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Combining multideterminantal wave functions with density functionals
to handle near-degeneracy in atoms and molecules
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Control of near-degeneracy effects and dynamical correlation in atoms and molecules is within
sight, thanks to an economical method that mixes configuration interaction~CI! and density
functional theory~DFT!. The influence of the size of the configuration-space has been studied for
light systems including elements of the first and second period of the Periodic Table. ©2002
American Institute of Physics.@DOI: 10.1063/1.1430739#
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I. INTRODUCTION

Different approaches are usually available for the qu
tum chemist in order to deal with dynamical~interelectronic
repulsions at short-range! or nondynamical~near-degeneracy
or rearrangement of electrons within partially filled shel!
correlation.1 The analysis of the Fermi and Coulomb hol
~see, e.g., Ref. 2! can be helpful in picturing both compo
nents and in grasping the nature of their physical origins

Because of ‘‘left–right’’ correlation, it is commonly be
lieved that the exchange-correlation hole in a molecule
localized around the reference electron~see, e.g., Ref. 3!. In
fact, this is especially true at large internuclear distan
where the total hole is localized around the nearest nuc
to the reference electron, whereas at smaller distance t
still exists a weak contribution to the hole on the other n
clei. By comparison, the hole of the homogeneous elec
gas always strictly ‘‘follows’’ the reference electron. Th
Kohn–Sham method~KS! ~Ref. 4! can give rise to such lo
calized model holes, with the help of approximate exchan
correlation functionals such as LSDA~Ref. 4! or GGA ~see,
e.g., Refs. 5–8!, which depend on the density or the gradie
of the density. While the approximate correlation function
efficiently model dynamical correlation, local exchan
functionals can also mimic part of the nondynamical cor
lation, in addition to the exchange energy~see, e.g., Ref. 9!.
It results in a crude description of nondynamical correlati

A much-discussed problem is that of symmetr
breaking, where the ability to cover these near-degene
effects has serious consequences~see, e.g., Ref. 10!. For ex-
ample, hybrid functionals can strongly increase the tende
to break spatial symmetry as soon as one augments
weight of the Hartree–Fock delocalized exchange. The
sulting poor quality of the atomic or molecular wave fun
tion then restricts its use in applied theoretical chemis
~i.e., calculations of vibrational frequencies, study of bon
breaking reactions, determination of reaction barriers of tr
sition states, ...!.
1250021-9606/2002/116(4)/1250/9/$19.00
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Other alternatives that aim to describe this nondynam
correlation, inside the DFT formalism, are ensemble theo11

and the fractional occupation number~FON! method.12–15

The former approach asserts that, for systems with a str
multideterminantal character, the interacting density can o
be represented by an ensemble of degenerate monodet
nantal states. The latter is based on Janak’s theorem,16 which
allows fractional occupations on frontier orbitals, hence
simulation of a mixing of configurations.

More traditionally, quantum chemists often use the wa
function formalism, and especially configuration interacti
~CI!, to deal with nondynamical correlation. The inhere
process is then to compensate the long-range delocalized
change hole of the reference wave function by building
long-range correlation hole.3

Consequently, it seems natural to try to combine CI w
DFT ~for a review, see Ref. 17!, with the secret hope to ge
the better of both worlds~i.e., low ‘‘CPU cost/accuracy’’
ratio and ease of interpretation for DFT, explicit handling
near-degeneracies and possibility of systematic improvem
for CI!, to deal with systems where dynamical as well
nondynamical correlation are crucial. Adding a localized c
relation hole, by a DFT contribution, to a correlation ho
that already compensates the exchange hole at long ra
should yield an exchange-correlation hole that is somew
localized around the reference electron. The combination
be achieved by splitting the two-electron operator, with o
part dedicated to CI and the other to DFT. The proportion
each component can then be adjusted by varying a coup
parameter.

After a brief recall of the underlying theory and a surv
of technical details, we will explore a few systems and str
the importance of the choice of the coupling parameter. D
pending on the inherent multideterminantal character of
atom or molecule, only a small or medium configuratio
space will be necessary, resulting in an inexpensive com
tation.
0 © 2002 American Institute of Physics
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II. THEORY

Straightforward mixing of CI and DFT techniques ca
result in a double counting of correlation contributions.
prevent this artifact, the key technique is to split the intera
ing Hamiltonian.18–21 This separation can be made with th
help of the standard error function,

V̂ee5V̂sr1V̂lr , ~1!

