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“Of course, perhaps Lewis put it the right way...”
Agatha Christie, “The Hollow”

The role of Quantum Theory in Chemistry has almost one hundred years, and the
advances have been important. Nowadays, it is possible to do quantitative predictions
with chemical accuracy for middle size molecules and some type of calculations, especially
density functional based methodologies, are routinely done in many chemical labs. The
other very important aspect on the influence of quantum theory in chemistry is the one of
understanding. There are many chemical concepts which can be understand only through
the laws of quantum mechanics. This chapter is about understanding and not about the
other very important issue of computing with chemical accuracy.

One of the most important models to understand chemistry is the electron pair of Lewis
[1]. He put forward the model where in an atom or molecule “...each pair of electrons has
a tendency to be drawn together”. This very important model, which is at the very be-
ginning of any General Chemistry textbook, has however an important problem. It goes
again the Coulomb law. Lewis noticed it and he was further to even affirm that perhaps
“...Coulomb‘s law of inverse squares must fail at small distances”. This remarkable fact is
to our knowledge never discussed in the textbooks. At that time Lewis had no knowledge
of the development of quantum mechanics, and already in the thirties he retracted of this
statement [2]. Now, the explanation of why the electrons have a tendency to be drawn
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together even against the Coulomb‘s law, it is found in the Pauli exclusion principle and
the influence of the kinetic energy. The Pauli exclusion principle is not only the reason of
this tendency but also of the existence of the periodic table of elements. Hence, it is the
Pauli exclusion principle who makes chemistry as we know it.

Let us start with the Schrödinger equation

HΨ = EΨ (1)

Of course, the Coulomb interaction appears in the Hamiltonian operator, H , and is
often invoked for interpreting the chemical bond. However, the wavefunction, Ψ , must
be antisymmetric, i.e., must satisfy the Pauli exclusion principle, and it is this only fact
which explain the Lewis model of an electron pair. It is known that all the information
it is in the square of the wavefunction, |Ψ|2, but it is in general much too complicated
to be analyzed as such because it depends on too many variables. However, in the last
time there have been some attempts [3]. Lennard-Jones [4] proposed to look at a quantity
which should keep the chemical significance and nevertheless reducing the dimensionality.
This simpler quantity is the reduced second order density matrix

P2(x1, x2) =
N(N − 1)

2

∫
dx3...dxN |Ψ(x1, x2, x3, ...xN )|2 (2)

which depends only on three spatial coordinates, ~r, plus spin, σ, for each of the electrons of
the pair (x stands for the couple ~rσ). Hence, P2(~r1σ1, ~r2σ2) times an infinitesimal volume
element squared is interpreted as the probability to find one electron with spin σ1 in a
volume element around ~r1, and another electron with spin σ2 in a volume element around
~r2. The prefactor comes from the fact that electrons are indistinguishable. Notice the
analogy with the one–particle density ρ(x),

ρ(x) = N

∫
dx2...dxN |Ψ(x1, x2, x3, ...xN )|2 (3)

which is related to the probability to find a particle with spin σ around ~r.

It is evident that Lennard–Jones was following the track opened by Lewis, by concen-
trating on the pair of electrons. To get some insight into P2(x1, x2) it is natural to start
with the simplest antisymmetric wave function, a Slater determinant constructed by real
orbitals. In this case, one obtains

P2,det(x1, x2) =
1
2
[
ρσ1(~r1)ρσ2(~r2)− δσ1,σ2γσ1(~r1, ~r2)2

]
(4)

where ρσ is the σ-spin component of the electron density:

ρσ(~r) = γσ(~r, ~r) (5)
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and

γσ(~r1, ~r2) =
∑

φi(~r, σ)φi(~r′, σ) (6)

where the φi are the spin orbitals making the Slater determinant. To understand the
features of P2,det it is useful to consider that the φi are localized. There is no loss of
generality, as P2,det is invariant with respect to rotations among the orbitals. A further
simplification makes it particularly easy to see how P2,det behaves. Imagine that the space
can be divided into regions Ωi , such that the localized orbitals φi satisfy the following
relationship

