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ABSTRACT
In Paper I [P. Pernot and A. Savin, J. Chem. Phys. 152, 164108 (2020)], we introduced the systematic improvement probability as a tool to
assess the level of improvement on absolute errors to be expected when switching between two computational chemistry methods. We also
developed two indicators based on robust statistics to address the uncertainty of ranking in computational chemistry benchmarks: Pinv, the
inversion probability between two values of a statistic, and Pr , the ranking probability matrix. In this second part, these indicators are applied
to nine data sets extracted from the recent benchmarking literature. We also illustrate how the correlation between the error sets might contain
useful information on the benchmark dataset quality, notably when experimental data are used as reference.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006204., s

I. INTRODUCTION

In Paper I,1 we considered the uncertainty sources impacting
the values of benchmarking statistics (scores), and we presented
tools to estimate the uncertainty on statistics and to compare them.
We briefly summarize them here.

First, one compares system-by-system the absolute errors of
two methods Mi and Mj. The systematic improvement probabil-
ity (SIPi ,j) is defined as the fraction of systems for which Mi has
smaller absolute errors than Mj. A SIP matrix can be built for a
set of methods, enabling to detect the methods with the best per-
formances in terms of absolute errors. A mean gain (MGi ,j; a neg-
ative value) is estimated, providing the expected decrease in abso-
lute errors when using Mi instead of Mj. The mean loss (MLi ,j) is
defined accordingly. The MUE difference between both methods
can be expressed as a combination of SIP, MG, and ML, illustrating
the balance between gains and losses when switching between two
methods.

Then, one compares statistics, taking into account their uncer-
tainty and correlation. For comparison of pairs of values, one uses
Pinv, which gives the probability that the sign of the observed dif-
ference is the opposite of the true one, considering the use of lim-
ited size datasets. We have shown in Paper I1 that Pinv ≃ pg/2,
where pg is the p-value for the test of the equality of the two
values. This is tested in the first example below, as well as the
comparison to a p-value of the test ignoring correlations, punc.
To compare the statistics for a set of several methods, we use
the ranking probability matrix Pr , which gives the probability for
each method to have any rank, considering the limited size of the
data set.

To avoid hypotheses on the errors distributions, bootstrap-
based sampling methods were used for the estimation of statis-
tics uncertainty, p-values, Pinv and Pr . The algorithms are detailed
in Paper I,1 and some specific choices have been made regarding
the statistics: based on the recommendations of Wilcox and Erceg-
Hurn,2 quantiles are estimated by the Harrell and Davis method,3
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and correlation coefficients are estimated by the Spearman method
(rank correlation), unless stated otherwise.

In the following, these methods are illustrated and validated
on nine datasets taken from the recent benchmarking literature and
covering a wide range of dataset sizes and properties. In Sec. II,
the datasets are introduced and treated sequentially with a com-
mon framework. A reader not interested in the detailed treatment
of the example datasets can skip directly to Sec. III, where the major
findings are reported. This is a global discussion covering the topics
of both papers.

II. APPLICATIONS
Nine datasets have been extracted from the recent benchmark-

ing literature. Our selection is mostly based on the coverage of a
representative range of properties, dataset sizes (between a few tens
to a few thousands), and reference type (experimental or calcu-
lated) (Table I). Besides such selection criteria, a major quality of
the datasets is their availability, and their authors have to be praised
for that.

Through these various examples, our intent is not to validate
or invalidate the original studies, but only to illustrate the properties
and interest of our proposed tools.

The cases are treated with a common framework: an intro-
duction; the analysis of the correlation matrices for error sets and
statistics (MUE and Q95); the analysis of the MUE and Q95 statistics
and their inversion probabilities; the analysis of the SIP statistics;
and finally, the ranking probability matrices.

A. PER2018
We consider here the intensive atomization energies13 esti-

mated with nine DFAs on the G3/99 dataset14 and extracted from
a recent article by Pernot and Savin.4,15 This medium-sized dataset
(N = 222) presents several non-normal error distributions and was
used to illustrate the interest for benchmarks of using Q95 as a
complement to the MUE and to illustrate our former definition of
Pinv. Here, we focus on the correlations and their impact on the
comparison of statistics.

1. Correlations
The correlation matrices between the error sets and their

statistics are represented in Fig. 1, along with histograms of their

non-diagonal elements. The error sets are positively correlated,
with a wide distribution of correlation coefficients, except for pairs
involving BH&HLYP, which presents negative correlations with
four other methods. When considering the scores, all correlations
are positive or null. Globally, the correlations are weaker for Q95
than for the MUE, except for a few pairs. The maximum of the his-
tograms shifts from 0.6 for MUE to 0 for Q95, but large correlation
values are, nevertheless, still observed for Q95. These observations
confirm the main trends from the numerical study of correlation
transfer in Paper I.1

2. Statistics
The statistics are reported in Table II. Note that due to the use

of a different quantile estimation algorithm, the values of Q95 have
changed slightly from the values reported in the original article.4

There is a group of three methods (B97-1, CAM-B3LYP, and
PBE0) with small MUE values. Considering the pg values, one can-
not reject the hypothesis that the observed differences are due to the
limited size of the datasets. Note that the same conclusion would
have been reached when ignoring correlation (punc), as the neglect of
correlation increases the p-values, but no other one reaches the 0.05
threshold. However, the punc value for LC-ωPBE reaches 0.03, not
far from the threshold. Consistently, the MUE inversion probabil-
ity Pinv computed in the reference article15 included LC-ωPBE in the
group of methods with a sizable risk of inversion. As demonstrated
in Eq. (31) of Paper I,1 the revised version of Pinv accounting for cor-
relations is now practically equal to pg/2, which rejects LC-ωPBE as a
contender for the head group. When picking B97-1 instead of CAM-
B3LYP based on the MUE, there is a 29% chance to be wrong, i.e.,
that the MUE of CAM-B3LYP is indeed smaller than B97-1 due to
the dataset size. This risk falls to 12% for PBE0.

The situation is different for Q95, where the neglect of corre-
lation would lead to the conclusion that PBE0 [3.3(5) kcal/mol] is
not significantly distinct from B97-1 [2.7(4) kcal/mol; punc = 0.33],
whereas the correct value is given by pg = 0.02. In this example, Q95
can help us to rank the three best methods, for which the MUE is
not discriminant. This is linked to the presence of different tails in
the absolute errors distributions [cf. Fig. 3(a)].

This example illustrates and confirms the relations between
punc, pg , and Pinv expressed in Paper I,1 Sec. II D 3. In the following
examples, only Pinv is reported to alleviate the results tables.

TABLE I. Case studies: N is the number of systems in the dataset and K is the number of compared methods.1 Nature of the
reference data: experimental (expt.) or calculated (cal.).

Case Property N K Reference1 Source

PER2018 Intensive atomization energies 222 9 Expt. 4
BOR2019 Bandgaps 471 15 Expt. 5
NAR2019 Enthalpies of formation 469 4 Cal. 6
CAL2019 London dispersion corrections 41 10 × 3 Cal. 7
JEN2018 Non-covalent interaction energies 66 6 Cal. 8
DAS2019 Dielectric constants 23 6 Expt. 9
THA2015 Polarizability 135 7 Expt. 10
WU2015 Polarizability 145 7 Cal. 11
ZAS2019 Effective atomization energies 6211 3 Cal. 12
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FIG. 1. Case PER2018—correlations: (top) rank correlation matrices between error sets, MUE, and Q95, and (bottom) histogram of non-diagonal elements of the corre-
sponding correlation matrices. The methods are ordered by a clustering of the errors correlation matrix by the complete linkage method16 implemented in the R function
hclust.17

3. SIP analysis

The SIP analysis brings another view on the head trio (B97-1,
CAM-B3LYP and PBE0), as the method with the highest MSIP is
CAM-B3LYP. One can see on the SIP matrix in Fig. 2 that indeed,

the row for CAM-B3LYP is fully reddish, when those for B97-1 and
PBE0 present also blue and white patches. We note also that B97-1
provides a nearly full improvement over BH&HLYP [SIP = 0.95(2)].