V̂lr5
1

2 (
iÞ j

N

v lr~r i ,r j !, ~2!

v lr~r i ,r j !5
erf~mur i2r ju!

ur i2r ju
, ~3!

whereV̂sr andV̂lr are, respectively, the short- and long-ran
two-electron operators. These two-electron operators
chosen so that the short-range one presents a singular
electron–electron coalescence, while the smooth long-ra
one possesses the Coulomb tail. The calculation of bie
tronic integrals is also more convenient with operators
volving the error function than with other operators that we
chosen in the past, like the Yukawa two-electron operato20

As a starting point, the coupling parameterm is chosen to be
position-independent.

The short-range part of the interelectronic operator w
be handled by density functionals, while the long-range p
will be described by a multideterminantal wave functio
Thus, since

H erf~0!50
erf~1`!51,

the pure Kohn–Sham method can be fully recovered am
50, while a complete CI occurs asm→1`.

The ground state electronic energyE0 can be obtained
by the constrained-search formalism22 below,

E05min
r

Ev@r# ~4!

5min
r

HF@r#1E v~r !r~r !dr J ~5!

5min
C

H ^CuT̂1V̂lruC&1Usr@r~C!#1Exc,sr@r~C!#

1E v~r !r~r !dr J , ~6!

wherev is the external potential,r5r(C) is the interacting
density corresponding to the multiconfigurational wave fu
tion C, F is the universal density functional,T̂ is the kinetic
energy operator,Usr is the short-range Hartree energy, a
Exc,sr is the short-range exchange-correlation energy.

Because the long-range two-electron operator shows
singularity at electron–electron coalescence, this partition
has the advantage to release the CI calculation, in a finite
of one-particle basis functions, from trying to represent
cusp. Thus, a smaller configuration-space should be s
cient for an accurate calculation.
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For the DFT part, the spin-independent local density
proximation ~LDA ! was used. That reinforces the chos
split of the electron–electron interaction, as leaving D
cover the short-range domain will enable the transferabi
of short-range correlation effects~supposed to be indepen
dent of the system! from the homogeneous electron gas. W
expect that our results should not suffer too much from
using density gradient corrections for the short-range co
lation energies, as noted by Perdewet al.23 Whereas the
short-range local exchange functional can be obtained a
lytically, a local correlation functional has to be designed
the short-range interaction. This has been achieved by in
polating some coupled-cluster~CC! calculations, made by
following Freeman,24 on the homogeneous electron gas f
variousm andr s ~Wigner–Seitz radius!. This led to premul-
tiply the VWN correlation energy functional25 by a short-
range correction factor.26 One has, nevertheless, to quali
the physical meaning of this correction. These coupl
cluster calculations yielded long-range correlation ene
densities, from which we deduced short-range ones by s
tracting them from Coulomb results. Thus, the ‘‘short-rang
correction actually also contains coupling terms betwe
long- and short-range contributions.

If we want to predict the approximate value of the co
pling parameter that will yield the most accurate result fo
given system, we can rely on the specific case of the s
unpolarized homogeneous electron gas. In that case,m must
depend on the electronic density, in an unknown way. We
try a simple local approximationm~r! on the basis of the fac
that an electron occupies on average the sphere delimite
the Wigner–Seitz radiusr s5@3/(4pr)#1/3. If we model the
short-range correlation as becoming significant when
electron penetrates the occupation sphere of the other
can try

m~r!5
1

r s
~7!

as a starting point.
The expression of the resulting short-range exchange

ergy per electron, which is the analog of the total one, is

ex,sr5E
0

`

2pu erfc~m~r!u!rx~u!, ~8!

where u5ur 12r 2u and rx(u) is the density of the Ferm
hole.27 We can picture how this hole is modified by the sho
range electron–electron interaction, by considering the fu
tion,

f ~u!5erfc~m~r!u!rx~u!. ~9!

Figure 1 shows a comparison of these two functions forr s

52.
We can see that applying the short-range interact

sharpens the Fermi hole at short interelectronic distan
while the oscillations at long-range nearly vanish~not shown
on the figure!.

Now we consider the resulting short-range correlat
energy. Within the local approximation~7!, we succeeded in
fitting the short-range correction factor to the VWN corre
tion functional in the case of the unpolarized homogene
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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electron gas. Its expression isar s
b/(11ar s

b), where a
50.816 28 andb50.242 74. We have tested the validity
this approximate short-range correlation energy when
plied to atoms and molecules. In Fig. 2, the correlation
ergies of 54 systems including atoms, ions, hydrides, dim
and the isoelectronic series of helium and beryllium,28 are
compared with experience.

