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Our previously developed constrained-pairing mean-field theory (CPMFT) is shown to map onto an
unrestricted Hartree—Fock (UHF) type method if one imposes a corresponding pair constraint to the
correlation problem that forces occupation numbers to occur in pairs adding to one. In this new
version, CPMFT has all the advantages of standard independent particle models (orbitals and orbital
energies, to mention a few), yet unlike UHF, it can dissociate polyatomic molecules to the correct
ground-state restricted open-shell Hartree—-Fock atoms or fragments. © 2010 American Institute of

Physics. [doi:10.1063/1.3490478]

I. INTRODUCTION

In a recent series of papers,l’3 we have developed
constrained-pairing mean-field theory (CPMFT), a method
capable of describing static (strong) correlation in an accu-
rate and efficient manner. The idea behind CPMFT is to
make use of the pairing correlations (see below) that occur in
a quasiparticle picture to describe static correlation in mo-
lecular systems. In CPMFT, we divide the natural orbitals
into core, active, and virtual blocks. Each core orbital has
unit occupation, each virtual orbital has zero occupation, and
the active natural orbitals have fractional occupations n;,
where 0 <n;<<1. Static correlation is introduced by allowing
electron pairs to have fractional occupations within an active
space.

The use of a pairing interaction has many advantages.
Unlike unrestricted Hartree—Fock (UHF), CPMFT has zero
spin density everywhere for closed-shell systems. In the ab-
sence of static correlation, CPMFT reduces to restricted
Hartree—Fock (RHF), while it dissociates polyatomic mol-
ecules to restricted open shell Hartree-Fock (ROHF) atoms
or fragments. Essentially, the dissociation limit of CPMFT
can be thought of as an ensemble solution. By reducing to
RHF in the absence of strong correlation and ROHF at dis-
sociation, CPMFT cleanly separates static from dynamic cor-
relation, as previously shown in Ref. 3, where the CPMFT P
and K density matrices were used to construct alternative
densities to be used as inputs into traditional density func-
tionals for the dynamical correlation energy. Remarkably,
CPMFT accomplishes these feats at a mean field computa-
tional cost instead of the combinatorial blowup of complete
active space (CASSCF) or full configuration interaction.

While CPMFT is clearly distinct from UHF, it shows
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some unexpected connections. We can take advantage of
these connections to simplify the formalism, make it more
efficient, and establish interesting similarities. The purpose
of this paper is to demonstrate these relations and the accom-
panying reformulation of CPMFT. Accordingly, we discuss
this connection in Sec. III at some length, and show how we
can use it to simplify the solution of the CPMFT equations.
Section IV shows some numerical examples, and we provide
conclusions in Sec. V. We include an Appendix that discusses
some other formal properties of CPMFT. First, however, we
provide a brief introduction to pairing correlations in Sec. II.

Il. PAIRING CORRELATIONS AND THE
QUASIPARTICLE PICTURE

Strong correlations in nuclear physics or superconductiv-
ity are often described as the formation of Cooper pairs. The
theoretical machinery which does this is the Hartree—Fock—
Bogoliubov (HFB) method.* In HFB, we write the wave
function |®ppg) as a single determinant of quasiparticles cre-
ated by quasiparticle creation operators which are linear
combinations of electron creation and annihilation operators.
The quasiparticle wave function thus violates electron num-
ber conservation. Because the quasiparticle wave function is
a single determinant, its associated density matrix R is idem-
potent (R?=R) and Hermitian (R=R"). We have

R=<”* 'ﬂ). (1)
-k 1-%

Here, 7 is the physical density matrix in the spinorbital basis;
it is Hermitian but not idempotent. Information about pairing
correlations is carried by the anomalous density matrix &,
which is antisymmetric by definition because K,-_,-:(afa;'). We
limit our discussion to the closed-shell case, in which case
we have, for aa, a8, Ba, and B blocks,
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P o
= i 2
4 (0 P) (2a)
0 K
K= ( ) (2b)
-K 0

where P is the closed-shell (spatial orbital) density matrix
and K is the (symmetric, positive semidefinite) closed-shell
anomalous density matrix. We emphasize here that only the
a3 and Ba blocks of « are nonzero, so that we consider only
singlet pairing.5 We should also mention that the notation
here differs slightly from that used in Refs. 1-3, but does so
in an attempt to make this manuscript self-contained and as
clear as possible.

Idempotence of the quasiparticle density matrix R yields
two conditions on the electronic density matrix P and the
anomalous density matrix K,

PK-KP=0, (3a)

P-P’ =K. (3b)

Physically, K? is the “odd-electron distribution” of
Yamaguchi,6 the “density of effectively unpaired electrons”
of Staroverov and Davidson,7 and is related to Mayer’s “free
valence index”® once it is written in terms of the total density
matrix y*“+yPP=2P. Essentially, K> gauges the singlet
diradical character of the system (or, for larger active spaces,
the polyradical character) and is a local measure of electron
entanglement.

