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Laboratoire de Chimie Théorique, CNRS et Université Paris VI, 4, place Jussieu, Paris F-75252, France

Abstract

The phase transition under pressure in iodine is analyzed using the electron localization function (ELF), explaining that the increase of the

c/a ratio under compression is due to the presence of the lone pairs.

A probabilistic interpretation is given for ELF.
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1. Introduction

The iodine molecular crystal undergoes a metal–

insulator transition at high pressure [1–3]. Under pressure,

iodine loses its diatomic molecular character. In this

phase, each iodine atom has a nearly isotropic environ-

ment in one plane while a significant anisotropy exists in

the direction perpendicular to it [4,5]. In spite of the

reduction of volume with pressure, the c/a ratio is

significantly increased.

The aim of the present paper, based upon a density

functional calculation, is not to analyze the band structure of

iodine in different phases, but to describe them ‘chemi-

chemically’. The tool used for doing it is the electron

localization function (ELF), introduced by Becke and

Edgecombe [6]. This function detects the arrangement of

electron pairs in molecules and crystals. Starting with [7],

many systematic tests have been performed. (For a review,

see [8].)

Before discussing the results, the present paper will first

introduce ELF by presenting a new interpretation, based

upon the probability of finding a pair of electrons with

opposite spins in a given vanishingly small region of space.

It should be mentioned that several other interpretations of

ELF exist, cf., e.g. Refs. [6,8], the one based on the

fluctuations being the closest [9].
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2. The significance of the electron localization

function (ELF)

It has been soon recognized in quantum chemistry that a

bridge between chemical concepts and quantum mechanics

can be constructed by considering the probabilities of

having a given number of electrons in a region of space [10,

11]. Of course, these probabilities depend on the region.

When the volume of this region becomes very small, one

can introduce local descriptions, functions of the spatial

coordinates. It will be discussed below, how a probabilistic

description for small regions is related to a function which

had been used with success in analyzing chemical bonding,

electron localization function (ELF).

The probability to find an electron in an infinitesimal

region is given
Ð

U rðrÞd3r; or by the product of the electron

density, r, which is practically constant within the region,

and the volume of the region, VUZ
Ð

U d3r: One might be

tempted to extend this image to larger regions. The belief

that the probability of finding one electron in a given region

U, p(1;U), is given by the population of this region, or the

average number of electrons in U, hNUiZ
Ð

U rðrÞd3r; is

wrong, however, when the total number of electrons in the

system, NO1. This can be seen most easily when

considering the case when U corresponds to the whole

space yielding
Ð

rðrÞd3rZN; this is impossible as the

probability must lie between 0 and 1. The error stems from

ignoring the fact that with the increase of VU, it starts to be
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probable to have more than one electron in U, and this

contributes to the average, hNUi.

ELF is a local measure of the probability of having more

than one electron in a small region U. It can be quantified by

the difference between hNUi and p(1;U): one explores space

with a small sphere having constant hNUi, and analyzes how

p(1;U) changes in space, with respect to hNUi. (A derivation

is given below.)

It should be mentioned that ELF has been defined

originally [6] for a single closed-shell Slater determinant.

With this restriction, many other interpretations of ELF can

be given, the preceding being just one among many (see,

e.g. [8], and references therein). For example, for a closed

shell single determinant, the probability of finding two

electrons with antiparallel spin in a small region U, is

proportional to hNUi
2 (see below), and thus invariant all over

space. ELF can be thus seen as a measure of the intrusion of

electrons with same spin, or of how the probability of

finding two electrons with same spin changes through space,

when the probability to find a pair electrons of opposite spin,

in the same small region U is given in of the position of the

sphere. (This explains the observations made in Ref. [12],

and shows that the ‘modified’ ELF function given there will

yield ELF for sufficiently small volumes.) It is important to

notice that several ELF definitions differ for correlated (or

even open-shell) functions. It is not yet clear how important

these differences will be, although a preliminary study

seems to indicate that they are not so large as one would be

inclined to expect [13].

ELF is a function of r, h(r), defined to lie between 0

and 1. For a one- or two-electron system (the latter

described by a single closed-shell Slater determinant)

hZ1. In a region where the intrusion of other electrons is

feeble, h(1: These are the regions where electron pairs

are formed (e.g. bonding regions). Between these regions,

h drops down to small values. When analyzing ELF, it

should be kept in mind that quantum mechanics allows

several pairs to occupy the same region of space, simply

by keeping orbitals orthogonal. This makes the value of h

to decrease. Examples are the uniform electron gas (where

hZ1/2, by the definition of ELF), or the atomic shells,

where h decreases from z1 (s2 shells), to z0.8 (shells

made of s and p orbitals), z0.6 (shells made of s, p and d

orbitals), etc.

It is also possible to define regions U such that the

probability of finding a pair of electrons in U is maximal

[14,15]. In many (but not all) cases these regions are similar

to those defined by the ‘basins’ of ELF [16], the spatial

domains attached to a given maximum in ELF. (For each

point contained in a basin of ELF, following the gradient of

h leads to the same maximum of h.)

