting v

nad
t [nA, nB ] in Eq. 9.1.3 leads to wrong to-

tal electron density: ño(r⃗) = 2
(
φ2
1s + φ2

1s

)
̸= no(r⃗) = 2

(
φ2
1s + φ2

2s

)
. One way to

stop the collapse into the core is to use the exact pseudopotential as prescribed by

Phillips-Kleinman25 expressed with the projector operators. But such an operator

is not a local potential and would require other than density descriptors for the

environment. In our previous work, the local potential stopping such a collapse

into the core was constructed and analyzed.15 The present work, focuses on such

cases, but extends the analysis by: i) obtaining numerically the lowest-energy em-

bedded orbital derived from numerical solution of Eq. 9.1.3, ii) obtaining numerical

solutions of an approximated version of Eq. 9.1.3 in which instead of the exact po-

tential vnadt (r) its approximated counterpart - ṽnadt [nA, nB ] - is used. The following

approximations of ṽnadt [nA, nB ] are considered in the present work:

i) ṽ
nad(W )
t [nA, nB] obtained from Eq. 9.1.8 and the von Weizsäcker functional for

Ts[n]
26 ,

ii) ṽ
nad(TF )
t [nA, nB ] obtained from Eq. 9.1.8 and the Thomas-Fermi functional for

Ts[n],
27,28

iii) ṽ
nad(TFW )
t [nA, nB ] obtained from Eq. 9.1.8 and the sum of the Thomas-Fermi

and the von Weizsäcker functionals for Ts[n],

iv) ṽ
nad(GEA2)
t [nA, nB ] obtained from Eq. 9.1.8 and the second-order gradient-

expansion functional for Ts[n],
29

v) ṽ
nad(CW )
t [nA, nB ] obtained from Eq. 9.1.9 and the Chai and Weeks approxima-

tion for δTs[n]
δn .24 Note that there exist no corresponding functional for Ts[n] in

this case.
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Each among the considered approximations for the potential ṽnadt [nA, nB ] reflects

some exact properties and does not involve any fitting to experimental data. Both

the Thomas-Fermi- and the von Weizsäcker functionals are frequently considered

to be possible starting points for construction of approximations to Ts[n]. The for-

mer one yields the exact Ts[n] for uniform electron gas n(r⃗) =const, whereas the

latter is exact of one-electron- or spin-compensated two electron systems, leads to

rather erratic results.5,6 Our previous numerical studies on the accuracy of var-

ious ṽnadt [nA, nB ] for cases where the overlap between nA(r⃗) and nB(r⃗) is small

showed that the Thomas-Fermi functional leads to a useful approximation for the

potential vnadt [nA, nB ].
5–7,30 Using the von Weizsäcker functional to approximate

vnadt [nA, nB ] leads usually to qualitatively wrong embedded densities.6 Interest-

ingly, adding 1
9 of the von Weizsäcker term to the one derived from the zero-order

gradient expansion worsens usually the approximation to vnadt [nA, nB ].
5,6

The ṽ
nad(TFW )
t [nA, nB] approximation was considered in the present work in

view of the fact that the presence of the full von Weizsäcker component (not divided

by 9 as it is in gradient expansion) is indispensable to satisfy one of the exact

conditions for vnadt [nA, nB]
8 (given also in Eq. 9.2.18 here). The full von Weizsäcker

term is also a key ingredient for a family of approximations31 for Ts[n]. The inclusion

of the Chai-Weeks approximation for δTs[n]
δn in the present analysis is motivated by

its feature to describe correctly the density response of the atomic electron density.

9.2. Numerical Results and Discussion

The numerical solutions of Eq. 9.1.3 using either the exact potential vnadt (r) or

its approximate counterparts, were obtained using the solver of one-dimensional

Schrödinger equation32 implemented into Mathematica.33 We consider two choices

for nB(r⃗) such that it is ”almost” equal to 2φ2
1s and that no(r⃗) − nB(r⃗) is non-

negative. A small difference between 2φ2
1s and the considered nB(r⃗) assures that

vnadt (r) is continuous. As shown in our previous work,15 the potential changes

smoothly with changing the amount of the admixture provided it is small. The

following two choices for nB(r⃗) are considered:

• nB(r⃗) ≈ 2φ2
1s with ”dumped valence density” admixture,

nB(r) =
1

C

(
φ2
1s + φ2

2s · e−10r
)

(9.2.16)

and where 1/C is the normalization factor.