φi(~r, σ) =
{ √

ρσ(~r) for ~r ∈ Ωi

0 for ~r /∈ Ωi
(7)

In this case

γσ(~r, ~r′) =

{ √
ρσ(~r)ρσ(~r′) for ~r, ~r′ ∈ Ωi

0 otherwise
(8)

Now, using Eq. (4) one can construct the reduced second order density matrix. For
σ1 6= σ2, P2,det is quite boring

P2,det(~r1σ1, ~r2σ2) =
1
2
ρσ1(~r1)ρσ2(~r2) (9)

Hence, the probability of finding one electron with spin α around ~r1 and another with
spin β around ~r2 is just the product of the probabilities of finding one particle in the given
positions. The probabilities are independent which means the behavior of electrons are
not correlated. However, for the case of two electrons with the same spin:

P2,det(~r1σ,~r2σ) =
{

0 for ~r, ~r′ ∈ Ωi
1
2ρσ(~r)ρσ(~r2) otherwise

(10)

the probability changes dramatically when one of ~r1, ~r2 share the same Ω or not. Imagine
exploring space with a probe electron in ~r1 . P2 is zero for a whole region ~r2 ∈ Ωi, for all
~r1 ∈ Ωi. The moment ~r1 leaves this region, all probabilities change because a new region
is defined. Thus, the electrons with spin α or β partition the space into regions Ωi. For
a closed shell system, the picture is even more simple, as localized orbitals are the same
for both spins, the regions Ωi will be the same for both spins. In such a case, each region
is occupied by a pair of electrons, one with α–spin and the other with β–spin. Moreover,
each electron with spin α or β “excludes” another electron with the same spin from that
region. This the ultimate explanation for the Lewis electron pair model. There is not a
new attractive force between a pair of electrons. It is just a repulsion between electrons
of the same spin due to Pauli‘s exclusion principle which explains the electron pair model
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of Lewis.

Let us now consider a simple example: four non–interacting fermions in a one–dimensional
box, x ∈ [0, π]. The wavefunction is a Slater determinant with two doubly occupied or-
bitals:

φk(x) =

√
2
π
sin(kx), k = 1, 2 (11)

To analyze |Ψ|2 it is sufficient to consider |Ψα(x1, x2)|2 and |Ψβ(x1, x2)|2, where the
index indicates the spin. As there are only two particles of a given spin, moving in one
dimension, it is possible to plot |Ψσ|2, as it is shown in Fig. 1 [5].

Figure 1: Plot of |Ψσ|2, σ = α, β for four independent fermions in a box

One finds two maxima independent of the spin, one electron around x ≈ 0.955 and
the other one around x ≈ 2.186 . It is easier to understand the origin of the maxima by
considering localized orbitals, ψ = 1√

2
(φ1±φ2). Both couples of orbitals are shown in Fig.

2 , and in Fig. 3 the one-particle density is shown.

Remember that the square of the wavefunction, or any of the reduced density matrices,
are independent of a unitary transformation of the orbitals. Hence, any pair of orbitals is
as good as the other. However, the chemical picture of molecular orbitals is easily under-
stood for most of the chemists. In this case, it is easier looking at the localized orbitals.
What the plot of |Ψσ|2 tell us, is that the maxima are located close to the maximum of
each orbital, and taking into account that each orbital is occupied by two electrons, one of
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a b

Figure 2: (a) Two lowest energy orbitals, φ1, φ2 for particles in a box and (b) two
localized orbitals, for four independent fermions in a box.

each spin, the two maxima show us the regions where is most probable to find an electron
pair in the sense of Lewis.

Let us now look at the one particle density, and compare it with the pair density
P2(x1σ, x2σ

′).

Figure 3: One-particle density for four no-interacting fermions in a one-dimensional
box. The dots on the abscissa show different positions in which the density has the
same value

We have to examine now the two posibilities, both electrons with the same spin or
with different spin. In Fig. 4 we have the pair density for the case of different spin

It is clear that its structure correspond to the one of the one particle density because
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Figure 4: P2det(x1, x2) for fermions in a box, for σ1 = α and σ2 = β.

the probabilities are not correlated. However, for the case of the two electrons with the
same spin the picture looks different (see Fig. 5).

