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ABSTRACT: Range-separated hybrid density functionals, which incorporate different
fractions of exact exchange at different interelectronic separations, offer substantial
advantages over conventional global hybrid functionals. However, they generally use a
fixed, system-independent range-separation parameter, which numerical experience and
formal arguments both show to be a limiting approximation. Locally range-separated
hybrids, which instead use a position-dependent range-separation function, should
overcome this limitation, but their implementation is nontrivial. Here, we present a
method which in practice converts a locally range-separated hybrid into a linear
combination of range-separated local hybrids. Thus, unlike our previous implementation
of this locally range-separated hybrid idea, we do not need to approximate the exchange
hole, and we can take advantage of existing self-consistent local hybrid implementations
to carry out self-consistent calculations using locally range-separated hybrid functionals.
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1. Introduction

B ecause of its combination of low computa-
tional cost and reasonable accuracy, the Kohn–

Sham [1, 2] (KS) construction in density functional
theory (DFT) has over the past few decades become
the dominant method in quantum chemistry [3]. The
chief limitation in KS-DFT is the need to approximate
the exchange-correlation functional Exc[n], which is
known to be a functional of the electron density n,
but whose precise dependence on the density is not
known.

Simple semilocal functionals, such as the local
density approximation (LDA), generalized gradient
approximations (GGA), and meta-GGAs, write the
exchange-correlation energy density at the point r as
a function only of the density and possibly its deriva-
tives and the kinetic energy density at that point.
Although such functionals can be derived from first
principles, their performance in practice is often
inadequate for chemical purposes. To reach accept-
able accuracy, it is common to use global hybrid func-
tionals, which include a constant fraction of exact,
nonlocal Hartree–Fock-type exchange [4–8]. At the
cost of a single extra parameter (the fraction of exact
exchange), global hybrids provide substantially bet-
ter accuracy than their parent semilocal functionals.
Global hybrids can be justified by adiabatic connec-
tion arguments, which allows the fraction of exact
exchange to be chosen on theoretical, rather than
empirical, grounds [4, 9, 10].

Although global hybrid functionals have done
much to make KS-DFT the powerful tool it is
today, they are not without their limitations. In
extended systems, exact exchange is expensive to
compute since the lattice sums required to evaluate
it are slowly convergent. Moreover, as the band gap
becomes small, long-range exact exchange is can-
celled by long-range nondynamical correlation, and
without explicit treatment of the latter, it is inap-
propriate to use the former [11]. On the other hand,
exact exchange is required in finite systems, where
it gives the correct asymptotic exchange-correlation
potential, in contrast to that derived from semilo-
cal functionals. As global hybrids include only a
fraction of the nonlocal exchange interaction, they
are in error for properties which sample density
tails.

Many deficiencies of global hybrids can be cor-
rected by using range-separated hybrids (RSH) [12,
13], in which the interelectronic Coulomb potential
is split into short-range (SR) and long-range (LR)

components, typically as

1
r12

= erf(ωr12)

r12︸ ︷︷ ︸
LR

+ erfc(ωr12)

r12︸ ︷︷ ︸
SR

. (1)

Once the Coulomb potential has been so separated,
different fractions of exact exchange are used in
different ranges.

By eliminating long-range exact exchange,
screened hybrids such as the functional of Heyd,
Scuseria, and Ernzerhof [14–16] improve both accu-
racy and affordability over global hybrids for
extended systems. The HSE screened hybrid has
accurately described, among other quantities, band
gaps and lattice constants in semiconductors [17], in
addition to performing well for molecular thermo-
chemistry [18]. On the other hand, Hirao and others
have shown that long-range-corrected hybrids incor-
porating 100% long-range exact exchange provide
dramatic improvements for a host of properties sen-
sitive to the decay of the density in finite systems
[19–27]. More recently, some of us have emphasized
the importance of middle-range exact exchange
[18, 28].

