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ABSTRACT: Using recent calculations we review some well-known aspects of
density functional theory: the Hohenberg–Kohn theorems, the Kohn–Sham method, the
adiabatic connection, and the approximations of local nature. Emphasis is put upon
using model Hamiltonians, of which the noninteracting or the physical ones are just
particular cases. The model Hamiltonians allow us to produce multireference density
functional theory and continuously switch to the physical system. © 2003 Wiley
Periodicals, Inc. Int J Quantum Chem 93: 166–190, 2003
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Introduction

T he density functional (DF) approach relies on
minimizing an expression for the total energy

for a given local external potential � (as a rule that
of the nuclei) in which the N electrons move, E[N, �]
� minn{F[n] � � �n}. Only the electron density, n,
integrating to N (and not the wave function) enters
into the expression of the energy. Further, the func-
tional F[n] depends on the electron density n alone.
The minimizing density is the ground-state density
of the system described by the potential �. In the
Kohn–Sham (KS) method, the functional F[n] is de-

composed in a way that transforms this minimiza-
tion problem to become equivalent to that of a
system of independent particles. An adiabatic con-
nection in DF theory (DFT) continuously trans-
forms this independent particle system to the phys-
ical one.

Highly successful applications of DFT made it
now probably the most popular method in quan-
tum chemistry despite the constraint of using ap-
proximations for F[n]. At the same time, the increas-
ing accuracy demand requires also improving on
the existing approximations for F[n]. Further, more
and more attention is devoted to applying this ap-
proach not only for energies, densities, and quanti-
ties derived from them but also to other properties.
These efforts, of course, encourage thinking about
fundamental aspects of DFT. Some of them will be
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highlighted in this article. We will also try to point
out to some efforts to go beyond the independent-
particle model of Kohn and Sham.

We imposed a few limitations to this article. One
of them is the literature cited. The references given
are just examples, and other relevant important
articles exist. The references quoted do not even
cover the whole domain of research of the authors.
We would like to quote at this point a few books,
series, and reviews dedicated to DFT: [1–33]. It is
difficult to recommend a book or a review article. In
our experience, mathematically inclined people like
the book by Eschrig [2], those who like physics that
of Dreizler and Gross [1], while chemists often pre-
fer the book of Parr and Yang [6] or that of Koch
and Holthausen [3] (for those having a penchant
toward fundamental aspects, or applications, re-
spectively). Many details can be found in the book
by Kryachko and Ludeña [4], while a good rapid
introduction is, e.g., given in the article by Perdew
and Kurth [34]. An inspiring lecture is the book by
March [5].

Another limitation of this article is that the
proofs were at most sketched, as going through the
details would make the article more difficult to
read. The interested reader can find the proofs in
the literature.

The article has three parts: First, the fundamental
theorems by Hohenberg and Kohn are discussed;
second, the KS method is presented, together with
adiabatic connections; last, the way to introduce
approximations, and some of their effects, are dis-
cussed.

The calculations presented were performed us-
ing the program Molpro [35] and with Mathematica
[36].

Hohenberg–Kohn Approach: Universal
Density Functional

DENSITY AND POTENTIAL

Usually, quantum mechanics is taught by show-
ing the need to have a wave function to describe an
electronic system. However, textbooks mention,
too, that to obtain the energy of an electronic sys-
tem, and many of its properties, the wave function
is not needed; one only has to know the second-
order reduced density matrix and the potential in
which the electrons move. Writing the energy in
terms of the second-order density matrix is imme-
diate; the only real problem is how to guarantee

that a wave function exists that yields the trial
density matrix. In recent years, this point of view
has received new impulses and has shown encour-
aging results as a way to construct good approxi-
mations (see, e.g., [37–40]). In contrast to this ap-
proach, the celebrated work of Kohn and coworkers
[41, 42] emphasizes the role of the (one-particle)
electron density. In this approach, there is no prob-
lem generating a physically correct trial density; the
prescription how to obtain the energy is again ex-
act, but this time only in principle, as the exact
functional dependence on the density is not known.

Let us consider an electronic system in an exter-
nal potential � � �(r) (the interaction of the elec-
trons with the external field, e.g., that of the nuclei).
Let its ground-state density be n� � n�(r), integrat-
ing to N, the number of electrons. All the properties
of the system can be obtained by the knowledge of
the Hamiltonian of that system, which is immedi-
ately written down once N and � are given. The
properties are thus functionals of � and N, as, for
example, the ground-state energy, E[N, �] �
min����H�,N���. As n� is defined to yield by inte-
gration N, the properties of an electronic system can
be obtained from the knowledge of n� and �. For
example, the ground-state energy can be obtained
by the knowledge of n� and �: There exists a func-
tional E[n�, �] yielding E[N, �].

Hohenberg and Kohn [41] showed that for a
given ground-state density n the local potential �
that generates it is uniquely determined. Thus, the
knowledge of n is sufficient to determine all the
properties of an electronic system described by a
Hamiltonian T � Vee � V. Unique means, in the
present context, up to an arbitrary constant. (This is
related to the arbitrariness in the choice of the zero
of energy.)

For more general forms of the Hamiltonian, e.g.,
when a magnetic field is present, this statement
does not remain necessarily true [43, 44]: The
ground-state density may not change with the mag-
netic field, so one comes back to the statement that
both n and the interaction with the external poten-
tial are needed to obtain E. This does not seem an
important handicap from the authors’ viewpoint:
When a given system is analyzed, the potential is
known, anyhow. Note, however, that some state-
ments of the DFT literature rely on the uniqueness
of the potential.

The HK theorem does not state that a ground-
state density n� � �n, where �n is small, comes from
a potential � � ��, where �� is small.

ADIABATIC CONNECTION APPROACH TO DFT

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 167



A simple example of a large change in the po-
tential that produces only a small change in the
density was provided by Levy [45]. He considers a
shift by a constant in the physically (numerically
relevant region) but not in the asymptotic region.
Similarly, adding a rapidly oscillating potential to
the exact one will produce only vanishingly small
changes to the potential, even if the amplitude of
the oscillations is large. As Kohn puts it [46]: The
particle does not see the rapid oscillations of the
potential. These examples seem to be only of aca-
demic interest. One has to consider, however, that
we almost never have the “exact” density: It most
often comes from some basis set calculation. Thus,
for almost all cases we can treat explicitly there is a
�n due to the finite basis set. It turns out that ��/�
is usually one to two orders of magnitude larger
than �n/n [47]. Figure 1 shows the three types of
slight changes of the potential for the hydrogen
atom. In Figure 2 the relative error of the potential
is compared to that in the density for a commonly
used Gaussian basis set.

To understand the origin of this problem, one
may consider the change of the density as given by
perturbation theory [49]. In a compact notation,
�n(r) is connected to ��(r�) via

�n�r	 � � ��r, r�	���r�	d3r�, (1)

where the response function �(r, r�) is given, in the
sum-over-states form, for real functions by

��r, r�	 � 2 �
i�
0	

��0�n̂�r	��i�

� ��i�n̂�r�	��0�/�E0 � Ei	, (2)

where the energies Ei and the eigenfunctions �i are
those of the Hamiltonian with potential �; n̂(r) �
¥i�1,N �(r � ri) is the density operator.

The response function can be written in terms of
its (orthonormal) eigenfunctions �i and eigenval-
ues, �i:

��r, r�	 � �
i

�i�i�r	�i�r�	 (3)

For the hydrogen atom, the absolute values of the �i

are lying between 10�1 and 0, the absolute values
decreasing with the number of nodes in �i, those
having the largest ��i� being shown in Figure 3 [50].

Expanding �� in terms of the �i(r),

���r	 � �
i

�i�i�r	 (4)

and using the equations above, it turns out that the
expansion coefficients of �n(r), in terms of the �i, are
�i�i:

FIGURE 1. Hydrogen atom potential ( � 1/r, broken
curve) (1) modified by a shift by a constant over the
physically significant region, (2) modified by adding
rapid oscillations, or (3) reproducing the density ob-
tained from a variational calculation with the physical
potential using a Gaussian basis set (four Gaussian
functions [48], yielding an energy error of 0.1%).
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�n�r	 � �
i

�i�i�i�r	. (5)

Thus, a change in the potential equal to ��(r) �
	�i(r), where 	 is a small number, yields a density
change �n(r) with one non-zero ni � 	�i. Thus, if �i

is small a relatively large change in the potential �i

can be produced by a much smaller change in the
density ni. For the hydrogen atom, for example, a
perturbation of the density having the shape of �3
(shown in Fig. 3) produces a change in the potential
two orders of magnitude larger than that in the
density.

This discussion points out to two aspects in the
construction of (e.g., KS) potentials starting with a
given (approximate) density. The negative aspect is
that special care is needed in practice when the
correct � has to be produced from a given n. The
positive aspect is that even poor potentials may
work well, as the error in the potential may prop-
agate only little to changes in the density (large �i

are multiplied with small �i, yielding small ni).
In the case of degeneracy, there may be different

densities, say, n1 and n2, associated with the same
potential �. The difference between n1 and n2 can be
large. As an example, one may think of an atom
having a singly occupied px or py orbital. By appro-
priately choosing a small ��1 the resulting density,
n1 � �n1, is close to n1, while with another small ��2
the resulting density, n2 � �n2, is close to n2. Con-
sider now a small change in the potential from � �
��1 to � � ��2. The change in the potential is small,
��2 � ��1, but the change in the density produced
by it, n2 � n1 � �n2 � �n1, is not small.