Figure 5: P2det(x1, x2) for fermions in a box, for σ1 = σ2 = α.

Now, the probability of finding both electrons with the same spin around the same
point, x1 = x2 has vanished, as the consequence of the Pauli principle. The box has been
partitioned into its left and its right part. As long as one particle with one spin is in
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one part, it will impose the other electron of the same spin to be in the other half of the
box. For example, we can consider the points chosen among those marked by dots on the
abscissa on the Figure 3 showing the one-particle density. While for different spin P2 will
be the same for any pair of positions selected, this is not the case when both electrons have
the same spin. When the spin is the same, and the electrons are on the points marked on
the same half of the box, P2 will be very small. However, if one point belongs to those
on the left, the other to those of the right, P2 is as large as for electrons with different spin.

Although the reduction of dimensionality by reducing |Ψ|2 to P2 is, in general, enor-
mous, having to work in six dimensions is still difficult for human mind, and probably not
needed for the analysis of the chemical bond: we see molecules in three dimensions. A
way to further reduce dimensions has been noticed by Luken and Culberson [6] and by
Becke and Edgecombe [7]. The idea is simple: as P2(~r1σ,~r2σ) is relatively insensitive as
~r1 moves within a given region Ωi, but changes suddenly as it moves to another region
Ωj , one could concentrate on the change of P2. A simple way to look at it is to consider
a small sphere which moves together with the reference electron in r1 [8]. If the radius of
the sphere is R, the probability to find two electrons of spin σ in this small sphere is:∫

small sphere
P2(~r1σ,~r2σ)d3r2 = C(~r1)

∫
r212d

3r12 + ... (12)

where we have used the expansion:

P2(~r1σ,~r2σ) = C(~r1)r212 + ... (13)

We see immediately that as long as the sphere stays in one Ωi the probability of having
two electrons with the same spin in it is very small. When the sphere overlaps with two
different Ωi, the probability increases. How large should the sphere be. It turns out
that it is useful to choose the sphere in such a way that the probability of having two
electrons with opposite spin is the same, independently of ~r1 [11]. In other words, using
the expression of P2,det(~r1σ1, ~r2σ2) for ~r1 = ~r2, σ1 6= σ2,(

4πR3

3

)
∝ 1/ρ(~r1) (14)

where we restricted the formula to the closed shell case. Thus, we get for the quantity of
interest,

C(~r)ρ(~r)−5/3 (15)

Kohout [9] used this function as an electron localization indicator (ELI). In the electron
localization function (ELF), this function is scaled:

η(~r) =
(

1 + κ(C(~r)ρ(~r)−5/3)2
)−1

(16)

7



where the constant κ comes from the proportionality relationship of above, but has now
a well–defined value. On this way, the values of ELF ranges between zero and one. A
large value of ELF, close to one, occurs when ELI is small, and it means a region where
is probable to find an electron pair. A small value of ELF corresponds to a large value of
ELI . Coming again to our example of four independent particles in a box, one can see in
Fig. 10 both functions.

a b

Figure 6: (a) Cρ−3 for four particles in a one-dimensional box and (b) η(x) for four
particles in a one-dimensional box

It is clear that both functions are in some way the inverse of each other, but the in-
terpretation is the same, the electron tend to localize at the borders of the box.

