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I. INTRODUCTION

The correlation energy, E , is usually defined as the differ-
ence of the exact (non—r?lativistic) energy, E, and the Hartree~
Fock (HF) energy, EH . E is a very small part of E only (1.47
for the He atom, O.EZ for “Ne , 0.1Z for Ar), but it is non-
negligible in absolute value: for valence-shell removal, AE is
1.1 eV for He, 9.5 eV for Ne, and 9.3 eV for Ar. Incliision of
E_ is important in cases where the number of (strongly interacting)
electron pairs is changed, for disscciation emergies (D.), ionization
potentials and excitation energies, e.g.. Correlation is responsible
for 23% of Dyin the case of Hy, and for 84% of D, in the case of
Liz; Na2 and K2 are unbound at the HF level.

There is a number of methods for calculating E , among which
are configuration interaction (CI), many-body pertu%bation theory
{(MBPT), and the density-functional (DF) method. Before concentrating
on DF, a few remarks seem to be in order with regard to CI, the
method which is most widely used in quantum chemistry nowadays.

In the CI wave-function, excited configurations are admixed to the
HF wave-function, , and the expansion coefficients are deter-
mined by energy minimization. The expansion is usually restricted to
single and double substitutions (CI-SD). CI-SD 1is not size-comsist-—
ent (£ ~ VN for a system of N non-interacting two-electron
atoms),cbut unlinked-cluster effects can be introduced into CI~8D in
a simple and efficient (although non-variational) way.3 Already with
few terms in the CI expansion, a substantial portion of the correla-
tion contribution to dissociation energies can be obtained (707 for
F,, e.g., with two determinants, (@0 and (@(EY%‘*GZ), if orbitals
a¥e optimized™), but the convergence is extrem&ly sTow eventually;
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Fig. 1. Correlation contributions to dissociation energies,

AD (au), for first-row monohydrides AH (N: number

of electrons). + ,«: exp. values from Refs. 8,9.

a) E (A =E (A )4Eq(H )i ——; E_(AH) &E_(A7) :————.

b) EE(AN—tH)%’Ec(AN): ey CI Fesults from Ref.9zmn=m.

.
up to !oj..106 determinants are included in current CI calculations.
The convergence problem is intimately connected with the difficulty
to describe the correlation cusp (cf. Sects.IV,VIIA) in a CI expan-
sion. The accuracy of CI results for small molecules is impressive:
for first- and second-row monohydrides, between 957 (LiH) and 85%
(HC1) of the valence correlation energy is. recovered;, deviations from
experiment are ~o.003 K for bond lengths §F o ~14 cm for vibra-
tional frequencies W,s < 0.3 eV for D, ¢

The DF method provides an economical and physically appealing
alternative to CI calculations, The exact demsity functional is not
explicitly known (perhaps very complicated), but simple local approxi-
mations exist {(c¢f. Sects.,III,IV). Are they expected to work? If so,
simple relations should exist between correlation energies and den-
sities; E_ should be similar, in particular, for atoms and mole-
cules with“similar densities. There are such relations, indeed, and
we just call attention to three of them: i) total correlation energies
of {(neutral) atoms and molecules have been found to increase, to a good-
app 07imation, linearly with the number of electrons,Ecw ~g.042 (N-1)
au; ' actually, this is the most primitive form of a density func-
tional for E . ii1) For first-row monohydrides, a good estimate of
the ¢orrelation contribution to D, is obtained from EC(AH)ﬁf B
E (A" )+E (H ) at the_ bgginning of the row, and from E (AH)=~E (A )
at the end of the row * (cf.Fig.1la). This can easily be rationalized
in terms of the charge transfer in AH molecules which is A-H at the
beginning and H-+A at the end of the row. 1iii) The charge densities
of the monohydrides should not be too different, on the other hand,
from those of the united atoms; thus we expect E (A, H)=E (A},
where the index N refers to the electron number of the (neutral)
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atoms A. Again, this approximation proves_to be rather satisfactory
for the correlation contribution to Dg (cf .Fig.1b).

II. HOHENBERG-KOHN THEOREM

The exact (non-relativistic) ground-state energy E of a N-
electron system is obtained by minimizing the expectatiom value of
the Hamiltonian H

E = mﬂi;n(\{’lﬂl\y?= mén {1@1\ e lHliye ) = m%n Elel (1)
ELel = {e(ulr)dr + 1‘1}in<W§lT+V!\|’Q>
4

The minimization over all (pnormalized) N-electron wave-functions v/
is performed in two steps: the search is over all N-representable
one-particle densities ¢ apd, for givenm ¢ , over all wave-functions
e vielding this density.  The second term in the density func-
tional E[] contains the operators of kinetic energy, T, and
electron-electron interactiom, V; it is a universal functional of ¢
in the sense that it does not depend explicitly on the external po—
tential u{r). Restricting y and ¢ in (1) to the form of Slater
determinants S, the HF density functional, EHF[?]’ is defined

Egp L8] = (e(uln)dr +Yr:ir51 el TH e > (2)

If the explicit form of E(¢] (and E F[?] ) were known in
terms of ©, HF as well as correlation energies could be obtained
without any reference to wave-functions. The definitions (1) and (2)
are not of immediate practical use for generating the explicit func-
tionals; determination of min <W\T+VIVe7 for a variety of © is by
no means less difficult than®solving the Schrddinger equation for
a variety of external potentials. This is the reasom why some quan-
tum chemists seriously ask if the Hobenberg-Kohn (HK) theorem is of
any use at all. The practical use of the HK theorem depends, of
course, on the possibility to find simple but sufficiently accu-
rate approximations to the functionals. The starting-point for the
generation 0f1§pproximations, both to E[¢] and EHF[gj , 18 the
decomposition

r12 1772
+E (¢l - (3

Efel = (e(r)ulr)dr + %i&% elTiyey + %[5 (r) 9y gr

P is the Hartree product form; the exchange-correlation functional
E c[q} has to be replaced by an exchange functional, E [g} , in ﬁae
HFScase. Alternatively, E{¢] can be directly related fo EHF[?]

Elel = B le) + 5 [¢] - o)
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Table 1. Correlation energies B (in 10“3 au) of atoms {ions),
as obtained from differént definitions:
a) E = E(gl-B (¢, 1, b} E = E[gi~E . l¢].
The flnctional (Qg) %g used for the evaluatyon of ELgl.

N: number of electroms, Z: nuclear charge,

7N 2 3 4

3 70.10 7G.13 71.79 71.84 97,49 97.62

& 78.26 78.28 81.38 81.42 116.40 116,52

10 104.47 104,48 141.53 111.55 172.92 172.93
a) b) a) b) a) b}

Note that the correlation functional E [¢1 does not yield, for the
exact ¢ , the correlation energy Ec as defined in Sect.I

Bolgd = ELQY - Epplol + Elgl - Fyp loggl - ()

The difference is very small numerically, however, at least if a lo-
cal DF approximation is used for evaluating EE917(cf.Tab1e 1). The
discussion of E [¢) and various approximations to it will be the sub-
ject of the f0118w1ng sections. We conclude this sectionm with two re-
marks, on the extension of the HK theorem to the spin-dependent case,
and on the minimization of E[%ﬂ in (4) with respect to @ .