The appearance of an additional system far from
the system under consideration can produce impor-

tant changes in the density. Consider, e.g., a H
atom. The presence of a He� ion produces a ground
state in which the electron is transferred from the H
atom to the He� ion, as H� . . . He is more stable
than H . . . He�; the ionization potential of He is
larger than that of H. To keep the density that of
H . . . He�, a different potential is needed. It is
essentially that produced by shifting the potential
of He upward by a constant equal to the difference
between the two ionization potentials to prohibit
the electron transfer from one system to the other.
Figure 4 shows the potential obtained for indepen-
dent particles, yielding the density given by the
wave function obtained by antisymmetrizing and
normalizing the product of the H and the He�

eigenfunction, 100 a.u. apart. (Note also that the
asymptote is determined by the H atom having a
more diffuse density than the He� ion.)

UNIVERSAL FUNCTIONAL AND VARIATIONAL
PRINCIPLE

Hohenberg and Kohn (HK) prove that there ex-
ists a functional of n alone, (a “universal” func-
tional, independent of �, that characterizes a spe-
cific system), F[n], such that the functional E[n, �] �
F[n] � � �n, for a given “external” potential � � �(r)
reaches its minimum for the ground-state density
n� of the system characterized by the external po-
tential � and having a number of electrons N � � n�.

Of course, for a given physical � the value of
F[n�] can be directly obtained from E[N, �] � � �n�.
The functional F[n] can be obtained also when � is
not known by the following prescription: F[n] �

FIGURE 3. Eigenvectors �i of the static density–den-
sity response function �(r, r�), for the hydrogen atom, as
a function of the radial distance r, corresponding to the
eigenvalues �0.123, �0.024, and �0.011 (full, short-
broken, and long-broken curves, respectively) (a.u.).

FIGURE 2. Relative errors in the density (broken
curve), and in the potential generated from this density
(full curve), produced by using a common Gaussian
basis set (four Gaussian functions [48], yielding an en-
ergy error of 0.1%), as a function of the radial distance,
in bohr, for the hydrogen atom.
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max�̃{E[N, �̃] � � �̃n} ([51]; see also [41, 52–55]).*
When the density n is the ground state of a system
with potential �, n � n�, the maximizing �̃ is equal
to �. Thus, finding F[n] corresponds in fact to find-
ing the Hamiltonian having the ground-state den-
sity n.

We see that such a recipe requires the knowledge
of E[N, �̃] and thus performing expensive wave
function (many-body) calculations. Thus, such a
recipe is of no interest in applications of DFT de-
spite being numerically performed in a few cases to
contribute to the understanding of DFT [56–62].

For example, we show in Figure 5 the potential
obtained numerically by requiring that the ground-
state density should be twice that of the hydrogen
atom: n � 2/�
 exp(�2r) [60], thus having N � 2.
To facilitate comparisons, the plot shows the poten-
tial multiplied by r. Of course, it is not the potential
of the hydrogen atom (which would correspond in
our plot to a horizontal line at �1). The potential
yielding twice the hydrogen atom density must be
more attractive than that of H to keep the density
equal to that of the noninteracting H� ion despite
the repulsion between electrons. It presents some

similitude to the potential of the helium atom (in
our plot it corresponds to a horizontal line at �2),
but it has to produce a density that is—to a first
approximation—more diffuse than that of He.

A transparent way of writing F[n] was given by
Levy [63]: min�3n���T � Vee���. Of course, when n
is produced by an ensemble there is not necessarily
a ground-state wave function � yielding the den-
sity n [51, 64]. This type of procedure has been also
followed in numerical studies [65, 66]. There is a
simple generalization of this formula by consider-
ing, instead of wave functions, ensemble density
matrices, 
 � ¥i �i��i���i� yielding n, with 0 � �i �
1, ¥i �i � 1 [51, 64, 67, 68]:

F�n� � min
¥�i��i���i�3n

�
i

�i��i�T 
 Vee��i�. (6)

Fictitious Systems: Adiabatic
Connections and the Kohn–Sham
Method

ADIABATIC CONNECTIONS

The HK proof holds also if the Hamiltonian is
not the physical one, e.g., by modifying the inter-
action between electrons. A common choice is to
make the replacement 1/r12 3 �1/r12, with � � [0,
1]. Another possibility is: 1/r123 erf(�r12)/r12 with
� � [0, �). Instead of changing the interaction be-
tween particles, one may introduce nonlocal one-
particle operators, e.g., add G� with G � [0, �),
where � is a projector operator onto some model
space. The action of the operator added is to shift
the energies of the orbitals of the model space by

*For the sake of generality, max�̃ has to be replaced by sup�̃.

FIGURE 4. Representation of the shift of the potential
by a constant in one region of space: independent par-
ticles yielding the density of H, right, and of He�, left,
100 a.u. apart, (antisymmeterized, normalized product).
The smaller plots in the lower part of the figure are en-
hancements in the region where the potential makes
jumps. The upward displacement of the potential
around the center with Z � 2 is of �1.5 a.u. and
makes its lowest energy level degenerate with that in
the well of Z � 1.

FIGURE 5. External potential producing twice the
density of the hydrogen atom, multiplied by r, as a
function of r (a.u.). The plots for the atomic H or He
give horizontal (broken) lines at �1 and �2, respec-
tively. (The data were produced in accurate
calculations [60].)
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the constant G. The effect of these operators is
shown in Figures 6 and 7.

We see that in all these examples one has families
of operators, depending on some parameter, �, that
produce at one end of its definition interval (� � 1,
� 3 �, G � 0) the physical situation. At the other
end, a Hamiltonian is produced for which the
Schrödinger equation is supposed to be easily
solved (� � 0, � � 0: no interaction between parti-
cles; G 3 �: a finite number of states to be consid-
ered).

Despite being identical at the limits of their re-
spective domains, the action of the operators is
different for intermediate values of the parameters.
For example: �/r12 overall weakens the physical
interaction, while erf(�r12)/r12 describes the physi-
cal long-range interaction but cuts it off to reach a
constant �2/�
 when r12 � 0, avoiding the diver-
gence of 1/r12 at the origin.

By varying the parameter � one can follow the
transformation of one system into the other along
this “adiabatic connection.”

When modifying only the interaction, or the non-
local one-body operator, the density of the system
will, in general, change. However, we can modify
simultaneously the external potential to keep the
density constant. This can be done to an arbitrary
numerical accuracy [59, 60] or by using reasonable
approximations to it. The first adiabatic connection
presented in the literature [69] did not keep the
density constant. Later, it turned out to be formally
more convenient within DFT to keep it constant [70,
71]: In such an approach, there is no need to keep
track of the changes in n with �. Further, the elec-
trostatic interaction is not changed with �. In prac-
tice, however, the exact density is not known be-
forehand.

It turns out that some of the proposals for mod-
ifying the external potential with � give good ap-
proximations to the potential keeping the density
constant (see, e.g., [56–58, 61, 72, 73]). For example,

a figure showing F[n] as a function of � � [0, 1], for
Ne6�, will not allow the eye to see any difference
between the curves produced when keeping the
density constant or by following the proposal of
Harris and Jones [69], where the external potential
is approximated by a linear combination of the
limiting ones: (1 � �)V(� � 0) � �V(� � 1) (cf. [58]).
This happens despite the near-degeneracy effect
present in this system, which is not seen at the
noninteracting point � � 0.* Thus, it seems that
there are ways to define V(�) to keep the changes in
density (and those in the energy associated with it)
within reasonable limits.

Thus, the Hamiltonians will be �-dependent,
having the form

H��	 � H0��	 
 V��	,

where H0(�) has nonlocal one-particle operators
and/or two-particle operators, while V(�) is a local
potential operator.

Figure 8 shows an example of the evolution of
F[n], as a function of �, while keeping n constant for
two different choices of �, one coming from r12 3
�/r12, � � �, and the other from r123 erf(�r12)/r12,
� � �/(1 � �).

Although it is tacitly assumed that the nature of
the ground state is conserved along the adiabatic
connection, there is no guarantee for it. We know
that the degree of degeneracy can change along
with �. We cannot exclude the possibility of state
crossings along this connection (see, e.g., [74, 75]). If
a crossing occurs we can either follow the state or
change to the new ground state, following the phi-
losophy of the HK theorem.

*The Harris–Jones adiabatic connection not only has the
same end-points as the one keeping the density constant but also
the derivative at the end-points [60]: The curve showing the
dependence of F�[n] on � is well fitted with four parameters.

FIGURE 6. Family of electron–electron interactions
�/r12, left, or erf[r12�/(1 � �)]/r12, right, as a function of
r12, for � taking the values 0.2, . . . , 1. The uppermost
curve corresponds to 1/r12.

FIGURE 7. Schematic representation of the action of
the operator G�: It acts only on a part of the orbitals,
shifting upward their orbital energies by the value G.
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The effect of the parameter-dependent external
potential on the appearance of crossings has not
been studied. Keeping the density constant seems
to have the effect of helping to avoid the crossings.

Let us transform the parameter of the adiabatic
coupling such that � � [0, 1], � � 0 defining a
noninteracting system and � � 1 the physical one.
The functionals pertaining to the model system will
be indexed by �, e.g., F�[n]; we will omit the index
when � � 1. Introducing the notation F� �[n] � F[n] �
F�[n], we have

E�n, �� � F�n� 
 � n� � F��n� 
 � n� 
 F� ��n�.