Range-separated hybrids are not, however, a
panacea. Several difficulties can be identified. Most
importantly, range-separated hybrids in our formal-
isim require a model for the exchange hole corre-
sponding to the desired semilocal exchange func-
tional, and such models are not always available.
Prescriptions for constructing such models have,
however, been provided. Whether by using the LDA-
based approach of Hirao and coworkers [19] or
by using more complicated and functional-specific
models [29–32], it is nowadays possible to construct
exchange holes for arbitrary semilocal functionals.

Although this problem has largely been over-
come, several others have not. Depending on the
property under investigation, the optimal range-
separation parameter ω can vary significantly [33].
Furthermore, different systems require different val-
ues of ω even for the same property. For example,
the ω which returns the correct band gap in the HSE
screened hybrid functional varies roughly between
0.05a−1

0 and 0.15a−1
0 [34], where a0 is the Bohr radius.

The ω which gives the correct dissociation curves for
homonuclear diatomic cations X+

2 is also known to be
system-dependent [35]. System-dependent range-
separation parameters have also been considered
elsewhere [36].

In addition to these practical concerns, there is a
formal concern as well. Because exact Kohn–Sham
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exchange (i.e., Hartree–Fock-type exchange eval-
uated with Kohn–Sham orbitals) scales properly
under uniform coordinate scaling [37] r → λr, global
hybrids clearly do likewise, so long as they are imple-
mented in the optimized effective potential sense [38,
39]. This is not true for conventional range-separated
hybrids. A range-separated hybrid will scale cor-
rectly only so long as ωr12 is scale-invariant. This in
turn requires that ω → ω/λ; since n(r) → λ−3n(λr)
in order to keep the same normalization of n, we
see that ω must scale as n1/3 [37]. A simpler way to
say this is just that ω must have dimensions of an
inverse length, and the relevant length scale of the
system is set by the density (whose dimensions are
inverse volume).

We can begin to address these deficiencies of
range-separated hybrids, all of which can be traced
to the choice ofω, by makingω itself a local functional
of the density. Although this idea has been proposed
for range-separated correlation techniques [40, 41], it
has proven difficult to implement. Recently, Krukau
and coworkers proposed a semilocal ansatz in which
the exact exchange hole is replaced by a model which
is exact in certain limits [42]. In this work, we discuss
a more rigorous implementation of locally range sep-
arated hybrids than the one presented in Ref. [42],
and give illustrative results for a particular choice of
the range-separation function.

2. Formalism

The exchange-correlation energy for a locally
range-separated (LRS) hybrid can be written as

ELRS
xc = EDFA

xc

+ cSR

∫
dx

[
εSR−HF

x (x, ω(x)) − εSR−DFA
x (x, ω(x))

]

+ cLR

∫
dx

[
εLR−HF

x (x, ω(x)) − εLR−DFA
x (x, ω(x))

]
,

(2)

in terms of coefficients cSR and cLR and the short-
range and long-range exact exchange (HF) and
semilocal density functional approximation (DFA)
exchange energy densities ε. The coordinate x is a
space-spin coordinate with spatial part r and spin
part σ ; integration with respect to x denotes inte-
gration over space and summation over spin. The
spatial integration in the foregoing equation can be
done numerically on the usual DFT integration grid.

The long-range semilocal exchange energy den-
sity can be obtained simply via

εLR−DFA
x (x1, ω) = 1

2

∫
dx2

erf(ωr12)

r12
n(x1)hDFA

x (x1, r12),

(3)

where hDFA
x (x1, r12) is a semilocal model for the

(spherically averaged) exchange hole, and where the
integration with respect to x2 can usually be done
analytically. An analogous expression holds for the
short-range semilocal exchange energy density.

The complications for locally range-separated
hybrids are all due to the range-separated exact
exchange energy density. In the conventional gauge
[43], the long-range exact exchange energy density
is given by

εLR−HF
x (x1, ω) = −1

2

occ∑
i,j

ϕi(x1)ϕj(x1)

×
∫

dx2ϕj(x2)
erf(ωr12)

r12
ϕi(x2). (4)

Although the integration with respect to x2 can be
done analytically, there are O(N2

e ) such integrations
to be done at each grid point, where Ne is the number
of electrons, so that the computational cost of evalu-
ating the total exchange-correlation energy of Eq. (2)
would scale as O(N2

e Ngrid), where Ngrid is the num-
ber of points in the numerical integration grid. The
computational cost of such an approach is thus too
high for practical purposes.

