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Hybrid functionals are responsible for much of the utility of modern Kohn-Sham density functional
theory. When rigorously applied to solid-state metallic and small band gap systems, however, the
slow decay of their nonlocal Hartree-Fock-type exchange makes hybrids computationally
challenging and introduces unphysical effects. This can be remedied by using a range-separated
hybrid which only keeps short-range nonlocal exchange, as in the functional of Heyd et al.
�J. Chem. Phys. 118, 8207 �2003��. On the other hand, many molecular properties require full
long-range nonlocal exchange, which can also be included by means of a range-separated hybrid
such as the recently introduced LC-�PBE functional �O. A. Vydrov and G. E. Scuseria, J. Chem.
Phys. 125, 234109 �2006��. In this paper, we show that a three-range hybrid which mainly includes
middle-range Hartree-Fock-type exchange and neglects long- and short-range Hartree-Fock-type
exchange yields excellent accuracy for thermochemistry, barrier heights, and band gaps,
emphasizing that the middle-range part of the 1 /r potential seems crucial to accurately model these
properties. © 2007 American Institute of Physics. �DOI: 10.1063/1.2822021�

Due to its combination of relatively high accuracy and
low computational cost, density functional theory1,2 �DFT�
has become the most popular method for electronic structure
calculations in molecules and solids. The great successes of
modern DFT owe much to the advent of hybrid
functionals3–7 which mix a fraction of nonlocal Hartree-
Fock-type exchange with conventional local or semilocal ex-
change functionals, improving the accuracy of the method
quite significantly. For example, the nonempirical hybrid
PBEh �Refs. 6 and 7� reduces the errors in heats of formation
and barrier heights by at least a factor of 2 compared to its
parent, the semilocal PBE functional of Perdew et al.8 De-
spite their improved accuracy, however, hybrid functionals
have several drawbacks, two of which we discuss here.

One significant drawback of hybrid functionals in metal-
lic systems is that the nonlocal exchange interaction has an
unphysical and extremely slow spatial decay.9 While hybrid
functionals can be applied in systems with small or vanishing
band gaps,10–12 this slow decay makes the rigorous and nu-
merically accurate application of hybrid functionals compu-
tationally challenging for such systems.

A second drawback of hybrid functionals is that the
asymptotic decay of the exchange potential for atomic and
molecular systems is incorrect. The exact exchange potential
decays asymptotically as −1 /r,13,14 while that of a hybrid
functional with a fraction c of nonlocal exchange decays as
−c /r. This incorrect long-range decay is believed to be re-
sponsible for errors in describing charge transfer and Ryd-
berg excitations15 and polarizabilities of long chains.16,17

Either of these two drawbacks can be overcome by using
a range-separated hybrid, which uses different fractions of
nonlocal exchange at different interelectronic separations r12.

The range-separated functional of Heyd, Scuseria, and
Ernzerhof18–20 �HSE� uses a fraction of nonlocal exchange
only at short range �i.e., for small r12�, allowing it to rigor-
ously include a portion of nonlocal exchange and treat me-
tallic systems efficiently while still providing accuracy com-
parable to its parent PBEh hybrid for atomic and molecular
systems.18 However, since HSE cuts off the long-range non-
local exchange, its exchange potential decays even faster
than that of PBEh, and its performance for properties sensi-
tive to the long-range exchange potential is on par with that
of PBE.

On the other hand, there has been considerable effort
invested in range-separated hybrid functionals which use full
long-range nonlocal exchange to guarantee the proper
asymptotic decay of the exchange potential.15,16,21–24 Such a
model can simultaneously deliver accurate barrier heights
and, as recently shown, atomization energies.21–23 Further,
such models perform well for processes involving long-range
charge transfer, Rydberg excitations, and other properties
sampling the tail of the density.15–17,25–29

In this paper, we seek to reconcile these two seemingly
different approaches; in doing so, we hope to increase the
accuracy of the HSE functional so that it is comparable to
that of long-range corrected functionals such as LC-�PBE,
while retaining broad applicability for periodic systems. The
key to this goal is to note that the range scales in HSE and in
LC-�PBE are very different.a�Electronic mail: th4@rice.edu
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Typical range-separated hybrid functionals begin by
writing16,18,21,22,30,31

�1�

and treating the two different components differently. The
range-separation parameter � governs the meaning of short
range �SR� and long range �LR�. In HSE, we have �
=0.11 a0

−1, while in LC-�PBE, we instead have �=0.40a0
−1.

Both the short range in which HSE uses nonlocal exchange
and the long range in which LC-�PBE does so include a
significant fraction of what we will here refer to as “middle
range” �MR�. Therefore, it seems interesting to explore the
quality of results obtainable with an approach in which
middle-range Hartree-Fock-type exchange is emphasized.
For very small r12 the local density approximation to the
exchange energy is exact,32,33 so there would seem to be little
need for short-range nonlocal exchange, while at very long
range, as we have seen, nonlocal exchange can be computa-
tionally undesirable in systems with vanishing band gaps.