• nB(r⃗) ≈ 2φ2
1s with ”mixed core/valence” admixture,

nB(r) = 2
(
(1− w)φ2

1s + wφ2
2s

)
, (9.2.17)

with w = 0.001.

Eq. 9.2.17 choice for nB(r⃗) was used in the analytical reconstruction of vnadt (r⃗)
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for the same model system15 and is considered here for the sake of completeness

and for comparisons.

Fig. 9.2.1. Partitioning the total ground-state electron radial density 4πr2no(r⃗) in the model

system. The white area represents the frozen radial density 4πr2nB(r⃗) and the shaded area
represents the radial density 4πr2 (no(r⃗)− nB(r⃗)). Only the densities obtained with the Eq. 9.2.16
are shown because the alternative partitioning (Eq. 9.2.17) leads to densities indistinguishable on
the scale of the picture.

The two above choices for nB(r⃗) assure that no(r⃗) − nB(r⃗) is N -representable.

To obtain the density no(r⃗)− nB(r⃗) as the lowest-energy solution of Eq. 9.1.3, this

density must be non-interacting pure-state v-representable.1,4

9.2.1. Eq. 9.1.3 with the exact potential vnad
t (r⃗)

9.2.1.1. The potential vnadt (r⃗)

The total effective potential in a system of non-interacting electrons, which gen-

erates no(r⃗) − nB(r⃗) as its ground-state density comprises the −1/r and vnadt (r⃗)

components. Since −1/r diverges at r = 0 and is known, only the vnadt (r⃗) is shown

on the figures in this section. Figure 9.2.2 shows the reconstructed potential vnadt (r⃗)

for the two considered choices for nB(r⃗). The potential v
nad
t (r⃗) varies rapidly in both

cases. At r = 2, i.e., where the target radial density has minimum in both consid-

ered cases, the potential has a spike. For r = 2, vnadt = 204.82 and vnadt = 115.714

for the Eq. 9.2.16 and Eq. 9.2.17 case, respectively. The presence of such a spike

reflects the exact condition for vnadt [nA, nB ]:
8

vnadt [nA, nB ]
∣∣
nA−→0,

∫
nB(r⃗)dr⃗=2

=
1

8

|∇nB|2

n2B
− 1

4

∇2nB
nB

(9.2.18)
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Fig. 9.2.2. The exact vnad
t (r⃗) (thick lines): a) nB(r⃗) given in Eq. 9.2.16, (b) nB(r⃗) given

in Eq. 9.2.17. The frozen radial density 4πr2nB(r⃗) (dotted line) and the target density
4πr2 (no(r⃗)− nB(r⃗)) (solid line) also shown.

At these conditions, the exact potential vnadt [nA, nB ] is given by the functional

derivative of the von Weizsäcker functional evaluated at the density nB . We notice

that the constraint
∫
nB(r⃗)dr⃗ = 2 applies everywhere in the considered partitioning.

The limit, nA −→ 0 occurs, however, in three regions: at r = 0, 2, or ∞. At r = 2,

nA(r⃗)/nB(r⃗) → 0 for either choices for nB(r⃗). As a consequence of principally

exponential behavior of nB(r⃗), Eq. 9.2.18 leads to vnadt [nA, nB ], which is strongly

positive at r = 2, for either choices of nB(r⃗). At r = 0, however, the two choices for

nB(r⃗) lead to qualitatively different behavior of vnadt [nA, nB ]. With the Eq. 9.2.16

choice for nB(r⃗), nA(r⃗)/nB(r⃗) → 0.0007 at r → 0 leading to a spike at r = 0 for

similar reasons as at r = 2. With the Eq. 9.2.17 choice for nB(r⃗), nA(r⃗)/nB(r⃗) →
0.125 at r → 0.