Local hybrids [44–50] (which use a position-
dependent admixture of exact exchange) face similar
complications. There, one can employ a resolution of
unity approximation originally suggested by Della
Sala and Görling [51] to write

εHF
x (x1) ≈ εHF

x,DSG(x1) = −1
2

occ∑
i,j

∑
q

×
∫

dx2dx3ϕi(x1)ϕj(x2)ϕq(x3)
1

r23
ϕq(x1)ϕi(x2)ϕj(x3)

(5)

where q runs over all molecular orbitals. Integrating
with respect to x2 and x3, we obtain

εHF
x,DFG(x1) = −1

2

occ∑
i,j

∑
q

ϕi(x1)ϕq(x1)

〈
ϕjϕq

∣∣∣∣ 1
r12

∣∣∣∣ ϕiϕj

〉

(6)
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where 〈ϕpϕq|1/r12|ϕrϕs〉 is the usual two-electron
integral in Dirac notation. The sum over j then
gives us

εHF
x,DSG(x1) = −1

2

occ∑
i

∑
q

ϕi(x1)Kiqϕq(x1), (7)

where Kiq is a matrix element of the exact exchange
operator. Note that integrating εHF

x,DSG(x) gives

∫
dxεHF

x,DSG(x) = −1
2

occ∑
i

∑
q

Kiqδiq = −1
2

occ∑
i

Kii, (8)

which is the Hartree–Fock exchange energy. Since
εHF

x (x) and εHF
x,DSG(x) integrate to the same exchange

energy even though they generally have local dif-
ferences, we refer to the energy density of Eq. (7)
as the exact exchange energy density in the Della
Sala-Görling gauge. In practice, this is done in the
atomic orbital basis set, which requires the evalua-
tion also of the inverse of the atomic orbital overlap
matrix.

A similar trick can be used when the elec-
tron repulsion operator is replaced with a range-
separated operator, such as erf(ωr12)/r12, which
would give us

εLR−HF
x,DSG (x1, ω) = −1

2

occ∑
i

∑
q

ϕi(x1)KLR
iq (ω)ϕq(x1), (9)

where

KLR
iq (ω) =

occ∑
j

∫
dx1dx2ϕi(x1)ϕj(x2)

erf(ωr12)

r12

× ϕj(x1)ϕq(x2). (10)

Integrating this long-range exchange energy density
yields the correct long-range exact exchange energy,
and we can thus use the exchange energy densi-
ties of Eqs. (4) and (9) interchangeably in defining
the total exchange-correlation energy of Eq. (2). In
the case where ω depends on x1, however, such an
approach would not reduce the computational scal-
ing at all, since, ω presumably being different at each
grid point, we would have to construct a different
matrix KLR(ω) at each grid point.

To avoid this problem, Krukau, Scuseria, Perdew,
and Savin [42] proposed to construct a semilocal
(and thus analytically integrable) model of the exact

exchange hole, constrained so that it correctly repro-
duces the full range exact exchange energy density.
Then the long-range exact exchange energy density
would be written as

εLR−HF
x (x1, ω) ≈ 1

2

∫
dx2

erf(ωr12)

r12
n(x1)

× hx
(
x1, r12; εHF

x (x1)
)
, (11)

where the dependence of the semilocal model
exchange hole hx on the full range exact exchange
energy density is included for emphasis. This model
integrates to the correct long-range exact exchange
energy as ω goes to zero or infinity, but not for other
values of ω.