The ECDF of the difference of absolute errors for CAM-
B3LYP and B97-1 helps to understand the contradiction between

TABLE II. Case PER2018—absolute error statistics: p-values, inversion probabilities and SIP statistics for comparison with the DFA of smallest MUE (B97-1). The best scores
and the values for which pg > 0.05 are in boldface. The SIP, MG and ML columns correspond to the B97-1 row of the corresponding matrices. Uncertainty is presented in
parenthesis notation.

MUE Q95 MG ML
Methods (kcal/mol) punc pg Pinv (kcal/mol) punc pg Pinv MSIP SIP (kcal/mol) (kcal/mol)

B3LYP 1.18(9) 0.00 0.00 0.00 4.5(5) 0.00 0.00 0.00 0.57(3) 0.53(3) −1.05(10) 0.48(5)
B97-1 0.85(5) . . . . . . . . . 2.7(4) . . . . . . . . . 0.61(3) . . . . . . . . .
BH&HLYP 4.8(2) 0.00 0.00 0.00 11.7(6) 0.00 0.00 0.00 0.06(1) 0.95(2) −4.3(2) 0.8(2)
BLYP 1.6(1) 0.00 0.00 0.00 5.3(6) 0.00 0.00 0.00 0.43(3) 0.77(3) −1.2(1) 0.6(1)
CAM-B3LYP 0.90(9) 0.64 0.57 0.29 4.1(4) 0.00 0.00 0.00 0.74(3) 0.33(3) −1.3(2) 0.59(4)
LC-ωPBE 1.09(10) 0.03 0.00 0.00 4.3(5) 0.01 0.00 0.00 0.65(3) 0.43(3) −1.1(1) 0.44(3)
PBE 2.8(2) 0.00 0.00 0.00 8.1(8) 0.00 0.00 0.00 0.30(2) 0.81(3) −2.6(2) 0.8(1)
PBE0 0.92(7) 0.44 0.24 0.12 3.3(5) 0.33 0.02 0.01 0.66(3) 0.50(3) −0.74(7) 0.61(4)
PW86PBE 1.6(1) 0.00 0.00 0.00 6.1(9) 0.00 0.00 0.00 0.49(3) 0.59(3) −1.6(2) 0.43(6)
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FIG. 2. Case PER2018: SIP matrix. A line with a majority of red patches signals a
method with good SIP performances. The SIP value is color-coded, and the area
of a disk is proportional to the corresponding value. The methods are ordered by
decreasing the value of MSIP.

the MUE and MSIP ranks [Fig. 3(b)]. The MUE difference for
this pair is statistically not significant (pg = 0.57), the SIP value
for CAM-B3LYP over B97-1 is 0.67 (1–0.33), the mean gain is
−0.6 kcal/mol, and the mean loss is 1.3 kcal/mol, due to the heavy
tail in the CAM-B3LYP error distribution (these numbers corre-
spond to the reciprocal comparison of the one presented in Table II).
So, by switching from B97-1 to CAM-B3LYP, one would have to
accept a 33% risk to degrade the intensive atomization energies
by 1.3 kcal/mol in average and up to 4 kcal/mol, but one would

improve the estimations in 67% of the cases by 0.6 kcal/mol in
average. The same comparison between CAM-B3LYP and PBE0
[Fig. 3(c)] shows that there is no strong basis to favor one of these
methods.

4. Ranking
The ranking probability matrices (Fig. 4) confirm the previ-

ous analysis. The group of three methods (B97-1, CAM-B3LYP, and
PBE0) at the top of the MUE ranking presents a blurred image (no
clear diagonal), whereas the first Q95 rank of B97-1 is not ambigu-
ous. As expected, the MSIP ranking favors solidly CAM-B3LYP.
Globally, B97-1 should be preferred to minimize the risk of large
errors, where CAM-B3LYP would provide, overall, smaller absolute
errors.

B. BOR2019
Bandgap estimations for a set of 471 systems18 by 15 DFAs

were extracted from the supplementary material of a recent article by
Borlido et al.5 For a full description of the dataset, we refer the reader
to the original article.

The reference authors reported and analyzed relative errors,
but as there is a large range of bandgaps in this set, this causes
a dispersion of relative errors over six orders of magnitude and
an unsuitable distortion of the errors distributions, with large rel-
ative errors for small bandgaps and small relative errors for large
bandgaps. It is true that for some methods (e.g., LDA), the errors
increase with the value of the bandgap, but this is mostly due to
a systematic deviation (trend), not to an increase in the disper-
sion of the errors. In consequence, we chose to treat here the raw
errors.

Borlido et al.5 discuss the uncertainties on the reference band
gaps in their dataset and estimate it to a few tenths of eV. Without
more detailed information, we assume that this represents a uniform
uncertainty for the dataset.

FIG. 3. Case PER2018—absolute errors statistics: (a) ECDF and statistics of absolute errors. The MUE values are depicted by vertical dotted lines, and the Q95 values are
depicted by vertical dashed lines; [(b) and (c)] ECDF and statistics of the difference of absolute errors. The green- and red-shaded bands represent 95% confidence intervals
(CIs) for the reported statistics (SIP: systematic improvement probability; MG: mean gain; ML: mean loss, and ΔMUE : MUE difference). The orange bar depicts the chemical
accuracy (1 kcal/mol). It is a visual aid to evaluate the pertinence of the observed differences.
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FIG. 4. Case PER2018: ranking probability matrix for (a) MUE, (b) Q95, and (c) MSIP.

1. Correlations
One sees in Fig. 5 that, across the spectrum of methods, all error

sets’ correlation coefficients are positive and can reach very large val-
ues, up to 0.998. Only about 30% of the dataset pairs have correlation
coefficients below 0.6, involving notably PBE0_mix and HSE_mix.
If the error sets are dominated by method errors (i.e., there are no
large reference data errors, nor outliers), the correlation matrix can
be used to infer a clustering of methods, describing the relationships
of the methods for the current property/dataset. Error sets with large
correlation coefficients are related by a linear or monotonous trans-
formation, and the corresponding methods are clustered together.
The presence of well delimited clusters indicates that the error
sets are not dominated by reference data errors. From the corre-
lation matrix, the clusters would be (HLE16, HLE16 + SOC), (BJ,

FIG. 5. Case BOR2019—rank correlation between error sets. The methods
are ordered by a clustering algorithm using the complete linkage method16

implemented in the R function hclust.17

SCAN, LDA, PBE, PBE_SOL, LDA + SOC, PBE + SOC), (HSE_mix,
PBE0_mix) and (HSE06,PBE0). mBJ and HSE14 stay alone. This
clustering seems to produce blocks that correspond to physical intu-
ition: LDA, PBE, SCAN, . . . have all an electron-gas background.
This is relaxed for HLE16 that differs from HLE16 + SOC only by
taking into account spin–orbit coupling. These methods are further
decoupled from hybrid methods (PBE0 and HSE06).

2. Statistics
The values are reported in Table III. Although mBJ presents

the smallest MUE [0.50(2) eV], the value for HSE06 is very close
[0.53(5) eV] and one cannot exclude that the difference is due
to a mere sampling effect (pg ≃ 2Pinv = 0.16). Besides, HSE06 is
the only method with a notably non-zero Pinv value with mBJ for
the MUE. mBJ is also the method with the smallest Q95, and no
other method is able to challenge this rank. mBJ has the largest
MSIP, but its value is moderate (0.7), indicating that mBJ does not
provide a full systematic improvement over (some of) the other
methods.

3. SIP analysis
The SIP values for mBJ lie between 0.49 and 0.86. The lat-

ter value is against LDA + SOC, which means that for 14% of the
systems, LDA + SOC achieves smaller absolute errors than mBJ,
despite its poor scores. Interestingly, small values, close to 0.5, are
also observed against HLS16, HLSE16 + SOC, and HSE06, indicat-
ing a notable risk of performance loss for individual systems when
switching from one of these methods to mBJ.