Although a non-self-consistent numerical program w
used, we can observe that, overall, the well-known overe
mation tendency of the LSDA correlation energy~by a factor
of roughly 2! is corrected by only retaining the short-ran
contribution. This success is all the more striking since
spin polarization correction was used for the short-range
relation functional, neither within the framework of conve
tional spin density functional theory nor within its alternati
interpretation in terms of the on-top pair-density.29–32

Typical examples that fail to be described by a sho
range correlation functional are the HF hydride, and the C2,
N2 , O2 , and F2 dimers. Lie and Clementi33,34found that 2, 4,
10, 5, and 2 CSF’s were respectively needed in orde
obtain a proper dissociation of these molecules. Thus,
expect that the combination of short-range density functi
als with CI will correct these results by taking into accou
the nondynamical correlation.

FIG. 1. Fermi hole,rx(u), divided by the densityr, in the spin-unpolarized
homogeneous electron gas forr s52 ~solid line! and the function obtained
by multiplication of the complementary error function erfc@m(r)u# ~dashed
line!. u is the interelectronic separation in bohrs.

FIG. 2. Comparison of LSDA and short-range LDA correlation energ
with experimental data for a set of 54 atomic and molecular systems~Ref.
28!.
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In order to perform the CI-DF coupling, it is easier
use a position-independent coupling parameter. Thus, a
venient way to transfer what we have learned from the sp
unpolarized homogeneous electron gas to atoms and
ecules is to introduce a system-averaged coupling param

^m&5
1

N E m@r~r !#r~r !dr . ~10!

For the local approximation~7!,

^m&5^r s
21& ~11!

5S 4p

3 D 1/3E r4/3~r !dr , ~12!

which is easily computed because it is proportional
Dirac’s local exchange.35 In spite of this crude system
average~it can only give a ‘‘compromise’’ value betwee
several regions!, interesting results will be presented in th
next sections. Beside this system-averaged coupling par
eter, we also expect that there exists an intermediate valu
m, between 0~KS! and ` ~CI!, that will yield the closest
energy to the exact one. Searching for such a value
however lead to a violation of size extensivity and siz
consistency. The problem could occur for example when h
eronuclear molecules dissociate. As the optimalm’s of the
fragments may be quite different, the sum of the correspo
ing energies may not be equal to the energy of the molec
at infinite separation at its own optimalm.

III. TECHNICAL DETAILS

Our primary goal was to find the smallest configuratio
space that ensures a good accuracy, in order to enlarge
scope of applications of the CI class of methods, that are
computationally demanding. The study of a systematic
provement that consists in including more and more confi
ration state functions~CSF! in the CI expansion implies to
sort the orbitals in order of importance. In all the calculatio
presented below, we decided not to optimize the orbit
which should be done in practical applications of the meth
by coupling density functionals with MCSCF wave fun
tions, but to use accurate natural spin–orbitals36 to build the
CSF’s. They are the eigenfunctions of the reduced first-or
density operatorĝ15( ini uf i&^f i u, where the occupation
numberni obeys the Pauli condition 0<ni<1. We justify
this preference mainly because mixing the natural orbi
provides an accurate description of the nondynamical co
lation. Moreover, the observation of their occupation num
reveals their probable importance in the CI~a large occupa-
tion number indicates weightiness, whereas a small one
lead to omit the natural orbital without dramatically penali
the efficiency of the expansion!. Prior to the coupling, a
MRCI calculation will therefore be necessary to produce
liable natural orbitals. This has been achieved by choosin
cutoff value for the occupation numbers equal to 0.01 for
the systems.37 Please note that this required calculation is
no account a part of the CI-DF coupling but that we need
for our study of a systematic improvement. We will als
make use of this calculation to obtain the reference corr
tion energy, in the case of BeH, BH, B2 , and O2. For He and

s
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H2, however, ‘‘exact’’ results will be used, while for Be, H2

at large internuclear distance, LiH, and Li2 , full CI results
will be used. All these results can be found in the captions
the tables that appear in the Results and Discussion.

Large uncontracted basis sets have been used for
atom of the systems studied below. These are Dunnin
correlation-consistent polarized valence basis sets,38,39 i.e.,
cc-pV5Z (8s4p3d2 f ) for H and He, cc-pVQZ
(12s6p3d2 f ) for Li, cc-pV5Z (14s8p4d3 f ) for Be, B,
Ne, and O. The Stuttgart pseudopotentials40 have helped to
reduce the CPU time and to focus on effects specific to
valence shell. Calculations on diatomics use experime
equilibrium bond distances~cf. Table VI in Refs. 33 and 34!.
The radial part of the DFT integration grid is based on
transformationr 52a loge(12xmr),41 while the angular part
is a Lebedev quadrature scheme.42

The whole scheme was incorporated in the Molpro pa
age ofab initio programs,43 in the multireference configura
tion interaction~MRCI! code.44,45 Care has also been take
to the modification of the bielectronic integrals, to suit t
long-range operator.46 During the calculation, upgrading th
density matrix enables the CI coefficients optimizatio
while the orbitals remain frozen. This explains why t
CI-DF energy of a single determinant atm50 is not the
‘‘true’’ Kohn–Sham energy, and why asm→` the energy is
above the Hartree–Fock one. Nevertheless, we will still
Kohn–Sham and Hartree–Fock terms to describe CI-DF
m50 andm→`.