We here suggest a different approximation, in
which for a variable ω depending on position we
write

erf(ω(x)r12) ≈
∑

µ

cµ(ω(x))erf(ωµr12). (12)

Here, the ωµ are fixed parameters providing a basis
for expanding ω(x). By making this approximation,
we are able to write

εLR−HF
x,DSG (x, ω(x)) ≈ −1

2

occ∑
i

∑
q

∑
µ

cµ(ω(x))

× ϕi(x)KLR
iq (ωµ)ϕq(x) (13a)

=
∑

µ

cµ(ω(x))εLR−HF
x,DSG (x, ωµ). (13b)

To ensure that we treat the exact exchange compo-
nent and the semilocal exchange component to equal
accuracy, we also write

εLR−DFA
x (x, ω(x)) ≈

∑
µ

cµ(ω(x))εLR−DFA
x (x, ωµ), (14)

so that the total exchange-correlation energy
becomes

ELRS
xc = EDFA

xc + cSR

∑
µ

∫
dxcµ(ω(x))

× [
εSR−HF

x,DSG (x, ωµ)− εSR−DFA
x (x, ωµ)

] + cLR

∑
µ

∫
dxcµ(ω(x))

× [
εLR−HF

x,DSG (x, ωµ) − εLR−DFA
x (x, ωµ)

]
. (15)

Effectively, we have transformed a locally range-
separated hybrid into a linear combination of local
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hybrids. As the number of fixed parameters ωµ gets
large, the range-separated exchange energy den-
sity we have proposed becomes identical to the
long-range exact exchange energy density in the
Della Sala-Görling gauge. This model can thus be
used without introducing any errors in the range-
separated exact exchange energy, so long as we
are willing to pay the price of letting the number
of expansion parameters become large enough. An
additional benefit is that, as the exchange energy
density of Eq. (13) takes the local hybrid form, self-
consistent implementation in the generalized Kohn–
Sham approach is straightforward with our recently
developed codes [52].

Before turning our attention to the details of
our algorithm, let us briefly discuss the choice of
ω(x). Assuming that ω(x) depends only on the spin-
density n(x) and on ∇n(x), the scaling consideration
previously discussed suggests

ω(x) = kF(x)F(s(x)), (16a)

kF(x) = (6π 2n(x))1/3, (16b)

s(x) = |∇n(x)|
2kF(x)n(x)

. (16c)

The work of Krukau et al. [42] suggests that F(s) = ζ s
is a reasonable starting point. Our focus here is on the
algorithmic details of our proposed approach and
not on the optimal choice of ω(x), but we will briefly
discuss the numerical performance of this choice of
ω(x) as a function of ζ .

3. Algorithmic Details

To construct the exchange energy density of Eq.
(13), we need to address two main issues. First,
we must give a prescription for cµ(ω), and second,
we must choose the ωµ. Although the former is
straightforward, the latter requires no little thought.

To construct cµ(ω), we simply use a Lagrange
interpolation form. That is, we write

cµ(ω) =
∏
ν �=µ

ω − ων

ωµ − ων

. (17)

Because
∑

µ

cµ(ω) = 1, (18a)

∑
µ

cµ(ω)ωµ = ω, (18b)

our approximation for the error function is exact at
small r12 (where the error function is linear in ωr12)
and at large r12 (where the error function approaches
one). Further, Eq. (18a) implies that we can use the
same expansion coefficients cµ(ω) for erf(ωr12) and
for erfc(ωr12):

erfc(ωr12) = 1 − erf(ωr12) (19a)

≈
∑

µ

cµ(ω) −
∑

µ

cµ(ω)erf(ωµr12) (19b)

≈
∑

µ

cµ(ω)erfc(ωµr12). (19c)

To choose the ωµ, we pick smallest and largest
values, respectively ωmin and ωmax, along with the
number Nω of expansion functions. Given ωmin, ωmax,
and Nω, there are two simple schemes for picking the
ωµ. One could use an equally spaced grid,

ωµ = ωmin + ωmax

2
+ ωmax − ωmin

2
2µ − Nω − 1

Nω − 1
, (20)

or a Chebyshev grid,

ωµ = ωmin + ωmax

2
+ ωmax − ωmin

2
cos

(
2µ − 1

2Nω

π

)
.

(21)

Uniform grids are susceptible to Runge’s phenome-
non, in which the interpolating polynomial oscillates
around the exact curve, with the oscillations growing
larger in magnitude as the order of the interpo-
lating polynomial (i.e., Nω) grows. This problem is
mitigated by using a Chebyshev grid, which we
therefore prefer.