The HFB energy is given as the expectation value of the
Hamiltonian with respect to the HFB wave function,

Eyrg = <(DHFB|H|(DHFB>s (4a)

=2h;;P;; + (2<ij|kl> - <ij|lk>)PikPj1 + <ij|kl>Kink1,
(4b)

where summation over repeated indices here and throughout
the manuscript is implied; ;; are matrix elements of the one-
electron part of the Hamiltonian and (ij|kl) are two-electron
integrals in Dirac notation.

In order to determine the occupation numbers and natu-
ral orbitals, HFB variationally minimizes Eygg subject to the
constraint that the density matrix P contains the correct num-
ber of particles,

Tr(P) = N. (5)

This condition is enforced by a chemical potential w intro-
duced as a Lagrange multiplier. The HFB formulation leads
to equations similar to Hartree—Fock, which in the particular
case of closed-shell systems are

ResHurp — HursRes =0, (6)
where R is the closed-shell quasiparticle density matrix
R (P B ) )
“"\K 1-P/’

and Hygg is the double-Hamiltonian (DH) given by
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F+ uN A ) @®)

HHFB=< A —FS - uN

Here F is the standard closed-shell Fock matrix and A is
known as the pairing Hamiltonian. These are given by

F§y = g+ (2(iklj1) = Gk [Lj)) Py, (9)

Ay = (ijlkD K. (9b)

The double-Hamiltonian Hygg is just the mean-field of the
physical Hamiltonian with respect to the quasiparticle deter-
minant.

Because the pairing energy of HFB [the term propor-
tional to K? in Eq. (4b)] is positive when the electron-
electron interaction is repulsive, the variationally optimal so-
lution is always K=0, and therefore, A=0. In other words,
HFB just returns the regular Hartree—Fock solution for Cou-
lombic repulsive systems. In order to have HFB solutions
with energies lower than Hartree—Fock, one needs a net at-
tractive two-body interaction, as in the Bardeen-Cooper-
Schriefer picture of superconductivity (where it is provided
by electron-phonon coupling) or in nuclear forces. In order
to take advantage of the pairing picture for the conventional
repulsive electron-electron interaction, and with the aim of
describing strong correlations, CPMFT simply reverses the
sign of the pairing energy. We thus have

Ecpyirr = 2h;;Pij + (2ij|kD) = Cjl 1) PP jy = il kDK K .
(10)

The last term plays the role of a correlation energy—a cor-
rection to the closed-shell RHF-like energy expression—and
will be referred to as such throughout this manuscript, but it
is certainly not our previous definition of static correlation,”
Ecpvrr—Erup, since P is not Pryr.

In addition to changing the sign of the pairing energy, in
CPMFT, we also restrict noninteger occupations to an active
space, so that pairing only occurs between quasidegenerate
orbitals. Changing the sign of the pairing term changes the
sign of A so that the double-Hamiltonian is

FS+uN  -A )

1
~A  —FS—uN (1

Hcpmrr = (
Otherwise, DH-CPMFT follows the same procedure as in
HFB. However, changing the sign of the pairing energy and
the pairing matrix severs the connection between the HFB
wave function |®ypg) and the CPMFT energy. Note that
what we have called simply CPMFT in Refs. 1-3 is here
referred to as DH-CPMFT, whereas “CPMFT” here refers to
the new formulation to be introduced below.

We can, indeed, view the CPMFT energy as the expec-
tation value of a model Hamiltonian with respect to a
particle-number violating determinant,

Hy|®) = Ecpyer| D), (12a)

H() = (F‘fjs + hl])aja] - %Aljaj-a: - %A;alaj (12b)

This quadratic model Hamiltonian, however, is not the mean-
field of the physical Hamiltonian with respect to a quasipar-
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TABLE 1. Summary of properties in UHF, HFB, and CPMFT for closed-
shell systems. We show the correlation energy (i.e., the difference between
the energy from the method and the closed-shell piece), the effective polar-
ization, and the particle number fluctuations.

Method E.* Polarization o
UHF —vi MM, M=(A-B)/2 0
HFB ViKUK, K=|A-B|/2 4 Tr(K?)
CPMFT —vi/KUK,, K=|A-B|/2 0

aij

v =(ij| ki) is a two-electron integral in Dirac notation.

ticle determinant. As previously noted,” we can interpret the
CPMEFT energy as a hybrid of Hartree—Fock and HFB where
Hartree—Fock uses 2/ry, as the electron-electron repulsion
operator and HFB uses —1/r,.

Nevertheless, we have a fruitful alternative viewpoint,
which is to envision the CPMFT energy expression of Eq.
(10) as defining a model two-particle density matrix I' such
that the energy in the spin-orbital basis is

Ecpmrr = Tr(hy) + Tr(vI cpyipr) s (13)

where v is the two-particle part of the Hamiltonian, and h is
the one-particle part. In terms of spin-orbitals, we have

(Tcpmrr g=%%7/]‘—%)/i7/;—%'<u"kl’ (14)

with lower (upper) indices corresponding to bra (ket) indices.
The first two terms in this model two-particle density matrix
correspond to Hartree—Fock whereas the last term introduces
static correlation via K, which is a measure of nonidempo-
tency for P. This last term is an important quantity in the
cumulant decomposition of density matrices,” but in our
work appears naturally from the idempotency of the quasi-
particle density matrix. If we use this model two-particle
density matrix to define expectation values of two-particle
operators, then as shown in the Appendix, we find the impor-
tant result that CPMFT has no particle number fluctuations.
In making this choice, we are inevitably working with a den-
sity matrix functional and are effectively doing some form of
a statistical ensemble theory. Table I collects results about
the UHF two-particle density matrix, the CPMFT model
two-particle density matrix, and the analogously defined
HFB model two-particle density matrix. We derive these re-
sults in the Appendix.