It is worthwhile to underline the the fact that, the potential vnadt (r⃗) is not the

same in the case of nB(r⃗) chosen as in either Eq. 9.2.16 or 9.2.17 although the

target densities are very similar in both cases (indistinguishable on the scale used

in Figure 9.2.1).

9.2.1.2. Embedded orbital and embedded density

Figure 9.2.3 shows the radial density obtained from the ground-state solution of

Eq. 9.1.3 for nB(r⃗) given in Eq. 9.2.16 and the exact potential vnadt (r⃗) given in

Eqs. 9.1.14 and 9.1.15. The density nA(r), which is derived from numerical solution

of Eq. 9.1.3, matches perfectly the target density no(r) − nB(r) which is obtained

analytically.

The minimum of the radial density 4πr2 (no(r⃗)− nB(r⃗)) at r = 2 is not zero

(no(2)− nB(2) = 0.0003310 for nB(r) given in Eq. 9.2.16). It can be made vanish-

ingly small with the exponential dumping factor in Eq. 9.2.16. This value is very

accurately reproduced by the numerical solver of Eq. 9.1.3 for the exact potential
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Fig. 9.2.3. Radial density 4πr2nA(r⃗) obtained from Eq. 9.1.3 with the exact vt(r⃗) (solid line)
and the target radial electron density 4πr2 (no(r⃗)− nB(r⃗)) (dashed line). Only the densities
obtained with the Eq. 9.2.16 are shown. The alternative partitioning (Eq. 9.2.17) leads to densities

indistinguishable on the scale of the picture.

(nA(2) = 0.0003317). For nB(r⃗) chosen as in Eq. 9.2.17, the behavior of the em-

bedded density at r = 2 is very similar to the previously analyzed one. The radial

density almost reaches zero for the chosen w = 0.001 and can be might vanishingly

small by decreasing w which correspond to the increase of the hight of the maximum

in vnadt (r).15 The corresponding numerical values are: no(2) − nB(2) = 0.0005861

and nA(2) = 0.0005864. This result shows robustness of the used numerical pro-

cedure to solve Eq. 9.1.3 (see also the discussion of the overlaps in the subsequent

parts of the present work).

The ground-state embedded orbitals obtained from Eq. 9.1.3 for the two con-

sidered choices for nB(r⃗) are shown on Figure 9.2.4. In each case, the orbital is

nodeless with a maximum at about r = 5, a minimum at r = 2, and the secondary

maximum near the nucleus r. The embedded orbital closely orbitals resembles |φ2s|.
The switch of the sign from negative to positive at r = 2 is the consequence of the

barrier in vnadt (r⃗) which makes the embedded orbital nodeless. Most of the electron

density is localized in the valence shell, i.e., at r > 2.

It is worthwhile to underline that the considered choices for nB(r⃗) do not cor-

respond to freezing the density 2φ2
1s because of the small admixture of the valence

density in nB(r⃗). Our previous analyses of the same system15 show that vnadt (r)

changes smoothly with decreasing amount of the admixture, i.e., if nB(r⃗) approaches

2φ2
1s. As the consequence, the embedded wavefunction obtained from Eq. 9.1.3 does

not approach φ2s but rather |φ2s| as nB(r⃗) → 2φ2
1s (see Figure 9.2.4). The embed-

ded wavefunction cannot be, therefore, orthogonal to the orbital used to construct

nB(r⃗). This behavior of the embedded wavefunction illustrates the relation between
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Fig. 9.2.4. The radial orbital obtained from Eq. 9.1.3 with the exact vt(r): (a) 4πr2nB(r⃗) given
in Eq. 9.2.16 (b) 4πr2nB(r⃗) given in Eq. 9.2.17. The radial hydrogenic φ2s function is shown for
comparison (dotted line).