For spin~dﬁ?endent external potemtials u

Ups (1) has to
be replaced by

[

E = @ﬁg El€x . 8p]
R
Eleu.Rpd = (grlugrddr +  {@.(r)uplr)dr

+"V$,,:(L,n@< W%'?pl' T+V | W?m.%? . (6)
9u» Qp are partial charge densities for spin « and % (oftenm called
spin-dengities), which add up to the correct electron number:

SCQ(x)+ Qp(r))dr = N ; the search is over wave-functions V.. 0p
yielding these spin-densities. Eq.(6) is widely used for Qut Cp  »
even if u,=up, since the (exchange-)correlation functionals are more
easily expressed in terms of g, ¢, than in terms of ¢ for non-vanish-
ing spin-polarization, A1l the relations for E [¢] which will be
given in the following sections can be easily generalized to corre—
sponding ones for EC[ T ’eﬁ]‘

For the minimization of E[Q] in (4) (or the corresponding
E{€«,§nJ) ), the densities are written in terms of spin-orbitals
Qs = £ WYY (&= o, ) . The HF emergy is a well-known functional of
the sp{nuorbitals. Thus

180



E = min (EH'F[OD*’QFA +E [Qm:Q(b] )

“Ier) )
= {“91?1(7]:33 (EHFL {wsi] +Ec[ {¢°t] ). (N
and the mipimization with respect to the ¥ leads to the Kohn—Sham

equations ~, which differ from the (unrestricted) HF equatioms only

by local correlation potentials prcoap= SE L %> €3] /59“[3 which
have to be added to the Fock operators F, P

TLI. LOCAL DENSITY FUNCTIONALS
We now turn to the determination of E [¢]. Introducing a vari-

able interelectronic interaction strength “y =ZAfr.. in (1)
leads to a A -dependent density functional E*[?]f and

L o=t =1 _ DEMe) | dENeLe]d
ECD?] =E Lol ~F (el = Edk( =% = ) (8)
since the exact and the HF functional coincide for vanishing inter-
electronic interaction, A.=o., From the Hellmano~Feynman theorem
:éjiilﬁil = J.SSIiXJQLAJﬁg dr, dr
DX 2 Tyo 1 2
_ l SS @(r ) @(1}_) g (rura_) - dr (9)

2 12 LR ‘

where w igs the two-particle density, and g 1is the pair-correlation
function. From (8) and (9), a useful relation betYEen E L?j and the
pair-correlation functions g%, gHF is obtained

chg} = ,%Sg?(tﬂ rizh%,g) dr1dr

- ¢ A
©c(rry) = ©ry) Ja[gM ey ry g (ryur)] (10)

2

An approximation to EC[ 1 can now be generated from (10) by
using a suitable model system for the determination of 9o If the
homogeneous electron gas is chosen as model system,

E.le]l = §o(r) e Rr)dr, (11)

results, where ¢ (¢} is the correlation energy per particle of the
electron gas withcdensity . The electron-gas ¢  may be rather dif-
ferent from that of inhomogeneous systems such a§ atoms and molecules,
but note that only the spherical average of (r ,rz) around r

contributes to Ec[?] ; non-spherical parts, present in inhomogeneous
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systems but not in the electron gas, cancel out. TFurthermore, the
same sum-rule, §Q (r,,r )clr2 =48> holds for the electron gas as
well as for atoms add moléculés. In the spin-polarized case, the
local~density (1D) approximation (11} has to be replaced by the
local-spin—~density (LSD} one

E (QoQp) = §0G) €08 lry)s §plNdr, (12) -

where € (@4 ,¢p) refers to the correlation energy (per particle) of
the spih-polarized electron gas with (spin-)densities ¢.,%pn . The .
correlation potentials corresponding to (11) and (12) are strictly
local; they depend on the densities at a single point only

Mewp™ 66(?0(,?P)+§.§_€g(_io;ﬁpl . (13)

”c)g:,xn,s

Several parametrizations have been suggested for ¢_(@Q.,Sp)in
the1giterature, the most accurate probably being that by Vosko et
al. Monte-Carlo calculations for the para- and ferromagnetic
electron gas are used here, the high— and low—density limits are
carefully taken into account, RPA results are emploved to model the
dependence of ¢ on & =(€&-—?ﬁ)/g . If not stated otherwise, the

. C h .
function by Voskd et al (VWN) underlies the numerical LSD results
given in this paper. The deviation of the VWN parametrizatjpn from
other ones, e.g. the widely used Gumnarsson-Lundgvist (GL)1 para-
metrization, is significant for total correlation energies =~ (the
differences are o.7 eV for He, 4.7 eV for Ne, and 8.7 eV for Ar;
the VWN energies are smaller in magnitude). The deviations are main-
1y for high densities; valence properties are mpch less affected,
therefore (differences in ionizatiom potentials aﬁg 0.2 eV for He,
0.4 eV for Ne, and 0.3 eV for Ar; differences in D are 0.2 eV for
H, and Li,, and o.t eV for P,). Compared to "exper%meaaal" correlation
efiergies 17 > LSD correlation energies are too large™ by a factor ~2
(with VWN ', the factor is 2.7 for He, 1.9 for Ne, and 1.8 for Ar).

IV. SELF-INTERACTION CORRECTIONS

The overestimation of total correlation energies with LSD (egs.
11,12) is connected to the fact that LSD ascribes a non~vanishing
correlation energy even to a system of non-interacting one-electrom
atoms. Atomic and molecular correlation energies are contaminateﬁ by
such spurious "self-correlation” terms in the LSD approximation.

The question is, how to eliminate them. An analysis of (10} in terms
of different spin pairs &6 is helpful here:

- .1_ Q (rfl) y QC 86'(7-'4, rg_)
EC [QW,Q(’:E - 2 %{i? 3’“{&“ g r12 dridr

T T YO I E SN PE A e S e S B 1

2
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The LSD approximation amounts to i) substituting ?6Kr2) by 95&r1),
and ii) using the pair-correlation functions of the hofiogeneous elec-
tron gas with spin densities @.(r.), ?ﬁﬁr ). Approximatiom 1) is
reasonable for &+ &/, because the Coulomb hole g&es —g 651=g$g'—1 is
centered around r,, with a cusp at that point. The difference between
the exact and the HF Fermi hole, géngﬁ-gs, on the other hand, van-—
ishes quadratically for r,—7T (cf.SecE.VIIA%i thus the substitution
i) should be much less app¥opriate for =g, We conclude that the
LSD approximation should be better for amtiparallel than for parallel
spins. This is not too surprising. Two effects connected with the cor-
related motion of parallel-spin electrons, exchange and parallel-spin
correlation beyond exchange, are treated on quite different levels of
approximation in the LSD scheme (4),(11): exchange is treated at the HF
tevel, while the remaining correlation effects are described by an
electron~gas expression.

The alternatives are either to resort to the exchange-correlation
variant of LSD (xc-LSD,eq.3), or to apply the LSD correlation func-
tional {(c-LSD) only to the antiparallelzﬁpin cagse. In the latter case,
the approximation for ECEQQ,Q&] reads

E L9us9p) = §9(r) - € (Qulr), §plr)dr (15}
= 19 (0) - € (Qulr),0)dr = feu(r) ¢ (0, §ulr))dr .

Self-interaction is effectively subtracted out in (15): E=0 for arbit-
rary one-electron systems. In atoms and molecules, (15) describes the
leading correction to HF, since electrons of antiparallel spin are
completely uncorrelated at the HF level. This point is illustrated by
the following comparison of antiE§r31191~(parallel—)spin correlation
energies (perturbational results™~): Be 0.074 (0.002) au, N o0.138
(0.043) au, Ne 0.298 (0.086) au. The main contributions to parallel-
spin correlation come from the degenerate p orbitals (c.058 au for Ne).