IV. RESULTS AND DISCUSSION

The purpose of this section is to pass in review ma
electrons systems that will exhibit a growing multideterm
nantal character. This means that a calculation on the
systems~‘‘normal’’ systems! presented will reach a good ac
curacy~more than 75% of the correlation energy! with only
one Slater determinant, while the last systems~‘‘abnormal’’
systems! will truly need additional configurations to describ
their ground state in an accurate way. Typically, we will f
cus on the variation of the electronic energy or the corre
tion energy, defined as the difference between the energy
the restricted Hartree–Fock~RHF! energy, withm for larger
and larger configuration spaces. The first point to note will
the smallest value of the coupling parameter that will yie
the most accurate result to within about 0.05%~such a value
will be called from now on the ‘‘best’’m!. Then, we will
have to determine which is the smallest configuration-spa
around that value, that preserves a reasonable accuracy

A. ‘‘Normal’’ systems

1. Helium atom

The helium atom is a good illustration of a system whe
near-degeneracy correlation effects are not significant.
shown in Fig. 3, where we have plotted the variation
energy with the coupling parameter for two configurati
spaces. It appears that the monodeterminantal wave func
reaches a good accuracy if we focus on a domain surrou
ing ^m&50.96 bohr21 ~which was computed from the RH
electron density47!.
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In fact, the value of the coupling parameter that yiel
the closest energy to the ‘‘exact’’ one occurs at 1.125 boh21

for the (1s)2 configuration. Here, the percentage of error
the energy is less than 0.3%. Moreover, the electronic ene
is lowered by almost 63 millihartree compared to stand
Kohn–Sham (m50), and almost 34 millihartree compare
to Hartree–Fock (m→`). This important improvement em
phasizes the quality of the short-range local density appr
mation in comparison to the conventional one. Furthermo
our short-range approximate density functional is sp
unpolarized, and yet yields rather accurate results.

In short, we can greatly reduce the computational cos
limiting the CI to only one CSF if we choosem around 1
bohr21. Obviously, if we enlarge the configuration-space
including up to 3d natural orbitals, the error can reach on
0.004% at the ‘‘best’’m ~around 1.5 bohr21!. It is worth
mentioning that this is in better agreement with the ex
energy than the pure CI result.

The details of the systematic calculations are reveale
Table I, where we have listed each natural orbital, its oc
pation number, the corresponding number of CSF’s, and
percentages of correlation energy at ‘‘best’’m, system-
averagedm, and for pure CI. Here again, we can see tha
very good accuracy appears much earlier for an appropr
CI-DF coupling than for a traditional CI. In fact, the CI-D
coupling is much superior to the CI until the 2p NO is in-
corporated to the configuration-space. Therefore, altho
the large occupation number of the 1s NO seems to mini-
mize importance of the other NO’s, the 2p NO makes a
significant contribution to the correlation energy, which
called ‘‘angular correlation,’’ just as well in the traditional C
as, to a certain extent, in the CI-DF coupling. After the i
clusion of the 3p NO, the results given by the system
averagedm deteriorate while the ‘‘best’’m will still perform
better than the CI.

In order to emphasize the role of the DFT component

FIG. 3. Variation of the energy of helium with the CI-DF coupling param
eter: the upper curve represents the calculation using the configuration (s)2

only, the lower curve was obtained by adding the natural orbitals 2s, 2p,
3s, 3p, 3d to the configuration space, and the horizontal line is the ex
energy~Ref. 48!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the energy lowering, we have to check that its contribution
not already very small around 1 bohr21. Figure 4 contradicts
this hypothesis by showing the variation of the short-ran
exchange-correlation energy for the (1s)2 configuration
along the coupling. It reveals that, at 1.125 bohr21, its con-
tribution to the energy is still large~2290 mhartree!, proving
the importance of short-range DF effects in order to prope
describe dynamical correlation.

2. Hydrogen molecule

In H2 at the equilibrium bond distance, the absence
nondynamical correlation effects is even more pronoun
than in helium. This is shown in Table II, where 84% of t
correlation energy is recovered with a single Slater deter
nant, in spite of a smaller occupation number of the first N
than in helium.

