
Probabilistic performance estimators for computational chemistry methods: The
empirical cumulative distribution function of absolute errors
Pascal Pernot, and Andreas Savin

Citation: The Journal of Chemical Physics 148, 241707 (2018); doi: 10.1063/1.5016248
View online: https://doi.org/10.1063/1.5016248
View Table of Contents: http://aip.scitation.org/toc/jcp/148/24
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/56140772/x01/AIP-PT/JCP_ArticleDL_110117/AIP-3075_JCP_Perspective_Generic_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Pernot%2C+Pascal
http://aip.scitation.org/author/Savin%2C+Andreas
/loi/jcp
https://doi.org/10.1063/1.5016248
http://aip.scitation.org/toc/jcp/148/24
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 148, 241707 (2018)

Probabilistic performance estimators for computational
chemistry methods: The empirical cumulative distribution
function of absolute errors

Pascal Pernot1,a) and Andreas Savin2,b)
1Laboratoire de Chimie Physique, UMR8000 CNRS/Université Paris-Sud, F-91405 Orsay, France
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Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of
a method through error statistics. The commonly used error statistics, such as the mean signed and
mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached
to these methods. We show that, the distributions of model errors being neither normal nor zero-
centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this
limitation, we advocate for the use of more informative statistics, based on the empirical cumulative
distribution function of unsigned errors, namely, (1) the probability for a new calculation to have
an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect
with a chosen high confidence level. Those statistics are also shown to be well suited for bench-
marking and ranking studies. Moreover, the standard error on all benchmarking statistics depends
on the size of the reference dataset. Systematic publication of these standard errors would be very
helpful to assess the statistical reliability of benchmarking conclusions. Published by AIP Publishing.
https://doi.org/10.1063/1.5016248

I. INTRODUCTION

There is a wide gap between the information pro-
vided by benchmarking studies of computational chemistry
(CC) methods and the information needed by end-users
to choose a method adapted to their specific, application-
dependent requirements. It has been recently proposed that
an unequivocal criterion matching both aims would be the
prediction uncertainty,1,2 which should enable to infer inter-
vals around the predicted value in which the true value
is expected to lie with a high probability.3 This would
indeed be a valuable benchmarking and ranking criterion
(the smaller, the better) and an essential information for
users to select an adequate method (other rational criteria
being, for instance, method availability and computational
cost).

Prediction uncertainty is not always easy to estimate and
requires a careful analysis of prediction errors, which are
a mixture of modeling errors (method), discretization errors
(basis set, grid, . . .), and numerical errors (floating-point arith-
metic, convergence thresholds, stochastic algorithms, . . .),
with an added contribution of parametric uncertainty for semi-
empirical methods.4,5 Model choice and discretization are
mainly inducing systematic errors,1,6 while numerical and
parametric sources are generally assumed to contribute ran-
domly. For deterministic CC methods, numerical and paramet-
ric uncertainties are typically much smaller than systematic
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errors due to their foundational approximations and discretiza-
tion schemes.1,4,7

Estimation of prediction uncertainty requires the correc-
tion of systematic errors.8 This is achieved, for instance, by
composite methods,9,10 a posteriori correction estimated from
trends in a calibration error set,1,11 or machine learning.12,13

Prediction uncertainty is therefore expected to quantify the
unpredictable part of prediction errors, which is observed
in the residual errors after correction. Note that corrections
are popular for some observables, such as vibrational fre-
quencies, much less for the other ones, such as atomization
energies (AEs), and end-users most often use uncorrected
results.