As seen in Paper I1 (Fig. 3), when going from LDA to mBJ, one
has about 15% chance to perform better using LDA, and the mean
gain more than doubles the mean loss. By contrast, the compari-
son of mBJ to HSE06 [Fig. 6(b)] is an example of undecidability: the
ΔMUE is not significantly different from zero, and one has as much to
lose as to gain by switching between both methods.

The SIP matrix (Fig. 7) provides a convenient summary of
these observations. The mBJ line is mostly reddish with white
spots indicating neutral comparisons. In contrast, the LDA + SOC
line is fully blueish, indicating that it is dominated by all other
methods.
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TABLE III. Case BOR2019—absolute error statistics: inversion probabilities and SIP statistics for comparison with the DFA of smallest MUE (mBJ). The best scores and the
values for which (pg = 2Pinv ) > 0.05 are in boldface.

Methods MUE (eV) Pinv Q95 (eV) Pinv MSIP SIP MG (eV) ML (eV)

LDA 1.17(5) 0.00 3.2(2) 0.00 0.25(2) 0.84(2) −0.87(4) 0.41(4)
LDA + SOC 1.24(5) 0.00 3.3(2) 0.00 0.16(2) 0.86(2) −0.92(4) 0.38(4)
PBE 1.05(5) 0.00 3.0(2) 0.00 0.41(2) 0.82(2) −0.76(4) 0.40(3)
PBE + SOC 1.12(5) 0.00 3.0(2) 0.00 0.30(2) 0.83(2) −0.82(4) 0.37(4)
PBE_SOL 1.12(5) 0.00 3.1(2) 0.00 0.30(2) 0.83(2) −0.82(4) 0.42(4)
HLE16 0.60(4) 0.00 1.9(2) 0.00 0.66(2) 0.49(2) −0.44(4) 0.23(2)
HLE16 + SOC 0.61(4) 0.00 2.0(2) 0.00 0.65(2) 0.49(2) −0.48(4) 0.25(2)
BJ 0.79(4) 0.00 2.3(2) 0.00 0.55(2) 0.75(2) −0.49(3) 0.31(2)
mBJ 0.50(2) . . . 1.41(7) . . . 0.69(2) . . . . . . . . .
SCAN 0.81(4) 0.00 2.4(2) 0.00 0.55(2) 0.74(2) −0.53(3) 0.30(2)
HSE06 0.53(3) 0.09 1.7(2) 0.00 0.68(2) 0.52(2) −0.28(3) 0.25(2)
HSE14 0.57(3) 0.00 1.8(1) 0.00 0.63(2) 0.56(2) −0.38(2) 0.33(2)
HSE06_mix 0.64(3) 0.00 2.0(1) 0.00 0.60(2) 0.58(2) −0.51(3) 0.36(3)
PBE0 0.78(3) 0.00 1.8(1) 0.00 0.44(2) 0.72(2) −0.57(2) 0.46(4)
PBE0_mix 0.82(4) 0.00 2.4(2) 0.00 0.47(2) 0.66(2) −0.67(4) 0.37(3)

4. Ranking
Ranking probability matrices for the MUE, Q95 and MSIP are

presented in Figs. 8(a)–8(c). They illustrate the previous results and
show that ranking by MUE beyond the second place becomes uncer-
tain. This is even more notable for Q95. The MSIP ranking selects the
same group of five methods as the MUE ranking, with some inver-
sions. At the opposite, an end-group of five methods is rather well
ascertained for all three statistics.

These matrices are a convenient tool to visualize the impact of
dataset size on the ranking quality. We estimated them for reduced
error sets (N = 235 and N = 100), sampled randomly from the
original one. The impact is clearly visible in Figs. 8(d)–8(i), as the
diagonal contributions get weaker when N decreases. For the MUE,
the block of ranks 1 and 2 is quite robust, but the situation dete-
riorates for the upper ranks. For Q95, the first place of mBJ is very
stable, but the upper ranks become very uncertain, up to the last

ranks for N = 100. As for the MUE, the MSIP ranking suffers
from the reduced datasets, but a head group of five methods is well
preserved.

C. NAR2019
The dataset contains the calculated enthalpies of formation by

G4MP2 for 469 molecules having experimental values with small
uncertainty (Pedley test set).6 The G4MP2 values are compared with
those of B3LYP, M06–2X, and ωB97X-D.

1. Correlations
The most remarkable feature of the correlation matrices in

Fig. 9 is the decorrelation of G4MP2 errors from the other error
sets. For the MUE and Q95, weak positive correlations appear, more
notably for Q95.

FIG. 6. Case BOR2019—absolute errors
statistics: (a) ECDF of the absolute
errors; (b) ECDF of the difference of
absolute errors for mBJ and HSE06.
See Fig. 3 for details. The orange band
depicts a reasonable level of uncertainty
in the dataset (0.2 eV).

J. Chem. Phys. 152, 164109 (2020); doi: 10.1063/5.0006204 152, 164109-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Case BOR2019—SIP matrix.

2. Statistics
The statistics reported in Table IV show the supremacy of

G4MP2 over the three DFAs for all statistics. Narayanan et al.6

claim an “accuracy”19 (MUE) of 0.79 kcal/mol with G4MP2. How-
ever, a look at the absolute errors CDFs [Fig. 10(a)] shows that for
G4MP2, there is still a probability of about 20% that the absolute
errors exceed 1 kcal/mol and 5% to exceed 2.2 kcal/mol.

3. SIP analysis
G4MP2 presents a high degree of systematic improvement over

the three DFAs (MSIP = 0.81). Nonetheless, there is about 27% prob-
ability (1–0.73) that ωB97X-D performs better, but with a rather
small value of ML (0.62 kcal/mol), when compared to the chem-
ical accuracy [Fig. 10(d)]. In contrast, the mean gain when using
G4MP2 instead of ωB97X-D is about −1.7 kcal/mol for 73% of the
systems. The advantage of G4MP2 over B3LYP is more spectacular
[Fig. 10(c)].

D. CAL2019
The impact of an atomic-charge dependent London disper-

sion correction (D4 model) has been evaluated by Caldeweyher
et al.7 on a large series of datasets. From those, we selected one of
the largest ones, i.e., the reference energies for the MOR41 transi-
tion metal reaction benchmark set,20 available as Tables 14–18 in
the supplementary material of the reference article.21 The reference
data are calculated values, with a priori no significant numerical
uncertainty. The London dispersion corrections have been tested
on a series of 10 DFAs. Note that the nomenclature used here for
the corrections is the one provided in the supplementary material,
table, which differs somewhat from the one used in the reference
article.

It is important to note that we picked here for illustration a
single dataset among the dozen used in the original study,7 and

that our conclusions for MOR41 are not generalizable to the other
datasets.

1. Statistics
The results are reported in Table V, where DFT-D3 has been

taken as reference throughout for Pinv estimation. The aim here
is to check if DFT-D4 brings significant differences. It is notable
that with a set of size 41, the sampling uncertainty is rather large
for both statistics (typically on the second or first digit). Never-
theless, significant MUE improvements are observed when passing
from DFT-D3 to DFT-D4, except for revPBE and PW6B95. In the
latter case, the better MUE of the D3 calculations, noted by the ref-
erence authors, might be due to a random effect of dataset selection.
Based on Q95 the improvements due to D4 are not significant, except
for DOD-PBE, DSD-PBE, and RPBE. So, for most of the studied
DFAs, DFT-D4 improves the MUE, but does not reduce the Q95
values for the MOR41 dataset. Note that comparisons of Q95 val-
ues have to be performed with care, considering the small size of the
dataset.