Range-separated hybrids can be rigorously justified
through a model Hamiltonian formalism.31,34 We begin by
writing

H0 = T + Vext + V̄ee, �2�

where V̄ee is some model electron-electron interaction opera-
tor. The ground state total energy can be obtained via a con-
strained search approach as follows:

E0 = min
�

����H0��� + F̄�n��� , �3�

where F̄�n� is a universal functional of the density which can
be written as

F̄�n� =
1

2
� dr1dr2n�r1�n�r2��Vee − V̄ee� + Ēxc�n� . �4�

Note that with this definition, the Coulomb energy is treated
exactly, as is the external potential, while the majority of the
kinetic energy is included in �H0�. The unknown functional

Ēxc corrects the kinetic energy and accounts for electron ex-
change and correlation.

In the limit that V̄ee=0, the foregoing scheme reduces to
the usual Kohn-Sham approach. In this case, the minimiza-
tion in Eq. �3� is simple since we may minimize over single
determinants, but constructing accurate approximations to

Ēxc is not straightforward. In the limit that V̄ee=Vee, this re-
duces to the usual wave function methodology, in which case

Ēxc=0 but the minimization of Eq. �3� is computationally
intractable for all but the smallest systems. There is thus a
trade-off between ease of minimization and ease of construc-

tion of Ēxc. Using nonzero V̄ee but restricting the minimiza-
tion to single determinants retains the computational simplic-
ity of the Kohn-Sham scheme but is of course approximate.
Conventional hybrids with a fraction c of exact exchange can

be seen as writing V̄ee=cVee, with the minimization restricted
to single determinants only. Range-separated hybrids merely

entail more elaborate forms for V̄ee.
A three-range hybrid functional can be written as

Ex = �1 − cSR�Ex
SR-KS + cSREx

SR-HF + �1 − cMR�Ex
MR-KS

+ cMREx
MR-HF + �1 − cLR�Ex

LR-KS + cLREx
LR-HF, �5�

where KS and HF, respectively, refer to semilocal exchange
and nonlocal exchange. Note that nonlocal exchange here
refers not only to the exchange energy but also to the ex-
change potential, both of which take the Hartree-Fock form.
In other words, we are doing generalized Kohn-Sham in the
sense of Seidl et al.35 The short-, mid-, and long-range ex-
change energies are defined in terms of range-separation
functions FSR�r12�, FMR�r12�, and FLR�r12� by writing

1

r12
=

FSR�r12�
r12

+
FMR�r12�

r12
+

FLR�r12�
r12

. �6�

For practical purposes, some constraints can be placed both
on the coefficients c and the range-separation functions F. If
the exchange functional of Eq. �5� is to be generally appli-
cable to metals, we wish to have cLR=0; we presumably
want cMR	1 to aid in the description of quantities sensitive
to the long-range potential, while we desire cSR to be small.
For small �large� r12 only FSR �FLR� should be nonzero. The
two-electron integrals needed to build the nonlocal exchange
contributions at each range must be straightforward, and so
too must be the integrals over the exchange hole needed to
build the semilocal contributions. Linear combinations of er-
ror functions satisfy all of these criteria, and our range-
separation functions are therefore chosen as

FLR�r12� = erf��LRr12� , �7a�

FSR�r12� = erfc��SRr12� , �7b�

FMR�r12� = erfc��LRr12� − erfc��SRr12� . �7c�

Note that if �SR=�LR, then the middle range disappears.
This is the case of HSE ��SR=�LR=0.11 a0

−1� and LC-�PBE
��SR=�LR=0.40 a0

−1�. A distinction between �SR and �LR is
not needed for two-range functionals but is needed for the
three-range case.

In summary, the present work uses

Ex = �1 − cSR�Ex
SR-KS + cSREx

SR-HF + �1 − cMR�Ex
MR-KS

+ cMREx
MR-HF + Ex

LR-KS �8�

for the exchange functional, with the range-separation func-
tions FSR, FMR, and FLR taking the form of Eq. �7�. A plot of
the short-range, middle-range, and long-range interactions
F /r12 using our recommended values for the parameters �SR

and �LR �vide infra� is given in Fig. 1. We use the PBE
exchange hole model36 to define the semilocal exchange con-
tributions, and PBE correlation.8 Both HSE and LC-�PBE
can be written as special cases of the general three-range
functional of Eq. �5�. In the case of HSE, one would write
cSR=0.25 and cLR=0, while in the case of LC-�PBE, we
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would write cSR=0 and cLR=1. Because in both cases �SR

=�LR, the middle-range interaction of Eq. �7c� disappears.
All calculations are carried out self-consistently in the