the orbital-free embedding potential given in Eq. 9.1.1 and the exact pseudopoten-

tial as defined by Phillips and Kleinman25 if the core orbitals would be chosen to

be frozen. The exact Phillips-Kleinman pseudopotential and the orbital-free effec-

tive embedding potential achieve the same target density in a different manner. In

the former case, the target density corresponds to the ground-state of some sys-

tem for which the external potential (vext(r⃗)) was modified. In the latter one, the

target density corresponds to the excited state of the non-modified system. The

excited state becomes a ground state owing to projecting out the ground-state solu-

tion which involves non-local operators. In the Phillips-Kleinman pseudopotential

case, the exact valence orbital has a node as it must be orthogonal to φ1s. The

lowest-energy embedded orbital approaches a nodeless function if nB(r⃗) → 2φ2
1s

and cannot be, therefore, orthogonal to φ1s.

9.2.1.3. The non-additive kinetic energy

In the considered systems, the numerical value of Tnads [no − nB , nB] = Ts[no] −
Ts[no − nB ] − Ts[nB ] is available in a form of an analytic expression. The kinetic

energy Ts[no] is obtained as the expectation value of the kinetic operator calculated

for the non-interacting wavefunction constructed from two known doubly occupied

Kohn-Sham orbitals. For Ts[no − nB ] and Ts[nB ], the situation is even simpler as

no−nB and nB represent doubly-occupied one-orbital systems. Tnads [no−nB, nB ] is
non-zero for both considered choices for nB(r⃗). T

nad
s [no−nB , nB] = 0.00629883 and

Tnads [no−nB , nB] = 0.013866, for the Eq. 9.2.16 and Eq. 9.2.17 cases, respectively.

Interestingly, the local behavior of the radial integrand tnads [no − nB , nB ](r) =

ts[no−nB ](r)−ts[no](r)−ts[nB](r) used to obtain Tnads [no−nB , nB ] =
∫∞
0
tnads [no−

nB , nB ](r)dr behaves quite differently in both considered cases (see Figure 9.2.5).

For the Eq. 9.2.17 case, also tnads (r) is non-negative (see Figure 9.2.5), in line

with a more general result that tnads [nA, nB ] is non-negative for the partitioning of

the total electron density based on mixing of orbital densities in any four-electron
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Fig. 9.2.5. The radial integrand tnad
s (r) in Tnad

s [no − nB , nB ] =
∫∞
0 tnad

s [no − nB , nB ](r)dr for
two choices for nB : (a) nB(r⃗) given in Eq. 9.2.16, (b) nB(r⃗) given in Eq. 9.2.17.

system.34

In the Eq. 9.2.16 case, although Tnads [nA, nB] is positive, tnad(r) changes sign

from negative to positive at about r = 0.34. It is worthwhile to notice that neither

the Thomas-Fermi- nor the von Weizsäcker approximation to Ts[n] could yield such

a behavior because the former leads to non-negative, whereas the latter one to

non-positive tnad(r).

It is worthwhile to underline that, although the integrand tnad(r) can be inter-

preted as the radial density of the non-additive kinetic energy, the latter quantity is

not uniquely defined because any function integrating to zero will not affect Tnads .

9.2.2. Eq. 9.1.3 with the approximated potentials ṽnad
t [nA, nB]

The considered approximated potentials ṽnadt [nA, nB] are shown in Figures 9.2.6

and 9.2.7. None of them reproduces adequately the whole shape of vnadt (r⃗).

The potential ṽ
nad(TF )
t [nA, nB] decays monotonically differing qualitatively from

the exact potential. In particular, the barrier at r = 2 occurring in both choices for

nB(r⃗) is not reproduced. In the Eq. 9.2.16 case, instead of a narrow spike in vnadt (r)

at → 0, ṽTFt [nA, nB ] is significantly lower and wider. Moreover, ṽ
nad(TF )
t [nA, nB]

is very similar for both choices for nB(r⃗) (either Eqs. 9.2.16 or 9.2.17, whereas the

exact potential vnadt (r) at r → 0 differs qualitatively in these two cases.