Current CC methods do not generally provide estimations
of their prediction uncertainty, at the exception of the semi-
empiric meta Bayesian Error Estimating Functional (mBEEF)
density functional approximation (DFA) and its relatives.14–16

Even in this case, uncertainty estimation is based on the absorp-
tion of systematic errors into parametric uncertainty, the so-
called parameter uncertainty inflation,7 an approach which
has recently be shown to be biased.7 Moreover, it is practi-
cally impossible to derive a prediction uncertainty from the
usual statistics provided in the validation and ranking studies
of uncorrected CC methods.1

In the majority of validation and ranking (benchmark-
ing) studies, reference datasets are used to assess the accuracy
of a method. The quality of the reference datasets is cen-
tral to this approach, and several factors tend to limit the
quantity of available data, notably the experimental ones. For
instance, Karton et al.17 justify their use of high-accuracy cal-
culated data instead of the experimental ones by the following
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limitations: possibly large measurement uncertainties, sec-
ondary contributions not included in approximate models,
partial and uneven coverage of the chemical universe, and
small incentive to the production of new data.

In any case, the conclusions drawn from such bench-
marking studies are only valid in a statistical sense. Summary
statistics are used to condense benchmark data and facilitate
the decision of using, or not, a given method. The most popu-
lar statistic is the mean absolute error (MAE), which appears
under various names,1 for instance, average absolute deviation
(AAD)18 or mean unsigned error (MUE).19,20 The MUE21 is
extensively used to assess and compare the performances of
DFAs,20 but, as shown below, it might be unfit to enable end-
users to estimate the adequacy of a method for a given task.
Note that other statistics could be used and preferred to rank
CC methods, but most suffer from the same shortcomings as
the MUE.22,23

The aim of the present paper is to advocate the use of
indicators based on probabilistic considerations which enable
to implement user-defined requirements for CC methods. As
most benchmark studies deal with uncorrected methods, one
will consider only raw error sets. The basic idea is to look for
connections between a required accuracy and the probability to
obtain such an accuracy with a given method. In practice, one
can either specify the accuracy and check from the benchmark
dataset if the probability of getting acceptable results is high
enough or, inversely, specify a probability (as a confidence or
success level) and decide if the corresponding accuracy fits
one’s needs.

The probabilistic estimators are defined in Sec. II. The
dataset and the distributions of errors are exposed and explored
in Sec. III A. In Sec. III B, we show how the non-normality
of the error distributions affects the use of MUE to infer pre-
diction error probabilities and we develop the application of
the probabilistic estimators to a study dataset. In order to illus-
trate our propositions, we consider the errors produced by a set
of DFAs on the atomization energies of the molecules in the
widely used G3/99 database.24 Note that it is not the aim of this
paper to recommend, or discourage, the use of a given DFA,
but only to exemplify how the indicators we propose might be
used. Section IV provides recommendations for a generalized
use of probabilistic estimators.

II. PROBABILISTIC STATISTICS
OF ERROR DISTRIBUTIONS

In this section, we propose statistics that might help end-
users to assess the risks, in terms of prediction errors, involved
with choosing a given model approximation (e.g., DFA/basis-
set). Our aim is to answer two questions, for a molecule with
similar properties to the ones in the reference set:

• What is the probability to achieve a chosen maximal
error for a given approximation?

• What is the largest error one can expect with a chosen
high confidence for a given approximation?

Beforehand, we review basic information about distributions
of errors, considering that, for deterministic and uncorrected
CC methods, these are typically dominated by modeling and

discretization errors. After showing that modeling errors are
not necessarily normally distributed (Sec. II A), we introduce
essential notations and definitions of the statistics used in this
study and their estimators (Sec. II B). The ambiguity of the
MUE as a probabilistic indicator is demonstrated on the exam-
ple of the folded normal distribution (FND) (Sec. II C). Finally
the probabilistic statistics proposed to complement the MUE
are presented (Sec. II D).

A. Non-normality of model error distributions

In order to illustrate the effect of a model approximation
on error distributions, let us characterize the system chosen by
a number x between 0 and 1. Let the property to be described
depend on x as y(x) = (1 + x)2, and consider an approximation
for it as ỹ(x) = 1 + mx, where m is a parameter chosen by some
criterion. For example,

• m = 2 ensures that the property (1 + x)2 = 1 + 2x + · · ·
is correctly described for small x,

• m = 3 guarantees that the property is exactly reproduced
at the ends of the interval (x = 0 and x = 1),

• m = 2.75 is obtained by a least-squares fit, i.e., by
choosing m to minimize ∫

1
0 (ỹ(x) − y(x))2 dx.