2. SIP analysis
Let us consider several examples with the SIP approach:

● PBE0-Dn. Inspection of Fig. 11(a) shows that the 95% con-
fidence interval (CI) for the SIP value of 0.61 for PBE0-
D4-ATM over PBE0-D3 does not exclude the neutral value
(0.5), with a tiny advantage of the mean gain over the mean
loss. One can note also that, despite the large uncertainty
on the MUE values 2.3(3) and 2.6(4), the small difference
ΔMUE = 0.3 between these two methods is significantly dif-
ferent from 0 (its 95% confidence interval excludes 0), an
effect of the strong positive correlation between the error
sets (0.98) as discussed in Paper I.1

● PW6B95-Dn. This case is an inversion of the previous one,
where the confidence interval on the SIP value of nearly 0.4
(disadvantaging D4) does not exclude the neutral value, and
the CI on the MUE difference ΔMUE does not exclude 0. One
cannot firmly conclude that the D3 version performs better
than the D4 ones for this DFA.

● RPBE-Dn. For this case, one has a rare instance where
D4 improves almost systematically over D3, with a SIP of
0.95(3), and a mean gain overwhelming the mean loss.

Except for RPBE-Dn, where the SIP value of D4 over D3 is about
0.95 and DOD-PBE (SIP = 0.83), all the estimated SIP values lie near
or below 0.75, down to 0.45, meaning that there is no systematic
improvement when passing from D3 to D4 for this dataset. In sev-
eral cases, the uncertainty due to the limited set size does not allow
to conclude clearly.

3. Ranking
Considering that both DFT-D4 options are mostly indis-

cernible over the MOR41 dataset, we built global ranking probability
matrices for the DFT-D3 and DFT-D4-ATM data. The results are
reported in Fig. 12 (top). Although the rankings of the Dn options
for each DFA are mostly unambiguous, a global ranking is clearly
very uncertain. Based on the MUE, DOD-PBE-D4-ATM and PBE0-
D4-ATM would share the leading places. Beyond that, the situation
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FIG. 8. Case BOR2019: ranking probability matrices for the full dataset, N = 471 [(a)–(c)], and for random reduced sets N = 235 [(d)–(f)] and N = 100 [(g)–(i)].

FIG. 9. Case NAR2019—rank correlation matrices: (a) errors; (b) MUE; and (c) Q95.
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TABLE IV. Case NAR2019—absolute error statistics: inversion probabilities and SIP statistics for comparison with the DFA
of smallest MUE (G4MP2). The best scores are in boldface.

MUE Q95 MG ML
Methods (kcal/mol) Pinv (kcal/mol) Pinv MSIP SIP (kcal/mol) (kcal/mol)

G4MP2 0.79(3) . . . 2.21(9) . . . 0.81(2) . . . . . . . . .
B3LYP 4.0(2) 0.0 9.3(6) 0.0 0.22(2) 0.89(1) −3.7(2) 0.52(7)
M06–2X 2.71(10) 0.0 6.1(5) 0.0 0.37(2) 0.83(2) −2.5(1) 0.82(7)
ωB97X-D 1.85(9) 0.0 5.2(4) 0.0 0.59(2) 0.73(2) −1.7(1) 0.62(5)

is utterly scrambled, the only clear point being the last ranks for
M06-L-D3 and RPBE-D3. The picture based on Q95 is even less well
defined, with no clear leading method within a head group of five.
The MSIP ranking is akin to the MUE ranking.

If one restricts the methods to DFT-D4-ATM (Fig. 12, bottom),
the situation is slightly better defined for the leading and tailing
places for the three scores, but remains very undecidable in inter-
mediate ranks. This illustrates how, for a given dataset, the uncer-
tainty in ranking is also affected by the number of methods to be
ranked.

E. JEN2018

This dataset contains non-covalent interaction energies esti-
mated by M06-L with six different basis sets for 66 systems in the
S66 dataset.22,23 This is a part of the results reported in Table 8 of
a recent article by Jensen8 and available as supplementary material
to this article. This dataset was used by Jensen to study the impact of
error cancellations when using standard or optimized medium-sized
basis sets. Six basis sets are considered (pop2 = 6-31G(d,p), pop3 = 6-
311G(2df,2pd), pcseg-1, pcseg-4, pop2-opt, and pcseg1-opt), where

FIG. 10. Case NAR2019: (a) ECDF of
the absolute errors; (b) SIP matrix; and
[(c) and (d)] ECDF of the difference of
absolute errors of B3LYP and ωB97X-
D with respect to G4MP2 (see Fig. 3 for
details).
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TABLE V. Case CAL2019—absolute error statistics: inversion probabilities are calculated for comparison with DFT-D3, for each DFT. The SIP statistics are calculated for
comparison with the smallest MUE within each DFT. The best scores and the values for which pg > 0.05 are in boldface.

Methods MUE (kcal/mol) Pinv Q95 (kcal/mol) Pinv MSIP SIP MG (kcal/mol) ML (kcal/mol)

DOD-PBE-D4-ATM 2.1(4) 0.00 7(2) 0.00 0.63(6) . . . . . . . . .
DOD-PBE-D4-MBD 2.1(4) 0.00 8(2) 0.00 0.65(6) 0.44(8) −0.28(4) 0.24(5)
DOD-PBE-D3 3.5(4) . . . 10(2) . . . 0.13(4) 0.83(6) −1.8(3) 0.8(2)
DSD-PBE-D4-ATM 2.9(5) 0.00 11(3) 0.00 0.35(4) . . . . . . . . .
DSD-PBE-D4-MBD 2.9(5) 0.00 11(3) 0.00 0.35(4) 0 0 0
DSD-PBE-D3 3.7(5) . . . 12(2) . . . 0.29(6) 0.71(7) −1.5(2) 0.7(1)
B3LYP-D4-ATM 4.2(5) 0.00 11(3) 0.07 0.56(6) 0.41(8) −0.22(4) 0.21(3)
B3LYP-D4-MBD 4.2(5) 0.00 11(3) 0.11 0.56(6) . . . . . . . . .
B3LYP-D3 4.8(6) . . . 13(3) . . . 0.26(6) 0.71(7) −1.1(2) 0.8(2)
PBE0-D4-ATM 2.3(3) 0.01 8(1) 0.08 0.30(4) . . . . . . . . .
PBE0-D4-MBD 2.3(3) 0.01 8(1) 0.08 0.30(5) 0 0 0
PBE0-D3 2.6(4) . . . 8(1) . . . 0.29(6) 0.61(8) −0.7(1) 0.4(1)
PW6B95-D4-ATM 3.2(4) 0.02 7.9(9) 0.30 0.35(6) 0.56(8) −1.6(2) 1.0(2)
PW6B95-D4-MBD 3.0(4) 0.08 7.8(8) 0.31 0.48(6) 0.54(8) −1.3(2) 1.0(2)
PW6B95-D3 2.7(4) . . . 7.4(9) . . . 0.55(6) . . . . . . . . .

CAM-B3LYP-D4-ATM 3.7(4) 0.00 9(1) 0.04 0.38(4) . . . . . . . . .
CAM-B3LYP-D4-MBD 3.7(4) 0.00 9(1) 0.04 0.38(4) 0 0 0
CAM-B3LYP-D3 4.3(4) . . . 10(1) . . . 0.20(5) 0.76(7) −0.8(1) 0.5(1)
revPBE-D4-ATM 3.3(5) 0.11 12(2) 0.33 0.43(6) 0.54(8) −0.27(6) 0.28(6)
revPBE-D4-MBD 3.3(6) 0.08 12(2) 0.39 0.54(7) . . . . . . . . .
revPBE-D3 3.8(6) . . . 12(1) . . . 0.46(7) 0.54(8) −2.0(4) 1.3(3)
M06L-D4-ATM 5.1(6) 0.00 13(1) 0.08 0.35(4) . . . . . . . . .
M06L-D4-MBD 5.1(6) 0.00 13(1) 0.08 0.35(4) 0 0 0
M06L-D3 5.5(6) . . . 14(1) . . . 0.22(5) 0.71(7) −0.7(1) 0.5(2)
PBE-D4-ATM 3.5(5) 0.00 12(2) 0.34 0.45(6) 0.51(8) −0.20(5) 0.16(2)
PBE-D4-MBD 3.4(5) 0.00 12(2) 0.48 0.60(6) . . . . . . . . .
PBE-D3 3.9(5) . . . 12(2) . . . 0.30(6) 0.68(7) −1.0(1) 0.5(2)
RPBE-D4-ATM 3.4(6) 0.00 12(2) 0.00 0.48(2) . . . . . . . . .
RPBE-D4-MBD 3.4(6) 0.00 12(2) 0.00 0.48(2) 0 0 0
RPBE-D3 8.3(9) . . . 20(5) . . . 0.05(3) 0.95(3) −5.3(7) 2(1)

FIG. 11. Case CAL2019—selected SIP plots. The orange band depicts the chemical accuracy (1 kcal/mol).
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FIG. 12. Case CAL2019: ranking probability matrices for [(a)–(c)] DFT-D3 and DFT-D4-ATM methods and [(d)–(f)] DFT-D4-ATM methods only.

the “-opt” ones have optimized contraction coefficients with respect
to the reference data.