As far as the qualitative behavior of the exact potential is concerned,

ṽ
nad(W )
t [nA, nB ] seems to be much better than ṽTFt [nA, nB]. Up to about r = 2,

ṽ
nad(W )
t [nA, nB ] and the exact potential are just shifted by almost a constant: from

0.333463 at r → 0 to 0.490454 at r = 2 in the Eq. 9.2.16 case. The correspond-

ing shifts for nB(r⃗) chosen as in Eq. 9.2.17 are 0.333335 and 0.49045. For the

Eq. 9.2.16 choice for nB(r⃗), the maximum of the exact potential at r = 2 amounts to

204.82, whereas the corresponding value for ṽ
nad(W )
t [nA, nB ] is 204.329 (not shown

in the figures). In the Eq. 9.2.17 case, the corresponding heights of the barrier are:
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Fig. 9.2.6. The exact potential vnad
t (r⃗) (bold), its approximated counterparts: ṽ

nad(TF )
t [nA, nB ]

(bold dotted), ṽ
nad(W )
t [nA, nB ] (bold dashed), ṽ

nad(GEA2)
t [nA, nB ] (dotted), ṽ

nad(TFW )
t [nA, nB ]

(dashed), and ṽ
nad(CW )
t [nA, nB ] (solid), and the corresponding ground-state densities of the

embedded system obtained for the Eq. 9.2.16 choice for nB(r⃗): (a) potentials vnad
t (r⃗) and

ṽnad
t [nA, nB ], (b) embedded radial densities 4πr2nA(r⃗) and 4πr2ñA(r⃗)). The dot-dashed line

is the density obtained for ṽnad
t [nA, nB ] = 0.

vnadt (2) =115.714 and ṽ
nad(W )
t [nA, nB](2) = 115.223. Beyond r = 2, the magnitude

of the shift between ṽ
nad(W )
t [nA, nB ] and vnadt (r) diminishes to vanish at large r.

As the result, ṽ
nad(W )
t [nA, nB ] is too negative for 2 < r < 4.

The shape of ṽ
nad(GEA2)
t [nA, nB ] reflects the strengths and weaknesses of its

ṽ
nad(TF )
t [nA, nB ] and ṽ

nad(W )
t [nA, nB ] components (see Figures 9.2.6 and 9.2.7). On

the scale of the pictures, ṽ
nad(GEA2)
t [nA, nB ] is indistinguishable from the exact po-

tential for r > 2.2. The barrier at r = 2 is about one order of magnitude too low due

to the 1/9 factor in front of the von Weizsäcker contribution to ṽ
nad(GEA2)
t [nA, nB].

Compared to ṽ
nad(W )
t [nA, nB ], the reduction of its contribution (negative) and the

addition of the Thomas-Fermi component eliminates almost perfectly the artificial

negativity of ṽ
nad(W )
t [nA, nB ] at r > 2. At r < 1.7, the ṽ

nad(TF )
t [nA, nB] compo-

nent of this approximated potential dominates. As a result, ṽ
nad(TF )
t [nA, nB ] and

ṽ
nad(GEA2)
t [nA, nB] are practically the same at small r. The ṽ

nad(TFW )
t [nA, nB]

potential reproduces adequately the barrier at small r but the weaknesses of its

ṽ
nad(W )
t [nA, nB ] component become apparent beyond r = 2.

The potential ṽ
nad(CW )
t [nA, nB ] reproduces the barrier at r = 2 which is, how-

ever, too wide and too low. Moreover, it is too negative at r > 2.5. The width of

the barrier at r = 2 is significantly overestimated. At small r, deficiencies of the

Thomas-Fermi component of ṽ
nad(CW )
t [nA, nB ] become apparent.

