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ABSTRACT
The comparison of benchmark error sets is an essential tool for the evaluation of theories in computational chemistry. The standard ranking
of methods by their mean unsigned error is unsatisfactory for several reasons linked to the non-normality of the error distributions and the
presence of underlying trends. Complementary statistics have recently been proposed to palliate such deficiencies, such as quantiles of the
absolute error distribution or the mean prediction uncertainty. We introduce here a new score, the systematic improvement probability, based
on the direct system-wise comparison of absolute errors. Independent of the chosen scoring rule, the uncertainty of the statistics due to the
incompleteness of the benchmark datasets is also generally overlooked. However, this uncertainty is essential to appreciate the robustness of
rankings. In the present article, we develop two indicators based on robust statistics to address this problem: Pinv, the inversion probability
between two values of a statistic, and Pr , the ranking probability matrix. We demonstrate also the essential contribution of the correlations
between error sets in these scores comparisons.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006202., s

I. INTRODUCTION

Benchmarks are a central tool for the evaluation of new theo-
ries/methods in quantum chemistry.1 Among many possible met-
rics,2 the most common benchmarking statistics are the mean
unsigned error (MUE), mean signed error (MSE), root mean
squared error (RMSE), and root mean squared deviation (RMSD).
The explicit definition of these scores is given in a previous article.3

In a vast majority of benchmark studies, the MUE, or some variant
of it, is used to compare method performance. Recently,3 we pro-
posed a more informative probabilistic score, the 95th percentile of
the absolute error distribution (Q95).4 We recently realized that the
90th percentile (noted P90) has been used by Thakkar and colleagues
in the same spirit.56,57 We think Q95 is more appropriate because of
its direct link to the enlarged uncertainty u95 recommended in the
thermochemistry literature.3,58

Whichever the statistic used, the question remains of the
robustness of such scores and rankings with respect to the choice of
the reference dataset. One easily conceives that the values of these
statistics change unpredictably when one adds or removes points
in the dataset. Benchmarks implicitly assume that the error sets
are representative samples of unknown distributions characterizing
model errors for each method—the more the systems in the dataset,
the better the approximation of the underlying distributions. The
quest for large datasets incurs heavy computer charges to perform
benchmarks, and there is also a trend to reduce this burden by look-
ing for small, optimally representative, datasets.5,6 Besides, there are
several properties for which the reference data are rather sparse,
leading to rather small datasets. Another trend enhanced by the
development of machine learning is to replace experimental values
by gold standard calculations, with limitations on the size of acces-
sible systems.7,8 As the estimated values of the statistics and their
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uncertainties depend on the size of the dataset, it is important to
assess this size effect and its impact on statistics comparison and
ranking.

This question has been considered recently by Proppe and
Reiher,9 who used bootstrapping to assess the impact of dataset size
and reference data uncertainty on the first place in an intercompar-
ison of Mössbauer isomer shifts estimated by a dozen density func-
tional approximations (DFAs). They concluded that for their dataset
of N = 39 values, at least three methods were competing for the first
place, with a slight probabilistic advantage for the Perdew-Burke-
Ernzerhof hybrid, PBE0. This is a very interesting contribution to the
quality assessment of benchmarking tools. We recently considered
another approach to this problem by defining an inversion probabil-
ity Pinv for the ranking of two methods.3 Our definition, which was
based on the assumption of a normal distribution of statistics differ-
ences and neglected error sets correlations, deserves a more general
setup.

In the present study, we revisit the ranking uncertainty problem
along several complementary lines:

1. We consider the statistical significance of the difference
between two values of a statistic: it depends both on the uncer-
tainty on the estimated values, which is notably influenced by
the dataset size, and on the correlation between these values,
which is, in a large part, due to the use of a common refer-
ence dataset.10 A few specific points have also to be considered:
the non-normality of the error sets distributions, the small size
of some datasets, the uncertainty on reference data, and some
properties of quantiles estimators.

2. We define a ranking probability matrix Pr , generalizing the
proposition of Proppe and Reiher,9 which enables us to
propose an efficient visual assessment of the robustness of
rankings.

3. We introduce a new statistic (the systematic improvement
probability; SIP) that conveys the proportion of systems in the
benchmark dataset for which one method has smaller abso-
lute errors than the other and the expected gain or loss when
switching between methods.

This article is organized as follows: In Sec. II, we consider the
uncertainty and correlations of the error sets used in benchmarking
and, in Sec. III, how these are transferred to benchmarking statis-
tics. Correlation of error sets and their statistics is central to the
developments presented next: Sec. II introduces the SIP based on
the system-wise comparison of absolute errors, and Sec. V develops
bootstrap-based tools to compare uncertain and correlated statistics,
leading to the ranking inversion probability Pinv and ranking prob-
ability matrix Pr . Implementation details are reported in Sec. VI.
Section VII provides a brief conclusion, but a detailed discussion
is deferred to Paper II,11 where these methods are applied to nine
datasets taken from the recent benchmarking literature and covering
a wide range of dataset sizes and properties.

II. ERROR SETS, THEIR UNCERTAINTY,
AND CORRELATION

Benchmarking of a method M is based on the statistical analysis
of its error set [EM = {ei(M)}Ni=1], based on a set of N calculated

[CM = {ci(M)}Ni=1] and reference data (R = {ri}Ni=1), where

ei(M) = ri − ci(M). (1)

A. Uncertainty
As the reference data or even the calculated values can be uncer-

tain, one should consider that the error sets contain uncertain values
when estimating and comparing statistics. As experimental or com-
putational uncertainties are being typically estimated by standard
deviations, one can use the method of combination of variances to
get the uncertainty on the errors,12

u(ei) =
√
u(ri)2 + u(ci)2, (2)

where u(x) is the uncertainty on x. This formula assumes that the
individual errors on the reference data and calculated values are
uncorrelated. For an experimental reference value ri, u(ri) would
typically be a measurement uncertainty. For a computed reference
value ri and for a calculated value ci, uncertainty might come from
numerical uncertainty due to the use of finite precision arithmetic
and discretization errors,13,14 statistical uncertainty (e.g., for Monte
Carlo methods15,16), or parametric uncertainty (e.g., for calibrated
methods16–20).