Here, the 1su and 1pu NO’s play a role comparable to
the 2p NO in helium, inasmuch as their contribution to th
correlation energy is crucial to the efficiency of pure CI a
important for the CI-DF coupling.

FIG. 4. Variation of the short-range exchange-correlation energy with
coupling parameter for the (1s)2 configuration of helium.

TABLE I. He: Changes of the correlation energy with increasing confi
ration space. From one line to the next, it changes by the addition of
natural orbital~NO!. Its occupation number~ON!, in the MRCI reference
calculation is also given, as is the total number of configuration state fu
tions ~CSF!. The correlation energy obtained with the smallest~‘‘best’’ !
coupling parameterm yielding an error lower than 0.05%, that with th
system-averaged coupling parameter^r s

21&, and that obtained in a pure con
figuration interaction calculation (m→`), for the corresponding space, ar
given as a percentage of the ‘‘exact’’ correlation energy, defined as
difference between the exact and Hartree–Fock energies.Eexact5

22.9037 a.u.~Ref. 48!, ERHF522.8616 a.u.,̂ r s
21&50.96 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1s 1.983 920 1 1 79.9 79.0 20.1
2s 0.007 596 5 3 83.8 80.7 38.5
2p 0.002 559 8 6 97.1 86.7 85.0
3s 0.000 125 2 9 97.8 87.4 87.0
3p 0.000 082 1 15 99.2 88.7 90.9
3d 0.000 064 7 27 99.7 88.8 95.1
4s 0.000 007 8 33 99.8 88.9 95.3
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3. LiH hydride

In LiH, correlation effects are also dominated to a lar
extent by dynamical correlation. This can be seen in Table
by observing the high percentage of correlation energy tha
recovered with only one Slater derminant for the CI-DF co
pling. We should mention here that when the totality of t
correlation energy is recovered with the large
configuration-space at ‘‘best’’m, percentages greater tha
100% were also found around that value, emphasizing
fact that the CI-DF method is no longer variational, as so
as one had to choose an approximate short-range excha
correlation functional. Thus, the energy atm50.75, when the
6s orbital is included, lies below that of the full CI by 0.2%
Note please that this is actually not a proof of the nonva
tional character, as our full CI energy is just an upper bou
to the exact energy. As a pseudopotential was used for Li,
have no better estimates in the literature.

Here again, and despite a small occupation number,
1p NO makes a significant contribution both in CI-DF an
CI techniques. It is also worth noting the very good perf
mance of the system-averaged coupling parameter, as
percentage of correlation energy stays very close to tha
‘‘best’’ m ~within slightly more than 1%!.

4. Li 2 dimer

As can be seen in Table IV, the virtual NO’s of the L2

dimer have rather large occupation numbers, which co
question the efficiency of a monodeterminantal wave fu
tion. Nevertheless, the CI-DF coupling still performs acc
rately even with a single configuration. The contributions

e

-
e

c-

e

TABLE II. H 2 : Changes of the correlation energy with increasing config
ration space. For the explanation of symbols, see Table I.EExact5

21.1735 a.u.~Ref. 49!, ERHF521.1336 a.u.,̂ r s
21&50.62 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1sg 1.964 258 2 1 84.0 84.0 20.3
1su 0.019 870 1 2 88.7 88.6 46.3
2sg 0.006 025 7 4 90.4 89.5 64.9
1pu 0.004 267 6 6 97.2 92.8 91.2
3sg 0.000 199 4 9 97.4 92.8 92.5
2su 0.000 191 5 11 98.2 93.6 93.7
1pg 0.000 144 3 13 98.6 93.6 95.6

TABLE III. LiH: Changes of the correlation energy with increasing config
ration space. For the explanation of symbols, see Table I.EFCI5

20.7870 a.u.,ERHF520.7501 a.u.,̂ r s
21&50.45 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

2s 1.941 223 1 1 89.0 89.0 20.4
3s 0.029 100 3 3 90.9 90.9 43.7
1p 0.010 000 5 5 95.9 95.6 77.4
4s 0.008 008 5 8 98.4 97.3 91.9
5s 0.000 304 6 12 99.1 97.9 93.2
2p 0.000 233 4 16 99.8 98.5 95.0
6s 0.000 132 1 21 100.0 98.9 95.7
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the correlation energy yielded by the 1pu and 2su are, how-
ever, quite significant. Actually, as the 2su NO is included,
the correlation energy recovered by the CI is greater than
the CI-DF coupling with the system-averagedm, but still
lower if we consider the ‘‘best’’m.