Incorporation of parallel-spin correlation into {15) is possible,
of course, by means of a €I expansioE4 There is another possibility
yet which is due to Perdew and Zunger

EC EQD(’?{S] = S?(r) ’ éc( ?o((r}, ?(I,(r))dr
" & $Sei ™ €0 (Qqy(r),0)dr (16)

Here @ .. is the orbital density of spin-orbital \f?. By subtract-
ing sinéie-orbital contributions from the LSD correlation energy,
self-correlation is removed, while, at the same time, some parallel-
spin correlation is retained. E_ is mo longer invariant, however,
with respect to unitary transformations of the occupied spin-orbitals
(which leave E_. as well as (15) unchanged). For F,, e.g., trans-
formation from canonical to localized orbitals reduces” the self-inter-
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Table 2. Total correlation energies E_(in 10"3au), as obtained
from various LSD versions. Fxp. values from Refs. 19,9.

LSD LSD-SIC exp
eg.(12) eq.(15) eq.(16)

C 360 176 187 158
N 432 205 223 188
Q 539 269 292 258
BH 350 181 185 152
cH 425 216 225 197
NH 501 249 265 240

Table 3. Correlation contributioms to ionization potentials (in 10H3
au), as obtained from various LSD versions. Exp. values from

Refs. 19,25,
LSD LSD~SIC exp
eq.(12) eq.{15) eq.(16)
N 41 14 20 21
0 77 51 55 64
BH 56 37 38 49
CH 41 17 22 22
NH 43 16 22 28
on 71 44 49 55

action corrections by o0.003 au (10%) per orbital, The correlation
potentials frep become orbital-dependent with (16).

Table 2 shows that total atomic and molecular correlation en-
ergies are largely improved with the self-interaction corrected LSD
versions (15},(16) (LSD-SIC). The differences between (15) and (16),
on the other hand, are only marginal. Table 3 gives results for iomiza-
tion energies. Here, too, self-correlation corrections are important.
If no change of electron number is involved {(for disgsociation or ex-
citat'gn energies, e.g.), SIC is less significant, Gunnarsson and
Jones™" give an example, where the original LSD gpproximation (12) is
superior to LSD-SIC (eq.16); this is for the 2s pair-correlation
energy of the 4-electron series Be, B, C° ,.. We shall demonstrate
below (Sect.V), that in this case both LSD and LSD-SIC (and probably
all DF approximations which are based on electron-gas data) are bound
to fail.

V. TOTAL AND PAIR CORRELATION ENERGILS

Total correlation energies of first— and second-row atoms, calcu-
lated using the LSD-SIC approximations {15),(16), are compared to ex-—
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Pig. 2. Total correlation energies E_ (au) for the grouad
states of first- and second-réw neutral atoms

{(N: electron number).1§SD"SIC eqg.15: , LSP-SIC eq.
16: ———, exp. values “: open circles.
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Fig. 3. Intrapair correlation energies e . (au) for meutral atgus .,
LSD eq. 18¢c: —ouo— , second-ordét perturbation theory ~777:
A
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perimental values in Fig.2. The mean deviation with eq.15 is 15% for
the first, and 4% for the second vow. With (16), & is consistently
‘larger than experiment. This is (at least partly) due to the over-
estimation of core correlatign en§£gie§7i38the LSD scheme. Consider
the 2-electron fﬁﬁies e, Li , Be” ,..7 "2 LSD performs well for
small Z, but E increases as 1n Z, while the true correlation
energy approachés a constant Xalue for Z -+ o , This leads to an
overestimation of B, for Fe™ ,,e.g, by a factor 2.3 with (15). For
the 4-electron seriés Be, B , C° ,.., on the other haﬂgﬁ Ec should b
linear in 7 {(this is a near-degeneracy effect), but E " ~1d Z again.
Théi leads to an underestimation of the valence correlation energy for
Ne by a factor 2.0 with (15). These examples nicely illustrate the
fact that, for near—degeneracies and/or large density gradients, LSD
behaves qualitatively incorrect.

In order to get further insight into the merits and shortcomings
of LSD, we have performed a decomposition of total LSD correlation
energies into contributiong from electron pairs. Such a decomposition
is widely used in CI calculations:

. CI CL r.ab ab
E = e,,, e., = 2 <@ VHIQTIY . (7
e % ij ij  ace % P‘LJ 7 %4y

Here ¢ is the HF determinant, i@?? a double substitution, (i,]

Q . e : i X . b "L
(a,b) denote sp1n~orb1tgls occupied (tideccupied) in ¢ 23 c,. is

L. cab ., . . - o’ .7d

the coefficient of ébi' in a 55 expansion which 1is notmalizéd to
¢ =1. A LSD partitioniné of E relies on the quantities E_[g],

EZ[g—-g.} , K [Qimcgi— g,] , where'gi , ?j are spinmorbitai den-
51t1e5;]the LSB-31C flinctidnal (16) is used., One assumes

IS Z %
BLsd - Bl -9l = 2 Cik
ELel-EL9~9; - gj.} = kgi)eik + Q%‘pejk Sy (18)

Sums of pair correlation energies, imvolving a given spin-orbital v?,
can be obtained from (18b) (N equations), individual pair energies
from (18¢) (N(N-1)/2 equations).

Fig. 3 shows intra-pair correlation energies for Be, Ne, %g 3gnd
Ar"7, compared to values from second-order perturbation gheory.” ™’
The trend is qualitatively correct with LSD, but 1) 1s",pairs have
too large emergies (as discussed above), and ii) the np” pair en-
ergies are too small. It is fair to say, though, that the convergence
of the perturbational pair energies is vgry slow with respect to the
angular quantum number 1. For the Ar 3p” energy, the LSD value (o0.014
au) is not so much smaller than the result from a perturbational cgl-
culatiop including s, p and d orbitals only (0.017 au). Since ns
and np” demsities are not too different, LSD predicts similar pair
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correlation enexgies for ns2 and np2 in a clesed shell, In reality,
however, the ns” energy is considerably smaller: in the closed L and M
shells, angular correlation of the ns pair by np orbitals is suppressed
It is hard to see how such an exclusion effect could be properly taken
into account by a local density functional. p inter—pair energies (for
Ne, Mg, Ar) and d intra-pair energies [(f 5 Zn) show the same defi-
ciencies as the p intra-pair energles.’ " Thus, valence correlation
energies are underestimated in LSD-SIC, with E?e exception of those
cases where an exclusion effect reduces the eij'

VI. APPLICATIONS OT THE LSD METHOD
A. Energies*

Ionization energies (IE) of first~row atoms are shown in Fig. &;
¢~L8D-8IC results {eq.13) are compared to xc-L8D (eq.3), HF and experi-
mental results. The agreement with experiment is generally good for
both c~LSD and xc-LSD. The Be IE is underestimated by both methods
(cf.Sect.V). For B, C, N (singly cccupied p orbitals), c~LSD is some—
what better; a self—interigtion correction does not change the xc
values significantly here” , so interelectronic exchange is probably
overestimated in xe-LSD. For 0, F, Ne (doubly occupied p orbitals},
the errors of c¢-L8D and xc-LSD are similar, but of opposite sign:
c~LSD yilelds too small p intrapair energies, xc~LSD probably again
overestimates exchange. Correg?tion contributions to IEs of one~
valence~electron atoms (ions)” are compiled in Table 4. This is a
severe test of LSD: the contributions are due to core-valence corre-~
lation only, and depend therefore, in LSD approximation, on the rather
small overlap between core~ and valence-orbitals. Without SIC, the de-
viations from experiment are of either sign. With SIC, the ¢-LSD
values are consistently too small by a factor ~3; the trend is more
satisfactorily reproduced now. The result is that LSD can qualita-
tively describe core-valence correlation, but the percentage recovered
is rather small. Errors of this kind always come into play, when weak-
ly overlapping densities are treated in LSD approximation; a possible
improvement will be discussed in Sect.VIIB Correlation contributiocns
to molecular ionization energies have already been given in Table 3.
¢~LSD without SIC leads to too large IEs, the SIC versions (eqs. 15,
16) yield simitar results whieh are in good agreement with CI calcu-
lations.” The trend QH’BH>CH=NH is correctly reproduced by all
methods.