(7)

To get the ground-state energy, we have to require
�E[n, �] � 0. We have thus to treat a system de-
scribed by a Hamiltonian having two-particle
and/or nonlocal one-particle operators implicit in
F�[n] in an external potential given by ��(r) � �(r) �
�F� �[n]/�n(r). We thus see that F� �[n] has a double
role: first, to yield a correction to the model calcu-
lation to yield the physical ground-state energy;
second, to yield the potential that guarantees that
the density of the model system is the same as the
ground-state density of the physical system.

The idea behind the approach just presented is to
make a computation for a reference, model system,
at a given �, by using a wave function method, and
use approximations for the universal density func-
tional F� �[n]. Of course, such an approach relies to-
tally upon the feasibility of the calculation of F�[n]

� � n� and upon the chance of finding good ap-
proximations for F� �[n].

As long as � stays small, we can expect to have a
model that is simple to treat. For example, when
operators like �/r12 or erf(�r12)/r12 are used at � �
0 (or � � 0) only an independent-particle model has
to be solved.

The complexity of the model does not increase
fast with �. Figure 9 shows, for the He atom, the
evolution of the error in the energy by limiting the
wave function to one configuration (1s2), two con-
figurations (1s2, 2s2), or three configurations (1s2,
2s2, 2p2) as � varies between 0 and 1. Setting an
acceptable energy error value to a given threshold
(say, 1 mhartree) one can go up to a given � (�1 �
0.15 for He). Deciding to go further with �, while
keeping the same accuracy, requires at least a two-
configuration calculation. In the case of He, � can
stay below �2 � 0.2. Note that when increasing �
beyond a certain limit quickly requires including
more and more configurations. When near degen-
eracy is present, the point where one needs to give
up the monodeterminantal wave function gets
closer to the origin. For example, in the Be atom we
obtain for this point �1 � 0.09, while for Ne8�,
where the near-degeneracy effect is stronger, �1 is
decreased to �1 � 0.06. This does not occur in the
He series, where no near-degeneracy effect is
present; for Ne8�, �1 has a value close to that for He.

A similar behavior should be present for all
choices of the adiabatic connection. It might hap-
pen, however, that one choice gives smaller errors
for a larger domain of � than the other. First, this
definition has to be made more specific, as we have

FIGURE 8. F[n], as a function of �, where n is the
ground-state density of the He atom (a.u.). Interaction
between particles �/r12 (full curve) or erf[r12�/(1 � �)]/
r12 (broken curve). The data are provided by accurate
calculations of the He atom [60, 62].

FIGURE 9. Difference between the accurately com-
puted F�[n] 
 � �n and ����H(�)����, where �� is lim-
ited to one (1s2) two (1s2, 2s2), or three (1s2, 2s2, 2p2)
configurations (full, dotted, or broken curves, respec-
tively) for the He atom (mhartree) from an accurate cal-
culation [60].
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to choose how we can compare, say, �/r12 with
erf(�r12)/r12. One possible approach is to choose a
dependence between, in our example, � and � by
considering them equivalent if ���H(�)��� �
���H(�)���, where � is the optimized single deter-
minant wave function.

Figure 10 shows such a comparison for error
made by using a two-configuration approximation
to the wave function for Be.

We have seen above that we started with a
model system and transformed it continuously into
the physical one. Evidently, one can gather infor-
mation on several points along this path (or on
different points on different paths) and try to ex-
trapolate to the physical system (cf. [76, 77]). In fact,
one can see the construction of the F� �[n] as a clever
technique of extrapolation. One can, however,
imagine model systems that are beyond the physi-
cal system and use interpolation techniques. For
example, one can imagine, with �/r12, to let �3 �,
which produces systems analogous to the Wigner
crystal [78].

The next step, to be discussed below, will be that
of choosing an approximation for F� �[n]. When � 3
1, F� �[n] 3 0. However, the effort of the calculation
will be equivalent to that of a standard wave func-
tion method. A compromise has to be found, and
this is dependent on the quality of the approxima-
tion one can find for F� �[n].

Before treating this subject we will consider in
more detail the case when � � 0, which is the
standard KS method.

KS Method

When no degeneracy is present in the noninter-
acting system, F����0[n] � Ts[n] � min�3n���T���
(cf. [63]), and the problem of finding the ground
state of the system with external potential � is trans-
formed into that of

min
n

min
�3n

���T��� 
 � n� 
 F� ��0�n� (8)

or

min
�

���T��� 
 � n�� 
 F� ��0�n��, (9)

where n� means that n is constructed from �. As T
is a one-body operator, as is VKS � ¥i�1,N �KS(ri),
with �KS(r) � �(r) � �F� ��0[n]/�n(r), a minimizing �
is a Slater determinant (the KS determinant �KS).*
Together with the orthogonality condition for the
orbitals in �KS, this yields a Schrödinger equation
(the KS equation) for the independent-particle (KS)
Hamiltonian T � VKS. The KS method thus requires
finding the KS orbitals, eigenfunctions of the KS
Hamiltonian. They yield the exact density of the
system with N electrons in the external potential �.

Finding the Hamiltonian of the KS system, in
other words the potential of a system of “noninter-
acting electrons,” yielding a given density, has been
often done numerically (see, e.g., [31]). The under-
standing of the behavior of these potentials has
been useful for the design of new approximate den-
sity functionals (see, e.g., [79, 80]).

In the case of degeneracy of the KS system, one
might be forced to use an ensemble (to consider
several of the degenerate KS determinants) to ob-
tain the given density n. The previous line of
thought is repeated by using instead of Ts[n�KS

]

Ts�n� � �
i

wiT�ni�, (10)

where the ni are built from the degenerate KS de-
terminants and wi is chosen such that n � ¥i wini,
with ¥i wi � 1 (see, e.g., [81]).

*One can see VKS as the potential that forces independent
fermions to have a ground-state density n.

FIGURE 10. Error made by using a two-configuration
wave function in Be as a function of �. The full line
shows the results for � � �, when �/r12 replaces 1/r12,
while keeping the density constant. The broken line
shows the results for erf(�r12)/r12 by choosing � in such
a way that the expectation value of the single determi-
nant wave function is the same for H(�) and H(�).
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One may ask whether we always have a ground-
state wave function yielding a given density n. The
question may be reformulated as: “Can one find a
suitable potential such that the corresponding
ground-state wave function yields the given den-
sity n?” If the answer is “yes,” the density is called
pure-state �-representable.

For the real system, the problem is not posed as
the potential is known anyhow. When performing
KS calculations, one has to ask about the existence
of a potential for a system of noninteracting parti-
cles yielding a given density, the KS potential, �KS.

However, examples show that the density is not
always noninteracting pure-state v-representable.
They are in general based on the following con-
struction [51, 64]. Consider a given potential that
presents degeneracy for a system of N particles,
none of the states yielding a totally symmetrical
density. Construct the equiensemble density of this
system, which is totally symmetrical. We thus have
a density that is not produced by any of the eigen-
states of the Hamiltonian with the given potential.
Consider just a simplified example of independent
particles in a spherical box. The ordering of levels is
1s, 1p, . . . for N � [3, 7]. For N � 3, we have an
equiensemble density that is spherically symmetri-
cal. The density obtained by occupying one of the p
spin orbitals contains a component with angular
momentum 1 � 2 and thus is not totally symmet-
rical. One can imagine now to relax the spin orbit-
als, so that they are not spin eigenfunction any
more. The p1/2 orbital is spherically symmetrical,
but with increasing N we will be forced to occupy
p3/2, which is not.

Imagine now that we go the opposite way: We
know the density and ask about a potential that
yields this equiensemble density. Take N � 4. If we
insist in occupying 1s and the 2s orbitals, we may
obtain such a potential. However, we will find p
states that lie below the second s state: The density
obtained is not that of a ground-state density.

One may go a step further and ask whether one
can find a suitable potential such that a correspond-
ing ground-state ensemble density is equal to a
given density n (ensemble �-representability). To the
best of our knowledge, there is no general proof for
it, but no relevant counterexample is known. (See,
however, Refs. [82, 83] for more detailed discus-
sions.) The particle in a spherical box, the harmonic
oscillator, or the system having the hydrogenic den-
sity for N � 4 are examples that are not pure state
but ensemble �-representable, as the p orbitals are

occupied before the 2s ones (the harmonic oscilla-
tor) [60, 84].

We know that for Hartree–Fock relaxing all con-
straints ensures that the determinant built from the
orbitals having the lowest eigenvalues of the Fock
operator yields the lowest expectation value of
the Hamiltonian [85]. Interestingly, such a proof
seemingly contradicts numerical experience, as one
notes in practice inversion of the ordering of levels.
This is, of course, due to restrictions imposed onto
the one-particle eigenfunctions in practically all
programs used.

An equivalent theorem is not proven in KS the-
ory, although it touches the foundation of the pro-
cedure while in Hartree–Fock it does not: Hartree–
Fock requires that the wave function minimizes �H�,
while KS theory requires that the KS solution is the
ground state of a system of independent particles.
The absence of a ground-state ensemble of nonin-
teracting particles yielding the given density would
mean that the KS model cannot be applied.