We will now start with the deviation of formulas.

(The reader not interested in the derivation may skip the

remaining part of this section.) Let us consider first the

average number of electrons in a given region, U, its
population. It is given by

hN̂Ui Z

ð
U

rðrÞd3r Z
X

nZ0;N

npðn;UÞ

Z 0pð0;UÞC1pð1;UÞC2pð2;UÞC/ (1)

where N̂U counts the electrons in U. (N̂U can be written

as N̂U Z
P

iZ1;N q̂UðriÞ; where the one-particle operator

q̂UðriÞZ1; if ri is in U, and q̂UðriÞZ0 otherwise.)

Furthermore, p(n;U) is the probability of finding exactly n

electrons in U.

For vanishingly small U, 1zpð0;UÞ[pð1;UÞ[pð2;
UÞ[/and

Ð
U rðrÞd3r zrðrÞ

Ð
U d3rZrðrÞVU; where VU is

the volume of the region U; Eq. (1) yields the usual

interpretation of the electron density:

hN̂UizrðrÞVU zpð1;UÞ; for VU /0: (2)

As VU increases, hN̂Ui starts to differ from p(1,U), as the

term containing p(2;U) starts to interfere (cf. Eq. (1)). As it

was convenient to use the electron density r to describe the

first term appearing in the description of p(1;U), we will use

the pair density, P2(r1,r2), normalized to N(NK1), to obtain

the dominant term for small VU and thus replace p(2;U). To

get the relationship between p(2;U) and P2, we may, e.g.

consider hN̂
2
Ui; where

N̂
2
U Z

X
iZ1;N

q̂UðriÞ

 !2

Z 2
X
isj

q̂UðriÞq̂UðrjÞC
X

iZ1;N

q̂UðriÞ
2

Z 2
X
i!j

q̂UðriÞq̂UðrjÞC N̂U (3)

as q̂UðriÞ
2Z q̂UðriÞ: As

P
isj q̂UðriÞq̂UðrjÞ is a two-particle

operator:

hN̂Ui Z
1

2

ð
U

ð
U

P2ðr1; r2Þd
3r1d3r2 C hN̂Ui

Z
X

nZ0;N

n2pðn;UÞ

Z 0pð0;UÞC1pð1;UÞC22pð2;UÞC/ (4)

Subtracting Eq. (1) from Eq. (4) gives:

pð2;UÞ Z
1

2

ð
U

ð
U

P2ðr1; r2Þd
3r1d3r2 C/ (5)

It is noted in passing that for infinitesimal volumes

around the position r, pð2;UÞz 1
2
ðP2ðr; rÞV

2
UÞ; a relationship

analogous to Eq. (2). (The factor 1/2 appears due to the

normalization of P2 to N(NK1); N(NK1)/2 is the total

number of electron pairs.)
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From Eqs. (1) and (5), we now obtain an expression of

the probability of finding one electron in U:

pð1;UÞ Z hN̂UiK

ð
U

ð
U

P2ðr1; r2ÞC/ (6)

Eq. (6) shows how to eliminate the contributions of the

intrusion of other particles to the population of U, in order to

obtain p(1;U), for small VU.

To introduce a local function, we will now analyze the

change of the probability of finding one electron, in a sphere

centered on r, of radius R, of small volume VUZ4p/3R3,

having a constant population, for different positions r of this

sphere. (This construct has been already used for defining

ELF, cf. [8,17].) Thus, from now on, we will consider that

hN̂Ui is a given small number. As Eq. (2) shows, the

population hN̂Ui is constant, but, as the density r changes

with r, the radius of the sphere, R, has also to change with r,

RZR(r):

RðrÞz
3

4p

� �1=3

hN̂Ui
1=3

rðrÞ1=3; for VU /0: (7)

Although the first term on the r.h.s. of Eq. (6), hN̂Ui; is, by

construction, invariant with r, the second may not be. As we

are in the limit of small VU, as for Eq. (2), it is enough to use

a Taylor expansion of r1 and r2 around the center of the

sphere, r, and consider the first r-dependent term appearing

in the expansion in R.

As we want to recover the definition of ELF, as given in

Ref. [6], we will now consider in our derivation the case of a

closed shell Slater determinant, although we could continue

it without this assumption. P2 can be decomposed

P2ðr1; r2Þ Z
1

2
rðr1Þrðr2ÞCPs

2 ðr1; r2Þ; (8)

where the first term on the r.h.s. comes from the electrons of

opposite spin, while P2
s gives the contribution of electrons

with the same spin. Double integration over U, as needed in

Eq. (6) produces for the first term on the r.h.s. of Eq. (8) a

constantð
U

ð
U

rðr1Þrðr2Þd
3r1 d3r2 Z hN̂Ui

2=2 (9)

The second term, however, yields a function dependent

on r (cf. Ref. [18]):ð
U

ð
U

Ps
2 ðr1; r2Þ

Z
32p2

45
rðrÞ tðrÞK

1

8
jVrðrÞj2=rðrÞ

	 