We now turn to electron affinities. With ¢-LSD-SIC (eq.15),

* Some of the following results for LSD correlation energies have been
obtained from HF calculations with subsequent evaluation of Ecu%=qHF1'
The error of this non-self-gonsistent treatment is, for atomic en-

ergies, of the order of 10 ~ au’ (ecf. also Table 1).
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Fig. 4. Ionization energies TE (au) of first-row atoms1§N:
electron number). ¢~L8D-8IC eq.15:——, xc-LED "1
— —=, HF: ..o 3 exp. values are denoted by crosses.
Fig. 5. Excitation emergies AFE (au) of EirsE7r0w atoms (N:
electron number). ¢-LSD~SIC eq. 15:7 ——, HF:
- = -} exp. values are denoted by crosses.
Table 4. Correlation contributions (in 1om3 au) kg ionization
energies of one-valence-electron atoms.
The "exp'" values are differences of experimental and
Dirac-Fock {(DF) ionization energies.
18D, eq.12 L8D~STC, eq.15 exp
K + 17 4 12
Ca 23 7 20
Cu+ 28 11 43
Zn 33 13 41

reliable affinities ags obtained for s electrons (gé o0.71 eV (exp:

0.75 eV}, N

a: 0.57 eV’ (exp:0.55 eV), Cu: 1.13 eV  (exp:1.23 eV)),

but the p affinities are markedly too small (Cl: 3.3 eV (exp:3.7 ev)),
as expected from the p intrapair defect discussed in Sect.V, In xc-LSD,
negative ions are not stable due to exponential decrease of the elec-

188



tron-gas exchange potential for large r. With self-interaction cor=-
rection24, xc~LSD calculations give reasonable results3%, but p and,
in particular, 4 affinities are too large.

iycitation energies for 2s-+2p and 2p-3s transitions of first-row

atoms”’ are depicted in Fig.5, Separate calculations for ground and ex-
cited (single-determinantal) states were performed; the GL parametriza-
tion for &, was used, Agreement with experiment 18 encouraging. The
maximum deviation from experiment (~o0.5 eV) occurs at the end of the
row, where excitation is from p pairs. There are cases, however, where
LSD pgrforgs gess satisfactogiiy. For Ne , e.g., the two lowest states
are “P{2s72p”) and “3(2s2p”), both representable as single determi-
nants. The HF excitation energy is 29.55 eV, c~LSD vields quite similar
results (29.63 eV without, and 29.60 eV with SIC eq.15), but the ex~
perimental value is much smaller (26.88 eV). The erroy ig due to the
anomalously large correlation energy of the excited “§ state,.which
strongly mixes with 3 Rydberg state slightly higher in emergy™ " ; the
result is that the 75 state of Ne has even more correlation energy
{0.426 au) than the 8§ ground state of the neutral Ne atom with one
electron more (o0.394 au), Such near-degeneracy effects cannot be des~
cribed by a local DF. ns +(n+1) g» mS-Ip and ns-+{n~1)d excitation en-
ergies of alkaline-earth atoms>° are given in Tig. 6. The ¢~LSD-SIC
values (eq.15) compare favourably with experiment (deviations % o.1 eV),
while considerably,larger errors gppear in the xc-LSD formalism, es-
pecially for the 7D excitations. In the latter method, electron-gas
exchange artificiallylowers the D state with respect to the ' § ground
state by ~1 eV. A similar situation seems tgnirise for tgggs%tion~
metal atoms. For the splitting between the d “8° and d s states,
HF results are quite acceptable as long as the 4 orbitals are singly
occupieg7(Sc to Cr), while the xc-results favour the d rich state by
~1 eV, Molecular excitation energies for the first-row monohy-
dxides™ are compiled in Table 5. We consider,transitions of the type
n wnr for BH, CH , n“®-»aww for CHNH andn”m™ -»n wo' for NH, OH .
Correlat%oq_effects can be decisive here: HF as well as X« pre-
dict a (n mn") ground state for CH, while the experimental ground
state is "M (n"w). Our results in Table 5 refer to single-det r?f*
nantal states; these are pure states, with the exceptionm of n"w

which is composed of Ts* and "A: in this case we compare with the
appropriate average of experimental emergies. The correlation contri-
butions are very similar with the various c~LSD variants (egs.12,15,
16}, because there is no change in the number of electrons. Compared

ko eEperiment, the c¢~LSD results deviate by few millihartrees. The
Z-"T separation for CH is of the correct sign with c-LSD, and its
magnitude (0.027 .. 0.031 au) compares faygurably with the CI calcu-
lation (4147 configurationi) by Lie et al = (0.023 au, esgiqgte

0.023 .. 0.028 au}. TFor NH , ¢-LSD predicts the J{ and 5 states

to be essentially degenerate (separation -o.oc03 .. +o0.00t au): the

best CI calculation = yields =0.003 au; experimentally, the “[T state

is believed to be the ground state, i.e. the separation should be of
positive sign.
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Fig. 6. Excitation energies AE (au) of group TIA atoms.
c-LED-SIC (eq.15,38ith GL parametrization; from valence—
only calculations™ ) :——. exp.values: crosses.

Fig. 7. Binding energies D _(eV) of first-row monohydrides42
e~L8D~SIC {eq.15, with GL parametrization}: s
CI3: —m e 3 eXp.values are denoted by crosses.

Table 5. Correlation contributions (in 10“3 au) to molecular3§xcita—
tion energies (cf. text) of first-row monohydrides.