Using the exact potential vnadt (r⃗) in Eq. 9.1.3 leads to the density nA(r⃗) which

equals to the target density no(r⃗)−nB(r⃗). In all examples considered in the present

work, the target density is given analytically as no(r⃗) − nB(r⃗). Replacing vnadt (r⃗)

by some approximation ṽnadt [nA, nB] leads to the embedded orbital and the em-

bedded electron density denoted by ñA(r⃗), which might differ from no(r⃗)− nB(r⃗).
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Fig. 9.2.7. The exact potential vnad
t (r⃗) (bold), its approximated counterparts: ṽ

nad(TF )
t [nA, nB ]

(bold dotted), ṽ
nad(W )
t [nA, nB ] (bold dashed), ṽ

nad(GEA2)
t [nA, nB ] (dotted), ṽ

nad(TFW )
t [nA, nB ]

(dashed), and ṽ
nad(CW )
t [nA, nB ] (solid), and the corresponding ground-state densities of the

embedded system obtained for the Eq. 9.2.17 choice for nB(r⃗): (a) potentials vnad
t (r⃗) and

ṽnad
t [nA, nB ], (b) embedded radial densities 4πr2nA(r⃗) and 4πr2ñA(r⃗)). The dot-dashed line

is the density obtained for ṽnad
t [nA, nB ] = 0.

Similarly, the lowest energy embedded orbital in such a case might differ from√
(no(r⃗)− nB(r⃗)) /2. Figures 9.2.6 and 9.2.7 show the densities (ñA) obtained us-

ing the considered approximations ṽnadt [nA, nB ].
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Fig. 9.2.8. The radial ground-state wavefunction obtained from Eq. 9.1.3 with the exact po-

tential vnad
t (r⃗) (bold), and its approximated counterparts: ṽ

nad(TF )
t [nA, nB ] (bold dotted),

ṽ
nad(W )
t [nA, nB ] (bold dashed), ṽ

nad(GEA2)
t [nA, nB ] (dotted), ṽ

nad(TFW )
t [nA, nB ] (dashed), and

ṽ
nad(CW )
t [nA, nB ] (solid). The dot-dashed line is the density obtained for ṽnad

t [nA, nB ] = 0. (a)
nB(r⃗) given in Eq. 9.2.16, (b) nB(r⃗) given in Eq. 9.2.17

In practical calculations using Eq. 9.1.3, approximations are needed not directly

for Ts[n] but for T
nad
s [nA, nB] (in the evaluation of energy) and for vnadt [nA, nB] (in

the evaluation of embedded orbitals). To discuss the quality of these quantities in
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the approximated case, Tables 9.1 and 9.2 collect the numerical vales of: Ts[no],

Tnads [no − nB , nB ], and the overlap between the analytically obtained exact wave-

function:

φexact(r⃗) =
√
(no(r⃗)− nB(r⃗)) /2 (9.2.19)

and the wavefunction obtained from Eq. 9.1.3: either that with the exact potential

(φ) or with one of the considered approximations (φ̃). The corresponding exact

quantities available in the considered case are also given for comparison.

Table 9.1. Exact and approximate quantities calculated for
nB(r⃗) given in Eq. 9.2.16.

Approximation T̃s[no] T̃nad
s [no − nB , nB ] ⟨φexact|φ̃⟩

none 0 0 0.375866
W 1.07179 -0.171912 0.245701
TF 1.10746 0.127427 0.864161

GEA2 1.22655 0.108325 0.974925
TFW 2.17925 -0.0444851 0.846614
CW - - 0.960765

exact 1.25 0.00629883 0.999992

Table 9.2. Exact and approximate quantities calculated for
nB(r⃗) given in Eq. 9.2.16.

Approximation T̃s[no] T̃nad
s [no − nB , nB ] ⟨φexact|φ̃⟩

none 0 0 0.37779
W 1.07179 -0.164344 0.254705

TF 1.10746 0.130186 0.863955
GEA2 1.22655 0.111925 0.972546
TFW 2.17925 -0.0341583 0.848841
CW - - 0.9597

exact 1.25 0.013866 0.99999

Depending on which quantity is used as the accuracy criterion, the order of

errors due to the approximations is different. For Ts[no], the error in its approximate

counterparts decreases in following the order:

none > TFW > W > TF > GEA2.