The final form of the ELF is

η(~r) =
(

1 +
(
DP

DF

))−1

(17)

where

Df = cFρ(~r)5/3 (18)

and

DP =
1
2

∑
i

|∇φi|2 −
1
8
|∇ρ|2

ρ
(19)

the first term on the right side represents the kinetic energy density of the noninteracting
system and the second one is the von Weizsäcker kinetic energy density. This is the most
important ingredient of the ELF, and the one which allows us a qualitative understand-
ing of the relationship between the ELF and the exclusion principle of Pauli. The von
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Weizsäcker kinetic energy is the exact kinetic energy functional for a system composed of
non–interacting bosons, particles which do not follows the Pauli exclusion principle. It is
also exact for the hydrogen atom or any other one particle system, the most localized sys-
tem in a rigorous quantum mechanics sense. It is exact for the helium atom or any other
two electron system in the Hartree–Fock approximation, the best examples of an electron
pair. Hence for all those examples the term DP will be exactly zero and the value of the
ELF will be one. After helium atom the best examples of localized electron pair are surely
the most inner electrons of any other molecular or atomic system, i.e., electrons with a con-
figuration very close to 1s2, an the kinetic energy density of these pair of electron is surely
very well approximated by the von Weizsäcker term. Hence in the regions very near to a
nuclei the ELF will also have a value close to one. One can then hypothesize that the von
Weizsäcker term will be a very good approximation in all regions where there is a localized
electron pair. This is what we found in our example in Fig. 6b. Hence, the ELF appears
to be a measure of the excess of kinetic energy density due to the exclusion principle [10].
The other terms of the function can be thought as a way to map a function which goes
for minus infinity to plus infinity to a better behaved function which goes from zero to one.

The ELF was proposed by Becke and Edgecombe [7] in 1990 and very soon extensively
applied to a variety of systems ranging from atoms to inorganic and organic molecules to
solids [11] . In 1994 a topological analysis of the ELF was developed [13], which permit to
do a more quantitative analysis of the three dimensional function. From that time until
today the ELF has been extensively applied to a great amount of systems and has also
been used to quantify other chemical concepts like strength of hydrogen bond [14] and
aromaticity [15]. Beside the first review article [11, 12] there are other more recent review
articles [16] where the reader can found a variety of different applications. In the final
part of this article we will concentrate in one simple application of the ELF. Mainly we
will analyze the ELF of the series of diatomic molecules of the type E2 with E = C, Si,
Ge, Sn and Pb on their triplet and singlet lowest states.

The atoms of the group 14 present a diverse chemistry. Whereas the first member of
the series, carbon atom, is unique in the variety of bonding it forms, the other members
change also the bonding nature because of the predominance of relativistic effects, mainly
the spin–orbit coupling, in the last member of the series. For instance, the existence of a
double bond in the family of molecules of the type R2C = CR2 is something obvious for
any chemists student. However, for the rest of the series R2E = ER2 with E = Si, Ge, Sn
and Pb is by no way obvious. In fact, the most simple member of the series with R = H
does not exist. A nice application of the ELF to understand this type of bonds can be
found in Ref. [18]. Within this context it appears interesting to look at the ELF of the
homonuclear dimers E2 in both, the singlet and triplet state. It is first necessary, however,
a warning. The theoretical calculation of the electronic structure of the dimers of the
group 14 is a very difficult task. It is one of this situation where the smallest molecules
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are the most difficult ones. Starting from C2, which presents an important multideter-
minantal character of the wavefunction making hard to obtain quantitative results with
any Kohn–Sham methodology, and finishing in Pb2 where the spin orbit effects are very
important making hard to obtain quantitative results using any one component scheme.
Therefore, the present analysis it is only qualitative in an attempt to interpret the re-
sults obtained using a density constructed with Kohn Sham orbitals calculated using the
Stuttgart pseudopotential [17] for all atoms. For the heavier atoms of Ge, Sn and Pb
the small core pseudopotentials were used. The studied configurations are σ2

gσ
2
uπ

1
uπ

1
uσ

2
g ,

3Σg, for the triplets and σ2
gσ

2
uπ

2
uπ

2
u, 1Σg, for the singlet in all molecules. Note that the

configuration of the singlet state is unusual. The two σ orbitals do not contribute to the
bonding because they are a bonding antibonding pair adding nothing to the bond order.
Therefore, the state is stable only due to the existence of two bonding pi orbitals, and the
molecules could be clasified as “only π bonding”. This point has interesting consequence
in the form of the ELF as we will see below.