Lsh LSD-SIC exp
aq.12 eq.15 eq.16

BH 27 29 26
cu’ 28 30 26 (37)
CH 3B 41 37 37
it 34 37 33 38
NH 19 20 19 19,790
ont 20 19 20 22..26

Binding ggergies of first-row monohydrides, from valence-only
calculations, =~ are shown in Fig.7. The results are compared to CI
and experimental values. The LSD errors for OH and FH are in line
with the underestimation of electrom affinities by c-LSD discussed
above. (With the VWN parametrization, the c-LS5D value for FH in Fig.7
is improved by ¢.2 eV.) The deviation for BeH is due to an exclusion
effect, The CI correlation energy for Bel is actually smaller than
that of the Be atom. The latter has an exceptionally large correla-
tion energy because of the near-degenmeracy of the occupied s with
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Table 6. Dissociation energies (eV) of alkali dimers, from
valence-only calculations using the c—LSD4§x§ZLSD)
functional with VWN (GL) parametrization. ~°

¢—LSD-5IC,eq.15 xc-LSD exp
Li2 1.00 0.83 1.06
Na2 0.80 0.65 0.73
K2 0.64 0.49 0.52

the unoccupied p orbitals. In BeH, the po orbital is (partially)
occupied and can no longer be used as effectively for correlation.
Dissociation energies of homonuclear alkali dimers (Li, to K,) are
given in Table 6. Here correlation contributions are eXceptionally
important: only Li, is bound at the HF level of approximation. It is
seen that both c-L&D-STC {eq.15) and x¢-1.8D are in good agreement with
experiment. Be, Is an interesting molecule, because large discrep-
ancies exist hére between different CL calculations. At the HF level,
Bez is repg%sive. With a multi~configuration~8CF (MC~SCF, 6o confi-
gufations) ~, a shallow minimum at r=tlo au is found. Enlarging the
MC-SCF to 816 configurations leads to two minima (at 5.1 and 8.2 au),
with a depth of ~o0.1 kecal/mole both., With a large~scale CI, includ-
ing single and double substitutions with respect to the MC~S5CT(60)-
wave-function (10752 configurations), a single minimum at 4.9 au is
obtained (depth 042 Egal/mele). The final CI estimate for De is 2.0

. 2.3 kcal/mole. 77" ¢=LSD=S8IC (eq.15) gives only the outer minimum
(r =% au, D =o0.1 kcal/mole). With xc-LSD, on the other hand, rp=4.63
aueénd—De=1§ keal/mole is found 8. Thus xc-L8D is probably superior to
c-LSD for Bep, although the deviation from the CI estimate for Dg at
4,9 au is certainly smaller for the latter.

We conclude this section with a remark concerning bond-lengths.

The deviations of HF bond-lengths f£rom experiment can be of either
sign: HF bond-lengths are longer than the experimental ones for alkali
dimers, but smaller for the first-row monchydrides BeH to FH. c-LS8D
usually leads to a shortening of HF bond-lengths (IEC{?1+ 0,11 =
\EC[§H] +EC{92]$ with eq.11). This means that c~LSD cdnnot b& used for
a congistent Improvement of HF geometries. The same remark apg}ies to
®e-L8D, For a number of first-row molecules, Baerends and Ros found
ar (BF)=0.07 au, and Are(xc—LSD)=o.08 au.

B. Densities

In this section, we discuss radial densities D(r)=§?(r)rzsin&d3d
for 2-, 3-, and 4~electron atoms. In particular, we consider differ-
ences 4D (r)}=D{(x)-D__{(r), which arise when including the LSD-SIC cor-
relation potential %Functional derivative of (15)) into the UHF equa-
tions. For 2-electron atoms, it is known from accurate CI calculations
that density is shifted from the intermediate region to both short and
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Fig. 9. Correlation contributions &D {in 10_3 au) to the density
of the Be atom, as a functigg of r {au).
c~L8D-8IC eq. 15 ¢ 3 CI 1 «- == ww . The arrows indi-

cate the <(r) expectation values of the 1s and 2s orbitals,

long radial cﬁ.stanc‘_es.é8 Enlarging the density near the nucleus (con-
traction) 1s caused by angular correlation, while the expansion effect
is due to radial (in-out) correlation. c-LSD can describe only the
former effect: the local correlation potential decreases monotoni-
cally with increasing density, and charge is shifted inwards only.
This defect is certainly not limited to the specific LSD approxig?w
tion (12) or {15). With an empirically adjusted local functional™’,

it is possible to reproduce the correlation energies of the 2-elec~
tron series H , He, Li+,... with remarkable accuracy, but the density
shift with EBe corresponding is only towards the nucleus again.
Smith et al ~ determined the correlation potential w for He by in-
verting the Kohn-Sham equation (cf.Sect.II;tf=Vg? 3 was taken from
accurate CI calculations; under the assumption that Mo appreaches
zero for t-+rog, the eigenvalue ¢ of the modified HF equation is given
by -1/2 ;ig,§2¥ahf). The resulting pu  is non-monoteonic; it has a
barrier at r=o.7 au and is negative only for r<¢o.3 au. It is not
clear how such a behaviour could be incorporated intc a local elee-
tron-gas approximation.

In 3-electron atoms, valence-density differences are due to intershell
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correlation. Since intershell correlation is mainly of the angular
type, ¢~LSD is expected to work better ggan in the 2-electron case.
In Fig.8 ALD= AD .~AD .+ 1is plotted.” The agreement with elab-
orate CI calculatidns i satisfactory, indeed.

An example of a 4-electron density differemce AD(r) is given
in Fig.9. The Be density shown in this figure exhibits quite differ-
ent shifts in the core region with LSD and CI calculations, but in
the outer valence region a similar {(inward) shift is observed with
both methods. This is surprising, in view of tEe qgalitative differ-
‘ences for the He series. But note that the 28 -=2p (angular) cor-
relation is exceptionally high in Be,

VII. EXTENSIONS OF THE LSD METHOD

A. Non~local Corrections

The LSD approximation for E [ Qu, Qn) » derived from data of the
homogenecus electron gas, cannot Be exact: atoms and molecules differ
from the homogeneous electron gas in many respects: i) the number of
electrons is finite; the excitation spectrum is discrete; ii) the
density is not homogeneocus; 11i) the correlation hole does not depend
on the local density at the center of the hole only. Points 1) to iii)
have been starting-points for various modifications of the local elec-
tron-gas expression, We shall discuss these modifications now.

Tongs1 pointed out that in the infinite electrom gas a continuum
of low-lying levels is available to adjust to the mutual Coulomb re-
pulsion of the electrons; the system is "soft" and should have a
higher correlation energy than a finite one with discrete levels, and
this is indeed what was found with the (original) LD approximation
{eq.11), as discussed in Sect.III. Tong therefore cousiders a model
system with a finite number of electrons in a cubic box. The correla-
tion energy is evaluated to second order perturbation theory, using a
screened Coulomb potential. If the density in the box is chosen to
match that of an average atom (Ne, Ar), a correction factor to the LD
gxpression can be defined as € mod (N)4$£¥.Ec de (). ?his factor
is about 0.5 to c¢.6 for Nc:?%..?é, brlnglng’?ge D estimate of
total atomic correlation energies into reasonable agreement with ex-
perimental values for medium-sized atoms. An additional self-interac-
tion correction is unnecessary here, of course; it is already included
in the correction factor. Schneider52 refined Tong's scheme and ap-
plied it to molecules (N,, F,). It is not clear, however, if this
global model can be made Sufficiently accurate to deal with small cor—
relation—energy differences (contributions to dissociation energies,
e.g.). The cubic box is certainly a more appropriate description for
compact systems (atoms) than for more open ones {(molecules).