RðrÞ8 C/; (10)

where tðrÞZ
P

iZ1;N=2 jV4ij
2; fi are the orbitals, and N is the

number of electrons. Eq. (10) will not be derived, but can be
shortly explained. As U is small, a Taylor expansion of r1

and r2 around the center of the sphere, r, can be made. P2
s(r, r)

Z0, due to the Pauli principle, and the first terms arising are

quadratic (‘no cusp for exchange’). The coefficient of

the quadratic term of the expansion is the part containing

r(r) and t(r) in Eq. (10). The three-dimensional integration

over r1 and over r2, together with the term quadratic in r1

and r2, yields R8. Eliminating the dependence on R in favor

of r(r), Eq. (7), and introducing Eqs. (9) and (10), into Eq.

(6), one obtains

pð1;UÞ Z hN̂UiK
1

2
hN̂Ui

2

K
32p2

45

3

4p

� �8=3

tðrÞK
1

8
jVrðrÞj2=rðrÞ

	 

rðrÞK5=3

C/

(11)

which shows that, up to some constants, arbitrary by the

choice of the small constant hN̂Ui; the effect of the

interference of higher number of electrons into a small

volume U is described by a function

yðrÞ Z tðrÞK
1

8
jVrðrÞj2=rðrÞ

	 

rðrÞK5=3 C/ (12)

ELF, h(r), as defined in Ref. [6], is recovered by scaling

y(r):

hðrÞ Z ½1 CcyðrÞ2�K1: (13)

Please notice that this scaling does not affect the

topology of the function: the critical points of h are those

of y (Vy(rc)Z05Vh(rc)Z0). The choice of the constant c

is just a matter of convenience: it does not affect the

positions in space where h(r) is maximal. In Ref. [6], it is

chosen to have hZl/2 for the uniform electron gas; this can

be done as for a uniform electron gas of density r, t is

proportional to r5/3, VrZ0, and thus y is just a constant,

independent of r. Of course, the choice of the scaling

function affects the values of the functions, but not their

meaning.
3. Technical details

Density functional calculations have been performed

with the LMTO-ASA program [19–22].

Being a function of the 3D coordinates, h is still difficult

to assimilate. This can be made easier, by choosing different

isosurfaces of h, e.g. at medium and at high ELF values, and

plotting them. As ELF does not provide a transferable scale,

no specific values will be given for ‘high’ and ‘medium’ h.

The plots were produced with the program SciAn [23].



Fig. 4. Iodine crystal at high pressure (metallic phase). Low ELF value; the

openings in the middle horizontal plane connect to the next atoms,

indicating a metallic character in this plane.

Fig. 1. Iodine crystal at 1 bar. Isosurfaces at low ELF value, showing the

molecular character of the crystal.

Fig. 2. Iodine crystal at 1 bar. Isosurface at high ELF value, showing the

cores, bond, and lone pairs in the iodine molecule.
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4. The electron localization function in iodine

Fig. 1 shows isosurfaces of ELF, for medium h values, for

the iodine crystal at normal pressure. One easily recognizes

the shape of the molecules in the crystal. Increasing the value

of h (Fig. 2), one can distinguish spatial characteristics

reflecting the electronic structure features: around the nuclei

one can see nearly spherical core regions, around them

toroidal regions corresponding to the three lone pairs. (As

ELF reflects the symmetry, and iodine practically retains the

diatomic character in the crystal, the three lone pairs appear

together as a torus, just as a sphere appears for an atomic

shell.) More interestingly, one can distinguish in the center of

the figure, between two cores, a region of higher h: this

corresponds to the I–I bond. For the pressure of 206 kbar,

close to the transition to the metallic phase, the ELF plot

shows a close resemblance to Fig. 2. There is, however, a

noticeable difference: the maximum of ELF, showing the
Fig. 3. Iodine crystal at high pressure (metallic phase); same orientation as

for molecular crystal. Low and high ELF isosurfaces, showing the ‘atomic’

character.
molecular bond, has disappeared. In the metallic phase, the

‘atomic’ character becomes evident (cf. Fig. 3 which shows

simultaneously the contours of Figs. 1 and 2). Taking a

different perspective, one notices the significant elongation

along the c-axis (cf. Fig. 4, the lower of the two h values).

It is interesting to notice that in the 001 plane

the ‘medium’ value of ELF produces an isosurface joining

all the atoms in the plane, a pattern indicating a metallic

character. At this point, however, it is still not understood

why the atoms are elongated, i.e. why the c/a ratio was

increased by pressure. This is clarified by looking at

higher h values, which shows that the lone pairs did not
Fig. 5. Iodine crystal at high pressure (metallic phase). High ELF value,

besides the spherical surfaces around the nuclei (cores) regions describing

the lone pairs (above and below the cores) can be identified.
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disappear: they show up, above and below the conduction

plane, explaining the deformation (Fig. 5).
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