We consider here deterministic computational chemistry
methods for which the sole uncertainty source is arithmetic uncer-
tainty, assumed to be well controlled. The uncertainty on errors
is then equal to the reference data uncertainty u(ei) ≡ u(ri).
For the sake of generality, the u(ei) notation is preserved in the
following.

B. Error sets covariance and correlation
Let us consider a set of K methods {Mi}Ki=1. The covariance21 of

the error sets for the two methods can be decomposed as

cov(Ei,Ej) = cov(R − Ci,R − Cj) (3)

= var(R) + cov(Ci,Cj) − cov(R,Ci) − cov(R,Cj), (4)

where, for brevity, we use shortened notations such as Ei ≡ EMi . It
is not possible to predict the sign and amplitude of cov(Ei, Ej) from
this decomposition, but a few considerations on the various terms
might be helpful:

● When comparing computational chemistry methods, it is
very likely that their prediction sets are strongly positively
correlated (covariant). It is also very likely that the pre-
dictions of good methods have a strong positive covari-
ance with the reference data, if the latter are not dom-
inated by measurement errors. Besides, one can expect
that the variance of the reference dataset is of the same
order (possibly larger if there are notable experimental
errors) as the variance/covariances of the calculated dataset.
Hence, in a typical comparison scenario, cov(Ei, Ej) results
from the compensation of terms with similar magnitudes,
and one should not expect a null covariance of error
sets.
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● If reference data uncertainties are larger than prediction
errors, the covariance should be dominated by var(R), and
all error sets should be strongly positively correlated.

Instead of covariances, it is easier to work with the correlation
coefficients between error sets (normalized covariances),

cor(Ei,Ej) =
cov(Ei,Ej)

σEiσEj
, (5)

where σEi is the standard deviation of the error set Ei, assumed finite.
We will show in Paper II11 through case studies that the correlation
matrix contains relevant information on the quality of datasets and
the proximity of methods.

C. Representation
Correlation matrices can be represented by combining a color

scheme and an ellipse model22 (Fig. 1) such that a blue right-slanted
ellipse stands for a positive correlation, a red left-slanted ellipse for a
negative one, and a white (invisible) disk for a null correlation. The
larger the absolute value of the correlation, the darker the color and
the thinner the ellipse.

For the example showcased in Fig. 1(a), one can observe that
all the datasets Ci are all strongly positively correlated, meaning
that all methods produce closely the same trend. By contrast, the
error sets Ei present a more relaxed pattern [Fig. 1(b)], with weaker
positive correlations, and even a very small negative correlation for
MP2 with all the other error sets. Having noticed this, one can
remark that MP2 data present also smaller correlation coefficients
with other datasets, although this is barely visible in the figure (the
difference bears on the third digit of the correlation coefficients).
In the following, we present correlation matrices for error sets
only.

III. STATISTICS, THEIR UNCERTAINTY,
AND CORRELATION
A. Uncertainty

The value s of a statistic S (MSE, MUE, Q95, etc.) estimated on
an error set is generally uncertain, with uncertainty estimated by its
standard error u(s). Two main uncertainty sources should be consid-
ered: (1) the limited size N of the reference data sample and (2) the
uncertainty on errors, u(ei) (Sec. II). Unless the dataset is exhaus-
tive (e.g., a dataset containing a property for a complete class of
systems), the first source is always present. For experimental refer-
ence data, the second source is also always present, but experimental
uncertainty is rarely available for large datasets, and a common prac-
tice seems to be to ignore them in the statistical analysis (although
they are often discussed to assess the quality of the dataset). Some
studies considered the effect of representative uncertainty levels on
benchmarking conclusions.9,23,24

In Appendix A, the impact of both uncertainty sources is illus-
trated on the mean value (MSE) for which analytical formulae are
available. The strategy to handle reference data uncertainty depends
on their distribution. If the reference data uncertainties are uniform
over the dataset, the hypothesis of independent and identically dis-
tributed (i.i.d.) errors holds, and standard statistical procedures can
be applied (unless one is interested in quantifying specifically model
errors9,23). Otherwise, weighted statistics have to be used,9,23 which
will not be considered here. Instead, we assume that datasets should
not include data with extreme uncertainty values.

Simple formulae for standard errors, such as those for the mean
(a linear statistic), are not available for non-linear statistics, such as
the MUE or Q95. Moreover, in order to avoid some of the limitations
implied by such formulae (e.g., normality hypothesis), one can use
a general method to estimate the standard error of any statistic: the
bootstrap.25–27 It is a Monte Carlo sampling method that consists

FIG. 1. Rank correlation matrices between (a) datasets and (b) errors sets of polarizabilities for the case WU2015 (Paper II11).
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of random draws with replacement of N′ values from a dataset of
size N. In the standard bootstrap, one uses N′ = N, i.e., the generated
samples have the same size as the original set. The bootstrap has been
shown to provide reliable estimation of uncertainty, but the mean
values unavoidably reflect the bias due to the original dataset.27 In
consequence, we estimate in the following the mean values from the
original sample and the uncertainties from the bootstrap samples.
The main limitation of the bootstrap is its hypothesis of i.i.d. data,
but it is consistent with our choice to avoid reference datasets with a
large uncertainty range.

B. Correlation
The statistics covariance cov(s1, s2) derives from the mathe-

matical expression of S and from the variances and covariance of
the error sets, cov(E1, E2). To estimate cov(s1, s2) in the case of a
linear statistic, one can directly apply the generalization of the com-
bination of variances to several model outputs.28 For the MSE, it
is easy to demonstrate that the covariance is transferred in total-
ity, cov(e1, e2) = cov(E1,E2), where x̄ is the mean value of X. More
generally, for linear statistics, cov(E1, E2) = 0⇒ cov(s1, s2) = 0. For
non-linear statistics, such as the MUE or Q95, the combination of
covariances is unsuitable, and Monte Carlo strategies are used.

To illustrate the transfer of correlation from error sets to non-
linear statistics, we performed a Monte Carlo study, detailed in
Appendix B, with a scenario implying diverse distribution shapes.
A few trends can be derived from this study, notably that for the
MUE and Q95, cor(s1, s2) is a convex, positive function of cor(E1,
E2). Moreover, for a given value of cor(E1, E2), one observes that
cor(MUE1, MUE2) ≥ cor(Q95,1, Q95,2). As we explored only a frac-
tion of the possible scenarios for the error distributions, these trends
should not be considered general. Our main point is that the cor-
relation of error sets is at least partially transferred to the derived
statistics, a fact to be considered when comparing the values of these
statistics.

