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\Molecular orbitals that minimize the bond resonance energy are defined and used as
a foundation for the perfect aromatic limit structure and for some linear relationships
of the delocalization energy. i

INTRODUCTION

It was shown in a previous paper ! that the Hiickel molecular orbital
delocalization energy (HDE)? can be approximated by a value (DE)
obtained by using a linear relationship :

DE =aM + bN +¢

where a, b, ¢ are coefficients with values 0.6,—0.15, viz. 0.2, obtained by the
least squares fit to HDE’s,
M, N are molecular parameters, obtained from the formula
with localized bonds and maximum number of Kékulé rings
(the ‘“perfect aromatic” limit structure 3) : the number of
CC single bonds, viz. the number of “imperfect aromatic”
rings 2. _

This paper demonstrates that the parameters M, N can be used for
+he classification of localized molecular orbitals (LMO’s) from which the
values of the coefficients @ and b can be obtained.

THE LOCALIZATION METHOD

LMO’s were obtained by a modification of the Magnasco-Perico 4
method of transforming canonical molecular orbitals : the LMO’s are
defined by the minimization of the resonance energy (RE) contained in
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the bonds (similar to McWeeny and Del Re’s “optimum hybrids’ 3) :
Y}, RE;,—minimum

where

)
REi = Z Pm,,}[mn,
m, n
H,, is the resonance integral in the basis of the atomic orbitals,
P, = 2 Y cyicy; is an element of the charge density and bond
1

order matrix (for closed shell systems),

Cmi are LCAOQO coefficients

the sum is performed only over the atomic orbitals contribut-
ing to the bond (in particular the pair of atomic orbitals
centered at the same atom is not involved in the sum).

This localization is particularly suitable for the Hiickel approxima-
tion (HMO), where the molecular orbitals are obtained by the minimi-
zation of the resonance energy of the whole molecule. The fact that the
bonds are fixed prior to localization is in our case an advantage, as
it can serve to the comparison of different localized structures. The method
was preferred to the Magnasco-Perico and Edminston-Ruedenberg loca-
lization procedures 8, because there are no quantities which are not defined
in the HMO approximation (as would be the overlap and bielectronic
integrals). The formulas used to obtain the LMO’s are similar to Magnasco
and Perico’s and will not be presented here.The localization procedure is
iterative and the convergence is good : after each cycle the difference
between the resonance energies contained in the bonds decreases by 1 — 2
orders of magnitude. The time necessary for a localization is shorter than
that required by a Jacobi diagonalization.

The localization procedure presented here has been tested with
sigma systems (within the MINDO/2 approximation 7), where an overlap
of over 0.9999 with Edminston-Ruedenberg LMO’s was obtained. For pi
systems the HMO method was used to generate molecular orbitals. The
overlap with truncated and renormalized LMO’s is of over 0.99 for sigma
systems, but only about 0.90 — 0.95 for pi systems. About 969% of the
resonance energy can be concentrated in the bonds in sigma systems
(ethane, propane), 80 % in pi systems with low delocalization (as butadiene,
hexatriene), 60% for pi systems with strong conjugation (as benzene,
naphthalene, pyrene).

THE USE OF LMO’S IN THE ANALYSIS OF THE DELOCALIZATION
ENERGY RELATIONSHIP

It was mentioned ® that ‘“perfect aromatic’ limit structures are
supported by experimental and theoretical evidence. The present locali-
zation method confirms this, because the mentioned structures show the
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highest degree of localization. Thus, for anthracene the Kékulé structure
with two ‘“‘perfect' aromatic” rings concentrates 609% of the resonance
energy in the bonds; the structure with one ‘“perfect aromatic” Kékulé
ring 58 % ; and the structures with “Dewar” cycles less than 51 %,.

In Table 1 some values of the LMO “bond resonance energies” (BE)
are listed for “perfect aromatic” limit structures. The BE’s are defined
(for closed shell systems) as:

BE; =2 Z CniCrillmn
MmN

the total energy of the molecule being :

E= Y, BE,
K
Table 1
Bond resonance energies
Number of
substituents Energy
at the double Ll Eonas (B units)
bond E

0 ethylene 1.2 2.00

1 butadiene 1.2 2.24

hexatriene 1.2 2.25

2 (hexatriene 3.4 2.49

benzene 1.2 2.67

naphthalene 1.2 2.62

anthracene 1.2 2.61
6.7 252

=phenantrene 1.2 2.63

3.4 2.63

9.10 2.57

pyrene 1.2 2.66

9.10 2.57

4.5 , 2.47

3 Ianthracene 5.13 2.91

pyrene 3.12 2.89

4 naphthalene 9.10 3.19

|anthracene 11.12 3.23

phenanthrene 11.12 3.17

pyrene 11.16 3.19

* Atoms numbered as in reference?

By inspection, one can deduce a contribution of about 0.38 to the
delocalization energy for each substitution of a CH bond by a CC bond,
explaining the first term (@ M) in the linear relationship (1). The absolute
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value of the BE decreases for the pair of electrons on LMO’s localized
in “imperfect aromatic” cycles with 0.1—0.158 per ‘“‘imperfect aromatic”
cycle, in agreement with the value of the coefficient b in equation (1).
In order to verify the correctness of the statements made above,
the HDE is compared to the DE calculated by using the relationships :

DE = 0.6M 2)
DE =0.6M —0.15 N (3)
Table 2

Delocalization energies*

DE
M N HDE? -y (equ-
li (equation 2) oebfisEioh

3 0 2.00 1.8 1.8

6 0 3.68 3.6 3.6

9 1 5.33 5.4 5.25

9 0 5.45 5.4 5.4
11 1 6.51 6.6 6.45
12 2 6.93 7.2 6.9
12 1 7.10 7.2 7.05
12 0 | 718~ 727 7.2 7.2
14 1 8.25 ! 8.4 8.25
15 3 8.54 9.0 8.55
15 2 8.73 9.0 8.7
15 1 8.76 —8.94 9.0 8.85
15 0 8.94—9.00 9.0 9.0
16 2 9.25 9.6 9.3
16 1 9.42 9.6 9.45
18 2 10.46 10.8 10.5
18 1 | 10.57—10.59 10.8 10.65 |
21 2 12,24 12.6 12.3
25 3 14.50 15.0 14.55

* condensed benzenoid hydrocarbons from reference?
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Such equations can be deduced from a perturbational treatment 910
up to the second and third order, respectively explaining the importance
of the parameters M and N. Nevertheless, higher order corrections modify
the values of the coefficients, as can be observed from a comparison of
equations (2) and (3) with their perturbational analogues.

The results presented in Table 2 are much nearer the HMO values
than the DE obtained from the proportionality between the DE and the
number of pi electrons, ! a relationship also based on LMO’s. Therefore
the analysis made in this paper can be considered as a second step in
the study of the relationship between LMO’s and HDE’s.
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