Note that our model two-particle density matrix has ap-
peared before in the literature as the corrected Hartree—Fock
functional.'  Our model is, however, solved by
diz:lgonalization.5 More importantly, CPMFT restricts the
noninteger occupation numbers to an active space only, and
in the present work further enforces the corresponding pairs
constraint, which we will now introduce.

lll. CPMFT AND UHF

Consider the UHF treatment of a system where the num-
ber of spin-up and spin-down electrons is the same. The
spin-up and spin-down density matrices y** and y?F are
both idempotent,
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(Y792 = @ = (yPB)2 — o= ). (15)

The charge density and spin magnetization (or polarization)
density matrices are

=3 (v ), (162)

M= 3(y* - P (16b)

Traditionally, the UHF energy11 is expressed in terms of the
v** and yPP density matrices,

Eupe=hi(¥5 + ¥P) + 5GIIRD (v + v (3 + v
— SRV v+ VAP, (17)

where we have put ¥** and ¥?# in the same basis (say, the
atomic orbital basis). Although it is almost never presented
in this way, we can also write the UHF energy as a functional
of P and M, which yields

EypelP.M] = E[P]+ E[M], (18a)
E[P]= 2h;;P; + (2(ijlkt) ~ <ij|lk>)Pikle7 (18b)
E[M] =~ (ijlk)M ;M . (18¢c)

Here, E_, indicates the usual RHF energy expression
given in terms of the charge density matrix P, while E,. car-
ries the correlation energy in terms of the spin magnetization
density matrix M. An utterly unexpected result is that the
closed-shell CPMFT energy expression of Eq. (10) is identi-
cal to the UHF energy expression of Eq. (18), except that the
spin density matrix M is replaced by the anomalous density
matrix K.'* In cases in which UHF predicts static correlation
by breaking symmetry (i.e nonzero spin density),"> P is not
idempotent. Instead, it satisfies

P-PP= S (y s ) - (), (192)
=5 (- v, (19b)
=M2. (19¢)

This is one consequence of the idempotence of ¥*® and Y%,
The second is

PM + MP =M. (20)

Note that the condition of Eq. (19) is the same as the CPMFT
condition of Eq. (3b), again with M taking the role of K.
Both the magnetization density matrix M and the anomalous
density matrix K are Hermitian.

While CPMFT and UHF thus use the same energy ex-
pression (one with K and the other with M), K and M are
not the same even though with the same density matrix P, we
have K?=M?. There are also some other important differ-
ences. Both UHF and CPMFT impose an additional condi-
tion on these two matrices, which in UHF is given in Eq.
(20) while in CPMFT is instead given in Eq. (3a). Addition-
ally, K is positive semidefinite while M is traceless (and thus
has both positive and negative eigenvalues). Finally, because
in UHF we write P as the half-sum of two idempotent ma-
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trices, its eigenvalues occur in what is known as “corre-
sponding pairs” n; and 1—11,-,14’15 a terminology that we here
adopt.

That UHF has the corresponding pairs property has little
to do with UHF per se. It originates simply from the
observation'® that the eigenvalues of a matrix that is the half-

. . 1
sum of two idempotent matrices are 0, 1, 5, or a correspond-

ing pair (n,1-n). Similarly, the eigenvalués of a matrix writ-
ten as the half-difference of two idempotent matrices are 0,
i%, or a corresponding pair (—n,n).17 Thus, for example, M
has eigenvalues adding to zero in pairs while P has eigen-
values adding to one in pairs. Quite generally, any noninteger
eigenvalues of the charge density matrix from a single deter-
minant method will be either % or occur in a corresponding
pair. Eigenvalues of % could be part of a corresponding pair
(for entangled electrons) or may occur singly for open shells.
We should be clear that while matrices written as the sum of
two idempotent matrices exhibit the corresponding pairs
property, the converse is not necessarily true; a matrix whose
eigenvalues come in corresponding pairs may or may not be
the sum of two idempotents.

Unlike UHF, the eigenvalues of P in DH-CPMFT do not
occur in corresponding pairs (except when the active space
consists of two spatial orbitals). That said, the corresponding
pairs property has some attractive features for CPMFT. Most
important is that it eliminates overcorrelation between orbital
pairs in different symmetries. This is ubiquitous for example
in N,, where the variational principle drives occupancy into
orbitals at low energies and one must introduce multiple
chemical potentials to retain the correct total number of o
and 7 electrons. A corresponding pair constraint controls this
unphysical “spilling” and has the inherent attractive feature
of limiting strong correlations to be an affair between orbital
pairs.