IV. PAIRWISE COMPARISON OF ERRORS
We define the systematic improvement probability (SIP)

between two methods Mi and Mj as the proportion of systems in
the reference set for which the absolute error decreases when using
Mi instead of Mj. It is estimated as

SIPi,j =
Di,j

N
, (6)

Di,j =
N

∑
k=1

1Δk(Mi ,Mj)<0, (7)

where 1X is the indicator function, taking for value 1 if X is true and
0 otherwise, and

Δk(Mi,Mj) = ∣ek(Mi)∣ − ∣ek(Mj)∣. (8)

Note that, because of the possible presence of ties, one has SIPi ,j
+ SIPj ,i ≲ 1.

A. Interpretation
A row of the SIP matrix provides the SIP values for the cor-

responding method over all the other ones. If a new method M1

provides systematic improvement over M2 in the sense that it has
smaller absolute errors for all systems in the reference set, one should
have SIP1,2 = 1. Values smaller than 0.5 indicate a degradation. Note,
however, that M1 can achieve small values of the SIP and still have
better scores (MUE, Q95), as a few large improvements might over-
whelm many small degradations. The interest of the SIP indicator
is mainly to alert the user that using a “better method” M1 can lead
to the degradation of results with respect to M2, with a probability
close to (1 − SIP1,2).

B. Mean SIP
In order to compare and rank a set of K methods, one defines

the Mean SIP (MSIP) as the mean value of a line of the SIP matrix
(excluding the diagonal),

MSIP(Mi) =
1
K

K

∑
j=1

SIPi,j (1 − δij). (9)

The largest MSIP value points to a method, which in average pro-
vides the best level of improvement over the other methods in the
set. Note that the MSIP is not transferable for comparisons with
methods out of its definition set.

C. Representation
In the same spirit as for correlation matrices, we represent SIP

matrices by a combination of color levels and disks. Here, the color
scale goes from blue (0.0) to red (1.0) with a white midpoint (0.5),
and the area of the disks is proportional to the SIP value. The diago-
nal is null. The matrix should be read by row: a row with a majority
of red patches signals a method with good SIP performances. A con-
trario, a majority of blue patches on a row indicate a method with
poor SIP performances. The methods are ordered by the decreasing
value of MSIP.

Figure 2 provides an example extracted from a benchmark
for intensive atomization energies (case PER2018 in Paper II11). It
shows clearly that, for this dataset, BH&HLYP is problematic, with
a row of small blue disks, and is systematically and strongly outper-
formed by all other methods. At the opposite, the row for CAM-
B3LYP is the only one to contain exclusively values above 0.5 (red-
dish disks), albeit CAM-B3LYP does not achieve the best MUE nor
Q95 scores within this set of methods.3,11 This conflict will be further
discussed in Paper II.11

D. Mean gain and loss
In order to appreciate the amplitude of the possible losses or

gains when switching between two methods, we define the mean
gain (MG) as the mean of the negative values of Δk(Mi, Mj), which
is only defined if SIPi ,j is non-null,

MGi,j =
1
Di,j

N

∑
k=1

1Δk(Mi ,Mj)<0 Δk(Mi,Mj), (10)

MLi,j = −MGj,i, (11)
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FIG. 2. SIP matrix for a set of 9 methods compared on the G99 set of enthalpies
(case PER2018, Paper II11). The SIP value is color-coded, and the area of a disk
is proportional to the corresponding value. A row with a majority of red patches
signals a method with good SIP performances. The methods are ordered by the
decreasing value of MSIP [Eq. (9)].

where, by construction, the mean loss (ML) is equal to the opposite
of the mean gain for the reciprocal comparison.

These statistics are intended to convey an amplitude of the
improvement of Mi over Mj: MG is therefore a negative value (cor-
responding to a decrease in absolute errors) and ML a positive value.
Moreover, the SIP, MG, and ML provide a decomposition of the

MUE difference between two methods,

ΔMUEi,j =MUE(Mi) −MUE(Mj) (12)

= SIPi,j ∗MGi,j + SIPj,i ∗MLi,j. (13)

This shows that, except for method pairs with extreme SIP values,
any MUE difference is the balance between losses and gains dis-
tributed over the systems. One should not expect that a method with
a smaller MUE will systematically provide better results.

E. ECDF of Δk (M i , M j )
The scores (SIP, MG, and ML) can be visualized on a single

graph of the Empirical Cumulated Density Function (ECDF) of the
differences of absolute errors between two methods, as shown in
Fig. 3(b). This example is extracted from the benchmark dataset
BOR2019 presented in Paper II11 on the prediction of band gaps.
It compares mBJ (MUE = 0.50 eV) and the local-density approxima-
tion (LDA) (MUE = 1.17 eV). Each point of the ECDF corresponds
to a system of the dataset. Systems with negative differences are those
for which mBJ performs better than LDA.

The large MUE difference (ΔMUE) between these methods is the
balance of a mean gain MG = −0.86 eV for 85 % of the systems (SIP)
and a mean loss ML = 0.37 eV for 15 % of the systems. In the hypoth-
esis of a representative dataset, a user switching from LDA to mBJ
has to accept a 15% risk to see his LDA results degraded in average
by 0.37 eV and up to 1 eV.

Note that this information is not accessible when considering
the ECDFs of the absolute errors [Fig. 3(a)]. For the chosen exam-
ple, the comparison of these ECDFs might leave the false impression
that mBJ has consistently smaller absolute errors than LDA, which
is an artifact due to the missing information about data pairing
(correlation) in this representation.