For T̃nads [no − nB , nB ], the errors are ordered differently:

none > W > TF > GEA2 > TFW.

Finally, the errors in the embedded orbital (and the embedded density) measured

as the deviations of ⟨φexact|φ̃⟩ from one, which indicate errors in ṽnadt [nA, nB ], are
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ordered in yet another way:

W > none > TFW > TF > CW > GEA2

The flaws of ṽ
nad(W )
t [no − nB, nB ] result in the smallest overlap between the

exact- and approximated embedded wavefunctions. It is even smaller (about

0.25) than if this component of the embedding potential is neglected (about

0.38)! ṽ
nad(TF )
t [no − nB , nB] is significantly better as the overlap between the

approximated- and exact embedded wavefunctions increases to about 0.86. The

Thomas-Fermi approximation stops the embedded density to collapse into the core

but does it only partially (see Figure 9.2.8). ṽ
nad(GEA2)
t [no − nB , nB] is very effi-

ciently blocking such a collapse into the core as the position of the maximum of the

radial wavefunction is almost in the right place. As a result, the overlap with the

exact orbital is close to 1. The deficiency of this approximation is most pronounced

in the core region where the exact wavefunction still has a small secondary minimum

whereas the GEA2 wave function is very small. This is probably the result of the

Thomas-Fermi component of ṽ
nad(GEA2)
t [no − nB , nB]. The T̃

nad(TF )
s [no − nB , nB ]

and T̃
nad(TFW )
s [no − nB, nB ] approximations lead to noticeable worse embedded

wavefunction than T̃
nad(GEA2)
s [no − nB, nB ] whereas T̃

nad(TF )
s [no − nB , nB] is al-

most as good as T̃
nad(CW )
s [no − nB , nB ]. These approximations lead, nevertheless,

to significantly better embedded wavefunction then T̃
nad(W )
s [no − nB , nB ].

Basically the same conclusions concerning the quality of the considered approx-

imations can be drawn from the results for the Eq. 9.2.17 choice for nB(r⃗) (see

Table 9.2).

The superiority of the ṽ
nad(GEA2)
t [nA, nB ] in preventing the collapse from va-

lence into the core does not mean that this approximation is universally the best.

The present work, concerns cases with a strong overlap between nA(r⃗) and nB(r⃗).

Our previous studies for such pairs nA(r⃗) and nB(r⃗), which do not overlap sig-

nificantly,6,16 show that ṽ
nad(GEA2)
t [nA, nB ] leads to erratic results as far as the

embedded density is concerned. This flaw of ṽ
nad(GEA2)
t [nA, nB ] was recently re-

confirmed by Gotz et al.23 Cutting off smoothly this term, as it is made in the

GGA97 approximation for ṽ
nad(GEA2)
t [nA, nB ]

30 largely expands the area of appli-

cability of Eq. 9.1.3.7

9.3. Conclusions

The present work reports the complete application of one-electron equations for em-

bedded orbitals in analytically solvable case. All the quantities related to the kinetic

energy, which are approximated in practical calculations, i.e., i) the non-additive

kinetic energy Tnads [nA, nB ] together with its radial distribution tnads [nA, nB ](r), ii)

the potential vnadt (r⃗), and iii) the embedded orbital and iv) the embedded density

are obtained analytically. These quantities are compared with their approximated

counterparts. Concerning the exact calculations, the orbital-free embedding poten-

tial was constructed following the same steps as in our previous work15 in the same
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model system but for other choices for the frozen component nB(r⃗). The present

work complements the previous studies by obtaining numerically the embedded or-

bitals and embedded electron density from the Eq. 9.1.3 for either the exact or

approximated non-additive kinetic energy potential.