Previously, we had introduced the corresponding pairs
feature within the DH-CPMFT framework using different
chemical potentials (Lagrange multipliers) for different irre-
ducible representations of the system. However, in the gen-
eral case where no spatial symmetry is present, imposition of
this constraint leads to one Lagrange multiplier per orbital
pair and a rather complicated nonlinear optimization prob-
lem. A more satisfactory and much simpler approach, how-
ever, is to write the CPMFT density matrix as

P=1i(A+B), 21)

where A and B are auxiliary density matrices, individually
idempotent and Hermitian (A’=A=A" and similarly for B).
As with UHF, the decomposition above enforces the corre-
sponding pairs condition automatically, and there is no need
to enforce this condition via Lagrange multipliers. Eigenval-
ues of 0 or 1 in P correspond to virtual or core orbitals,
respectively, while paired eigenvalues correspond to active
orbitals. Further, by choosing A and B to trace to half the
number of electrons, we guarantee that P does likewise, and
we thus have no need of any chemical potential. By making
this decomposition, in other words, we can avoid the
Lagrange multipliers of the double-Hamiltonian approach
entirely, and thus simplify the computation. Note that once
we have converged solutions for A and B (and thus P and

J. Chem. Phys. 133, 134108 (2010)

K), we could, if desired, extract the Lagrange multipliers of
the DH-CPMFT approach.

The critical mathematical difference between CPMFT as
formulated in this manner and UHF is that in UHF, we get M
from the spin-up and spin-down density matrices, while in
CPMFT, we get K from the total density matrix alone (since
K satisfies the condition of Eq. (3b), commutes with P, and
is positive semi-definite). In other words, CPMFT with cor-
responding pairs defines P from A and B as in Eq. (21), but
differs from UHF in constructing

K=\P-P?=]\(A-B)’=;|A-B] (22)

from auxiliary density matrices A and B while UHF builds P
and M from 9% and 9?P, as shown in Eq. (16). Note in the
last equation our definition of the absolute value of a matrix
from the square root of the square. In practice, to calculate
the absolute value of a matrix one needs to diagonalize it,
flip the sign of the negative eigenvalues and transform back
to the original basis. Both the square root and absolute value
of a matrix are positive definite matrices and both have a
convergent polynomial series expansion if the matrix is posi-
tive definite with eigenvalues between 0 and 1, as is the case
here.

To make the comparison between CPMFT and UHF
more concrete, consider the case where A and B are 2 X2
matrices and let M:%(A—B). Idempotency of A and B re-
quires that in the natural orbital basis we have

A—(” k) 23
“\k 1-n) (238)
B_<” ‘k) 23b
\—k 1-n/)’ (23b)
P—(" 0) 23
“\0 1-n/)’ (23¢)
M—(O k) 23d
“\k 0/’ (23d)
K—(k O) 23
“\o &/ (23¢)
k=\n(1-n). (231)

When A and B are of larger dimension, then in the natural
orbital basis they are block diagonal with 2 X 2 blocks of the
form given above. This is essentially a consequence of Eq.
(20), which in the natural basis becomes

1
(ni+n)M;j=M;;=5(A;; - B;), (24)

the solutions to which are M;;=0 and n;+n;=1. Because we
also have A;;+B;;=2n;5,;, we conclude that for i # j, we must
either have A;;=B;;=0 or n;+n;=1 (in other words, the two
eigenvalues form a corresponding pair). When the occupa-
tion numbers are degenerate, the natural orbitals are not

uniquely defined and thus we can choose them such that A
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and B still have this structure. In the core (virtual) space,
A=B=1 (A=B=0).

Before we continue to the working equations for CP-
MFT in this UHF-like framework, let us pause to make it
explicit that CPMFT and UHF are different methods. While
we have expressed the UHF energy as a density matrix func-
tional, we could also write it as an expectation value,

Eunr = (PyneH| Pypr) . (25)

with |®yye) constrained to be a single determinant. This is
not true of the CPMFT energy expression, and in fact there
seems to be no wave function associated with CPMFT. This
may seem somewhat surprising, in light of the intimate con-
nection between CPMFT and HFB theory, in which there
certainly is a wave function, albeit one which violates par-
ticle number conservation. As we have said, we lose the HFB
wave function because we have by fiat changed the sign of
the pairing energy. Additionally, unlike UHF, the spin density
is zero everywhere for closed shells, even in the presence of
static correlation.

One might wonder whether CPMFT is equivalent to pro-
jected UHF (PUHF). It is not. If one projects the UHF de-
terminant onto a spin eigenfunction, one finds that the charge
density matrix of the UHF determinant and the spin-
projected state have the same eigenfunctions.15 Spin projec-
tion, in other words, changes only the occupation numbers of
the charge density matrix, but not the natural orbitals. The
fact that the UHF and CPMFT natural orbitals are different
should lay to rest any concerns that CPMFT is just a pro-
jected UHF.