FIG. 3. Statistics of absolute errors on band gaps for methods mBJ and LDA (case BOR2019, Paper II11) and of their pairwise differences: (a) ECDF of two error sets to
be compared. The MUE values are depicted by vertical dotted lines and the Q95 values by vertical dashed lines. The confidence bands cover 95% probability; (b) ECDF of
the difference of absolute errors (blue curve and confidence band). The green- and red-shaded bands represent 95% confidence intervals for the reported statistics (SIP:
systematic improvement probability, MG: mean gain, ML: mean loss, and ΔMUE : MUE difference). The orange vertical bar represents an estimated level of uncertainty in the
dataset. It is a visual aid to evaluate the pertinence of the observed differences.
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V. PAIRWISE COMPARISON OF STATISTICS
A. The testing framework

Using the error sets for two methods M1 and M2, one calculates
the values s1 = S(E1) and s2 = S(E2) of a statistic S. A common proce-
dure to compare two values is to test if their difference is significantly
larger than their combined uncertainty, i.e.,

∣s1 − s2∣ > κu(s1 − s2), (14)

where u(s1 − s2) is the uncertainty on the difference and κ is an
enlargement factor typically taken as κ = 2 (or 1.96) in metrol-
ogy.29 In the hypothesis of a normal distribution for the statistics
difference, κ = 1.96 corresponds to a confidence level of 95% for a
two-sided test, implied by the absolute value in Eq. (14). If one has
evidence that the distribution of differences is not normal, κ has to be
chosen as the uncertainty enlargement factor providing a 95% confi-
dence interval for this distribution. If the test is positive, there is less
than 5% probability that the difference between s1 and s2 is due to
sampling effects.

Assuming that u(s1 − s2) cannot be null nor infinite, it is
convenient to recast the test by using a discrepancy factor

ξ(s1, s2) =
∣s1 − s2∣
u(s1 − s2)

(15)

to be compared to the threshold κ. A probability value (p-value) cor-
responding to ξ is derived from the cumulated density function of
the expected distribution for ξ. For instance,

pt = 1 −ΦH(ξ) (16)

= 2 ∗ (1 −Φ(ξ)), (17)

where ΦH(⋅) is the cumulative distribution function (CDF) of the
standard half-normal distribution30 and Φ(⋅) is the CDF of the stan-
dard normal distribution. The half-normal distribution is used to
account for the absolute value in Eq. (15). The t index of pt refers
here to the analogy with the two-sample t-test for equal means.21 pt
is the probability to obtain values of ξ equal to or larger than the
calculated value, assuming that the null hypothesis, S(E1) = S(E2), is
true. For testing, one chooses a probability threshold corresponding
to P(ξ > κ = 1.96) = 0.05. For pt above this value, one chooses not to
reject the hypothesis that the observed difference between s1 and s2
is due to random effects.

In order to be able to estimate pt , one needs to evaluate the
uncertainty on the difference of s1 and s2. Formally, it can be
obtained by the combination of variances,12

u(s1 − s2) =
√
u2(s1) + u2(s2) − 2cov(s1, s2). (18)

The usefulness of this formula depends on several assumptions (the-
oretical limits of the statistics not within a high probability interval
around their values, symmetry of error intervals, etc.10,31). Neverthe-
less, it shows that the covariance between statistics can have a major
effect on the amplitude of u(s1 − s2). In the limit of very strong pos-
itive correlation, the uncertainty on the difference can become very
small, impacting ξ(s1, s2) and pt .

To estimate the effect of correlation on the comparison of
scores, we introduce a variant punc (uncorrelated) of pt , based on a

version of the discrepancy ignoring correlation,

ξunc(s1, s2) =
∣s1 − s2∣√

u(s1)2 + u(s2)2
, (19)

punc = 2 ∗ (1 −Φ(ξunc)). (20)

In the hypothesis of mostly positive correlations for the statis-
tics of interest (MUE and Q95; Appendix B), punc is expected to
overestimate pt .

B. Bootstrap-based comparison of statistics
Several strategies can be considered to compare pairs of statis-

tics (s1, s2) through a p-value.

1. Estimate u(s1), u(s2), and cov(s1, s2)
The uncertainty on the statistics of interest (except for the MSE

and RMSD) and their covariance are not, to our knowledge, avail-
able in analytical form. In consequence, one has to use a numerical
procedure, such as the bootstrap, to estimate them.25,27 The applica-
tion of the bootstrap to individual terms of Eq. (18) will result in an
accumulation of statistical uncertainties. Besides, the estimation of
covariances is known to be very sensitive to outliers. This approach
is clearly suboptimal and is not recommended.

2. Estimate directly u(s1 − s2)
A better approach in the present context is to estimate directly

(by bootstrap) the uncertainty on the difference of scores. This
relieves underlying hypotheses in Eq. (18) and enables the explicit
correlation of samples of s1 and s2 through paired-data sampling.
However, estimating a discrepancy factor leads us to use Eq. (17) to
estimate the p-value, with the associated normality hypothesis.

3. Generalized p-value
The use of the generalized p-value (pg), as proposed by Wilcox

and Erceg-Hurn 32,33 (method M; cf. Algorithm 1), conveniently

ALGORITHM 1. Method M: testing the equality of a statistic S for two paired samples
by bootstrap and a generalized p-value (pg).33

Input: Two paired error sets E1, E2 of size N, a statistic estimator S,
and a number of bootstrap samples B

1. Bootstrap the statistics difference

(a) For j = 1 : B

i. Generate a N-sample of paired data with replacement
Ð→ (E∗1 ,E∗2 )

ii. Estimate dj = S(E∗1 ) − S(E∗2 )
2. Calculate a generalized p-value to test S(E1) = S(E2)

pg = 2 min(p∗, 1 − p∗), where
p∗ = (A + 0.5C)/B
A = ∑B

i=1 1di<0
C = ∑B

i=1 1di=0
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avoids the estimation u(s1 − s2) and the incurring normality hypoth-
esis of pt . It is based on a simple counting of null and neg-
ative bootstrapped differences of statistics with paired samples.
If S(E1) = S(E2), one expects that the bootstrap sample will gener-
ate positive and negative values of their difference in equal amounts.
In this case, p∗ ≃ 1 − p∗ ≃ 0.5 and pg is close to 1. Note that the
null values in the differences sample are shared equally between
the positive and negative values. On the opposite, if there is a
small proportion p∗ of negative values, the mean of the differ-
ences sample should be positive, different from zero. The smaller
p∗, the farther the mean from zero and the lower the proba-
bility of the null, S(E1) = S(E2), hypothesis. The symmetric case
occurs for large values of p∗ (small values of 1 − p∗). As the sign
of the difference is irrelevant, a factor two is applied to estimate
pg . The identity of this algorithm with the analytical p-value for
the comparison of the means of normal samples is established in
Appendix D 2.