It yet remains to choose Nω, ωmin, and ωmax. We
discuss these below.

3.1. SENSITIVITY TO THE NUMBER OF
EXPANSION FUNCTIONS

To investigate the sensitivity to the number of
expansion functions, we show in Figure 1 the error
function and the expansion of Eq. (12) for two choices
of ωmin, ωmax, and for several choices of Nω.

As the figure illustrates, we clearly need more than
two expansion functions, and would prefer to use
more than four; six seems to be sufficient. This can be
verified by considering long-range-corrected LDA
[53, 54], which uses 100% short range LDA exchange
and 100% long range exact exchange. Here and in the
rest of this work, we refer to this functional as LC-
ωLDA and set ω = 0.60a−1

0 . Treating LC-ωLDA as a
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FIGURE 1. Error function and its interpolation. Both
panels use an evenly spaced grid of ωµ, and interpolate
erf(0.4r12). Top panel: ωmin = 0.1 and ωmax = 0.7. Bottom
panel: ωmin = 0.3 and ωmax = 0.9. In both cases, the lines
for Nω = 4, Nω = 6, and the exact error function are
essentially superimposable. [Color figure can be viewed
in the online issue, which is available at www.
interscience.wiley.com.]

locally range-separated hybrid with ω(x) = 0.60a−1
0 ,

we can compare the results using our approach [Eq.
(15)] to the exact results for the functional. Accord-
ingly, we calculate the mean absolute error (MAE) in
the AE6 and BH6 sets of atomization energies and
barrier heights [55], as well as in the total energies
of the first eighteen atoms (H-Ar) [56]. Results are
displayed in Table I. We see that with six expan-
sion functions, the interpolation error is negligible.
Note, however, that as ωmax − ωmin becomes larger
compared to (ωmax + ωmin)/2, the number of expan-
sion functions required for accurate interpolation
increases.

To show that the interpolation of Eq. (12) is uni-
formly accurate between ωmin and ωmax, we examine

TABLE I
Comparison between results from the
long-range-corrected LC-ωLDA functional evaluated
exactly and approximately, via the interpolation of
Eq. (12).

Nω AE6 BH6 Atoms

2 13.117 2.009 43.081
4 11.020 2.477 42.817
6 11.127 2.495 42.812
LC-ωLDA 11.131 2.493 42.812

Although LC−ωLDA uses ω = 0.60a−1
0 , the interpolation uses

ωmin = 0.30a−1
0 , ωmax = 0.90a−1

0 , and a number of expansion
functions varying from 2 to 6. We do not consider odd values
for Nω, since in that case the interpolation is exact as one of
the expansion functions uses ω = 0.60a−1

0 . We show mean
absolute errors (MAE) in kcal/mol for the AE6 and BH6 sets,
and in mH/electron for the total energies of H-Ar.

the long-range-corrected LDA functional as a func-
tion of ω. In Figure 2, we show the MAE for the
AE6 set (kcal/mol), the BH6 set (kcal/mol), and
H-Ar (mH/electron) from LC-ωLDA. We also show
the results from the interpolation of Eq. (12) with
ωmin = 0.20a−1

0 , ωmax = 1.00a−1
0 , and Nω = 6. Clearly,

the interpolation is accurate across the whole range
of ω. Note that these results use LC-ωLDA orbitals
with ω = 0.60a−1

0 .

FIGURE 2. Mean absolute error for LC-ωLDA as a
function of ω, and for the same functional using the linear
combination of error functions as in Eq. (12). We set
Nω = 6, ωmin = 0.20a−1

0 , and ωmax = 1.00a−1
0 . Results

evaluating the error function exactly are shown as lines;
results using the linear combination of error functions are
shown as points. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.
com.]