It seems natural to expect that the KS system
presents degeneracy (and thus opens the problem
of the ensemble treatment) when the physical sys-
tem presents degeneracy. However, it has been
noted both in accurate (cf. [86]) and in approximate
KS calculations (see, e.g., [87] or [88]) that the KS
system may present degeneracy even when the
physical system does not. Such cases are not un-
common [89]. This is usually related to near-degen-
eracy effects, as it appears, e.g., for the C2 molecule
[86]. It is absent, however, in the H2 molecule even
at larger interatomic distances [90].

In Figure 11, we show the difference between the
2p and 2s KS orbital energies (obtained from accu-
rate calculations [60]) in the Be series. Note that for
the ions with nuclear charge Z � 23 the points seem
to lie on a parabola that cuts the axis; the KS state
has 1s22s2 occupation. Above Z � 23, the KS 2s and

FIGURE 11. Difference between the 2p and 2s KS
orbital energies, in the Be series, as a function of the
nuclear charge Z (hartree) from accurate calculations.
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2p states remain degenerate. To get the ground-
state density of the ion (which is in the nondegen-
erate 1S state) we have to assume an occupation
1s22s2�x2px, where x slowly increases from x close
to 0 at Z � 23, to x � 0.1, for Z 3 � (cf. [91]).

Another peculiarity of KS potentials is that they
can be different for densities that are produced by
degenerate states of the same physical potential:
There is no reason to expect, in general, that a
density that is not totally symmetrical is produced
by a KS potential that is. An analytic example can
be found in [92], where this aspect is discussed in
detail.

The shape of the KS potential may have some
peculiar features (see, e.g., [93, 94]). One of them
that is largely unexplored is the possibility to find
jumps in it (see, e.g., [93]). Consider, for example, a
Rb and a He atom at large internuclear separation.
No charge transfer takes place, as the electron af-
finity of an atom is smaller than the ionization
potential of the other, in contrast to the situation of
He� . . . H, discussed above. The densities are es-
sentially those of the isolated atoms. Consider now
the corresponding KS system. As the densities are
practically unchanged, the KS potentials around
each of the atoms are also expected not to change.
From accurate calculations (see, e.g., [95]), we know
that the 2s orbital energy of the He KS system is of
�4.3 eV for a KS potential approaching 0 asymp-
totically. The KS system giving the He atom density
has a positive electron affinity (which is different, of
course, from the exact electron affinity of the He
atom, 0). The highest occupied KS orbital energy of
the Rb atom is equal to minus its ionization energy
(see, e.g., [96–98]), which is �4.2 eV for a KS po-
tential approaching 0 asymptotically. Thus, in the
KS system of noninteracting particles a transfer of
one electron from Rb to He brings an energy gain of
�0.1 eV. This now induces a modification of the
ground-state density showing that the potential
considered cannot be the ground state of the He . . .
Rb system considered. This seems now to be in
contradiction with the Hohenberg–Kohn theorem
stating that the correspondence between the den-
sity and the potential producing it is unique. Note
that we assumed that the potentials of the atoms are
not shifted one with respect to the other. Remem-
ber, however, that the Hohenberg–Kohn theorem
fixes the potential only up to a constant. Thus, if the
potential of He is shifted upward by �0.1 eV the
electron density around the He atom is not changed
but the electron transfer does not occur and the
paradox is eliminated. Thus, the potential of the

He . . . Rb system might look like the plot shown in
Figure 4, which also shows a peak in the region
separating the two “atoms.” Such peaks appear also
between atomic shells and are discussed in detail,
e.g., in [99].

Let us consider the dissociation of a negatively
charged symmetrical cluster of hydrogen atoms. As
mentioned in the appendix, the equivalence of the
protons produces a density of an ensemble of hy-
drogen atoms and negative hydrogen ions. A sim-
ple example is the dissociation of H2

�, which pro-
duces around each of the nuclei a density that is
half that of H and half of that of H�. As, by sym-
metry, all atoms are equivalent, we might first not
expect jumps in the potential. However, the differ-
ence between the different systems (neutral and
negative ions) is still present and is visible by a
division into an inner and an outer region (see, e.g.,
[93, 100] or [101]). Take a small excess of negative
charge. In the outer regions of the atom the density
is dominated by that of the negative ion, while in
the inner region it is still essentially that of the
neutral atom. The KS potential should look inside
like that of the H atom, while outside it is that of the
negative ion. As mentioned above, the ionization
potential of the system is related to the tail of the
density (see, e.g., [102, 103] or [98]), in our case the
electron affinity of H (�0.8 eV). How can that be if
the potential is essentially that of the hydrogen,
which has an ionization potential of �13.6 eV? We
can again resolve the contradiction by shifting the
potential in the inner region by �13.6–0.8 eV, cf.
Figure 12.

As it is well known that often parts of a molecule
act chemically as if they were independent frag-
ments it would be thus no surprise to find jumps
like those shown in Figure 12 also inside molecules
(cf. [105]).

NATURE OF THE COMPLEMENT
FUNCTIONAL F� �[n]

The fact that the dependence on � can be so
neatly cut off from E[n, �] is essential for construct-
ing approximations for E[�, n]: One simply has to
concentrate on F[n]. We have seen that part of the
problem can be eliminated by introducing a model
system, which can be calculated with reasonable
effort. The important question remains the approx-
imation of the correction needed to obtain the exact
energy and density, F� �[n].

To get more insight into the nature of F� �[n], let us
suppose that we can continuously follow the
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change from the model system to the physical one.
Then, one can use the Hellmann–Feynman theorem
(or first-order perturbation theory), which gives
[70, 71]

d
d�

E��	 � ���� d
d�

H��	���� (11)

or, in integral form,

E � E��	 
 �
�

1

d����� d
d�

H��	���� , (12)

where the specification � � 1 has been left out.
Note that if the density is kept constant along

this process an explicit expression for F� �[n] is ob-
tained after some algebra [70, 71]:

(F� ��n� � �
�

1

d����� d
d�

H0��	���� . (13)

The integral on the right side represents the correc-
tion to be added to E� to obtain the physical energy.
Note that no explicit reference to the external po-
tential V(�) is made in the last formula: H(�) has
been replaced by H0(�) � H(�) � V(�). However, ��

is required to yield n, which is guaranteed by V(�).
If the � dependence in H0(�) is a two-body oper-

ator, e.g., �/r12 (with � � �), we get, for example, an
explicit expression for

F� ��0�n� � �
0

1

d�
1
2 � P2�r1, r2; �	/r12d3r1d3r2, (14)

where P2(r1, r2; �) is the second-order reduced den-
sity matrix, normalized to N(N � 1), obtained from
the ground-state wave function �� of H(�). This
expression seems to give us F� ��0[n]. Although an
equality, remember that:

1. This expressions requires the knowledge of all
the P2(r1, r2; �) for � between 0 and 1.

2. There are infinitely many ways to connect the
model system with the physical one.

Concerning the first point, remember that to obtain
the exact P2(r1, r2; �) no exact method is known,
except by using the exact ��. But, if we know ���1,
our problem is already solved and there is no need
for DFT. Thus, the expression showing the �-inte-
gration cannot be used except as a motivation to
construct models for F� ��0[n].

As to the second point, we can choose, for exam-
ple, instead of �/r12 the connection via erf(�r12)/r12.
In that case,

F� ��0�n� � �
0

�

d�
1
2 � P2�r1, r2; �	

� �2/�
	exp���2r2	d3r1d3r2 (15)

(see, e.g., [106]). If we use a �-dependent one-body
operator, we may express F� ��0[n] by using only the
reduced first-order density matrix, �(r, r�; �). For
example, if we add G� to the Hamiltonian, where
� is the operator projecting out all states that are
not occupied in the KS system, it comes out to be

FIGURE 12. Top: KS potential of an ensemble of H
and H� and that of a hydrogen atom ( � 1/r) as a func-
tion of the radial distance r (a.u.). w � 0 corresponds
to H, shifted upward by a constant equal to the differ-
ence between the ionization potential and the electron
affinity of H ( � 1/r 
 1/2 � 0.0278), short broken
curve; w � 1 corresponds to H� (long-broken curve).
The other curves correspond to w � 1/2, 1/22, . . . ,
1/210. Bottom: Difference between the KS potential and
the shifted H atom potential as a function of r. The
curves were obtained from accurate densities [104].
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[107] F� �30[n] � ��0
� dG ¥i�N �ii(G), where �ii(G) �

��i(G)����i(G)�.
A simplification of F� [n] may come by extracting

some parts from it that are neatly defined and easily
calculated. A component of F� [n] is known exactly:
the Hartree term (describing the electrostatic inter-
action of the density)

U�n� �
1
2 � n�r1	n�r2	/�r1 � r2�d3r1d3r2. (16)

There are good reasons for computing this term
exactly (cf. [41]). First, it is computationally acces-
sible, many techniques having been developed for
obtaining it with sufficient accuracy. Second, ap-
proximations (like those discussed below for the
remaining part of F�[n]) have not shown the neces-
sary accuracy. Last, but not least, errors in the elec-
trostatic interaction may produce catastrophic re-
sults, e.g., in ionic crystals, or as it is known from
semiempirical methods in molecular calculations.
As the rest of the electrostatic interaction (between
nuclei and between nuclei and electrons) is treated
exactly, the only source of errors would be in U[n].