1. Correlations
The error sets of the “-opt” methods are practically uncorre-

lated to the other sets [Fig. 13(a)], and in the remaining methods,
pcseg4 errors are anti-correlated with the other ones. A striking fea-
ture of this dataset is that this negative correlation persists for the
MUE, contradicting the trends observed in Appendix B of Paper I.1

Otherwise, the correlations globally weaken for Q95, except for the
pop2/pop3 and pcseg1/pcseg1-opt cases, for which the correlation is
stronger as the one between the error sets.

2. Statistics
The statistics in Table VI show the strong impact of basis-

set optimization, and both optimized basis sets provide comparable
results for the MUE and Q95. All statistics show that the ranking
between both “-opt” methods is not strict.

3. SIP analysis
They both also stand out by their MSIP, with a slight advantage

for pcseg1-opt. Once again, the importance of error cancellations
stands out through the medium values of the SIP of pcseg1-opt over
the other cases. The strongest improvement is 0.9 over pcseg4, and

FIG. 13. Case JEN2018—rank correlation matrices: (a) errors; (b) MUE; and (c) Q95.
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TABLE VI. Case JEN2018—absolute error statistics: inversion probabilities and SIP statistics for comparison with the method
of smallest MUE (pcseg1-opt). The best scores and the values for which (pg = 2Pinv ) > 0.05 are in boldface.

MUE Q95 MG ML
Methods (kJ/mol) Pinv (kcal/mol) Pinv MSIP SIP (kJ/mol) (kJ/mol)

pop2 2.9(3) 0.00 7.2(7) 0.00 0.35(5) 0.77(5) −2.9(3) 0.8(2)
pop3 2.4(3) 0.00 6.4(7) 0.00 0.47(5) 0.74(5) −2.3(3) 0.8(1)
pcseg1 2.5(2) 0.00 5.6(4) 0.00 0.42(5) 0.76(5) −2.3(2) 0.9(2)
pcseg4 2.5(1) 0.00 4.8(4) 0.00 0.33(5) 0.89(4) −1.8(1) 0.6(2)
pop2-opt 1.06(10) 0.05 2.6(2) 0.24 0.67(5) 0.62(6) −0.66(8) 0.65(9)
pcseg1-opt 0.90(9) . . . 2.5(3) . . . 0.76(5) . . . . . . . . .

the smallest is 0.6 over pop2-opt. The plots in Fig. 14 illustrate these
features. The SIP matrix shows clearly that the optimized basis sets
provide a partial improvement and a slight advantage of pcseg1-opt
over pop2-opt. The major gain when going from pop2 to pop2-opt is
visible in Fig. 14(c) where the medium SIP (∼0.7) is compensated by
the very small mean loss (0.6 kJ/mol). In contrast, Fig. 14(d) shows
that the improvement of pcseg1-opt over pop2-opt is marginal, with
SIP values close to the neutral value (0.5) and symmetrical MG and
ML values.

4. Ranking
The leading position of the “-opt” methods is solid and con-

firmed by our three scores (Fig. 15).

F. DAS2019
A set of 24 dielectric constants for 3D metal oxides has been

reported by Das et al.9 in their work (Table 3). One of the exper-
imental values being unknown, the dataset is limited to 23 values.

FIG. 14. Case JEN2018: (a) ECDF of
the absolute errors; (b) SIP matrix; and
[(c) and (d)] ECDF of the difference of
absolute errors of pop2 and pcseg1-opt
with respect to pop2-opt (see Fig. 3 for
details). The orange bar represents a
chemical accuracy of 1 kJ/mol.
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FIG. 15. Case JEN2018: ranking probability matrices.

Experimental uncertainties are not specified. The predictions by six
DFAs are reported, three global hybrids (PBE0, B3LYP, and DD-
B3LYP) and three range-separated hybrids (SC-BLYP, DD-SCBLYP,
and DD-CAM-B3LYP). This is a small dataset, below the standards,
required for low type I errors (false positive) in the comparison of
MUE (N > 30) and Q95 (N > 60) (Paper I1-Appendix C).

1. Correlations

The correlation matrices of the errors, MUE, and Q95 have uni-
formly strongly positive elements (Fig. 16, top). This is an unusual
situation when compared to the previous cases. Knowing that cor-
relation coefficients are sensitive to outliers (even if rank correlation

FIG. 16. Case DAS2019—rank correlation matrices: [(a)–(c)] original data set (N = 23); [(d)–(f)] after removal of two outliers (N = 21).
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FIG. 17. Case DAS2019: parallel plot of scaled and centered error sets, used to
identify global outliers.

is a little more robust), we explored the dataset for outliers. A par-
allel plot (Fig. 17) of the scaled and centered error sets enables
to identify systems that deviate significantly from the core distri-
bution for all methods (global outliers). Two such systems exist
for all methods: BiVO4 and Cu2O. After removal of these two
points, the correlation matrix for the errors is slightly relaxed (the
smallest correlation coefficient decreases from 0.81 to 0.74), but
that for MUE and Q95 are visibly more affected [(Fig. 16, bot-
tom)]. In fact, the parallel plot reflects the strong correlations
between all error sets (many quasi-parallel horizontal lines), except
for DD-CAM-B3LYP. The pruned dataset (N = 21) is used in the
following.

2. Statistics
Considering the small size of the sample, few clear-cut con-

clusions are possible. Only DD-CAM-B3LYP stands out signifi-
cantly, either by its MUE, Q95, or MSIP values (Table VII). On the

contrary, although its MUE and Q95 values are not distinguish-
able from those of PBE0, B3LYP, SC-BLYP, and DD-SC-BLYP,
DD-B3LYP is the worst performer of the group based on the SIP
statistics.

3. SIP analysis
The best and worse methods are clearly identifiable in the SIP

matrix [Fig. 18(a)], with a full reddish line for DD-CAMB3LYP and
a full bluish line for DD-B3LYP. The impact of the small set size
on this conclusion is illustrated in Figs. 18(b) and 18(c), where the
ECDFs of the differences of absolute errors are plotted for DD-
CAM-B3LYP vs B3LYP and DD-B3LYP vs B3LYP. Despite being
very large, the error bars on the statistics enable to validate these
conclusions.

4. Ranking
All ranking matrices confirm a solid leading place for DD-

CAM-B3LYP (Fig. 19). The MUE and MSIP rankings would then
favor SC-BLYP and B3LYP, in disagreement with the Q95 ranking,
for which the three DD-X methods have leading ranks. An example
of an N′-out of-N bootstrap (N′ = N/3) is shown on the bottom row.
The uncertainty is slightly enhanced, notably for the Q95 ranks above
the first, but the main features are mostly preserved.

G. THA2015 AND WU2015
Thakkar and Wu10 compiled a database of polarizabilities for

135 molecules, from triatomics to 26-atom systems. The experi-
mental data are given with their uncertainty, and computational
results are provided for seven methods. Dataset THA2015 for our
study was extracted from Tables II–IV of the reference article. The
raw errors present a dispersion increasing with the polarizabil-
ity; hence, relative errors are used in the reference article and this
study.