2028 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 109, NO. 9



LOCALLY RANGE-SEPARATED HYBRIDS

FIGURE 3. Error function and its extrapolation. Both
panels use an evenly spaced grid of ωµ, with ωmin = 0.1
and ωmax = 0.7. Top panel: ω = 0.9. Bottom panel:
ω = 0.05. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

3.2. CHOOSING ωmin AND ωmax

The previous section establishes that for ωmin <

ω < ωmax, we can reliably expand erf(ωr). But while
accurate interpolation is straightforward, accurate
extrapolation is problematic at best. This is illus-
trated by Figure 3, which shows the expansion of
Eq. (12) when ω > ωmax or ω < ωmin.

As our expansion is clearly inadequate for extra-
polation, we wish to force ω to lie between ωmin and
ωmax at every point in space. In other words, if we
find ω > ωmax we wish to replace ω with ωmax, and
similarly for ω < ωmin. Since we need ω(x) to be
differentiable, we must find a smooth function that
does this.

A one-parameter function that suffices is

F(x, a, Z) = −1
a

log
(

e−ax + b(aZ)

1 + b(aZ)

)
, (22)

where

b(aZ) = 1
eaZ − 1

. (23)

When ax is small, F(x, a, Z) ∼ x/(1 + b), and when
ax is large, F(x, a, Z) ∼ Z. We also know that
1/F(1/x, a, 1/Z) approaches Z when a/x is large, and
(1 + b)x when a/x is small. We can thus rescale ω as

ω −→ ω̄ = F
(

1
F(1/ω, a1, 1/ωmin)

, a2, ωmax

)
. (24)

We want a1 and a2 to be such that b(a2ωmax) and
b(a1/ωmin) are small, so that we have minimal differ-
ence between ω and ω̄; we thus write a1 = 20ωmin and
a2 = 40/ωmax. By rescaling ω in this way, we remove
any extrapolation error. However, we do not elimi-
nate the dependence of our result on the choices of
ωmin and ωmax.

Because the range-separated exchange-correlation
energy depends on the difference between exact
exchange and semilocal exchange energy densities
[c.f. Eq. (15)], we do not need to accurately eval-
uate εLR−HF

x (x, ω(x)), but rather εLR−HF
x (x, ω(x)) −

εLR−DFA
x (x, ω(x)). We assume chemistry is not

strongly affected by changing ω in the atomic core.
Our goal, then, is to choose ωmin and ωmax such that
we can evaluate the difference of range-separated
exchange energy densities in the valence region with
good accuracy.

As an example, we consider the Ar atom and
the CO molecule with ω = ζkFs. In Figure 4, we
show ω in the Ar atom as a function of the distance
from the nucleus, and in the CO molecule along
the bond axis. We also show the rescaled variable
ω̄, where we have made the choice ωmin = ζ/2 and
ωmax = 6ζ . With this choice, the rescaling affects only
the Ar and O cores, and the low-gradient regions
of the CO bond (where semilocal functionals and
exact exchange are similar); elsewhere, ω and ω̄ are
indistinguishable.

4. Results

To validate our approach, we evaluate the locally
range-separated hybrid with ω = ζkFs, in accor-
dance with Ref. [42]. We consider the AE6 set of six
atomization energies [55], the BH6 set of six reaction
barriers [55], and the total atomic energies of H-Ar
[56]. We show results for a locally range-separated
version of LC-ωLDA, using the uncontracted
6-311++G(3df,3pd) basis set. As before, we take
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FIGURE 4. Range-separation function ω = ζkF s in
units of ζ as a function of the distance from the nucleus
in the Ar atom (top panel) and along the bond axis of CO
(bottom panel). Also shown is the rescaled variable ω̄

(dashed lines), which is superimposable with ω almost
everywhere. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Nω = 6 and choose ωmin = ζ/2 and ωmax = 6ζ . In
this initial validation, we show non-self-consistent
results using LC-ωLDA orbitals.