As in the LiH hydride, the CI-DF coupling yielded mor
correlation energy for the largest configuration-space aro
the ‘‘best’’ m than the full CI did. This effect is even mor
pronounced than in LiH, as the energy atm50.75, when the
2su orbital is included, lies below that of the full CI b
3.1%.

5. O2 dimer

O2 at equilibrium bond distance almost exhibits no no
dynamical correlation effects. This can be seen in Table V
one can retrieve 87.8% of the correlation energy with o
one CSF, if the ‘‘best’’m is chosen.

One can also note the great advantage to use CI-D
with ‘‘best’’ m as well as system-averagedm over pure CI.
Moreover, adding more than one CSF improves only sligh
the results.

B. ‘‘Abnormal’’ systems

1. Be series

We now step into systems with a fairly large amount
nondynamical correlation. The beryllium isoelectronic ser
is a sequence where strong near-degeneracy effects occ
theL-shell. As a matter of fact, the large occupation num
of the 2p NO, reported in Table VI, suggests taking th
(1s)2(2p)2 configuration into account for an accurate calc
lation.

This also appears in Fig. 5, where three calculations
shown, each corresponding to a different configurati

TABLE IV. Li 2 : Changes of the correlation energy with increasing confi
ration space. For the explanation of symbols, see Table I.EFCI5

20.4307 a.u.,ERHF520.3981 a.u.,̂ r s
21&50.22 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

2sg 1.811 885 2 1 83.2 83.2 20.8
1pu 0.063 117 0 3 90.5 90.5 68.1
3sg 0.031 432 9 5 92.0 91.1 86.3
2su 0.029 321 1 6 100.0 94.5 98.3

TABLE V. O2 : Changes of the correlation energy with increasing confi
ration space. For the explanation of symbols, see Table I.EMRCI5

231.9535 a.u.,ERHF5231.4576 a.u.,̂ r s
21&51.08 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1pg 1.023 870 9 1 87.8 70.2 20.6
1pg 1.023 870 9 2 88.7 75.2 7.2
3su 0.051 158 8 48 90.1 81.6 21.2
2pu 0.157 44 5 2588 91.8 85.2 31.6
4sg 0.010 355 0 12282 92.6 86.7 36.8
4su 0.007 331 9 47856 92.9 87.6 41.7
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space. Even if the monodeterminantal wave function,
‘‘best’’ m, yields an energy which is, respectively, 9 and
millihartree lower than atm50 ~Kohn–Sham! and m→`
~Hartree–Fock!, still demonstrating the efficiency of th
CI-DF coupling, it is now perfectly clear that a single co
figuration is not enough to represent the ground state of
system. Even at the ‘‘best’’m, the monodeterminantal wav
function indeed yields an electronic energy with an er
greater than 1.6% in comparison to the lowest energy
tained with the largest CI. Whereas, if we consider a lar
configuration-space by including the 2p natural orbitals, the
curve becomes closely parallel to that of the larger CI.

In Table VI, we can check the small percentage of c
relation energy recovered by the monodeterminantal w
function and the significant improvement occurring when
2p NO is added to the configuration space. But this addit
dramatically augments the value of the ‘‘best’’m, as reported
in Table VII, which leads to a very small short-range D
contribution.

Furthermore, one can note the rather poor performa
of the CI-DF coupling with the system-averaged coupli
parameter, and the possible hidden nonvariational chara
of the CI-DF method, as the energy atm52.25, when the 3d
orbital is included, lies below that of the full CI by 0.2%.

Now we will try to grasp the nature of the couplin
parameter by comparing Be and Ne61, which belong to the
beryllium isoelectronic series. Figure 6 illustrates the
crease of near-degeneracy effects with the atomic num

FIG. 5. Variation of the energy of beryllium with the CI-DF coupling pa
rameter: the upper curve represents the calculation using the configur
(2s)2 only, the next curve was obtained by adding the 2p natural orbitals to
the configuration-space, the lower curve was obtained by adding the na
orbitals 2p, 3s, 3d, 4s, 3p to the configuration space, and the exact ene
can be estimated by the value at the end of the lower curve.

-

-

TABLE VI. Be: Changes of the correlation energy with increasing config
ration space. For the explanation of symbols, see Table I.EFCI5

21.0109 a.u.,ERHF520.9628 a.u.,̂ r s
21&50.32 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

2s 1.810 928 2 1 66.2 63.7 21.6
2p 0.061 842 0 4 96.8 73.2 95.8
3s 0.002 797 9 6 99.5 73.9 98.6
3d 0.000 106 6 16 100.0 73.9 99.4
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~the curves have been shifted to show the respective en
lowerings!. Here, we will limit the size of the configuration
space to the (1s)2(2p)2 configuration previously identified
as important. As expected, the nondynamical correlation
much greater for the ion (Z510) than for the atom (Z
54). Furthermore, a shift can be observed in the ‘‘best’m
@around 0.3 bohr21 for Be and 1.5 bohr21 for Ne61, for the
(1s)2(2s)2 curve#. To understand that feature, one has
remember that the inverse of the coupling parameter 1/m acts
like an effective interaction distance, which decreases w
Z increases. This example underlines the importance of u
a position-dependent coupling parameter.