Another fundamental difference between CPMFT and
UHF is the onset of the appearance of the solution with en-
ergy lower than RHF. As shown in our previous paper,2 the
CPMFT solution for a two-level model system appears when
the RHF orbital energy gap reduces to

g2 — e < 5(11[11) + 3(22)22) + (1122), (26)

whereas the UHF Coulson-Fischer instability point is deter-
mined by

ey — g, < (12]12) + (11]22). (27)

Because all two-electron integrals in the equations above are
positive, the CPMFT solution appears inevitably when the
orbital gap closes and strong correlation is manifest, such as
along a dissociation curve.

A. Working equations

Let us now return to the solution of the CPMFT equa-
tions in this UHF-like framework. For convenience, we re-
peat the energy expression here,

Ecpmrr = Egs — (kDK K. (28)
We simply minimize the energy with respect to (idempotent)
A and B matrices. The derivatives of E, in Eq. (28) with

respect to A and B give the usual closed-shell Fock matrix
obtained from P. That is
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The differences with UHF arise from differentiating the
last term of the CPMFT energy, which we shall call ESPMFT.
Taking derivatives with respect to A leads to an effective

potential A, given by

- aESPMFT ~ ﬂESPMFT &Kkl ~
YT 0A; 0Ky Ay

ij

kl_o.,Aij-

(30)

This is essentially the same result that we get from differen-
tiating EVMF of Eq. (18),

oEVME  9EITY oMy, —
aa wa = ZAkl aa’ (31)
vy My dyj Y
where
A = (kmlnl)M,,,, = (ki mn)M.,,,, (32)

looks just like A except we replace K with M. In UHF,
however, we simply have
My 1

=~ 5,5, 33
ﬁ’}’?ja 7 kYjl ( )

while in CPMFT the derivative of K with respect to A is
obtained by differentiating both sides of K?= (A ~B). This
gives

Bonge 1 Ko 1(M S+ M8y (34)
mit m =5 j10ki iYjl) -
aAij 1 ki 0"Al‘j 2 Jl% kiYjl
In the natural orbital basis where K is diagonal with eigen-
values K;, we have

IKy 1 M6, + My;6;

Ko_ 2 1% ki1 (35)
dA;; 2 K+ K

Thus, in the natural orbital basis the effective potential A is

X o__ AMy A/q‘Mki. (36)
YK+ K KK,
Since
JK JK
JA JB

the equations we ultimately solve are [FA,A]=0 and
[FB,B]=0, where FA and F® are effective Fock matrices
given by

FA=FS + A, (382)

FB=F"-A. (38b)

At first glance, the right-hand-side of Eq. (36) might
appear to be divergent unless all K; are nonzero. However,
since forcing A;;=0 actually gives the condition K;;=0, we
simply set A;;=0 for the inactive-inactive (core and virtual)
block where K must be zero (because the occupation num-
bers are 0 or 1). Therefore, in Eq. (36), such divergent terms
due to inactive orbitals are simply removed from the sum.
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TABLE II. CPMFT energies of N, at R=2.0 A. Also included are the
number of diagonalization steps required, Ngi,, and the number of SCF
cycles required for convergence.

Energy
Scheme (a.u.) Niing SCF cycles
DH-CPMFT(6,6)" —108.799 017 62 118 32
DH-CPMFT(6,6)° —108.797 154 42 121 34
CPMFT(6) —108.797 154 42 12 12

“Single chemical potential.
bCorresponding pairs enforced by multiple chemical potentials.

IV. RESULTS

We have implemented this version of CPMFT in the
Gaussian suite of programs.18 Each calculation requires the
specification of the number N, of active natural orbitals.
Due to the corresponding pairs constraint, the number of
active electrons is always equal to N,,—in other words, we
always work at half-filling. In order to obtain an appropriate
initial guess for A and B, we mix the coefficients of the N,
orbitals closest to the Fermi level, just as one would do to
break spatial symmetries in UHF. The natural orbital pairs
closest to the Fermi energy correspond to those whose occu-
pations are closest to half and half.

In single bond systems where we normally choose the
active space to be two electrons in two orbitals, the corre-
sponding pair constraint is automatically satisfied, and no
difference is observed between the results using the present
approach and those using our previous double-Hamiltonian
approach (that is, diagonalization of the double-Hamiltonian
constructed from F and A). However, in DH-CPMFT, one
must adjust the chemical potential u at every iteration of the
self-consistent field (SCF) procedure to control the number
of electrons in the active space. Because we must adjust the
chemical potential, we must diagonalize the double Hamil-
tonian of Eq. (11) several times in each SCF cycle, until the
resulting density matrix has the proper trace. In contrast, the
current approach requires no chemical potential, since we
have Tr(P)=1/2 Tr(A +B). Because both A and B trace to
the correct number of electrons, so too does P. This is a
significant operational advantage of the present implementa-
tion.