In Figure 5 we show mean absolute errors (MAE)
as a function of ζ . Results are given in kcal/mol
for the AE6 and BH6 sets, and in mH/electron for
total atomic energies. While atomic total energies are
poorly described, as is typical of hybrids of LSDA,
we see that for ζ ∼ 0.25 − 0.3 both atomization ener-
gies and barrier heights are fairly well described.
The very sharp minimum in the errors for atomiza-
tion energies can be traced to the mean signed error
changing signs between ζ = 0.26 and ζ = 0.27. Inter-
estingly, the results for atomization energies are in

FIGURE 5. Mean absolute error for the locally
range-separated long-range-corrected hybrid of LSDA
with ω = ζkF s as a function of ζ for the AE6 and BH6
sets (kcal/mol) and total atomic energies of H-Ar
(mH/electron). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

good agreement with those of Krukau et al., despite
the differences between our treatment of the locally
range-separated exact exchange energy and those of
Ref. [42]. Results for atomic total energies disagree
significantly (by about 10 mH/electron). This may
be due in part to differences in the treatment of core
electrons.

We close by considering the effects of changing
a few key parameters in the calculations, focusing
on the case ζ = 0.27. In Table II, we show results for
the self-consistent (SC) and nonself-consistent (NSC)

TABLE II
Effects of increasing Nω or iterating to
self-consistency on the mean absolute errors in the
AE6 and BH6 sets (kcal/mol) and the total atomic
energies of H-Ar (mH/electron) for the locally
range-separated LC-ωLDA with ω = 0.27kF s.

Calculation AE6 BH6 Atoms

Nω = 6, NSC 4.4 2.9 37.0
Nω = 6, SC 4.0 3.2 36.8
Nω = 8, NSC 4.5 2.8 37.0
Nω = 8, SC 4.2 3.3 36.8
Local Hybrid 3.5 3.0 30.5

“SC” and “NSC” denote self-consistent and nonself-consistent,
respectively. We have also included self-consistent results
for the local hybrid with mixing function c = 0.48 τw /τ for
comparison.
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calculations with Nω = 6 and Nω = 8. Clearly, neither
self-consistency nor increasing Nω has a large effect,
though combining both exarcebates the differences
somewhat. We should point out that the sensitivity
to Nω increases somewhat as we increase ζ , at least
for non-self-consistent calculations; with this choice
of ωmin and ωmax, Nω = 8 may be preferred.

For the case Nω = 8, non-self-consistent calcula-
tions adjusting ωmin by ±10% changes the atomiza-
tion energies by ∼0.1 kcal/mol and has a negligible
effect on the barrier heights and atomic total ener-
gies. Results with ωmax changing by ±5% show
similar behavior – atomization energies change by
∼0.2 kcal/mol, barrier heights are unaffected, and
atomic total energies change by ∼0.5 mH/electron
(presumably due to differences in the description
of the core). Interestingly, as ωmax is varied further,
and especially as it is further decreased, atomization
energies are more strongly affected. The cause of this
behavior is not entirely clear.

5. Conclusions

Range-seprated hybrids have begun to come into
their own as important tools in quantum chemistry.
We anticipate that, in time, locally range-separated
hybrids will do likewise. For this to happen, how-
ever, techniques for the accurate and effcient eval-
uation of the locally range-separated exchange-
correlation energy are required. We have presented
one such technique.

By making use of the expansion of Eq. (12), we
can cast the locally range-separated hybrid in a
computationally tractable form, without needing to
approximate the exact exchange hole. Furthermore,
self-consistent implementation starting from a self-
consistent implementation of local hybrids in the
generalized Kohn–Sham [40] scheme is straightfor-
ward. Within the range ωmin ≤ ω ≤ ωmax, the
approach given here is accurate and systematic – as
Nω becomes large, we recover the same result we
would have obtained had we constructed the exact
exchange energy density of Eq. (9) exactly.

The computational cost of our approach is rather
higher than that of the approach taken by Krukau
et al., since at each SCF iteration we must form Nω

versions of the exact exchange energy density, rather
than one. Because the scheme presented here is ill-
suited to describing very large or very small values
of ω, and that given in Ref. [42] is best suited to these
ranges, the two techniques are complementary. We
speculate that an ideal approximation would be to

use the scheme presented there to handle the cases
ω > ωmax and ω < ωmin, while using the approach
presented here to handle ωmin ≤ ω ≤ ωmax.
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