The relative uncertainties for the reference experimental data
cover a large range, from 0.09% to 12.4%, and the median value is
1.7%. The authors identified eight outliers and a total of 32 systems
in need of further experimental study. The outliers do not contain
the points with the extreme uncertainties, so that even after removal
of the 32 problematic systems, the range of relative uncertainties
stays the same. The dispersion of uncertainties would certainly jus-
tify the use of weighted statistics. This was not the choice of Thakkar
et al., and we proceed with unweighted statistics, keeping in mind
that the results might be influenced by reference data errors instead
of model errors.

TABLE VII. Case DAS2019—absolute error statistics for the pruned dataset (N = 21): inversion probabilities and SIP statistics
for comparison with the DFA of smallest MUE (DD-CAM-B3LYP). The best scores are in boldface.

Methods MUE (a.u.) Pinv Q95 (a.u.) Pinv MSIP SIP MG (a.u.) ML (a.u.)

PBE0 0.66(9) 0.00 1.6(2) 0.00 0.47(9) 0.76(9) −0.44(8) 0.19(4)
B3LYP 0.61(8) 0.00 1.4(2) 0.00 0.49(8) 0.76(10) −0.38(6) 0.21(6)
DD-B3LYP 0.70(7) 0.00 1.30(7) 0.00 0.19(8) 0.90(6) −0.41(6) 0.4(1)
SC-BLYP 0.58(8) 0.00 1.3(1) 0.00 0.62(8) 0.76(9) −0.36(6) 0.22(7)
DD-SC-BLYP 0.68(7) 0.00 1.23(5) 0.00 0.29(8) 0.90(6) −0.39(6) 0.4(1)
DD-CAM-B3LYP 0.36(6) . . . 0.83(7) . . . 0.82(8) . . . . . . . . .
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FIG. 18. Case DAS2019: (a) SIP matrix; (b) ECDF of the difference of absolute errors of methods DD-CAMB3LYP and B3LYP; (c) idem for DD-B3LYP and B3LYP (see Fig. 3
for details).

In a complementary study, Wu et al.11 calculated polarizabil-
ities for a set of 145 molecules with HF, MP2, CCSD(T), and 34
DFAs. In this study, CCSD(T) was used as reference to evaluate the
other methods. In the following, we select the subset of seven meth-
ods common to both datasets (WU2015). This enables us to study
the impact of the reference data (experimental vs calculated) on the
correlation and ranking matrices.

1. Correlations

The Pearson correlation matrix of the error sets [Fig. 20(a)] is
uniformly strongly positive. The smallest CC value is 0.8. To appre-
ciate the role of data points with large deviations (outliers) in these
strong correlations, we removed a set of eight outliers identified
by Thakkar et al.10 [Fig. 20(b)]. Most of the correlations weaken

FIG. 19. Case DAS2019—ranking probability matrices: [(a)–(c)] N-out of-N bootstrap; [(d)–(f)] N/3-out of-N bootstrap.
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FIG. 20. Case THA2015—correlation matrix: (a) Pearson correlation of the full data set (N = 135); (b) Pearson correlation of the pruned dataset (N = 127); (c) Spearman/rank
correlation of the full data set; (d): Errors rank correlation; (e): MUE rank correlation; and (f) Q95 rank correlation.

notably. For comparison, the rank correlation matrix was calcu-
lated for the full dataset [Fig. 20(c)]. This matrix is very similar to
the one with outliers removed, illustrating the better resilience of
rank correlations to outliers. Finally, the errors, MUE ,and Q95 rank

correlation matrices were estimated on the pruned (N = 127) dataset
[Figs. 20(d)–20(f)]. Globally, the structure of the errors correla-
tion matrix seems to be transferred to the statistics, with attenuated
correlation intensities.

FIG. 21. Case WU2015—rank correlation matrix: (a) errors; (b) MUE; and (c) Q95.
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TABLE VIII. Case THA2015—absolute error statistics for the full dataset (N = 145): inversion probabilities and SIP statistics
for comparison with the DFA of smallest MUE (LC-τHCTH), except for Q95 inversion probability, where the reference is the
DFA with smallest Q95. The best scores and the values for which (pg = 2Pinv ) > 0.05 are in boldface.

Methods MUE (%) Pinv Q95 (%) Pinv MSIP SIP MG (%) ML (%)

M11 3.1(3) 0.34 10(1) . . . 0.58(4) 0.47(4) −1.4(1) 1.16(10)
M06–2X 3.2(3) 0.09 10(2) 0.50 0.57(4) 0.53(4) −1.2(1) 1.0(1)
ωB97 3.3(3) 0.00 11(2) 0.21 0.53(4) 0.59(4) −0.94(7) 0.72(7)
LC-τHCTH 3.0(3) . . . 10(2) 0.30 0.59(4) . . . . . . . . .
HISS 3.8(3) 0.00 10(2) 0.38 0.34(4) 0.72(4) −1.62(10) 1.5(1)
LC-ωPBE 3.9(3) 0.00 11(1) 0.25 0.31(4) 0.78(3) −1.39(8) 1.2(1)
MP2 3.2(3) 0.22 11(2) 0.34 0.56(4) 0.45(4) −1.3(3) 0.8(1)

The error, MUE, and Q95 rank correlation matrices were also
calculated for the WU2015 dataset (Fig. 21). In the absence of
reference data uncertainties, MP2 errors are now weakly anticor-
related to the other error sets, while all DFAs remain positively
correlated.

The differences between both sets of correlation matrices,
notably when MP2 is concerned, might be due in a large part to the
presence of large experimental errors in the THA2015 dataset.

2. Statistics

The values of MUE and Q95 for the full THA2015 dataset
are reported in Table VIII. The MUE values agree with those of
the reference article, but the uncertainty bears on the second digit,
showing that a third digit is essentially irrelevant. The analysis of
Pinv for the MUE leads us to conclude that there is a group of
four methods (M11, M06–2X, LC-τHCTH, and MP2) with similar

FIG. 22. Case THA2015—ECDFs of
absolute relative errors: (a) methods with
smallest, indiscernible, MUE values, and
(b) other methods.

FIG. 23. SIP matrix: (a) case THA2015
(N = 127); (b) case WU2015. The meth-
ods are sorted by decreasing MSIP
value.
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performances, which is confirmed by the comparison of their empir-
ical cumulated distribution functions4 (Fig. 22). These ECDFs over-
lap over the whole error range. Besides, these methods cannot be
discriminated on the basis of their Q95 values, as it appears that
all values are indiscernible. These conclusions are unchanged when
one removes the eight outliers identified by Thakkar et al. (not
shown).

3. SIP analysis
The SIP matrix [Fig. 23(a)] for the THA2015 dataset reveals a

leading group of four methods identical to those identified above.

When passing to WU2015 [Fig. 23(b)], there is a better discrimi-
nation between methods, and MP2 presents SIP values over all the
other methods.

4. Ranking
The ranking matrices are plotted in Fig. 24. The top row con-

cerns dataset THA2015. The ranking probability matrices for the
MUE confirm the problem seen above for the four best methods.
It shows also that the rank of MP2 is quite ill-defined. For Q95, as
expected, any ranking seems illusory. The same matrices have been
estimated after the removal of eight outliers defined above (Fig. 24,
middle row). This has a negligible impact on the MUE ranking,

FIG. 24. Ranking probability matrices: [(a)–(c)] case THA2015 full dataset (N = 135); [(d)–(f)] case THA2015 dataset pruned from eight outliers (N = 127); and [(g)–(i)] case
WU2015 (N = 145).

J. Chem. Phys. 152, 164109 (2020); doi: 10.1063/5.0006204 152, 164109-18

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 25. Case ZAS2019—rank correlation matrices: (a) errors; (b) MUE; and (c) Q95.

but fully scrambles the Q95 one, M11 passing from the first to the
last place, MP2 from the 8th to the first, and so on. In fact, ill-
defined ranking matrices can be expected to be very sensitive to any
alteration of the dataset.