For systems with larger active spaces, the present ap-
proach differs from DH-CPMFT, although as mentioned
above, we can impose the corresponding pairs constraint in
DH-CPMFT in some special cases by including different
chemical potentials for different irreducible representations.
We illustrate this with the case of N,. Table II shows the total
energy of N, at 2 A. We use the cc-pVTZ basis set and
choose six active orbitals and six active electrons. The cur-
rent scheme gives a slightly higher energy than does DH-
CPMFT with only one chemical potential, as one would ex-
pect since we have imposed an additional constraint on the
system. Also as one would expect, it gives the same results
as does DH-CPMFT with the corresponding pairs constraint
enforced by additional Lagrange multipliers. However, re-
moving the chemical potentials results in considerable com-
putational savings. In Fig. 1, we show the N, dissociation
curves from CPMFT in the double-Hamiltonian approach
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FIG. 1. Potential energy curves of N, calculated with the cc-pVTZ basis set.

and in the corresponding pairs framework. In this case, the
corresponding pairs constraint has only a minor effect on the
energy.

We have also performed a CPMFT calculation of the C,
molecule with the 6-31G basis set. Near equilibrium, C, has
significant static correlation due to near-degeneracy between
the RHF occupied o7, and unoccupied o, orbitals. As the
molecule is stretched, however, the m,, 7,, 77;, and 77; orbit-
als become degenerate, while the 05,—0,, interaction be-
comes weak. We have therefore chosen our active space to
be six electrons in six orbitals for this system. In Fig. 2 we
show the total energy of C, as a function of bond length. The
CASSCF energy includes all static correlation that results
from these orbital interactions (plus some dynamical corre-
lation). Without the corresponding pairs constraint, DH-
CPMFT strongly overcorrelates nearly everywhere. Adding
the corresponding pairs constraint significantly reduces this
overcorrelation. Near equilibrium, it gives results between
UHF and CASSCE. Unfortunately, it still overcorrelates as
the molecule dissociates. This is due to electron “spilling”
between o and 0, orbitals. As R— o, only the 7 orbitals
should be strongly correlated; including these o orbitals in
the active space at large internuclear separation allows them
to correlate and lower the energy unphysically. If we remove
two orbitals from the active space, we produce the curve
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FIG. 2. Potential energy curves of C, calculated with the 6-31G basis set.
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FIG. 3. Potential energy curves for the double dissociation of CO, calcu-
lated with the 3-21G basis set.

marked CPMFT(4). This goes to the correct dissociation
limit, but undercorrelates at equilibrium where the active
space should be larger. The correct solution for this molecule
involves introducing renormalized one-body potentials in
CPMFT(6) that eliminate the spilling at dissociation,” an ap-
proach that we will discuss in a forthcoming article. While
going to the right dissociation limit is important, it is perhaps
less critical than getting the correct behavior near equilib-
rium. Note that CPMFT(4) dissociates correctly to two
ROHF carbon atoms, while UHF instead dissociates to two
spin-contaminated UHF carbon atoms and CASSCF(6,6) has
some dynamical correlation at dissociation.

Finally, we stress the differences between UHF and CP-
MEFT by analyzing the dissociation of the CO, molecule. The
ground state of CO, near equilibrium is a closed-shell singlet
with no expected static correlation. Indeed both UHF and
CPMEFT reduce to the RHF solution near R,. However, when
the molecule is symmetrically stretched and the two oxygen
atoms are simultaneously separated from the carbon atom,
the correct dissociation limit corresponds to all three atoms
in their triplet ground state. This situation cannot be handled
by UHF. In CO, near R,, there are six electrons associated
with bond formation, three with spin-up and three with spin-
down. At dissociation, UHF might assign two spin-up elec-
trons to one oxygen atom and two spin-down electrons on
the other, which puts both oxygen atoms in their triplet
ground state. However, with only one electron of each spin
remaining, the best UHF can do is to assign a singlet state to
the carbon atom, which is clearly incorrect and not the low-
est energy state. In simple words, UHF runs out of broken
symmetry degrees of freedom (has only two) to model the
dissociation of CO, (Fig. 3) and misses the correct dissocia-
tion limit by ~20 mhartree. The bumps in the dissociation
curves correspond to crossings of different solutions to the
respective SCF equations and we have plotted the lowest
energy state at each R. Because spin states are treated in
CPMFT through an “ensemble” representation, one that
yields zero spin magnetization density everywhere, the CP-
MEFT solution for this dissociation has two half spins up and
two half spins down on each of the three atoms, leading to
the correct energy corresponding to the sum of ROHF atomic

J. Chem. Phys. 133, 134108 (2010)

energies. Note that CPMFT(6) in Fig. 3 contains a one-body
potential arising from an asymptotic constraint as explained
in our previous publication.2 We defer detailed discussion of
the renormalization schemes used in CO, and applicable to
C, within the current UHF-like context to a forthcoming
publication.

V. CONCLUSIONS

We have developed a novel scheme for performing CP-
MFT calculations with occupation numbers occurring in cor-
responding pairs. In doing so, we eliminate all chemical po-
tentials, and the effective Fock matrices F* and FB that are
to be diagonalized are of half the dimension of the double
Hamiltonian matrix in the previous DH-CPMFT scheme.
Thus, the computational effort in our present implementation
is greatly reduced over the previous formulation of CPMFT.
The corresponding pairs constraint reduces the overcorrela-
tion of C, near equilibrium, and has important consequences
for the dissociation of heteronuclear systems. While the cor-
responding pair constraint could also be imposed in the DH-
CPMFT framework by addition of one Lagrange multiplier
per electron pair, the current approach imposes this con-
straint in a simpler black-box manner.