In Table 1 one can see the calculated values of dissociation energy, HOMO-LUMO gap,
triplet-singlet gap and bond length for the triplet and singlet states. In all molecules the
triplet state is the lowest in energy in agreement with the experimental evidence. How-
ever, as stated above, the values are only a rough estimate of the experimental dissociation
energies which are of 6.2 eV, 3.21 eV, 2.65 eV, 2.04 eV and 0.86 eV, for the dimers of C2,
Si2, Ge2, Sn2 and Pb2, respectively. The HOMO-LUMO gap are not so small in any case,
but the presence of low lying states is known. It is also interesting to observe that the
bond lengths of the singlet states are shorter than the ones of the triplet state which is the
strongest bond. Hence those molecules do not obey the simple rule of: the stronger the
bond the shorter the bond length. They do not follow the simple bond order of molecular
orbital theory, because all of them present a bond order of two in the singlet as well as in
the triplet state.

Let us look at the ELF of those molecules in Fig. 7. To look at a three dimensional
function presents some ambiguities in the way the function is shown. We have chosen
isosurfaces instead of maps of contours, and the value of the isosurface is arbitrary. How-
ever, for molecules of the second and third periods it is generally accepted that any value
between 0.7 and 0.9 is good enough to represent the regions where is most probable to
find localized electrons. For the heavier atoms where the d–electrons or f–electrons plays
an important role, the ELF values are lower and the maxima are not greater than 0.7–
0.8. Hence the isosurfaces to show the interesting regions are of around 0.3–0.5. This
point, small values because of the presence of d–electrons, was first noticed by Kohout
and Savin [19] and later on discussed by Burdett and McCornick [20] and Kohout et al
[21]. The colors are also arbitrary. We have chosen red for the isosurfaces representing
the core electrons, yellow for the bonding electron pair, blue for the lone pairs and green
for the “not obvious” bonding electrons in the singlet states. For C2 and Si2 there are no
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Table 1: Dissociation energy, HOMO-LUMO gap, triplet-single gap and bond length
for the triplet and singlet states of the studied molecules.a

Dimer multiplicity De Gap H−L Gap T−S Bond Length

C2
triplet 5.33 2.55

0.62
1.372

singlet 4.71 1.87 1.258

Si2
triplet 2.96 1.91

1.10
2.304

singlet 1.86 0.77 2.068

Ge2
triplet 2.87 1.92

1.22
2.406

singlet 1.65 0.60 2.176

Sn2
triplet 2.40 1.73

1.22
2.781

singlet 1.18 0.42 2.543

Pb2
triplet 2.21 1.72

1.29
2.912

singlet 0.93 0.33 2.678
a All energy values in eV and bond lengths in Amstrong

core basins because of the use of pseudopotential. Let start analyzing the triplet state.
There is no evidence of a triple bond because of the existence of a lone pair behind the
atoms (blue regions). The form of the isosurface for the bonding electrons is similar in all
studied molecules, but it is getting smaller when one goes down the periodic table. For
Pb2 the isosurface of the basin representing the bond region is so small that it does not
have the characteristics of the basins of the other molecules, and the form of the isosurface
is more similar to the ones of the singlet that to the other molecules in a triplet state.
The comparison from Ge2 to Pb2 shows clearly a change in the topology of the basin. It
is interesting to note that for the lighter atoms the HOMO orbital is clearly the double
occupied σg, whereas for Pb2 it is the degenerate pair πu, which are the HOMO in all the
singlet states. This could explain the similarity in the form of the localisation domains.
Remember that in the singlet state there is no σ bond. It is only a π bond with a nodal
surface through the line connecting both atoms. The basins are cylindrical in shape and
of other nature. They represent a pure π bond. One can speculate then that in the singlet
state the bond length is shorter but weaker than in the triplet state because it does not
have any σ bond.
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C2

0.80 0.84

Si2
0.80 0.85

Ge2

0.50 0.70

Sn2

0.50 0.66

Pb2

0.50 0.55

Figure 7: ELF isosurfaces for triplet (left) and singlet (right) of the different
molecules. The values of the isosurfaces are indicated below each picture.
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