2. H2 dimer at large bond distance

Near-degeneracy correlation often arises in dissocia
molecules. For example, whereas nondynamical correla
effects do not prevail in H2 at the equilibrium bond distance
a completely different situation appears whenR53.0 bohr.

This can be seen in Table VIII, where we can relate
small percentage of correlation energy recovered by
single Slater determinant wave function to the large occu
tion number of the 1su NO. Also important is the role
played by the 1pu NO in the improvement of the correlatio
energy. But, as in the case of the beryllium atom, add

FIG. 6. Variation of the energies of Be and Ne61 with the CI-DF coupling
parameter: The~A! curve represents the calculation using the configurat
(2s)2 of Ne61, the~B! curve was obtained by adding the 2p natural orbitals
to the configuration space of Ne61, the (A8) curve represents the calculatio
using the configuration (2s)2 of Be, the (B8) curve was obtained by adding
the 2p natural orbitals to the configuration space of Be. All the curves h
been shifted so that~B! and (B8) energies coincide whenm→`.

TABLE VII. Be: Dependence of the ‘‘best’’ coupling parameterm on the
size of the configuration space~for the definition of the ‘‘best’’m, see first
paragraph of the Results and Discussion!. The corresponding short-rang
exchange correlation energy contribution is also given.EFCI

521.0109 a.u.,ERHF520.9628 a.u.

NO ‘‘best’’ m Esc,sr

2s 0.25 20.165
2p 2.00 20.009
3s 2.25 20.007
3d 1.80 20.007
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excited configurations to the configuration-space causes
‘‘best’’ m to be quite large, implying a very small short-rang
contribution~see Table IX!. Please note that the ‘‘best’’m is,
however, determined by quite a severe criterion, and th
tolerance of;1 mhartree would produce much smaller va
ues.

Once again, the system-averaged coupling param
yields poor results, even with a very large configuratio
space.

3. BeH hydride

The BeH hydride is a molecule where strong nond
namical correlation effects take place, as can be seen in T
X, where even with a very large configuration space inclu
ing up to 178 CSF’s, only a moderate accuracy can
reached. Among the necessary NO’s, the 1p and 2p NO’s
cause significant jumps in the percentage of correlation
ergy.

It should also be noted that the BeH hydride is an op
shell molecule and that our CI-DF coupling method involv
a spin-unpolarized short-range exchange-correlation fu
tional.

4. BH hydride

The results reported in Table XI seem to indicate that
BH hydride is an intermediate system where dynamical a
nondynamical correlation effects are both important. F
such systems, the system-averagedm seems to be quite reli
able, as the correlation energy is greater than with the
except for the two largest configuration spaces. Once ag
including the 1p and 2p NO’s leads to significant improve
ments.

n

e

TABLE VIII. H 2 at 3 a.u.: Changes of the correlation energy with increas
configuration space. For the explanation of symbols, see Table I.EFCI

521.0570 a.u.,ERHF520.9893 a.u.,̂ r s
21&50.45 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1sg 1.794 892 0 1 66.6 60.8 25.1
1su 0.195 364 8 2 87.2 72.5 87.0
2sg 0.003 190 9 4 91.1 72.8 91.0
1pu 0.002 793 4 6 97.5 73.8 97.5
3sg 0.000 264 3 9 98.0 74.3 98.0
2su 0.000 135 5 11 98.3 75.1 98.3
1pg 0.000 120 7 13 98.8 75.1 98.8

TABLE IX. H 2 at 3 a.u.: Dependence of the ‘‘best’’ coupling parameterm
on the size of the configuration space. For an explanation of symbols
Table VII. EFCI521.0570 a.u.,ERHF520.9893 a.u.