We have shown that this version of CPMFT is closely
related to UHF theory. Unlike UHF, however, CPMFT incor-
porates static correlation by a different mechanism. The
physical density matrix 9y has identical spin-up and spin-
down blocks, whereas the auxiliary A and B density matri-
ces, in general, break symmetry. CPMFT can correctly dis-
sociate polyatomic molecules into ROHF atoms or
fragments, whereas UHF has problems with multiple en-
tangled electrons at multiple centers, as shown for CO,
above. In the present formulation, CPMFT becomes a den-
sity matrix functional that can be solved by diagonalization
of effective Fock matrices providing orbitals and orbital en-
ergies. We wish to emphasize one more time that as we have
demonstrated, a quasiparticle picture of strong correlations
with the sign of the pairing interaction reversed yields an
energy expression reminiscent of UHE.

Finally, we should note that in CPMFT different auxil-
iary A and B density matrices can lead to solutions with
degenerate energies. The key quantities determining the en-
ergy in the model are P and K and there is a many-to-one
mapping between A and B on the one hand and P and K on
the other. At dissociation, for example, solutions where A
and B orbitals are localized and delocalized (roughly corre-
sponding to UHF and RHF orbitals) are degenerate. The ex-
istence of additional degenerate solutions in CPMFT (com-
pared to UHF) can lead to convergence difficulties as the
active space becomes large. Efficient ways of dealing with
the additional degrees of freedom provided by the auxiliary
A and B matrices are currently under investigation.
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APPENDIX: PROPERTIES OF THE CPMFT MODEL
TWO-PARTICLE DENSITY MATRIX

The CPMFT model two-particle density matrix is
1 1 1
(FCPMFT)Z‘I = 57/1(7/] - 57/136 - EKinkl’

where i, j, k, and [ are spin-orbitals and y and & are the
density matrix and anomalous density matrix in the spin-
orbital basis (i.e., they are of dimension 2N X 2N, where N is
the size of the atomic orbital basis). In general, y is Hermit-
ian and s is antisymmetric. When everything is real (which
we take for simplicity; this does not affect our conclusions),
the idempotent HFB quasiparticle density matrix is

(A1)

R= ( vox ) . (A2)
-k 1-vy
Idempotency tells us that
yi—-Kky=0, (A3a)
Y-K=7y. (A3b)
We recall that for closed shells,5
(P 0 ) (Ada)
7’— 0 P E} a
0 K
K= , (A4b)
-K 0
0=PK-KP, (Adc)
P=P>+K>. (A4d)

We can define an analogous model two-particle density ma-
trix for HFB, for which all the conditions on «, ¥, K, and P
are the same, but where

(FHFB)Z‘I= %?/,(3/,_ %7/,3/1("' %Kinkl~ (AS)
Finally, the UHF two-particle density matrix is

Conp) =377, - 3% (A6)
where vy is idempotent. We have

Y 0 ) <P +M 0 )
= = , A7

L4 ( 0 o5 0 P-M (A72)

P=P>+M?, (A7Db)

M =PM + MP. (A7c¢)

1. Partial trace of the two-particle density matrix

An important condition on the two-particle density ma-
trix is that it traces to the one-particle density matrix. That is,
we must have
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. N-1
ri="o, (A8)

We remind the reader that repeated indices are to be
summed.

The partial trace condition is satisfied by the UHF two-
matrix and the CPMFT model two-matrix, but not by the
HFB model two-matrix,

FZ = %(Vl?/, - 7/17/] F Ky, (A9a)
=3[NY,— () = ()], (A9b)
=3[NY, = (v+ 1)} = (1)]], (A9c)
=y ) ) (A94)

Here, the top (bottom) sign in = and F corresponds to CP-
MFT (HFB), and we have used antisymmetry of . Explic-
itly, we have

. N-1
(Cepyrn)y = TV, (A10a)

. -1
(Cyp) i = NTV,-— (). (A10b)

Note that by N we mean the trace of the one-particle density
matrix 7y, which should be the number of particles in the
system.

2. Particle number fluctuations

In order to work out particle number fluctuations, we
need the expectation values of N and N2, with N the number

operator, given as

N T
N= 5pqapaq.

(A11)

We have already noted that the expectation value of Nis just

Tr(y). The expectation value of N? requires the two-particle
density matrix,

(N?) = Opg 5,S<a;aqajas) , (Al12a)
— i) ¥
- 5pq5r.v(_ <aparaqas> + 5qr<apax>) ’ (AIZb)
=8,y 2T% + 5,7, (Al2¢)
=T 4+ o, (A12d)

If the two-particle density matrix obeys the partial trace con-
dition, the particle number fluctuations are automatically
zero. This is thus true of UHF and of CPMFT. However,
HFB has particle number fluctuations,

(Nyes = (N = 1)y, = 2(s) ] + )= N* =2 Tr(x)?, (A13)

implying that
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o3 =(N?) = (N) == 2 Tr(s).