When considering the WU2015 dataset, the ranking matrices
(Fig. 24, bottom row) show much less dispersion, underlining the
deleterious role of experimental errors on ranking. Note that there
remains a notable uncertainty to rank ωB97, M11, M06–2X, and LC-
τHCTH using Q95.

Depending on the reference dataset [experimental or CCSD(T)],
one obtains different rankings: LC-τHCTH seems a better option to
predict experimental values (possibly an artifact due to some large
experimental reference data errors), whereas MP2 is a better proxy
for CCSD(T) calculations.

H. ZAS2019
The effective atomization energies (E∗) for the QM7b dataset,24

for 7211 molecules up to seven heavy atoms (C, N, O, S, or
Cl), are available for several basis sets (STO-3g, 6-31g, and cc-
pvdz), three quantum chemistry methods [HF, MP2, and CCSD(T)],
and four machine learning algorithms (CM-L1, CM-L2, SLATM-
L1, and SLATM-L2). The data have been provided on request
by the authors of Zaspel et al.12 The machine learning methods
have been trained over a random sample of 1000 CCSD(T) ener-
gies (learning set), and the test set contains the prediction errors
for the 6211 remaining systems.12 We retain here only HF, MP2,

and SLATM-L2 and compare their ability to predict CCSD(T)
values.

1. Correlations
The error sets are essentially uncorrelated (Fig. 25), whereas

small positive correlations can be noted for the MUE and Q95.

2. Statistics
The values are reported in Table IX. There is a contrast between

the MUE and Q95. SLATM-L2 and MP2 have close MUE values, with
an above-threshold p-value (pg ≃ 2Pinv = 0.06) and a slight advan-
tage for SLATM-L2. However, MP2 has a significantly smaller Q95.
As seen on the absolute errors ECDFs [Fig. 26(a)], SLATM-L2 has
indeed a pronounced tail of large errors

This case emphasizes the fact that similar values of the MUE
can result by chance from very distinct error distributions and that
no conclusion should be taken on the basis of MUE alone.

3. SIP analysis
The SIP matrix [Fig. 26(b)] shows that SLATM-L2 presents a

notable improvement probability (∼0.75) over HF and a moderate
one over MP2 (∼0.61). Even if SLATM-L2 has significantly better
statistics than HF [Fig. 26(c)], there remains a 25% chance that the
latter provides smaller absolute errors. In most case studies pre-
sented above, the mean gain was larger in absolute value than the
mean loss. In the comparison between SLATM-L2 and MP2, one
observes the opposite by choosing SLATM-L2 over MP2 [Fig. 26(d)]

TABLE IX. Case ZAS2019—absolute error statistics: inversion probabilities and SIP statistics for comparison with the DFA
of smallest MUE (SLATM-L2), except for Q95 inversion probability, where the reference is the DFA with smallest Q95 (MP2).
The best scores and the values for which (pg = 2Pinv ) > 0.05 are in boldface.

MUE Q95 MG ML
Methods (kcal/mol) Pinv (kcal/mol) Pinv MSIP SIP (kcal/mol) (kcal/mol)

HF 2.38(3) 0.00 6.1(1) 0.00 0.283(5) 0.743(6) −2.03(2) 1.50(5)
MP2 1.31(1) 0.03 3.35(5) . . . 0.538(5) 0.613(6) −1.08(2) 1.58(5)
SLATM-L2 1.26(3) . . . 4.7(1) 0.00 0.678(5) . . . . . . . . .
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FIG. 26. Case ZAS2019: (a) ECDF of
the absolute errors; (b) SIP matrix; and
[(c) and (d)] ECDF of the difference of
absolute errors of HF (c) and MP2 (d)
with respect to SLATM-L2 (see Fig. 3 for
details). The orange band represents the
chemical accuracy (1 kcal/mol).

and one has 61% chance to get better results, with a mean gain
MG ≃ −1.1 kcal/mol, and 39% chance to deteriorate the MP2 val-
ues with a mean loss ML ≃ 1.6 kcal/mol. In agreement with the Q95
analysis, this is due to the notable tail of large errors of SLATM-L2.

III. DISCUSSION
A. Extracting data from articles and supplementary
material

The raw data of benchmark studies are important assets for the
community, and their accessibility and reusability are essential for
intercomparison studies or the development of alternative statistical
analyses, as performed in this study. When gathering the data, we
found that many benchmarking studies have practically inaccessible
data, failing the FAIR principle of Open Data.25 Besides the triv-
ial case of non-available data, we have stumbled on data stored in
complex databases and requiring non-trivial coding for their extrac-
tion or data stored in inappropriate formats, such as PDF (a Page
Description Format), instead of recognized machine-readable data
storage formats, such as CSV tables.

Note that for some of the cases we gathered here, we were
able to extract data from PDF articles or supplementary mate-
rial files, but not without some difficulty, involving several steps

of manual operations. Typical problems for the data extraction
from tables in PDF documents are excessive numerical trunca-
tion, empty cells or complex table mapping, typographical (−)
instead of numerical (-) minus sign, rotated tables, compact nota-
tions for uncertainty [either 123(4) or 123 ± 4], and bibliographi-
cal references attached to the data (generally processed by extrac-
tion tools as spurious decimals). . . Most of these features preclude
fully automated data extraction and require error-prone human
processing.

So, unless the structure of the data is complex, and this should
not be the case for most benchmark studies, it is warmly recom-
mended to use “flat” numerical tables stored in an open format, such
as CSV, and to avoid putting more than one information per table
cell. “Think Open, think FAIR !”

B. Impact of dataset size
The examples mentioned above have shown that dataset size

impacts considerably the ability to rank methods or to assert the
impact of an improved method. Size effect on the uncertainty of
statistics is well known for the mean value, and similar formulae
can be derived for other statistics under normality hypotheses. How-
ever, the non-normality of error sets requires the use of numerical
methods, typically bootstrap sampling. This enables to show how the
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usual benchmark statistics are affected by sample size. We have seen,
for instance, that there is a notable probability to conclude erro-
neously that two Q95 values are different when they are not (type I
errors or false positive) if N < 60 (Paper I1-Appendix C). For the
MUE, this limit is smaller (N = 30). Moreover, for small datasets (a
few tens of points), even the first digit of the statistics is often affected
by the uncertainty.

It is practically impossible to predict the dataset size required
for a stable and robust ranking. Many factors other than set size
are involved, notably the number and nature of methods to be
ranked. When a lot of DFAs are compared, a hierarchical ranking
is often performed, for instance, by first choosing the best method
at each rung of the Jacob’s ladder and then comparing these meth-
ods together.11 This is one way to reduce the ranking uncertainty
that is likely to result from the direct comparison of a large number
of methods, as illustrated, for instance, in case CAL2019 (Sec. II D,
Fig. 12).

C. The correlation matrix as a sanity check
When we started this study, the correlation matrices were

mainly intended to illustrate the importance to consider correla-
tion when comparing statistics. When cumulating the case studies,
we realized that errors correlation matrices may contain pertinent
information on the quality of the benchmark dataset. Considering
that model errors in computational chemistry are mostly system-
atic, one expects that error patterns over a dataset are characteristic
of each method or a family of methods. This seems to be a basic
requirement for sound benchmarking studies. One should, thus,
expect that closely related methods produce similar error patterns
and have strongly correlated error sets, the correlation level decreas-
ing with a “distance” between methods. This is clearly illustrated in
case BOR2019 (Fig. 5), where the correlation matrix clusters nicely
into relevant DFA groups. There seems also to be a genuine decorre-
lation between MP2 or MP2-based methods and DFAs (NAR2019,
Fig. 9; WU2015, Fig. 21). Similarly, one observes no correlation
between HF, MP2, and a machine-learning method calibrated on
CCSD(T) in case ZAS2019, Fig. 25.