The use of paired samples is essential to capture inter-statistics
correlations. Wilcox and Erceg-Hurn33 have shown that their
method M provides a well-controlled level of type I errors (false
positive) for the comparison of quantiles at the 0.05 level. They
estimated that dataset sizes of N ≥ 30 are necessary when compar-
ing quantiles up to 0.9. This applies to the MUE, which we have
shown to lie typically between the 0.5 and 0.75 quantiles.3 Using the
same protocol, we estimated that for the comparison of Q95 values
at the same 0.05 level, N ≥ 60 is requested. Details are presented in
Appendix C.

C. Rank inversion probability P inv

In a previous article,3 we defined a ranking inversion probabil-
ity

Pinv = P(S1 < S2∣s1 > s2) (21)

and estimated it using the hypothesis of a normal distribution for
the difference of statistics. Using Eqs. (19) and (20), this former
estimation can be reformulated as

Pinv = Φ(0;μ = s1 − s2, σ =
√
u2(s1) + u2(s2)) (22)

= Φ(0;μ = ξunc) (23)

= Φ(−ξunc) (24)

= 1 −Φ(ξunc) (25)

= punc / 2, (26)

where the unspecified parameters of the normal cumulative distri-
bution function Φ(x; μ, σ) are their standard values (μ = 0 and
σ = 1). The link to punc shows the limitations of our previous esti-
mation of Pinv, i.e., the normality hypothesis and the neglect of error
sets correlations.

Using the same difference statistics used for pg (Algorithm 1),
one can generalize Eq. (21) by defining Pinv as the probability to
have differences in the bootstrap sample with a sign opposite to the

reference one [sign(s1 − s2)],

Pinv =
1
B
(

B

∑
i=1

1sign(di)≠sign(s1−s2) −
B

∑
i=1

1di=0), (27)

where B is the number of bootstrap samples and the null differences
(with sign 0) are compensated for. Enforcing the condition s1 > s2 in
Eq. (21), one gets sign(s1 − s2) = 1, and finally,

Pinv =
1
B
(

B

∑
i=1

1sign(di)≠1 −
B

∑
i=1

1di=0) (28)

= 1
B
(

B

∑
i=1

1di≤0 −
B

∑
i=1

1di=0) (29)

= 1
B

B

∑
i=1

1di<0 (30)

≃ pg / 2, (31)

where the relation to pg (Algorithm 1) assumes a negligible prob-
ability to have null statistics differences and exploits the fact that
∑B

i=1 1di<0 < ∑B
i=1 1di>0 if s1 > s2.

D. Ranking probability matrix Pr

A measure of the reliability of a statistic-based ranking can be
estimated by bootstrap.34 This approach has notably been used by
Proppe and Reiher9 to study how the sample size affects the proba-
bility for a DFA to be ranked at first place on the basis of its predic-
tion uncertainty. We apply it here to compute, for a set of K methods
scored by a statistic S, a ranking probability matrixPr giving, for each
method, its probability to have any rank,

Pr,jk = P(rank(Sj) = k); j, k = 1, . . . ,K. (32)

The algorithm to generate this matrix is described in Algorithm 2.

ALGORITHM 2. Estimating the rank probabilities for a set of methods.

Input: K paired error sets, E1, . . ., EK of size N, a statistic estimator
S, and a number of bootstrap samples B

1. Bootstrap the ranks

(a) For j = 1 : B

i. Generate a N-sample of paired data with replacement
Ð→ (E∗1 , . . . ,E∗K)

ii. Estimate the statistics vector S∗ = (S(E∗1 ), . . . , S(E∗K))
iii. Estimate the ranks by increasing order of S∗: O∗j =

order(S∗), where O∗j is a K-vector of integer values.

2. Estimate for each method its probability to have any rank

Pr,jk =
1
B

B

∑
i=1

1O∗ij=k
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FIG. 4. Graphical representations of a MUE ranking probability matrix Pr : (a) color level image of the ranking probability matrix and (b) summary of the ranking probability
matrix by the modes (diamonds) and 90% probability intervals. The data are taken from the case PER2018 (cf. Paper II11). Both representations indicate a possible ranking
inversion between B97-1, CAM-B3LYP, and PBE0, i.e., the reference ranking based on the MUE is not certain for this trio. Similar problems occur within two other groups,
notably BLYP and PW86PBE. The ranks of PBE (8) and BH&HLYP (9) are well established.

1. Representations
Two representations for this matrix are proposed by Hall

and Miller,34 either a combined color-level / symbol-size image
[Fig. 4(a)] or a summary by mode and probability intervals
[Fig. 4(b)]. In the following, we will use mostly the levels’ image
representation, which we find easier to read and interpret.35

2. Remarks

● As discussed by Hall and Miller,34 the standard bootstrap
(N-out of-N sampling) tends to underestimate the disper-
sion of the ranks. Better estimates would be obtained by a
N′-out of-N sampling (N′ < N), but the best choice of N′

is problem-dependent and is left to the appreciation of the
analyst. For the sake of simplicity and until further guid-
ance on the optimal choice of N′, we consider here that the
standard method provides a reasonable qualitative appreci-
ation of ranking uncertainties. An example with N′ = N/3 is
presented in case DAS2019 of Paper II.11

● As a general trend, one expects that ranking uncertainty
will increase for smaller error sets but might also increase
with the number K of compared methods, notably if several
methods have similar performances.

VI. IMPLEMENTATION
Calculations have been made in the R language,36 using several

packages, notably for the bootstrap (boot37). Bootstrap estimates are
based on 1000 replicates.

Quantiles: Wilcox and Erceg-Hurn33 recommend the use of the
Harrell and Davis method for quantiles estimation,38 which provides
a better stability for the bootstrap sampling of quantiles. The rele-
vance of this choice is illustrated in Appendix D. In the case studies

of Paper II,11 all quantiles are estimated by the Harrell and Davis
method,38 as implemented in package WSR2.33,39,40

Correlation: the estimation of correlation coefficients by the
standard Pearson method is reputed to be very sensitive to the
presence of outliers.39 As the presence of a small amount of out-
liers is a frequent feature of the benchmarking datasets, we use the
more robust rank-correlation (Spearman) method, unless otherwise
specified.