A problem appears for ensembles. While � n� is
linear in n, and thus poses no problems, is not easy
to construct approximations to F[n] that satisfy
E[NA, �] � ¥i wiE[NA,i, �A]. There are spurious
terms in U[n] that have to be compensated by an
unknown form of F[n] � U[n]: U[�nA � (1 � �)nB]

 (�U[nA] � (1 � �)U[nB]) (see, e.g., [91, 108–110]).
Note that the expression of the energy of the en-
semble suggests that we also can use functionals
depending on the densities of each member of the
ensemble (by writing for each of the members F[ni]
� � �ni) [91, 110]. With such an ansatz the problem
mentioned above does not appear.

Once U[n] is eliminated from F[n], to obtain E[�,
n], only the so-called exchange correlation energy

Exc�n� � F�n� � �Ts�n� 
 U�n�	 (17)

remains to be known.
Kohn and Sham [42] suggested another variant

in which one takes advantage of the fact that the KS
determinant is already known. The expectation
value of the physical Hamiltonian, computed with
the ground-state wave function of the noninteract-
ing system, is taken away from F[n]; one has to
approximate only the remaining part, the “correla-
tion” energy. The exchange energy is defined as

Ex�n� � ��KS�Vee��KS� � U�n� (18)

while the correlation energy is simply

Ec�n� � Exc�n� � Ex�n� (19)

For �Exc/�n(r) (or �Ec/�n(r)) the terms exchange
correlation (or correlation potential) are used. As
the discussion for Exc[n] and Ec[n] is often similar,
we will use the notation E(x)c[n] for any of the two.

One should be careful about the meaning of
“exact exchange” in DFT. In quantum chemistry,
one is accustomed to consider as the exact exchange
Ex[�] � ���Vee��� � U[n�], with the Slater deter-
minant � being the Hartree–Fock wave function,
�HF, and n� the density constructed from it. In the
KS method, however, one naturally chooses as a
single determinant � the eigenfunction of the non-
interacting system, �KS, the KS determinant. The
KS determinant is not equal to the Hartree–Fock
one (with a few exceptions, like the uniform elec-
tron gas, or one-electron systems): Unlike �HF, it
yields the exact n. Thus, in general, Ex[�KS] 

Ex[�HF]. In analogy with the KS potential, which is
local, and due to the fact that �KS (or the exact
density) is not a priori known, one can generate an
“optimized effective potential” (OEP), optimized in
the sense that it is the local potential that produces
for the noninteracting Hamiltonian the eigenfunc-
tion, �OEP, having the lowest expectation value of
the physical Hamiltonian. (Remember that the Har-
tree–Fock method yields the determinant giving its
lowest value; we thus have: ��HF�H��HF� �
��OEP�H��OEP� � ��KS�H��KS�). Further, approxi-
mations to �OEP exist, like the Krieger–Li–Iafrate
method, KLI, which produce further determinants,
and thus further definitions of exchange. It turns
out that—when no degeneracy is present—all these
wave functions are similar, and the values of ex-
change energy are close, too (see, e.g., [111]).

Of course, there is a definition of “exact correla-
tion” that goes along with each definition of exact
exchange. Using ��HF�H��HF� � ��KS�H��KS�, or
E[n(�HF), �] � E[n�, �], relationships can be derived
between the various definitions of Ec [112–114]. For
the correlation energy, one seems to notice larger
discrepancies when near degeneracy is present: We
estimate the difference between the DF and usual
quantum chemistry definition to 2 mhartree for Be
and to 12 mhartree for Ne6� [60, 115].

Of course, E(x)c[n] can be defined in a similar way
along the adiabatic connection for � 
 0. In this

ADIABATIC CONNECTION APPROACH TO DFT

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 177



case, one should also treat the Hartree term cor-
rectly, and thus extract it from F� �[n], remembering
that part of it, U�[n], has been treated within F�[n]*:

Exc,� �n� � F� � �n� � �U�n� � U� �n�	 (20)

and

Ec,� �n� � F� � �n� � ���KS�H0��KS� � ��KS�H0��	�	. (21)

Of course, other reference systems than the KS
one are possible. In the last decade, the OEP has
gained in popularity, also in connection with its
simplified form, the KLI potential (see, e.g.,
[116]), or more recent extensions in Refs. [117,
118]. Usually, such approaches are considered
still as a part of DFT, one of the arguments being
the fact that these potentials are local, which can
be corrected by other, approximate, weaker (“cor-
relation”) potentials to give the KS potential and
thus the exact density.

PROPERTIES

The KS system has been described above as fic-
titious, as it corresponds to nonexisting, noninter-
acting particles. It turns out, however, that it can
often produce information that is physically signif-
icant, being close to the one that would be obtained
from the exact wave function. Evidently, any expec-
tation value of a local one-particle operator is cor-
rect, as the density coming out from KS is exact. For
example, molecular dipole moments are exact
when no approximations are made for the KS po-
tential, and so are polarizabilities. Less evident is
the property mentioned above: that the highest KS
eigenvalue is equal to minus the ionization poten-
tial (see, e.g., [102], [103], [96], or [98]).

One may, however, use the KS wave function
with success beyond its rigorous limits. One may
deduce reasonably good values for excitation ener-
gies (cf., e.g., [95]) or vertical ionization potentials
[119]. Arguments have been given that KS orbitals
should be close to Dyson orbitals (see, e.g., [120]).
Last but not least, the KS wave function respects the
Pauli principle, which is essential to understand the
variety of chemistry: It is a useful tool for interpre-
tation (see, e.g., [16]).

Much experience comes from approximate cal-
culations. An example is the total spin angular mo-
mentum. As S2 is a two-body operator, the KS
determinant should not be expected to give a reli-
able value for it [121]. Nevertheless, it is used in
approximate DF calculations; there is experience
that shows that its expectation value can be more
reliable than that obtained in unrestricted Hartree–
Fock calculations [122, 123].

Note in this category the success of DFT for
describing properties derived from NMR or ESR
spectra (see, e.g., [124]).

There are rigorous ways to obtain properties
within DFT. However, the knowledge of property-
dependent functionals is required.

A way to obtain the properties by keeping the
DFT philosophy is to find an operator conjugate to
the property. The typical example is the excess of
spin-up over spin-down density, m(r) � n1(r) �
n2(r). For it a nonuniform magnetic field is intro-
duced into the Hamiltonian, which couples only to
m, and does not modify the kinetic energy operator
([42, 125]; see also [126, 127]). This approach has
been later generalized [128]. It consists of observing
that the trick of defining F[n] � min�3n���T �
Vee��� can be applied on F[n], too, to get F[n, m] �
min�3n,m���T � Vee���, which can be obtained by
considering a field coupled to m (like � was coupled
to n) to obtain F[n, m]. Once F[n, m] is known, one
can use E[n, �] � minn,mF[n, m] � � �n �
min����T � V � Vee���, which automatically
yields m associated with the ground state. Of
course, the next step is to define F[n, m] for modi-
fied Hamiltonians and define a corresponding KS
method. In it,

Ts�n� 3 Ts�n1, n2� � min
�3n,m

���T���

� �
i�1,N1

��i�� 1
2 �2��i� 
 �

i�1,N2

��i�� 1
2 �2��i�, (22)

where N1 � � n1 and N2 � � n2. Further, Exc[n]
3 Exc[n1, n2]. (Note that we are free to replace the
dependence on n, m by that on n1, n2.)

Similar in spirit is the use of response theory
within DFT. Excitation energies can be obtained in
time-dependent DFT by studying the change of the
density produced by a time-dependent perturbing
potential: The perturbation couples the ground to
the excited states and the time or frequency depen-
dence is the tool exploring it (see, e.g., [129, 130]).

*Note that some confusion may arise with this notation, as
often E(x)c,� is used as a notation for the exchange and/or corre-
lation energy of the system with H(�).
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Another procedure to obtain properties from DF
calculations was first proposed for momentum dis-
tributions [131] and then generalized to arbitrary
properties [132]. The main idea is to add to the
Hamiltonian the operator corresponding to the
property in which we are interested, Ô, multiplied
by a vanishingly small constant �. The universal
functional becomes now dependent on Ô and �.
Next, the Hellmann–Feynman theorem is applied,
yielding a correction to the expectation value of Ô
calculated for the noninteracting (model, KS) sys-
tem, which is equal to the derivative of the Exc[n]
with respect to �.

It is evident that for a mathematically rigorous
theory many details have to be clarified in these
approaches. To give just one example: Can we al-
ways obtain that we generate a given property with
the wave function we are using in the search? We
know, for example, that the on-top pair density
P2(r, r) can take values, for an approximate multi-
determinant wave function, that are not reproduc-
ible by a P2(r, r) coming from a single Slater deter-
minant [133]. To our knowledge, such a problem
has not been found when replacing the approxi-
mate by the exact wave function, which is no proof,
of course, that the problem does not appear. An-
other question is: Do the properties we obtain really
have the meaning we attribute to them? For exam-
ple: Are the spin densities in approximate DFT
really spin densities or do they reflect a different
property? (see, e.g., [134] or [135]).

Approximate Exchange and
Correlation Functionals

NEED FOR APPROXIMATIONS

The KS approach tells us that we have only to
treat a model system if we know a density func-
tional F� �[n] (or Exc,�[n] or Ec,�[n]). However, these
functionals remain unknown, and there is not much
hope of getting them to arbitrary accuracy without
performing a many-body calculation. Once the lat-
ter is done, the functionals can be obtained, of
course, but this is only of interest for analyzing the
functionals.* Thus, DFT has no procedure similar to
that of many-body theory, where the wave function
can be improved systematically and the limit is

imposed only by the performance of the computer.
In DFT, approximations are constructed for F� �[n],
and it is believed that the ingenuity of researchers
can allow finding better and better approximations
for it.