Atoms and molecules have strongly inhomogeneous densities. For a
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comparison of correlation energies, the inhomogeneous electron gas
would be, therefore, a more suitable starting-point than the homogene-
ous one. Assuming an expansion of Ec for the electron 82y, perturbed
by an external field, in powers of g, Ma and Brueckner™~ obtained
the following expression for the correlation energy per particle

€. (e} +B i'*?gxz ] 7/3

B = 4.23 -107° au , (19)

which is valid in the high-density limit. Applying (19) to atoms (O to
K), Ma and Brueckner found an overcorrection of the LD error by a fac-
tor 5. Changing (19) empirically to

2 -1/3
€ (€)-[1-3 1% e

agreemeph gith experiment to ~8% was obtained for O te K, with
¥=0.32.,77°77 While atomic correlation energies are too large in magni-
tude with (20}, the molecular IE } was found to be bLoo low for N

and ?2 {(by ~1o % ). This means that the correlation contr%?utions to
D are"of wrong sign. In a recent paper, Langreth and Mehl argued
that thE sg?}g~k part in a wave-vector decowposition of the prefactor
of {Yef in (19) should be omitted, since it is effectively
compensated by higher orders of the gradient expansion. With a single
parameter f controlling the cut—off of k values in the interval

(e n™ 7, (20)

o¢ks f\W/¢f , and adjusting £ empirically to atomic energies,
Langreth and Mehl obtained the following formula for EC/N
= 2 _=7/3
. (¢) + Ble) wol? g
oy -3 ~7/6
B(Gg) = 4.28 - 1o ".exp(-0.262 'VoI ¢ ) au . (21)

If£ (21) is applied to the calculation of correlation energies of
closed—shell atoms, considerable improvement over the original LSD
approximation (1%) is achieved, but the agreeme?y with experiment is
still not very good. In their most recent paper ', Langreth and Mehl
suggest a repartitioning of the DF exchange-correlation energy into
the exchanpge and correlation parts; according to their suggestion, 9f
(with fx~o0.15) has to be added to the exponential in (21b). Now ex~—
perimental correlation energies of closed-shell atoms can be repro-
duced with an impressive accuracy. The method is very promising; note,
however, that the gradient correction in (21) cannot be used to im-
prove on the incorrect ln Z dependence of the LSD correlation energies
for the 2-electron atoms.

The exact expressions (1lo),{14) for the correlation energy E
depend on the pair correlation fumctions g&e/. While gae and
g5 are essentially determined by the antisymmetry requirement al-
ready present in HF, gé( and g}}x (which are constant (=1) in HF)
are markedly changed by correlation beyond HF. The following prop-
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erties apply to pair correlation functions in atgms and molecules, as
well as to those of the homogeneous electron gas

gé’@'(risr1)=0, gé'af(r1,r1)2 o] (6’*6!) | (22)
§dry Golxy) g& el sry) = No - Soer (23)
) 2 -~
S T G PR SN URU S SR D
‘Ilz}*ﬁé 0Ty, Bow 7O mia“}n Dr, 2 Bou ™ 3% };i*% DY B oo
12 12
: }\. 1 . ‘(' A . 1
: T A a3, Bos TS 24
o BT X gy Gr,, Bee (g+6) (24)
{He Ng 1is the number of electrons with spin & .)

Ros™  has shown that the Coulomb hole gowm(r1,r )1 in 2-electron
ions can be understood in terms of simple concep%s like shielding and
polarization. If a perturbation of the form

_ 1.1 we 1y )
Ve = aly-- g g"gfi“i“ ar, | (25)

is added to the Fock operator F(r,), the resulting density change
gives an accurate representation of [gc*@(r ,r2)~1}§hﬁr2) for a
given L, (The parameter q is weakly dependent®on "r, ({{o)=0.33,
q{oe)=1).)_in molecules, the following properties have been found for
the ggg:-  The depth of the Coulomb hole is rather small (gmﬂ£r1,r1)
0.9 .. 0.99). At nuclear positions , the Coulomb~hole depth and
range are inversely proportional to the nuclear charge Z. The range of
the Coulomb hole is somewhat smaller in general than that of the Fermi
hele.

The central quantity for calculating Ec is

A
gcsﬁﬂr1,r2} = ?G&rz) gd)\[gé§1r1,r2)wgﬁﬁsﬁﬂr1,rzﬂ ) (14"

As discussed in Sects.ITE,IV, the LSD approximation is characterized
by substituting q@(rz)-rg%(r }, and using the pair correlation func-
tions of the homogengous spin-polarized electrom gas with densities
Q"‘(ri)’ Cplr ). og

Keller and Gazquez™ avoid the use of electron~gas data for evaluating
{(14'). They concentrate on antiparallel-spin correlation (& # ). The
replacement §%1r2)~u§g£r1) is made, and for the integral in (14") the
ansatz

- exp(—crqud)-cos(37rr12/(2d)) (26)

is used {note that gﬁas(r ,T,)=0 with (26)). The counstant d is
identified with the Fermi-hole radius, and ¢ is then determined from
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the sum rule (23). It is not clear why such a procedure (which consti-
tutes a local DF approximation still) should be superior to the T1LSD-
SIC approach (eqs. 15,16), and, in fact, the correlation energies cal-
culated by Keller and Gazquez are not of very homogeneous quality. For
He 12%, for Ne 80Z, and for Ar 115% of the experimental EC is ob~-

tained.
A npge sophisticated approach has been suggested by Alonso and Bal- -
bas””. They start from the spin-integrated form for E. {eq.10) and

retain the exact density prefactor Q(rz) in
A -
= . A ™ '
S lrppry) = §(ry) éd*[g Gpordmgup(rr) ] (10
For the integral, they make the ansatz
1
-5 exp (- mr12) cos( ﬁr12) (27)

which is similar to ({26) (Qoc = = /2 is supposed here}. The
parameters « and (5 are adjusted to propertigs ( £,> Sum rule) of
the homogeneous electron gas with density . Alonso and Balbas then
suggest to choose, for each r,, in such a way as to satisfy the
sum rule (23) for {r ,rz), using the (exact) density <i(r2) of
the atom or molecule uUnder consideration. Unfortunately, this pre-
scription is nomn~unique, at least in the limit of comstant density.
The latter defect is absent in the c%osely related WD (weighted-
density) method by Gumnarsson et al. ° Here E [€] and E_[¢@] are
% , xek

calculated from the exchange- and exchange-corTelation holé in a way
similar to that described for EC{Q] above. Both WD approximations,
for E_ as well as for E_, yiéld the exact solution for ome-elec-
tron systems. But while excﬁange energies, in particular, are greatly
improved with the WD method, this is not true for correlation en-
ergies E =E ~F . For Ne, e.g., 0.67 au is obtained (c-LS8D,

XC X
eq.12: o0.74 B4, Sxp: 0.39 au). 61
In the approach suggested by Dobson and Rose ', the non-local charac-
ter of the functional is even more distinet. They do not only retain
the density prefactor QS&IZ) in (14'), but the exact HF two—par-
ticle density:

_ A=A
Qe porlFqory) = SGI(KZ) ' Byp oo Ty ¥ (28)
P A . - A=1
. éd}\L g E,_,5.f(r1 ,rz) Bup seﬁ(rq ,rz)J / gHFG'G’(r1 ,rz) ;

The prefactor of the integral is taken from the HF calculation of the
atom or molecule under consideratien, and the pair-correlation func-
tions of the homogeneous electron gas (with densities $g = (6%3(r1)+
Q5(r2))/2) are used in the integral. No numerical application has
been performed so far. Self-interaction is corrected for in {(28)
through the use of g p 28 multiplicative factor, and the limiting case
of the homogeneous e?ectron gas is properly taken into account, but
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the sum rule (23) is not satisfied. Perhaps this could be amended by
changing the prescription for ?6 in a suitable way.

B. Adjustment to Atomic Data

In Sect.VIIA, non-local extensions of the LSD formalism have been dis-
cussed; in some cases atomic data were used complementary to the elec-
tron~gas data underlying the LSD expression. As an alternative, one
.can use atomic data exclusively, right from the beginning.