Code: the application ErrView implementing the meth-
ods described in this article (and more) and the corresponding
datasets are archived at https://github.com/ppernot/ErrView (DOI:
10.5281/zenodo.3628489); a test web interface is also freely accessi-
ble at http://upsa.shinyapps.io/ErrView.

VII. CONCLUSIONS
In this article, we proposed several tools to test the robustness

of rankings or comparisons of methods based on error statistics for
non-exhaustive, limited size datasets. In order to avoid hypotheses
on the errors distributions, bootstrap-based methods were adopted,
as suggested by Proppe and Reiher9 for the estimation of predic-
tion uncertainty of density functional theory (DFT) methods. Special
care has been taken to use (robust) methods best adapted to provide
reliable results for small datasets.

We introduced the systematic improvement probability (SIP),
which is independent of other descriptive statistics. We have shown
that the use of MUE for ranking hides a complex interplay between
genuine method improvements and error cancellations inherent
to most computational chemistry methods. In particular, we have
shown how a difference in MUE is a balance between gains and
losses in absolute errors. Estimation of the systematic improvement
probability (SIP), the mean gain (MG), and mean loss (ML) statistics
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can help understand this balance and to assess the risks for a user of
switching between two methods.

When considering pairs of methods, we generalized our previ-
ous definition of the inversion probability Pinv to account for correla-
tions between statistics and relieve a normal distribution hypothesis.
The link of Pinv to p-values for the comparison of two values of a
statistic has been established.

Finally, the ranking probability matrix Pr for a chosen statistic
provides a clear diagnostic on the robustness of the corresponding
ranking.

All these tools are put to test in Paper II11 on nine datasets from
the recent benchmark literature.

DATA AVAILABILITY

The data that support the findings of this study are openly
available in Zenodo at https://doi.org/10.5281/zenodo.3678481.41

APPENDIX A: ESTIMATION OF THE MEAN VALUE
AND ITS UNCERTAINTY

Let us consider the mean (signed) value of the errors (MSE). In
the absence of uncertainty, it is defined as

e = 1
N

N

∑
i=1

ei, (A1)

and its uncertainty (standard error) is estimated as

u(e) =
√

s2
e

N
, (A2)

where s2
e is a sample-based estimator of the population variance,

s2
e =

1
N − 1

N

∑
i=1
(ei − e)2. (A3)

Equation (A2) gives the well-known dependence of the MSE uncer-
tainty with the dataset size for independent and identically dis-
tributed (i.i.d.) errors, assuming a finite variance, which might
exclude error sets with heavy-tailed distributions, e.g., Cauchy.42

If uncertainty on errors u(ei) is negligible, se is an estimation of
the standard deviation of the errors distribution σ, which represents
the dispersion of model errors. If the reference data are uncertain,
se quantifies a dispersion due to both model errors and reference
data uncertainty. In consequence, it overestimates the dispersion of
model errors, and specific models have to be designed if one wishes
to estimate this specific contribution.9,23 This points to the necessity
of using accurate reference data if the benchmark based on standard
statistics is to reflect the properties of the studied methods.

To be more specific, in the presence of uncertainty on errors,
the weighted mean is the maximum likelihood estimator of the
distribution mean under normality assumptions,43

e =
N

∑
i=1

wiei, (A4)

wi =
u(ei)−2

∑N
j=1 u(ej)−2

, (A5)

giving less weight to the more uncertain data. Direct application of
the combination of variances to this expression leads to43

u(e)2 = 1
∑N

j=1 u(ej)−2
. (A6)

Note that in the case of identical uncertainty for all data, one recovers
the expression for the unweighted case [Eq. (A2)].

The validity of this estimation has to be tested by computing
the weighted chi-squared,

χ2
w =∑

i

(ei − e)2

u(ei)2 . (A7)

If the errors on the reference data are assumed to be normally dis-
tributed, χ2

w has a chi-squared distribution with N − 1 degrees of
freedom (χ2

N−1). χ2
w should be close to the mean of this distribution,

N − 1, and lie within its 95% high probability interval. If χ2
w is too

small, the u(ei) are over-estimated and should be reconsidered, or
the benchmarked method is over-fitting the data, which is unlikely,
unless the method is parametric and has been calibrated on this same
dataset. If χ2

w is too large, there is an excess of variance in the EM

error set.44–46 In the typical benchmarking of computational chem-
istry methods, this is generally the case because of the extraneous
dispersion due to model errors. To ensure the statistical validity of
the weighted mean and its uncertainty, one has to therefore define a
more complex error model, considering explicitly the two sources of
dispersion, and to redefine the weights, accounting for the excess of
variance and possible biases in the error sets.9,23,24,47,48

If one stipulates that the dispersion of the errors is the com-
bined effect of model error and reference data uncertainty, one can
redefine the weights as45

wi =
(σ2 + u(ei)2)−1

∑N
j=1(σ2 + u(ej)2)−1 , (A8)

where σ2 is the variance of model errors. With these new weights,

u(e)2 = 1

∑N
j=1(σ2 + u(ej)2)−1 (A9)

converges properly to the standard limit when the reference data
errors become negligible before the model errors. The model error
variance σ2 can be estimated by decomposing the total variance of
the errors into the variance of model errors plus the mean variance
of the data (known as Cochran’s ANOVA estimate44,46),

var(e) = σ2 +
1
N

N

∑
j=1

u(ej)2. (A10)

This variance analysis ensures that χ2
w is correct. Note that

other reweighting schemes exist,44,46 but Cochran’s is the simplest.
Besides, reweighting methods are iterative: σ depends on e, which
itself depends on σ.