The adiabatic connection provides what one
might call a systematic improvement, as one ap-
proaches the exact solution, as � gets closer to 1.
Although F� �[n] remains unknown, its importance
decreases with increasing �. It is our hope that the
connection may be chosen in a way to improve the
ability to approximate F� �[n] beyond a given �, say,
�0, which should be sufficiently small to calculate
�� with reasonable computational cost. For � � �0,
the results should not change within a given nu-
merical accuracy.

There are essentially two strategies to construct
the density functionals:

1. Use exact conditions to be satisfied by F� �[n].
2. Fix the functional so that it reproduces some

data.

Some of the exact conditions can be found, e.g.,
in [139]. The problem of using exact conditions is
that we know only the necessary, but not the suffi-
cient, conditions: One can satisfy many conditions
but violate one important, unknown condition [45].
In the last decade there was a strong tendency to fit
to experimental data, arguing that we know that
the functional exists and that the way to get it does
not matter. The problem with fitting to data is that
the parameters can fit one class of systems or prop-
erties but not another. In practice, both approaches
are present in the construction of functionals, put-
ting more emphasis onto the first, or second, strat-
egy.

(SEMI-)LOCAL APPROXIMATIONS

Usually the approximation is made by chosing
an ansatz for the functional. The simplest one gives
rise to the so-called local density approximation
(LDA):

E(x)c�n� �� n�r	�(x)c�n�r		d3r. (23)

It is usually considered that this should reproduce
the uniform electron gas result. In the uniform elec-
tron gas, n does not depend on r, so that �xc(n)
becomes the exchange correlation energy per parti-

*Note, however, that there is some hope that keeping the
density constant (or using local potentials) in many-body calcu-
lations might be a better way to tackle the many-body problem
(see, e.g., [72, 73, 136–138]).
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cle in the uniform electron gas. Using the “univer-
sal” character of the functional, it can be applied for
every system: In each point of space r3 n3 �xc (cf.
Fig. 13). Of course, this is an approximation as it can
be seen, e.g., by applying Exc[n] for the hydrogen
atom: The use of �xc given by the uniform electron
gas does not exactly compensate U[n].

The functional derivative of the local functionals
gives an approximation to the KS potential. The
potential obtained in the LDA approximation fails
to show several characteristics of the exact KS po-
tential. One of them is the inability to produce the
“jumps” mentioned above (see, e.g., [80]). Another
is that it decays too fast (exponentially, unlike the
exact KS potential, which decays in atoms and mol-
ecules like 1/r) (cf. Fig. 14). This feature is impor-
tant when trying to describe excited states and
properties related to them.

The LDA can be defined also for a nonzero �. For
�/r12 there are simple scaling relationships that
connect �x(n; �) and �c(n; �) with �x(n�; � � 1) [140]
and �c(n�; � � 1) [141]. Thus, no new calculations
are needed to obtain the �-dependent values for
approximating F� �
0.

For other adiabatic connections, despite some
simplifications that can be introduced via scaling
relationships, new data are needed. As for � � 0,
they can be obtained from uniform electron gas
calculations, cf. [142] or [110]. The exchange energy
can be computed analytically, but the correlation
energy per particle has to be computed numeri-
cally, for a set of values of � and a set of densities,
and then fitted [110]. Normally, they are monoto-
nous functions of � and the density: As the density
increases, so does the (exchange-)correlation energy
(in absolute value), while the opposite effect hap-
pens with the increase of �.

The different couplings yield different results
once the LDA is applied. Figure 15 shows the evo-
lution of the energy, as a function of �, when the
local approximation obtained from the uniform
electron gas is used for the exchange and correla-
tion part of F� �[n] for a calculation of the He atom. In
the �-coupling (�/r12) the error of the LDA slowly
disappears as � increases to 1. In the �-coupling
(erf(�r12)/r12), the LDA suddenly drops down, be-
coming small as soon as � � 1 a.u. (comparable to
a representative inverse mean distance between
electrons in the He atom).

To compare the �- with the �-coupling, a com-
mon scale has to be chosen. As the (exchange-)cor-
relation energy to be described by F� �[n] decreases
monotonically with �, we plot below the errors
produced by using the LDA form of the functionals
as a function of the accurately determined function-
als at the same �. Thus, the plots show the errors of
using an approximate form of the functionals as a
function of the value it is aimed to produce. Figure
16 shows the plots of the LDA errors E(x)c,� and
E(x)c,� for He. The point where Exc becomes better in
the �-coupling than in the �-coupling is related to
the size of the system. To understand what hap-
pens, recall that erf(�r12)/r12 describes the long-
range interaction and Exc,� has to describe the short-
range part. If 1/� is larger than the size of the
system, one wrongly assumes that some correlation

FIGURE 13. Schematic representation of the LDA ap-
proximation. For a given position r, the density n is
given (left). For the same density, the exchange correla-
tion energy per particle, �xc, of the uniform electron gas
is found.

FIGURE 14. Exact (full curve) and LDA exchange cor-
relation part of the KS potential, �Exc/�n(r), as a func-
tion of the radial distance for the He atom (a.u.).

FIGURE 15. Evolution of the energy with the coupling
parameter in the LDA for the He atom in two different
couplings: �/r12 (left) and erf(�r12)/r12 (right) (a.u.).
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effects can be transferred from the uniform electron
gas where the electrons are present beyond this
distance. The improvement by using the �-coupling
instead of the �-coupling is more dramatic on Ec. In
both cases one notes that after a certain value of �
there is only a small error in using LDA.*

The observation on He can be put in a more
general context. It has been known for a long time
that the uniform electron gas presents some specific
long-range correlation effects, and a way to treat it
was to separate them by splitting the operator de-
scribing the interaction between electrons in a
short- and long-range part [143]. [In our case this
corresponds to splitting it into erfc(�r12)/r12 and
erf(�r12)/r12.] The short-range part had be treated
by standard methods (it was simply second-order
perturbation theory). As a further physical argu-
ment, it is natural to expect that the role of the
external potential is less important than the diverg-
ing repulsion between electrons when the latter are
close to each other. One may thus expect that trans-
ferability works better for the short range. Accord-
ingly, there were several proposals, in different
contexts, to split 1/r12 into a short- and long-range
part in DFT, constructing LDA or LDA-like approx-
imations for the short range (see, e.g., [144–146]),
the use of erf(�r12)/r12 [110] being extremely con-
venient for the use in molecular programs using
Gaussian basis sets.

Although not well known, it is also possible to
choose �xc in local approximations to atomic data in
a way to ensure that both the energy and the den-
sity produced for the atom are exact (see, e.g., [147–
149]). We show in Figure 17 the plot of the LDA �xc
obtained in the uniform electron gas and that de-
fined in such a way that it yields the correct energy

and density for the Be atom and the Ne6� ion [149].
As the density is monotonically decreasing, there is
a one-to-one relationship between r and n(r), or rs �
(3/4
n)1/3. �xc is shown in Figure 17 as a function
of 1/rs with rs � 3/(4
n)1/3, which would be a
straight line in this plot for the uniform electron gas
exchange-only approximation. Note for the atomic
LDA the jump in �xc at the shell boundary, which is
not present in the uniform electron gas LDA, but
striking in the atomic LDA, especially for Ne6�.

It is, of course, unphysical to consider that in
each point of space the electrons behave as if they
were in a uniform electron gas. One can think of
different ways to correct it. One may introduce a
dependence on the finite electron number (see, e.g.,
[150, 151]). The problem with this approach is ex-
tensivity: If we have two infinitely separated frag-
ments, the energy should be the sum of that ob-
tained for the fragments. If we compute one
fragment individually, we know only the number
of particles in it. If we compute the total system, we
use the total number of electrons in the system.

Another way to overcome the usual LDA ap-
proximation is to realize that there is no gap in the
uniform electron gas, while it is a common feature
of the majority of electronic systems. One could
thus introduce the dependence on a gap (see, e.g.,
[107, 152, 153]).

The most popular way to go beyond the LDA is
the semilocal approach: to look not only at the
density at r but also in its neighborhood. In other
words, one can gather information by using �n, etc.
(cf., e.g., [41, 154–158], etc.):

E(x)c�n� �� n�r	�(x)c�n�r	, ��n�r	�	d3r. (24)

*Of course, this does not mean that one should not use the
�-coupling: In our example, extrapolation seems easier to obtain
when using the �-coupling.

FIGURE 16. Exchange correlation energy LDA error
(left) and correlation energy LDA error (right) as func-
tions of the exact Exc and Ec, respectively, along the
adiabatic connection for He (a.u.). The adiabatic con-
nection is �/r12 (full curve) and erf(�r12)/r12 (broken
curve).

FIGURE 17. �xc in the LDA as a function of 1/rs gen-
erated to reproduce the correct atomic energy and
density (full curves) for the Be atom (left) or the Ne6�

ion (right) [149]. For comparison, the usual LDA, fitted
to reproduce the uniform electron gas data, are also
given (dotted curves) (a.u.).
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Note that only the absolute value of the gradient
enters this expression due to the concern of keeping
the universality of the functional (cf., e.g., [41]).
With such an approach, the binding region in a
molecule, where the density gradient is close to
zero, yields a different contribution from that in the
outer regions of the molecule having the same den-
sity (cf. Fig. 18).