Note that this is positive, as it should be, since —&>=y—17>
and occupation numbers are between zero and one, inclusive.
In the closed-shell case, we have oﬁ,=4 Tr(K?).

(A14)

3. Spin contamination

Evaluating spin contamination is more complicated than
evaluating particle number fluctuations, not least because we
need an expression for (§2> for a general two-particle density
matrix I". We begin by noting that

P a2 o2 a2
§?=85+87+852, (Al15a)

=8 +8°+8.8,, (A15b)
where 3’1, is the spin raising/lowering operator. We are inter-
ested here in the closed-shell case (i.e., N,=Ng with a block
diagonal ).

In the closed-shell case, the contribution to ($2) from the
first term is zero. We must evaluate the contribution from the
next piece using our model two-particle density matrix. We
have

§2= Es\ (i) + 2 8.()8.())

i#j

(A16)
%, 1A

The first (second) term is a one-particle (two-particle) opera-
tor. Note that we could also write

Y.=22 5.05.0)),

i>j

(A17)

which explains the factor of two that might otherwise appear
to be missing below.

Evaluating the contribution to (S‘f) from )A(Z is straight-
forward, and we get just

(X)= 1 (N, +Np) = 5Tr(P). (A18)
The nonzero matrix elements of IA/ are

(Y )ka]la=<la]a|Y|k )= 52 s (A19a)

(V)elf = (i 36,9, (A19b)

(Y= igial Volkgla) = = 36,3, (A19¢)

(V)P = igiglY Jkglp) = 58,5 (A19d)

Here, we are working in an orthornomal basis set.
The relevant components of the CPMFT and HFB two-
particle density matrices are

T = (e = Yo, (A20a)
kolg _ 1 o

Flwlg HE y]ﬁ F Kigjy Kkalp), (A20D)

Fkﬂ’ 2(;//3;/ = ki K, (A20c)
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Ti58= 3 (%EYE = VEVP). (A20d)

where the top (bottom) sign corresponds to CPMFT (HFB).
Contracting the density matrices with the matrix ele-
ments, we get

0= (M) = e
(A21)

where we have used antisymmetry of . Working in our
closed-shell case, this reduces to

<?z> ==

In total, we find that <3’§> in CPMFT and HFB is given by

ITr(P?  K?). (A22)

(§H=1Tr(P- P> + K?), (A23a)
=1Tr(K? + K?). (A23b)

Thus, we end up with
(SHurs =0, (A24a)
<~§§>CPMFT =Tr(K?). (A24b)

The contribution to ($2) from S_S , must also be evaluated
using the model two-particle density matrix. Expanding this
operator in terms of contributions from individual electrons,
we have

58, 2 5 ()8,.() + 2 8_(D)3.()) (A25)
i#j
% $

The first term is the one-particle operator X, and the second
is the two-particle operator Y.
Since X does nothing to down-spin electrons but annihi-
lates up-spin electrons, we clearly have
(X)=Ng=Tr(P). (A26)
To take the expectation value of Y, it proves useful to sym-

metrize it so that it acts the same on the two electrons. Since
operators acting on different electrons commute, we have

=2 8(0)38,0), (A27a)

i)
——2 (8-(D3,() +8.()3(), (A27b)

Hﬁ]

=2 (5(D5,() +5.)5-(7). (A27¢)

i>j

The only nonzero matrix elements of Y are

Vil =igiolVkel ) = 8,3, (A28a)
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Vi = iafgl Vlkgla) = 3.8]. (A28b)

The relevant spin components of the CPMFT and HFB
model two-particle density matrix are

rjffj’g =1(- ,/izng T K ajﬁl(kﬁla), (A29a)
Ljeb=3(= Yoo T ryyy 1e0), (A29b)

where again CPMFT (HFB) corresponds to the top (bottom)
sign.

Contracting the two-particle density matrix with the ma-
trix elements gives us

<?> == Tr( ‘Yaa‘yﬁﬁ + KaBKaﬁ) . (A30)

In the closed-shell case, using the results in Eq. (A4), this
becomes

(V) =-Tr(P? ¥ K?). (A31)
Then the expectation value of S8 , 1s given by
(§.8,)=Tr(P-P? + K?), (A32a)
=Tr(K? = K?). (A32b)
We therefore have
($_S)urs =0, (A33a)
<§_§+>CPMFT =2 TY(KZ)- (A33b)

Combining Egs. (A24) and (A33) gives us the total spin
contamination in HFB and in CPMFT,

($2ups =0, (A34a)
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(82 epprr = 3 Tr(K?). (A34b)

For UHF in cases in which there is strong correlation, we
have the familiar formula

(82 =5(s+ 1)+ Ng=Tt(Yau¥sp)- (A35)

For the closed-shell case, using the results in Eq. (A7), we
have

(8 =TH{P-(P+M)(P-M)]=Tr(P-P*+M?

=2 Tr(M?). (A36)
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