If the dispersion of reference data uncertainties is small, i.e.,
smaller than the model errors contribution, one can reasonably
consider that the weights are identical and that the unweighted
mean can be used. Formally, its uncertainty [Eq. (A9)] depends
on σ, which can be directly estimated through Eq. (A10), but by
construction, one will recover results given by Eq. (A2).
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One will therefore consider that, unless a large dispersion
of reference data uncertainty is observed, these uncertainties can
be ignored in the estimation of the mean and its standard error.
Otherwise, one should use the weighted mean with the standard
uncertainty estimate.49

An advanced modeling of uncertainty sources is crucial if one
wishes a reliable estimate of the MSE and the various uncertainty
contributions.23 In standard benchmarking, the aim is mostly to
compare methods, knowing that the reference datasets are incom-
plete. If reference data uncertainty plays a significant role—which
would be the case if data with very different uncertainty levels were
aggregated in the dataset—one might assume that its impact will be

the same for all methods to be compared. The values of the disper-
sion statistics will be consistently overestimated for all methods. As
long as one is not interested in the accurate estimation of the under-
lying properties of the error distributions, such as the model predic-
tion uncertainty,9,23 it is simpler to rely on unweighted schemes and
properly curated datasets.

APPENDIX B: NUMERICAL STUDY
OF THE CORRELATION OF NONLINEAR STATISTICS

To illustrate the transfer of correlation from errors sets E1
and E2 to their statistics, one assumes that they are described by a

FIG. 5. Correlation coefficients cor(s1,
s2) of statistics (S = MUE, MSE, and
Q95) for two samples as a function of
the correlation coefficient ρ of these sam-
ples. The error bars represent 95% inter-
vals for sampling errors. Four cases of
the g-and-h distribution are considered
for the error sets: (a) normal (g = h
= 0), (b) heavy-tailed symmetric (g = 0;
h = 0.2), (c) light-tailed asymmetric
(g = 0.2; h = 0), and (d) heavy-
tailed asymmetric (g = h = 0.2). Addi-
tional cases with shifted distributions,
μ = (−0.2, 0.5): (e) normal and (f)
Student’s-t (ν = 5). All distributions have
unit variance.
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bivariate distribution with prescribed correlation coefficient ρ. From
this distribution, one generates random samples E∗1 and E∗2 and one
estimates the statistics values s∗1 = S(E∗1 ) and s∗2 = S(E∗2 ). cor(s1, s2)
is finally estimated from s∗1 and s∗2 samples.

The error sets correlation coefficient ρ is varied between −1
and 1, and the resulting correlation coefficients are estimated for the
MSE, MUE, and Q95 statistics. The dataset size is N = 100 and Monte
Carlo samples size is M = 103.

The results for four representative cases of the g-and-h distri-
bution used by Wilcox and Erceg-Hurn33 (Appendix E) of error sets
are reported in Figs. 5(a)–5(d). In this example, both error sets E1
and E2 have the same distribution with unit variance, and only their
correlation varies.

These simulations confirm the full correlation transfer to the
MSE, independent of the underlying distribution. The correlation
coefficients for the other, non-linear, statistics are mostly positive
(within numerical uncertainty) and systematically smaller than |ρ|.
They are symmetrical with respect to ρ = 0 for symmetrical error
distributions. The values for the MUE are consistently larger than,
or equal to, the values for Q95. In all cases, the correlation coefficient
for the MUE is very close to ρ2. For negative values of ρ, the cor-
relation coefficient of Q95 is sensitive to the asymmetry of the error
distribution.

The same procedure has been applied to shifted means
(e1 = −0.2 and e2 = 0.5) for normal and Student’s-t distribution
with 5 degrees of freedom [Figs. 5(e) and 5(f)]. For the normal dis-
tribution, the symmetry observed above is broken, as well as the
pure quadratic trend for the MUE. For the Student’s-t distribution,

the correlations lie above a positive threshold and one can have
cor(s1, s2) > |ρ|.

The simulation of correlated error samples enabled us to illus-
trate properties of correlation transfer to statistics: identical corre-
lation for the MSE and smaller, mostly positive, correlations for the
MUE and Q95.. As we covered only a limited set of scenarios, these
features cannot be considered universal.

APPENDIX C: TYPE I ERROR PROBABILITIES
FOR THE COMPARISON OF MUE AND Q 95 PAIRS

A false positive (type I error) is obtained when a true null
hypothesis is rejected by a test.50,51 Type I errors can be kept at a
minimum by choosing appropriate dataset sizes. Wilcox and Erceg-
Hurn33 estimated the probability of type I errors for the compari-
son of quantiles of correlated datasets with their method M (Algo-
rithm 1) and determined the sample size N required to reach a prob-
ability of type I errors α̂ close to the statistical testing threshold. For
their study, the authors used the g-and-h distribution (Appendix E)
to generate the data samples and compared quantiles up to 0.9 for
two levels of correlation, ρ = 0 and 0.7. In these conditions, they con-
cluded that N ≥ 30 was necessary to achieve a correct level of type I
error, considering that it should not exceed 0.075 for a test at the 0.05
level.52

As these test cases did not include our conditions of interest in
terms of correlation (often above ρ = 0.9) and quantile level (0.95 for
Q95), we performed new simulations using the same procedure and

FIG. 6. Probability of type I errors α for the MUE (left) and Q95 (right) as a function of dataset size N. Each graph corresponds to a type of g-and-h distribution for the data
samples (see the text for details). The points and lines correspond to a value of the datasets correlation coefficient ρ. The black dashed line depicts the upper safety limit
(0.075).
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functions provided in R packages WRS53 and WRS2.40 After assessing
the reproducibility of the original results, we kept the same gen-
erative distribution and scenario for g and h parameters, and we
extended the exploration for the dataset size from N = 20 to 70 and
the correlation coefficient ρ = 0, 0.5, 0.9.

The procedure is as follows: one draws two samples E1 and E2
of size N from the same distribution and computes pg for the com-
parison of the values of a statistic S, s1 and s2, respectively. A value
of pg < 0.05 leads to the rejection of the true null hypothesis s1 = s2.
The process is repeated M times, and the proportion of rejections
provides an estimation of the probability α of type I errors. For com-
patibility with the original study, the number of replications is kept
to M = 2000 and the number of bootstrap samples to B = 1000. The
results for the comparison of MUE and Q95 pairs are reported in
Fig. 6.