6-311G+ + �3df ,3pd� basis set, in a development version of
the GAUSSIAN program.37 We consider here the AE6 set of
six atomization energies,38 the BH6 set of six barrier
heights,38 the G3 set of heats of formation,39,40 the HTBH38
set of proton-transfer barrier heights,41 the NHTBH38 set of
nonproton transfer barrier heights,42,43 the total ground state
energies of H through Ar,44 and the band gaps of five solids
�BN, BP, C, Si, and SiC� which we deem representative of
those we used before to benchmark HSE.20 Results are re-
ported in Table I for two different sets of parameters. In both
cases, we pick the values of cMR and �LR and optimize �SR

and cSR non-self-consistently �i.e., using the PBE orbitals� to
describe the AE6 and BH6 test sets. Barrier heights are
weighted as three times more important than atomization en-
ergies �in line with the results from LC-�PBE, for which
errors in BH6 are three times smaller than errors in AE6�.
Notice that cSR=0 in both cases—this is the optimal value,
and is not imposed.

We begin with the column labeled “A,” in which �LR

=0.11 a0
−1, chosen in analogy with HSE. We impose, how-

ever, cMR=1, in analogy with LC-�PBE. This combination
of parameters gives quite excellent results for finite systems,
being roughly equivalent to LC-�PBE. This should not be
too surprising. The long-range interaction turns on rather
slowly, so is of limited energetic importance in these molecu-
lar systems. The crucial pieces are the short-range PBE and
the mid-range nonlocal exchange, both of which are as used
in LC-�PBE. Moreover, the optimum value for �SR is

0.40 a0

−1, corresponding to that in LC-�PBE. Performance
for band gaps is unfortunately lacking, however, as they are
overestimated substantially; evidently, the parameters which
work for finite systems are not appropriate for extended sys-
tems.

We can, however, adjust �LR and cMR. Non-self-
consistent investigations with cMR=1 reveal that the error in
the AE6 and BH6 training sets and the G1 test set of heats of
formation45,46 and the total atomic energies of H–Ar are
weakly dependent on �LR for �LR�0.20 a0

−1. Evidently, at
least for these sets, while finite systems benefit from the
inclusion of middle-range exact exchange, the definition of
middle range is somewhat loose. We can take advantage of
this behavior to improve performance for solids. Further, we
can adjust cMR, and similar non-self-consistent investigations
with �LR=0.20 a0

−1 show that performance for finite systems
is reasonable for cMR�0.5. In the column of Table I labeled
“B,” we show self-consistent results with �LR=0.20 a0

−1,
cMR=0.60, and cSR and �SR optimized as previously de-
scribed. Results for thermochemistry are still quite good, and
while performance for barrier heights degrades slightly, per-
formance for band gaps improves dramatically. Our recom-
mended parameters are thus cSR=0, cMR=0.60, �LR

=0.20 a0
−1, and �SR=0.84 a0

−1.
To get some sense of the physical content of the func-

tional, we examine the fraction of nonlocal exchange used as
a function of r12, given by

FIG. 1. �Color online� Range-separated electronic potentials F�r12� /r12 from
the range-separation functions as defined in Eq. �7� with �SR=0.84 a0

−1 and
�LR=0.20 a0

−1.

TABLE I. Mean absolute errors and parameters for two different parametrizations of the functional of Eq. �8�
and for several other functionals based on the PBE model. All results are in kcal/mol, except for atomic total
energies �mhartree/electron� and band gaps �eV�. Note that �SR and cMR are optimized to describe the AE6 and
BH6 sets with the other parameters fixed a priori, and that we do not fit to the other data sets at all.

PBE PBEh HSE LC-�PBE

This work

A B

cSR 0 0.25 0.25 0 0 0
cMR 0 0.25 ¯ ¯ 1 0.6
cLR 0 0.25 0 1 0 0
�LR�a0

−1� ¯ ¯ 0.11 0.40 0.11 0.20
�SR�a0

−1� ¯ ¯ 0.11 0.40 0.42 0.84

AE6 15.1 6.1 4.7 4.9 4.6 5.9
G3 22.2 6.7 4.8 4.3 4.0 4.4
BH6 9.6 4.9 4.8 1.5 1.4 1.8
HTBH38 9.7 4.6 4.6 1.3 1.4 1.7
NHTBH38 8.6 3.6 6.7 2.4 2.1 1.8
Atomic energies 8.6 7.1 6.2 5.0 5.1 4.8
Band gaps 1.1 ¯ 0.1 ¯ 1.7 0.4
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r12V̄ee�r12� = cSRFSR�r12� + cMRFMR�r12� . �9�

In Fig. 2 we show r12V̄ee�r12� for HSE, LC-�PBE, and the
present work for both sets of parameters. Parameter set A
interpolates smoothly between HSE and LC-�PBE, as one
might expect, while our recommended parameter set B fol-
lows LC-�PBE for small r12 before rapidly decaying below
the HSE result.
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