An extension is (see, e.g., [159–162])

E(x)c�n� �� n�r	�(x)c�n�r	, ��n�r	�2, �2n�r	, ��r		, (25)

where �(r) � ¥i�1,N ���i�
2, where �i are the KS

orbitals. This type of approximation is now often
called meta-GGA, while the form �xc(n(r), ��n(r)�) is
referred to GGA (generalized gradient approxima-
tion).

CAN THE APPROXIMATIONS BE
UNDERSTOOD?

A way to understand the nature of �xc is based
upon a formula obtained from the adiabatic con-
nection:

Exc�n� � F� ��0�n� � U�n�

�
1
2 � d3rd3r�

1
�r � r��

� � d��P2�r, r�; �	 � n�r	n�r�	�

� � d3rn�r	
1
2 � d3r�

1
�r � r��

� � d��P2�r, r�; �	/n�r	 � n�r�	�

� � d3rn�r	
1
2 � d3r�

1
�r � r�� nhole�r, r�	.

(26)

nhole(r, �r � r��) is the � average of [P2(r, r�; �)/n(r) �
n(r�)]. As exchange and correlation lower the prob-
ability to find two electrons at the same point r,
nhole(r, 0) � 0. The index “hole” comes from the
picture that the exchange correlation energy can be
viewed from the last formula as the Coulomb in-
teraction with a position-dependent positive
charge, or a hole in the density, one can decide to
model. A further step is to spherically average
(around r) Phole and model it (see, e.g., [71, 163]). If
this model is good, so will be 1

2 � d3r�(1/�r �
r��)Phole(r, r�). If we use in this model only n(r) and
�n(r), this integral yields a function of these quan-
tities, which we can identify with a form for �xc(n(r),
��n(r)�). An expansion of the exchange hole also
introduces terms like �2n(r), or �(r) � ¥i�1,N ���i�

2,
where �i come from the series expansion of the
exchange part of nhole (cf. [112] or [158]).

We show in Figure 19 the plot of 1
2 � d3r�(1/�r �

r��) � d�[P2(r, r�; �)/n(r) � n(r�)] as a function of the
radial distance, r, in the He atom, as obtained from
an accurate calculation [164]. In the same plot, we
compare it with �xc(r), as given by a GGA approx-
imation [165] that intends to model the exchange
correlation hole.

FIGURE 18. Schematic plot of the density in a mole-
cule. The density (full curve) takes the same value (bro-
ken line) in the bonding and in the outer regions but the
gradient of the density is different.

FIGURE 19. �xc for the He atom as given by the inte-
gral over the coupling constant and the exchange cor-
relation hole from accurate data [60], full curves, and
that used in one of the GGA approximations [165], dot-
ted curves. Left, as a function of r, and, right, as a
function of 1/rs with rs � 3/(4
n)1/3, which would be a
straight line for the uniform electron gas exchange-only
approximation (a.u.).
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It is interesting to note that, in the case of the He
atom, the main difference of the GGA approxima-
tion considered for �xc comes from the exchange
part and not for the correlation part (cf. Fig. 20).

It should be stressed, however, that this is not the
unique way of seeing what �xc should be. A differ-
ent way, not making use of the adiabatic connec-
tion, was proposed by Gritsenko et al. [166].* Fig-
ure 21 shows both curves. The abscissa has been
chosen to be 1/rs, where rs is a monotonous func-
tion of the radial distance, r, rs(r) � [3/(4
n(r))]1/3.
In the X� approximation �xc would be a line going
through the origin with an adjustable slope. Note
that both curves in Figure 21 come from accurate
calculations [60], yielding the same, accurate Ec.

The source of this arbitrariness relies upon the
attempt to fix a function, �xc, by knowing only a
number, Exc. Of course, one can add to the inte-
grand any function that integrates to zero and ob-
tain the same value for the integral.

Even when keeping to the adiabatic coupling via
�/r12, one can use the exact formula [169]:

Ec�n� � � d���2 �
i

�pii��	 � pii�� � 0	��i

� � d3rn�r	 �
i
� d���2

� � pii��	� pii�� � 0	��i��i�r	�2/n�r	 (27)

and identify �c(r) with the sum in the last integral
[�i are the KS eigenvalues, �i the KS orbitals, pii(�) �
� �i(r)�(r, r�; �)�i(r�), and �(r, r�; �) the first-order
density matrix obtained at a given �]. Weighting
orbital quantities by ��i(r)�2 may be “natural” but is

still arbitrary. We can thus think that we could
construct �c by modeling � d���2[pii(�) � pii(� �
0)]. We show in Figure 22 � d3rn(r) ¥i �
d���2[pii(�) � pii(� � 0)]�i��i(r)�2/n(r), together with
the one obtained from the pair density, as a func-
tion of 1/rs. Although both yield by integration the
same, correct correlation energy, their shape is to-
tally different.

FUNCTIONAL FOR EXCHANGE AND
CORRELATION, CORRELATION, OR
A PART OF THEM?

It was often argued that the transferability works
better when approximations are made for exchange

*See also Refs. [167, 168] for another interesting ways to
define �xc.

FIGURE 21. Adiabatic coupling (full curve) and for-
mula of Gritsenko et al. (broken curve [166]) for �c as a
function of 1/rs.

FIGURE 20. �c for the He atom as given by the inte-
gral over the coupling constant and the exchange cor-
relation hole from accurate data [60], full curves, and
that used in one of the GGA approximations [165], bro-
ken curves. Left, as a function of r, and, right, as a
function of 1/rs with rs � 3/(4
n)1/3.

FIGURE 22. Accurate expression of functions that
can be interpreted as �c for the He atom as a function
of 1/rs. They were obtained using the adiabatic cou-
pling �/r12, at constant density, using two different ex-
pressions of the correlation energy, one based upon
the one-particle density matrix (points not connected),
while the other was obtained using the two-particle
density matrix (full curve) (a.u.). Although the calcula-
tions were performed with reasonably large Gaussian
basis sets, their quality does not seem sufficient to de-
scribe well the behavior at small densities (small 1/rs).
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and correlation together than when approximating
just the correlation energy. This might be at first
sight surprising, as correlation is just a significantly
smaller quantity than exchange and correlation to-
gether. The arguments have different origins. Lan-
greth and Perdew [170], for example, show that the
leading long-range contribution that is specific for
the uniform electron gas, and thus not transferable,
cancels out when exchange and correlation are
taken together. One also finds the argument based
on the analysis of specific systems: that usual ap-
proximations for the correlation energy transfer just
the dynamic correlation, while the static correlation
is described by what should be the approximation
of exchange only [171].

Especially the interest in properties determined
by the asymptotic behavior of the potential brought
back the interest to the so-called “exact” treatment
of exchange, in the form of the optimized effective
potential and its simplifications mentioned above.

A way to exploit the adiabatic connection for-
mula is to write the integral over � as wP2(r, r�; � �
0) � (1 � w)P2(r, r�; � � 1), where w is an unknown
weight [172]. The wave function at � � 0 is deter-
mined in the KS process and considered known.
Thus, P2(r, r�; � � 0) is also known, containing just
the parts appearing in the Coulomb and exchange
energy expressions. P2(r, r�; � � 1) is, of course,
unknown. It is often argued that at strong interac-
tion between electrons the effect of the external
potential should be weaker and thus transferability
from one system to the other should be better (see,
e.g., [173, 174]). According to this philosophy, one
should better make an approximation for P2(r, r�;
� � 1) than for � d�P2(r, r�; �). One can thus think of
a hybrid approach where

Exc�n� �
1
2 � d3rd3r�

1
�r � r��

� � d��P2�r, r�; �	 � n�r	n�r�	�

� w
1
2 � d3rd3r�

1
�r � r��

� �P2�r, r�; � � 0	 � n�r	n�r�	�

��1 � w	
1
2 � d3rd3r�

1
�r � r��

� �P2�r, r�; � � 1	 � n�r	n�r�	�

� w
1
2 � d3rd3r�

1
�r � r��

� �P2�r, r�; � � 0	 � n�r	n�r�	�

��1 � w	
1
2 � d3rn�r	�xc�n�r	, · · ·	. (28)

Note that the first integral on the right side is the
exchange energy, justifying the name hybrid for
this approach: Part of the exchange (w) is treated
exactly (correlation equal to 0 at � � 0), while for
the other part exchange and correlation are treated
together in an approximate way.* Of course, the
weight w is system dependent (see, e.g., [166]).
However, it turns out empirically that using w close
to 1/4 gives good results in molecules when com-
bined with simple functionals. (In the uniform elec-
tron gas it is closer to 1/3.) The success of a semiem-
pirical functional, B3LYP [172, 175, 176], has highly
contributed to an increasing popularity of hybrid
functionals in molecular calculations.

For crystals, their application has been ham-
pered by the missing of two-electron integrals in
commonly used codes needed for computing
� d3rd3r�(1/�r � r��)[P2(r, r�; � � 0) � n(r)n(r�)].†

The hybrid approach is not restricted to using
the � � 0 end-point. It can be used for other � and,
in fact, for other adiabatic connections, too.