For the MUE, the safety region (α ≤ 0.075; black dashed line)52

is reached in all cases for N ≥ 30. Above N = 40, all values of α
are close to the nominal value (0.05). There is no remarkable trend
with respect to the type of g-and-h distribution, nor the correlation
coefficient. We have estimated previously3 that the MUE is typi-
cally located between the 0.5 and 0.75 quantiles, for which Wilcox
and Erceg-Hurn33 have concluded that the minimal dataset size is
N ≥ 30, which is confirmed here.

For Q95, one sees that for N = 40, the situation is more favorable
for the normal distribution, but in all cases, the recommended limit
is reached for N ≥ 60. Strong correlation coefficients (ρ = 0.9) seem
also to be more favorable, and one observes a slight deleterious effect
below N = 50 for heavy-tailed distributions (h = 0.2). Nevertheless,
even for N = 30, α does not exceed notably 12% probability of type I
error.

Remark. Establishing the power of the test (1 − β), where β is
the probability of type II errors (false negative or the non-rejection
of a false null hypothesis),50 requires the definition an alternative
hypothesis.51 In the present case, there are infinite ways to real-
ize the s1 ≠ s2 alternative, so the power estimation is practically
intractable.

APPENDIX D: NUMERICAL STUDY OF THE HARRELL
AND DAVIS ALGORITHM

This example is intended to outline the advantages of the Har-
rell and Davis (HD) algorithm for quantiles estimation, notably
when associated with bootstrap sampling, as suggested by Wilcox
and Erceg-Hurn.33

One considers the values s1 and s2 of a statistic S for two
datasets E1 and E2, which are drawn from a bivariate normal
distribution,

(E1,E2) ∼ N
⎛
⎝
μ = (μ1,μ2),Σ =

⎛
⎝

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

⎞
⎠
⎞
⎠

, (D1)

where the error samples have different means (μ1, μ2) and variances
(σ2

1 , σ2
2) and cov(E1, E2) = ρσ1σ2. The values of the parameters for

the simulations and the corresponding statistics are given in Table I.
The reference values for the MUE and Q95 are obtained as described

TABLE I. Reference values for the univariate statistics of datasets E1 and E2
described by Eq. (D1) for μ1 = 0, μ2 = 0.1, σ1 = 1.1, and σ2 = 1.0.

Set MSE RMSD MUE Q95

E1 0 1.1 0.88 2.16
E2 0.1 1.0 0.80 1.97

in a previous article3 based on the properties of the folded normal
distribution.

1. Comparison of HD and Q̂7 quantiles
Q95 is estimated by two algorithms: the HD algorithm and

the Q̂7 method of Hyndman and Fan,54 which is the default algo-
rithms in the quantile() function of R.36 Q̂7 is one of a family
of quantile estimators based on the linear combination of one or
two order statistics,54 whereas the HD algorithm is based on the
linear combination of all order statistics for a sample.38 The lat-
ter is more efficient for small samples, but more computationally
demanding.38

In a first test, datasets of increasing sizes, between N = 20 and
500, are generated by random sampling from the normal distribu-
tion for E2, and Q95 is estimated for each sample by both algorithms.
This procedure is repeated 104 times, and the distributions of Q95
values are summarized by a set of five quantiles (0.05, 0.25, 0.5,
0.75, and 0.95). The results are presented in Fig. 7(a). This sim-
ulation shows that the HD quantiles converge faster to the true
value (1.97) than the Q̂7 ones, with less bias for small samples
(N < 100).

In a second test, a unique E2 sample of size N = 500 is gen-
erated, and subsets of increasing size are taken as initial data for a
bootstrap procedure (104 repeats). The bootstrap samples are ana-
lyzed as above and plotted in Fig. 7(b). The difference of conver-
gence between both quantile algorithms is less striking, but boot-
strap for the Q̂7 algorithm seems to produce very asymmetric
distributions, where the median is close to one of the quartiles. If one
looks at the histograms of sampled values for N = 100 [Fig. 7(c)],
one sees that the HD algorithms produce a much smoother boot-
strap sample histogram, where Q̂7 produces ragged histograms.
The same features are still visible, to a lesser extent, for N = 400
[Fig. 7(d)]. This property of the HD method explains its good per-
formances for small samples when used in conjunction with the
bootstrap.33

2. Estimation of p -values
The estimation of p-values is obtained by Monte Carlo sam-

pling of E1 and E2 sets of size N varying between 20 and 500
(ρ = 0.9). One first checks that the generalized p-value pg
(Algorithm 1) is identical to the analytical value of pt for the
comparison of mean values [Fig. 8(a)].

Then, the interest of the Harrell–Davis algorithm for the esti-
mation of pg values for the comparison of quantiles is shown in
Fig. 8(b): reaching the 0.05 threshold requires about 250 points
for the HD method, whereas the Q̂7 reference quantile algorithm
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FIG. 7. Comparison of Q95 estimation
algorithms, Q̂7 and HD: (a) Monte Carlo
sampling, (b) bootstrap sampling, (c)
bootstrap sample histogram for N = 100,
and (d) idem for N = 400. The thicker
bars in [(a) and (b)] represent 25%–75%
probability intervals and the finer bars
represent 5%–95% probability intervals.
The black dashed line represents the
theoretical value for Q95 (1.97).

FIG. 8. Validation of methodological
choices for the p-value estimation: (a)
generalized p-value pg for the compar-
ison of means (MSE) compared to the
analytical result pt and (b) impact of the
quantile estimation algorithm on pg for
the comparison of Q95 values (see text
for details about the HD and Q̂7 algo-
rithm).

requires about 380 points. Besides, the HD curve is smoother than
the reference one due to the smoothness properties of the HD
estimator shown above.

APPENDIX E: THE G-AND-H DISTRIBUTION
The g-and-h distribution55 is typically used to study the impact

of distribution shapes on statistics. If z has a standard normal

distribution, its transform

X =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
g (e

gz − 1)e h
2 z

2
if g > 0

ze
h
2 z

2
if g = 0

(E1)

has a g-and-h distribution. Its shape is defined by parameters g and
h and contains the normal distribution as a special case (g = h = 0).
Besides the normal, three typical cases are proposed by Wilcox
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and Erceg-Hurn:33 heavy-tailed symmetric (g = 0; h = 0.2), light-
tailed asymmetric (g = 0.2; h = 0), and heavy-tailed asymmetric
(g = h = 0.2).
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