NO ‘‘best’’ m Exc,sr

1sg 0.25 20.286
1su 5.75 20.003
2sg 7.50 20.002
1pu 8.50 20.001
3sg 8.75 20.001
2su 9.00 20.001
1pg 9.00 20.001
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE X. BeH: Changes of the correlation energy with increasing confi
ration space. For the explanation of symbols, see Table I.EMRCI5

21.5912 a.u.,ERHF521.5454 a.u.,̂ r s
21&50.47 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

3s 0.989 967 0 1 62.8 61.9 21.9
3s 0.989 967 0 2 62.9 62.0 21.1
4s 0.015 624 0 8 65.1 63.8 28.8
1p 0.015 046 0 14 75.2 67.9 52.2
5s 0.007 875 7 28 78.9 68.8 66.9
2p 0.004 012 4 52 91.3 72.5 86.1
6s 0.001 345 7 80 93.5 74.0 88.4
7s 0.000 394 9 118 94.3 74.8 89.7
3p 0.000 329 7 178 96.1 75.4 92.3

TABLE XI. BH: Changes of the correlation energy with increasing config
ration space. For the explanation of symbols, see Table I.EMRCI5

23.2522 a.u.,ERHF523.1464 a.u.,̂ r s
21&50.56 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

3s 1.853 418 4 1 71.9 69.6 20.9
1p 0.065 985 7 8 77.8 77.7 39.3
4s 0.022 641 5 19 79.3 79.3 51.8
5s 0.008 203 9 41 80.4 80.4 60.6
2p 0.007 154 3 104 86.0 84.0 77.1
6s 0.006 492 6 172 89.0 84.7 84.2
7s 0.001 982 7 273 91.2 85.3 87.7
3p 0.001 004 3 504 93.8 85.6 91.3

TABLE XII. B 2 : Changes of the correlation energy with increasing co
figuration space. For the explanation of symbols, see Table I.EMRCI

525.3382 a.u.,ERHF525.1230 a.u.,̂ r s
21&50.52 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1pu 0.958 812 2 1 65.9 49.8 23.5
3sg 0.281 461 6 6 68.2 62.3 28.2
1pg 0.058 690 4 74 72.5 72.4 52.4
3su 0.018 036 0 192 74.2 74.2 61.2
4sg 0.008 065 4 432 75.2 75.2 65.6
1dg 0.006 664 1 1656 78.9 77.5 72.7
2pg 0.005 739 6 4896 83.8 78.9 80.6

TABLE XIII. O 2 at 4 a.u.: Changes of the correlation energy with increas
configuration space. For the explanation of symbols, see Table I.EMRCI

5231.7768 a.u.,ERHF5231.0562 a.u.,̂ r s
21&51.01 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1pg 1.320 718 9 1 74.7 49.8 22.5
1pg 1.320 718 9 2 79.0 69.8 22.5
3su 0.556 819 0 48 87.1 84.4 49.5
2pu 0.014 723 7 2588 87.7 85.5 52.7
4sg 0.009 357 1 12282 88.2 86.1 55.4
2pg 0.007 731 6 161104 88.7 87.4 61.4
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5. B2 dimer

The B2 dimer could also be seen as an intermediate s
tem where dynamical and nondynmical correlation effe
are crucial. However, the results reported in Table XII rev
the importance of the virtual NO’s. Even with the large
configuration-space, that includes up to 4896 CSF’s, onl
moderate accuracy can be achieved.

In order to improve the calculations on the B2 dimer,
spin dependence should probably be taken into accoun
our short-range exchange-correlation functionals.

6. O2 dimer at large bond distance

We have previously shown that nondynamical corre
tion effects in the O2 dimer at equilibrium distance are wea
Nonetheless, by stretching the bond, it is possible
‘‘switch’’ to a state where near-degeneracy becomes relev
Such a situation can be found whenR54 bohr.

Table XIII shows that one can link the percentage
correlation energy recovered by the single Slater determin
wave function, which is lower than 75%, to the large occ
pation number of the 3su NO. Additional NO’s increase
only slightly the percentage of correlation energy. T
system-averaged coupling parameter, while missing a
percents in comparison to ‘‘best’’m, yields much better re-
sults than pure CI.

V. CONCLUSION

The influence of the size of the configuration space i
method that combines short-range density functionals w
long-range wave functions has been studied for a few ato
and molecules. As far as ‘‘normal’’ systems are concerned
short-range LDA exchange-correlation functional alwa
yield better energies than the conventional one. Furtherm
a system-averaged coupling parameter based on a simpl
cal approximation is reliable enough to yield rather accur
correlation energies. For ‘‘abnormal’’ systems, a reasona
accuracy can only be achieved by enlarging the configura
space. Its size then depends on the quality of the short-ra
DF and on the spin-polarization of the system. For such s
tems, the system-average fails to yield good results. In o
to improve the method, approximate exchange-correla
functionals that go beyond LDA should be needed, and s
dependence should be handled, either by conventional
density functional theory or by the alternative on-to
pair-density29–32 interpretation.
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