It was argued before that it might be easier to
transfer the short-range part of the electron–elec-
tron interaction energy and thus only a part of the
(exchange-)correlation energy. To substantiate this
point, we can consider what happens when � in
erf(�r12)/r12 gets large. In that case, by using the
Hellmann–Feynman formula and exp(��2r12

2 ) 3
(
/�2)3/2�(r1 � r2), for �3 �, and � being the 3-D
Dirac delta function:

Exc,���0 � Exc,�3�

� ��2



2 � �P2�r, r; �	 � n�r	n�r	, � 3 ��d3r.

A similar expression can be derived for the corre-
lation-only part. Perdew and coworkers have

*As one uses approximations for �xc the KS orbitals will not
be the exact ones and thus the exchange will not be exact either.

†An exception is the Crystal program [177].
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shown in several studies (see, e.g., [178]) that the
on-top pair density has good transferability from
the uniform electron gas. We show in Figure 23 the
evolution of the correlation energy, as a function of
�, for the He atom in the LDA approximation. On
the same plot appears the asymptotic behavior ob-
tained by using the formula above, using the data
from an extremely accurate wave function [104]
and that obtained by using the on-top pair density
P2(r, r) of the uniform electron gas with density n(r),
as given by Yasuhara [179]. We see that the two last
curves show a similar behavior. In fact, our config-
uration interaction (CI) calculation, which we qual-
ify as “accurate” [60], yields a curve that is practi-
cally superimposed with that obtained by using the
uniform electron gas information.*

In practice, we proceed in the opposite way,
namely, advancing with accurate calculations to-
ward larger �. Thus, as we approach the curve of
Ec,���0 we make increasingly smaller errors in
transferring data from the uniform electron gas.
Note, that, on one hand, the point where Ec,���0
starts giving negligible errors corresponds to small
contributions coming from the uniform electron
gas. On the other hand, we have to remember that
this is not the only information we use. For exam-
ple, when transferring data from the uniform elec-
tron gas the correlation energy correction term for
He is finite, even at � � 0. Thus, the agreement
between the exact and the LDA result becomes
good even when an important part of the correla-
tion energy is described by LDA (cf. Fig. 24).

The next step is to ask whether one can use a
small number of determinants when advancing to
the value of � that is large enough to make the LDA
approximation work. We show in Figure 25 the
evolution of the total energy of He, in the LDA
approximation, as produced for different qualities
of wave functions. (For other examples, see, e.g.,
[164].) Present experience shows that for � � 1 a
good compromise can be reached.

Numerical calculations show that, as expected,
the LDA works worse when near degeneracy is
present. This is illustrated in Figure 26 for the hy-
drogen molecule, where the near-degeneracy effect
increases with the interatomic separation. In such
cases, the few determinants needed to describe the

*It is well known that obtaining an accurate on-top pair
density is a much harder task than obtaining an accurate energy
[180].

FIGURE 23. Correlation energy part not present in
e(�) as a function of � in the adiabatic coupling
erf(�r12)/r12 (short-broken curve) from an accurate CI
calculation. The exact asymptotic behavior, for large �,
to ��2, from an extremely accurate calculation (full
curve) and its LDA approximation (long-broken curve)
(a.u.).

FIGURE 24. Correlation energy of the He atom, not
present in H(�) as a function of � in the adiabatic cou-
pling erf(�r12)/r12 (short-broken curve) from an accurate
CI calculation and in the LDA approximation (long-bro-
ken curve) (a.u.).

FIGURE 25. Energy within the LDA approximation for
Exc,�[n] along the adiabatic connection using the cou-
pling erf(�r12)/r12 for the helium atom as a function of
�: calculated points connected by straight lines. The
different curves correspond to an increasingly larger
natural orbital space (the full lines connecting points
obtained using just one Slater determinant, 1s2, the
short-broken line correspond to the inclusion of the 2s2

determinant, while the long-broken line corresponds to
a CI calculation within the space of the 1s2, 2s2, 3s2,
2p2, 3p2, 3d2 [110] (a.u.).
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near-degeneracy effects should be included explic-
itly into the calculation of the e(�).

Conclusion

The Hohenberg–Kohn theorem relies on the con-
jugate character of ground-state electron density
n(r) and external potential �(r). This correspon-
dence is rigorous but can also produce peculiar
features, some of which were presented in this ar-
ticle. The KS method can be viewed as the calcula-
tion of a model system, to which a density func-
tional F� [n] is added, to enforce that the physical
ground-state energy and density is produced when
considering the model system. By modifying the
model system, it is possible to switch continuously
to the physical system by so-called “adiabatic con-
nections.” In the KS system, the reference system is
noninteracting and the corresponding wave func-
tion a single determinant. Modifying the Hamilto-
nian requires the inclusion of multideterminant
wave function in the reference system. This seems
to be important when near degeneracy is present.
Further, this opens the way to a systematic im-
provement within DFT. However, there are many
ways to exploit such a link, and little has been done
along these lines.

There are many new exciting facets of DFT that
were left out of this article. For example, more has
to be said about the treatment of excited states and
time-dependent DFT, the calculation of polariz-
abilities and hyperpolarizabilities, chemical shifts
in nuclear magnetic resonance, core electron bind-
ing energies, etc. Powerful computational tech-
niques were developed that allow a linear scaling
with the size of a system.

The last decade has shown the uprise of many
approximate density functionals, and the criteria
for choosing one of the functionals is a matter of
great importance for anyone applying them. No
criteria were given for choosing the “best” func-
tional. A reason for it is that, in the authors’ opin-
ion, despite easy-to-use, highly efficient electronic
structure codes, choosing the best calculation is still
an art, and while statistics give a hint they cannot
guarantee the quality of the result. There are several
extension of the KS method that were not treated in
this article. In solid-state physics the method
known as LDA�U has gained much importance for
describing systems that are beyond the reach of the
“classic” approximations of DFT. Another exten-
sion is designed for the treatment of van der Waals
interactions. Methods simpler than KS also exist,
and recent development for approximations of the
kinetic energy raises hope for rapid calculations on
huge systems. Last, but not least, DFT has permit-
ted the development of important tools for chemis-
try, such as hardness or softness.
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Appendix: Motivations for Using
Ensembles

Besides being a physical manifestation, ensem-
bles appear also in different contexts, which makes
their inclusion important in DFT. Let us first con-
sider the example of the dissociation or formation
of molecules [97]. It shows that a change of the
potential around the center X by another one, on

FIGURE 26. Energy within the LDA approximation for
Exc,�[n] along the adiabatic connection using the cou-
pling erf(�r12)/r12 for the hydrogen molecule at equilib-
rium distance (lower group of curves) and at an inter-
atomic distance of 3 bohr, as a function of �:
calculated points connected by straight lines. The dif-
ferent curves correspond to an increasingly larger or-
bital space (the full line connects points obtained using
just the 1�g orbital and the broken line corresponds to
the inclusion of the 1�u orbital, 2�g, and the full CI cal-
culation within our basis set [164] (dashing gets longer
as the dimension of orbital space increases) (a.u.).
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center Y, that is a large distance from that on X can
significantly affect the ground-state density on X by
charge transfer. The simplest relevant example is
that of the A2

� molecule separating into A and A�.
Symmetry dictates that the charge is evenly distrib-
uted between the two fragments. The density thus
obtained on each of the centers is the average of
those obtained in calculating the fragments A and
A� isolated. Of course, the number of electrons on
each site is also the average between that in A, NA,
and that in A�, NA � 1, namely, NA � 1/2. The
average electron number per site is thus noninteger.
As the fragments are separated by an infinite dis-
tance, we know that the energy of the composite
system is equal to the sum of the energies of A and
A�, (E[NA, �A] � E[NA � 1, �A]). Quantum mechan-
ics ensures that the energy of this system, having a
noninteger electron number on each of the sites,
2E[NA � 1/2, �], is close to E[NA, �A] � E[NA � 1,
�A]. Due to the separation of the fragments, we
would like to be able to obtain the same result when
considering the densities on each of the fragments.
For doing it, we should be able to compute E[NA �
1/2, �]. By considering the charged cluster Am

q� the
previous reasoning is easily extended to having an
arbitrary fractional electron number NA � q/m on
each site. The density on each of the site is thus
given as an ensemble density:

nA � �
i

winA,i,

each of the densities nA,i yielding an integer num-
ber, NA,i, while the number of electrons in the en-
semble is not necessarily integer:

NA � �
i

wiNA,i.

Further,

E�NA, �� � �
i

wiE�NA,i, �A�.

In the approach above it was supposed that the
functional is defined for n � �n. As long as the
number of particles is kept fixed to an integer num-
ber N, there is no conceptual problem with this.
One can imagine procedures where the search for
the minimum is done by keeping N fixed. However,
by introducing the Lagrange multipliers to keep N
fixed, which is the common way of proceeding, the

search process is done for functionals of a density
integrating to any number of electrons. One can
think in terms of ensembles to have functionals
defined for a noninteger number of electrons.

Ensembles also appear in density functional cal-
culations using fictitious Hamiltonians, to be dis-
cussed in more detail below. Degeneracies show up
that are not present in the physical system. Thus,
for the correct KS treatment one has to proceed
carefully treating degeneracies.

Although ensembles were slow to enter classic
quantum chemistry codes, they were used for many
years in X� calculations (see, e.g. [87]), and many
calculations, e.g., for metallic clusters, would not be
possible without them. Working with ensembles
allows production of good algorithms to ensure
convergence in the solution of the KS equations
[181].
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