As a consequence, when the method set contains unrelated
methods, a uniform strongly positive correlation matrix should raise
an alert. We have seen in cases DAS2019 and THA2015/WU2015
that outliers and/or large reference data errors could dominate the
correlation matrix and influence the benchmark statistics. Outliers
common to all error sets (global outliers) can be efficiently identified
on a parallel plot, as shown in case DAS2019 (Fig. 17). If the rank-
ing study is to reflect the methods performances, the curation and
possible pruning of the dataset from such global outliers is a nec-
essary preliminary step. Otherwise, more complex statistical models
have to be used to alleviate the impact of those points (see Paper
I1-Appendix A and Refs. 26–28).

Note that strongly correlated error sets do not imply similar
performances. For instance, a set of linearly scaled harmonic vibra-
tional frequencies typically has better statistics than the unscaled
set,29 whereas their correlation coefficient is one because of the linear
transformation between both error sets. One should also remem-
ber that the correlation coefficient between calculated and reference
values that is still presented in some benchmarks is not a reliable
performance statistic.30 At most, it reveals a linear (Pearson) or

monotonic (Spearman and Kendall) association between datasets,
but their proximity to the identity line.

D. Impact of error sets correlation on ranking
The correlation between error sets is partially or totally trans-

ferred to benchmark statistics. Except for linear transformations
of the errors, where the transfer is trivial, one has to use Monte
Carlo methods to estimate it. In many cases, such as for normal,
Student’s-t, or g-and-h error distributions,31 one observes that the
correlation intensity mainly decreases when passing from errors to
MUE to Q95. The case studies mentioned above show, however,
that there are exceptions to this ideal trend. We cannot presently
rationalize the observed exceptions. In a vast majority of the cases
studied above, the correlation matrices for MUE and Q95 have pos-
itive coefficients. These contribute to a reduction of the uncertainty
on statistics differences, with better discernibility between uncertain
statistics. Globally, positive correlations increase the robustness of
rankings.

However, unlike for the error correlations, the visualization
and analysis of correlations between statistics might be of secondary
interest for benchmarks. In fact, the paired samples bootstrap algo-
rithms used in this study enable to account directly for these correla-
tions, without having to estimate intermediate correlation matrices.

E. Systematic improvement analysis
We introduced a new criterion, the systematic improvement

probability (SIP), which has the major advantage to be indepen-
dent of the usual descriptive statistics. It is based on a sign statistic
of the differences of absolute error pairs. It is a useful comple-
ment to the MUE, as it enables to analyze MUE differences. All
the cases studied above show that a decrease of MUE results from
a balance between gains and losses. Only two methods pairs were
found, in cases PER2018 (Sec. II A) and CAL2019 (Sec. II D), with
SIP values reaching 0.95, close to the full systematic improvement.
We did not find a “best method” that fully improves the results of
all lower rank methods. Because of the well known error compen-
sations in computational chemistry methods,32 even physics-based
improvements in DFAs do not lead to systematic improvements for
all systems. Of course, this balance is not a discovery, but the SIP
enables to quantify it and provides a basis for the user to estimate
the risk taken when switching from an old, faithful method to a new
one. We have seen for, instance, that for bandgaps, mBJ degrades
LDA predictions for 16% of the systems (BOR2019, Table III).
In fact, there is often a non-negligible percentage of systems for
which a “bad” method is better than a “good” one, all across Jacob’s
ladder.

We have also introduced the mean SIP as a possible ranking
statistic. The main advantage of the MSIP is its independence from
the usual summary statistics; its main drawback is that it depends
on the set of methods being compared, and it is not transferable to
comparisons out of its definition set. Conflicts of the MSIP with the
MUE reveal disparities in the errors distribution.

F. Ranking probability matrix
The ranking probability matrix Pr provides a diagnostic on the

robustness of the ranking by any statistic. Our tests of MUE, Q95, and
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MSIP rankings show that the dataset size and the number of meth-
ods influence notably the ranking uncertainty. Without any surprise,
the closer the performances of a group of methods, the more uncer-
tain their ranking. Depending on the datasets, the MUE and Q95
rankings might conflict and present different levels of robustness (cf.
case THA2015, Fig. 24). We would advise to publish systematically
both of them, as they provide complementary information.

In the various cases treated above, the rankings provided by the
MSIP most often conform to the MUE rankings and are as sensi-
tive as the other rankings to sampling uncertainty. When ranking
conflicts for the first places occur with the MUE, as was observed
in case PER2018 (Fig. 4), one gets alerted that the method with the
lowest MUE is not the one providing the largest proportion of small
absolute errors. Due to the non-normality of error distributions,
such scenarios are to be expected, as for inversions in MUE and Q95
rankings.

G. Extension to composite datasets
We considered here only datasets based on a single property.

Many modern benchmarks are based on composite datasets, involv-
ing weighting schemes to incorporate data with different units.33

The applicability of the SIP to such datasets is straightforward, but
the mean gain and mean loss statistics, having dimensions, should
become multivariate.

The estimation of Pinv and ranking probability matrices for
composite statistics (e.g., WTMAD33) can use directly the pair-
based bootstrap sampling algorithms described in the present article,
although care should be taken to avoid imbalance between the var-
ious components of a dataset by using the so-called stratified boot-
strap,34 preserving the cardinal number of each component in the
generated sample.

IV. CONCLUSION
In Paper I,1 we proposed several tools to test the robustness of

rankings or comparisons of methods based on error statistics for
non-exhaustive, limited size datasets. In order to avoid hypotheses
on the errors distributions, bootstrap-based methods were used for
the estimation of statistics uncertainty, p-values, and ranking uncer-
tainty. In this paper, we illustrated and validated these methods
on nine datasets covering a representative panel of properties and
sizes.

Most of these tools take into account the correlation between
error sets or their statistics, and we illustrated repeatedly that large
correlations occur that cannot be neglected. Moreover, we have seen
that the error sets correlation matrix can be useful to appreciate the
quality of a benchmark dataset, notably when experimental refer-
ence data are used. To our knowledge, this topic has not previously
been discussed, and benchmarking studies do not presently make
use nor report such correlation matrices.

The systematic improvement probability (SIP) is based on the
system-wise difference of absolute errors between two methods, and
in conjunction with the mean gain (MG) and mean loss (ML) statis-
tics, it quantifies the risk taken by a user when passing from a
method to another. We have seen in the applications that choosing a
method with a lower MUE might imply a non-negligible risk to pro-
duce large errors. Moreover, only two of the showcased examples

revealed a method that provides a (nearly) full systematic improve-
ment over one of its concurrents. Even when comparing an elaborate
composite method such as G4MP2 to DFAs one observes partial
SIP values (case NAR2019, Table IV). A pedagogical virtue of the
SIP is to clearly show that computational chemistry is a science of
compromises.

We based the comparison between values of a statistic for two
methods on the inversion probability Pinv, which is simply linked to
the p-value for the test of the equality of those statistics (pg ≃ 2Pinv).
It is, thus, an important tool to assess if a difference between two
values is a real effect or if it might be due to the choice of dataset.
For ranking statistics, we suggest to report Pinv with respect to the
method with the smallest value in results table.

The ranking probability matrix Pr for a chosen statistic pro-
vides a clear diagnostic on the robustness of the corresponding
ranking. The impact of dataset size and number of compared meth-
ods can be thoroughly tested, as shown in the examples above.
It appeared in these examples that the intermediate ranks are
often weakly defined. The robustness of the ranking might also
depend on the ranking statistic, and the statistic providing the most
robust ranking depends on the dataset. As we suggested earlier,
one should, therefore, not rely on the MUE alone to rank meth-
ods. We encourage benchmark authors to provide ranking prob-
ability matrices for several statistics (at least the MUE and Q95),
which can be obtained with a negligible overcharge in computer
time.

We considered here for simplicity raw error sets, from which no
care has been taken to remove systematic trends. When this is pos-
sible, such trend corrections, often simply linear, will provide much
better generalizability of the summary statistics derived from these
error sets. Besides, this is a necessary step if one wishes to estimate
the prediction uncertainty of any method,26–28 notably when dealing
with non-uniform reference data uncertainties.
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