Lie and Clementi = employed the following ansatz for ét( ?):

€.(Q) = a [(ay /! %’/3 s me2.390 %)) L @9
The parameters in (29) were adjusted Lo the experimental correlation
energies of the He, Be, Ne atoms. Tt turns out that a LD calculation
with (29) differs by roughly a Factor 2 from a calculation with the
1D electron-gas functional. Correlation contributions to dissociation
energies, which are well described by the electron-gas expression,
are too small now by a factor 2 with (29)., Lie and Clementi found
that the missing parts of molecular correlation energies can, to a
good approximation, be calculated from a small valence MC-SCF (multi-
configuration-8CF) which does not change the atomic eunergles. Such a
valence MC-SCF has the additional advantage to emsure transition of
the molecular state to the correct atomic dissociation products in the
limit of large internuclear separations. The deviations from experi-
ment of the disscciation energies computed by Lie and Clementi are
40.4 eV for first-row monohydrides, and £1 eV for first-row dimers.
The idea to separate correlation effects into internal ones (excita-
tions into valence orbitals, which account for near—degeneracies and
are not well described by a local DF) and a rest (which is connected
to higher excitations and can be estimated from atomic cggrelation
energies) is underlying also the methed by Lievin et al. The mole-
cular density is decomposed here into atomic contributions P(Ki)
according to
P(R) = TT P2 (1-P )1—nq (30
i qei 4 q

Ko is a configuration of atom i, P_ is the population of the atomic
spin-orbital X‘ in the molecular 8ensity, and n_  is the cccupation
number of i .. Using the P(K.), the non-infernal part of the
molecular coirelatidn energy is approximated by a weighted mean of
atomic mon~internal correlation energies; the internal part is calcu—
lated in the CI formalism. Results for dissociation energies of first-
row dimers are (experimental values in parentheses): c, 6.03 (6.33) ev,
N2 tfo.oo (9.91) eV, O2 4,80 (5.21) eV, F2 t.15 (1765) eV.

An attempt to include internal as well as non-internal correla-
tion effects in an atom-adjusted non-local DF scheme has been made by
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\ , B .
Colle and Salvett:r. 4 They start from a wave—function ansatz of the
form

\V(x1""xn)=LrﬁF(Xi”"xn)‘gj;(1—f(ri’rj))

f(ri,rj)=exp(—ﬁzlr12 ). (=g (R)- [ 1+1r/2 ]) (31)

Here r=r.-r, , Re(r.+r.)/2., This ansatz leads to the following two-
particle deﬁsity"matrix

S B RN U
rr(r1,r2,r1,r2) ”HF(ri’rZ’r1’r2)

. (1—f(r1 ,rz)—f(r; ,r§)+f(r1 ,1:2)‘f(r1T ,ré)) 32)

which satisfies the cusp conditions (24). It is assumed then, that w
integrates to the HF one-particle density matrix:

. ot - - .
Sn(rq,rz,r1,r2) dr, = (N-1) GQHF(r1,r;) (33)

This amounts to neglecting the A~dependence in (i0), and thus to
omitting kinetic contributions to E . Such contributions play a dis-—
tinct role in atoms and molecules (%irial theorem!), so (33) is not
wholly justified. From the requirement (33), a connection between g
and (> is established, an%/3ﬁa(the inverse size of the correlation
hole) is put equal to g The final formula for E_  depends on
Tom (L, ,T,) and vquHF(ri’rZ)‘r—n; it contains a singlfe parameter g
which 1s adjusted usin® the e¥perimental correlation energy of the

He atom. Correlation energies of atoms and molecules can be calcu-
lated from this formula with an accuracy of ~ lo%. A self-interaction
correction is included ('WHF(r ,r. =0 for one-electypn systems).
Applying the formula to the paramagnetic electron gas =~ leads to a
Wigner—-like expression

“1/3)_1 au (34)

€. (@) == (9.652 + 2,946 Q
which is (for not too large demsities) in remarkably good agreement
with the VUWN function (cf.Sect.IIL).

It is perhaps a conseguence of approximation (33) that the wave-func-
tion (31), with the parameters determined by Colle and Salvetti, i86
no very good substitute to the true wave-function: Moskowitz et al
report that only 10%Z of the Be correlation energy is recovered with
{31) (98% in the non-variational treatment of Colle and Salvetti).

In the methods discussed up to this point, E_ is calculated
explicitly from atomic {(molecular) densities. It is possible, how-
ever, to introduce, in addition, other atomic {molecular) properties
into the functional. These properties should have, on the one hand,
a more or less direct relation to E_; they should be, on the other
hand, accessible in the framework of the density-functional method,
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at least in principle. With such properties as intermediate quantities,
it perhaps could become easier to find an accurate non-local DF for
atoms and,.molecules.

Ang et al ' have shown that there,is a rather direct commection bet-
ween correlation energies and <r’> expectation values. Atomic corte-
lation energies can be economically fitted by

E, =k (2 &) . crty

(35)
where the parageters k, &, § are constant within each 1isoelectronic
‘family; the <r"» wvalues can be taken from HF calculations. A rela-
tion such as (35) hasgglso Bgen useg to predict protonation energies
(within the series N~ , K" ,..,NH;, e.g.).

There is a very simple comnection between core-valence correlation
energies and core polarizabiligéegé V?ich has been successfully ex—
ploited by a number of workers.

1

e
Epol - <%}al < ) %ﬁmKﬁ&)l\yvalp
. —p . . -
£, = Irioglr, ) - 3 Q.= (36)
T 3 A, X (\A 3
r . MH"\.} T
A P\_FA
E is the polarization energy, which Includes core-valence correla-
e384 {and core-polarization effects on the HF level);t{ is the

valence part of the wave-function; the_t¢, are core dipoY%—polariza—
bilities, the @, are core charges; f. 1is the field generated at
the site of core'x by valence electygn%gnd surrounding cores;
g(rz‘i) is a cut-off~function, e.g. °’

2
(1 -e §r )
g(r) = r3 (r2+r02)_3/2

g(r)
or
; (37
which is necessary, since the polarization picture breaks down for
valence—electron positions near and inside core A. With the polari-
zation potential

o 2 2 2

=-%r (F+r")

Vpol 2 0 / (38)

derived from (36) and (37b), and reasomable r_values (set equal to
. 0 : :
the <x> g§pectat10n value of the outermost core orbital) Migdalek
and Baylis ~ obtained good results for correlation contributioms to
ionization energies of Cu, Ag, and Au, using (relativistic) HF ns
valence-orbital densities only. The deviation from experiment of re-
lativistic HF jonization energies is 1.16 eV for Cu, 1.24 eV for
Ag, and 1.54 eV for Au., If, with (38), instantaneous polarization
of the X  core by the valence electron is taken into account, the
deviations are reduced to o0.25 eV for Cu, o,04 eV for Ag, and
o.ol eV for Au,
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Fig. 10. Gorrelation energy differences AE =E (N)-E (N-1) (in au;
N: electron number) for the 2-eleckrofi (so01%d lines) and
the 4-electron series (broken limes). ¢-LSD-8IC eq.15: & ,
polarization potential eq.38: o , exp: x .