We analyzed in particular the case related to possible collapse of the valence den-

sity onto the core in the absence of any explicit enforcement of the orthogonality. It

is shown that the lowest-energy solution of Eq. 9.1.3 with the exact effective poten-

tial leads to the target density even in the case where this density is infinitesimally

close to the valence density, i.e., the density which is not pure-state non-interacting

v-representable. The exact non-additive kinetic potential makes a collapse of the

optimized density onto the core impossible. In computational methods in common

use, such a collapse is avoided by means of explicitly enforcing the orthogonality

of the optimized orbital to the orbitals representing the frozen part. This involves

a non-local component of the embedding operator operator such as the Phillips-

Kleinman pseudopotential. In FDET framework, however, such descriptors of the

environment as the orbitals yielding nB, are not used. It is shown that a local po-

tential can be used for the same purpose although the obtained embedded orbital

is quite different from the one which would be obtained by enforcing orthogonality.

As a result, although the optimal orthogonal orbital approaches φ2s, the optimal

embedded orbital obtained form Eq. 9.1.3 approaches rather |φ2s|. The difference is
due to the fact that, although, the embedded orbital must yield the desired target

density, it must still nodeless.

Concerning the non-additive kinetic energy, the radial distribution tnads [nA, nB]

of the contributions to Tnads [nA, nB ]) show that it can change sign in some cases.

This indicates that the each of the two canonical approximations to Ts[n] (Thomas-

Fermi- and von Weizsäcker) might be entirely inadequate in some regions in space

as the Thomas-Fermi approximations leads always to non-additive tnads [nA, nB]

whereas the latter one leads to always non-positive tnads [nA, nB].

Concerning the approximate potentials, their capacity to prevent the valence

density to collapse into the core varies strongly from one approximation to an-

other. The local density approximation leads to a monotonically decreasing repul-

sive potential, which prevents the collapse only partially. The exact functional for a

close-shell two electron system (the von Weizsäcker functional for Ts[n] leads to the

embedding potential, which is even worse than such in which the non-additive ki-

netic energy potential is completely neglected. As far as semi-local approximations

for Ts[n] are concerned, it is clearly demonstrated that improving the approxima-

tion for Ts[n] does not necessarily lead to improvements in the quantities derived

from such approximations - the potential vnadt [nA, nB] in particular. This indi-

cates that the quest for a good approximations for vnadt [nA, nB ] is governed by its

own rules. The challenge of accurate approximations for the functional Ts[n] and

its functional derivative, i.e., quantities which are of key importance for OF-DFT

methods overviewed in the present volume, is not necessarily directly related to the
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efforts in approximating Tnads [nA, nB ] and its functional derivative, which are key

ingredients in the FDET-based methods.

The provided numerical examples provide also a good illustration for the

highly non-local nature of the relation between the orbital-free embedding po-

tential and embedded electron density. The three approximated potentials:

ṽ
nad(GEA2)
t [nA, nB], ṽ

nad(TFW )
t [nA, nB ], and ṽ

nad(CW )
t [nA, nB], although are quite

different, lead to rather similar embedded electron densities. Among them

ṽ
nad(GEA2)
t [nA, nB] is clearly the best one for the considered pairs nA and nB .

Concerning development of approximations for ṽnadt [nA, nB ], the present study

indicates that the approximation should comprise the von Weizsäcker term in some

regions of space (as it is made in the NDSD approximation for the non-additive

kinetic energy8) although it can be scaled down as it is in the second order gradient

expansion for Ts[n]. Its full inclusion in some regions in space, however, undesired.

Finally, we note that this work concerned properties of the bi-functional

Tnads [nA, nB ] for a given nB as in typical FDET-based computations (frozen nB),

the issue of approximating this bi-functional and its functional derivative by means

of some explicit analytical expressions is also of key importance in fully variational

calculations in which nB is also subject to optimization. Such fully variational cal-

culations are based on the subsystem formulation of DFT formulated by Senatore

and Subbaswamy 35 and Cortona.36 In practice, fully variational calculations can be

performed using any implementation of FDET by means of the ”freeze-and-thaw”

algorithm16 involving iterative solutions of the KSCED equations for each inter-

acting subsystem. We can expect, therefore, that errors of any approximation for

Tnads [nA, nB ] considered in the present work would rather enhance than attenuate

in fully variational calculations.
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