Adjusting the single parameter of g{r) in (37a) to atomic ionization
energies, HF deviations from experiment, of bond-lengths of alkali
dimers could be reduced b¥ ay?ut an order of magnitude (from o.3 &

to ~o.04 B for K, ,e.g. '9°""). Thus when calculating valence prop—
erties of atoms an& molecules, it is strongly advisable to apply the
LSD formalism only to valence instead of total densities. Core-valence
correlation can be accurately and economically determined using

eq.30.

Tt is perhaps interesting to note that the polarization concept yields
reasonable results not only in cases where the polarizing electron and
the,polarizable core are well separated in space. Migdalek and Bay-
lis'” calculated electron affinities of halogen atoms using correla-
tion potentials of the type (38), where & is now the polarizability
of the neutral atom, and r_ is the expectation value of the outer-
most p orbital. The extra electron in the negative ion experiences
the attractive potential (38), which leads to a stabilizationm of the
ion with respect to the neutral atom. The HF errors for the affini-
ties, which are 2.07 eV for F, 1.0% eV for Cl, and 0.99 eV for
Br, are reduced by this simple device to o0.02 eV for F, o0.13 eV
for C€l, and o0.05 eV for Br.

Remember that LSD completely fails to reproduce the Z dependency of
correlation energies for the 2- and 4-electronm series. If E_  is
determined from 5 SV {(r)dr, where is the density of a elec-
tron in the outermost orgg%al, and the polarization potential (38) 1is
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that of the system consisting of the nucleus and the remaig%ng elec~
tron(s), remarkable accuracy is obtaimed for both families =~ (Fig.'o).
We feel that it could be worthwhile, in view of these results, to ex-
ploit the virtues of the polarization concept by coupling it to the
LSP formalism, not only in the inter—shell case, but alsc for valence
correlation energies. The long-range part, for example, of the LSD
correlation potential (which is not too reliable, anywayA(cf.Sect.
VIA)) could be substituted by a polarization potential.

‘C.  LSD for Multi-determinantal States. Coupling with CI

LSD functionals are usually applied in the framework of unre-
stricted Hartree-Fock (BHF) {(cf.Sect.Il}, i.e. « and gpin-orbitals
are allowed to have different spatial parts, and the density-functional
describes correlation beyond UHF. One could think of choosing a
(spin-)restricted Hartree-Fock (RHF) refgrence state instead, or a
PUHF state (where an eigenfunction of 8" is projected out of the UHF
wave-function), or even an extended Hartree-Fock (EHI') state, where
the PUHF wave-function 1s energy-optimized. All these states are
identical in the case of the homogenecus electron gas, from which the
18D correlation functiomals (12), (15),(16) are derived. The following
requirements should be met, however: i) the reference state should
have densities and pair-correlation Functions which are as close as
possible to those of the true ground-state wave-function, and ii) the
pair-correlation functions of the reference state should be gimilar
to the electron-gas ones used in the LSD expression {(cf.eq.14). The
first requirement generally rules out the use of RHY functions for
large internuclear separations. For H,, e.g., the RHF wave-~function
@i (with Y= Xat Ay where ¥ and X, are atomic orbitals (AO0s))
is an lnappropriate reference for ¢~LSD, not because the RHF den-
sity would be superior to that of the UHF function | V! » but
because the pair density is qualitatively wroung with:§ﬁ£§ c~LSD can
only describe local modifications of pair densities due to electron
correlation, and the long-range behaviour of g{r,,r,) (if electron I
is at atom a, electron 2 must be at atom b) is corréct with UHF but
not with RHF. The second requirement means that PUHF or EHF wave—fiunc-
tions should not be used as reference, because for these multi-deter-
minantal states electrons of different spin are correlated (gu.*1),
which is not true in theg.electron~gas case. LSD should only be applied
to single determinants.

1f, for a given configuration, there is no single determinant
with the angular and/or spin symmetry of the correlated state one is
intere§ge§6in,a transformation .= Y, c i should be per-—
formed “?"", where the @. are single determinants and the
symmetry-adapted wave functions. If H is diagonal in the ﬁ{k, t%e
relation

N A AL (39
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Table 7. Correlat198 contributions (eV) to multiplet splittings

of atoms.

c~15D, eq.12 exp
. 2D 0.26 0.30
3P -r 1S 0.67 1.22
si 3P - 1D o.24 .30
4P - 25 0,60 .78
N 43 > 2I) o.44 0.42
5 *» 7P 0.74 1.0
Table 8. Energy lowering gin 1<)m3 au) of ground state potential curves,
relative to UHF.’ ¢-LSD, eq.15 is applied a) to the UHF func~
tion directly, b} to the states on the rhs of (41).
Exp. values from Ref.62
r (au) a) b) exp
1.4 49 49 41
H 2.0 46 46 47
2 4.0 5 19 14
5.0 1 5 3
3.0 42 42 39
LiH 4.0 39 39 39
7.0 4 11 14
5.0 28 28 37
Li 7.0 1o 19 23
2 8.5 4 9 13
to.o 2 &4 6

holds. If one assumes that an analogous formula also holds for the cor
relation energies, the LSD correlation energies of the
used to determine the unknown correlation energies of the® symmetry—

adapted st

ates V, . Table 7 gives LSD
multiplet splittings inm C, 5i, and N./

can be

The above procedure can also be applied to the determination of

ground-state potential curves,

= 1
Y, 0 = g LGS

Here s=<)y|

are 51ngle

2 t/2

For Hz, e.g.,

E{s+(1 S2)1/2

S

can be calculated

2
—_— o —'""—'W1—
= E( D +[E( LY o Xt )mEC W, X! )] sz
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Vels W01 =Yg

is the overlap integral of the AOs, V. and
anB triplet wave-functions, respectively. From (39)
the singlet ground-state energy ¥

gorrelatlon contributions to

(40)

e
, (o),

(41)



Tn Table 8 correlation contributions (with respect to yHF) are given
for ground-state potential curves of HZ’ LiH, and Liz.

Near-degeneracy effects between states of the same symmetry can—
not be properly accounted for with c-LSD (cf.Sect.V). A simple and
economical coupling of LSD with the CI method would be highly desir-
able, therefore (small valence CI or MC~SCF accounting for near-degen—
eracies + LSD accounting for the bulk of higher excitations necessary
to describe the correlation cusp (22)). Two possibilities to do such
a coupling have already been discussed. In Sect.V, LSD pair-correla-
tion energies were defined; the option exists to calculate E in the
LSD formalism, and then to replace those pair energies, which are
strongly affected by near-degeneracy effects, by CI pair energies.

In Sect.VIIB it was shown how atom—adjusted LSD correlation energies
could be used in comnection with valence MC~SCF calculatioms. A phird
possibility for coupling LSD to CI is due to Colle and Salvetti™ '
%, the inverse size of the correlation hole (cf.eq.31), is multiplied
by an {ad-hoc) factor, which is 1 for the HF reference, and approaches
oo, if . in (31) is replaced by reference functions of increasing
quality. @Ee last way for coupling which we want to mention here is
the separation of the two—electron interaction in the Hamiltonian,
g? rij— , into a short-range and a long-range part
J
1 i — 1 7 -
_— = _— - Ar,. ) + — 1= ~AT, .

&Gr; & g v g TRty ) ()
Correlation effects due to the short-range part, involving the corre-
lation cusp, could well be described by LSD (the screened interaction
would modify, of course, the usual electron-gas expressions for
e<:(§>)); correlation connected with the long-range part could well
be déalt with using the CI method.
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