We will limit our discussion to 2 < m < 3.
Let us assume that x is uniformly distributed on [0, 1],

i.e., “the systems are chosen at random.” We would like to
know how the errors of the approximation, e(x) = ỹ(x) � y(x),
are distributed. If the random variable x has the probability
distribution function f (x) [uniform, f (x) = 1 in our case], that
of e, g(e), can be obtained from25

g(e) =
�����
dx
de

�����
f (e). (1)

However, e(x) is not monotonic on the interval of x considered
here: e(x) has a maximum at x = (m� 2)/2. To obtain monotonic
functions, we subdivide the interval (0,1) into two regions,
left and right of this maximum. For each of the intervals, we
get

�����
dx
de

�����
= 1/

√
(m − 2)2 − 4y. (2)

However, we have to count twice the positive contributions
[from the branch 0 < x < (m � 2)/2 and from (m � 2)/2 < x
< m � 2] and obtain

g(e) =



1/
√

(m − 2)2 − 4e if m − 3 < e < 0

2/
√

(m − 2)2 − 4e if 0 < e < 1
4 (m − 2)2.

(3)

Evidently, this distribution of errors has nothing to do with a
normal distribution (Fig. 1).

Even if many error sets present distributions that are
less symptomatic than the one shown here (see, for instance,
those in Sec. III A, Fig. 4), there is no reason to presume
that they should be normally distributed. They could, for
instance, present tails with a slow, sub-exponential decay (the
so-called heavy tails) that prevent the reliable estimation of
some common statistics.
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FIG. 1. Model error distribution for
the least-squares approximation of the
curve y = (1 + x)2 by the linear model
ỹ = 1 + 2.75x. (a) The curves and errors
on x ∈ [0, 1]; (b) the probability den-
sity of errors g(Error) (red curve) and a
histogram for a uniform sample of x.

B. Notations and definitions
1. Errors/signed errors

The calculated value ci, for a system i in a dataset of size
N, differs from its reference value ri by an error

ei = ci − ri. (4)

The formulae for the calculation of MUE and other statistics
described below assume that the reference data and calculated
values have no uncertainty or uncertainties much smaller than
the errors themselves. This is a ubiquitous assumption in the
CC methods benchmarking literature. In the presence of non-
negligible uncertainties with heterogeneous amplitudes, one
should consider the use of weighted statistics.26

Considering that the errors have a probability density
function (PDF), noted π(e), one defines the errors’ mean, µ,
standard deviation, σ, and cumulative distribution function
(CDF), G, by

µ =

∫ ∞
−∞

x π(x)dx, (5)

σ =

∫ ∞
−∞

(x − µ)2π(x)dx, (6)

G(η) =
∫ η

−∞

π(x) dx. (7)

The CDF provides the probability that e is smaller than a
threshold η: P(e ≤ η) = G(η), where P(X) is the probability
of event X. Inversely, the value ηp below which e lies with
probability p = P(e ≤ ηp) is given by the inverse of the CDF
(the quantile function), ηp = G�1(p).

Due to the finite size of the errors’ sample, one has
only access to estimates of these properties, noted with a hat
(e.g., µ̂),

µ̂ ≡ MSE =
1
N

N∑
i=1

ei, (8)

σ̂ ≡ RMSD =

√√√
1

N − 1

N∑
i=1

(ei − µ̂)2, (9)

Ĝ(η) =
1
N

N∑
i=1

1ei≤η , (10)

where MSE is the mean signed error, RMSD is the root mean
square deviation of errors, and 1X is the indicator function of
event X. Ĝ(.) is called the empirical cumulative distribution
function (ECDF).

2. Absolute/unsigned errors

The absolute values of errors, or unsigned errors,
ε i = |ei |, have a probability density function which results
from the folding of π(e) [Fig. 2(a)] and is noted πF(ε). The
mean, standard deviation of the folded distribution, and its
cumulative distribution function are

µF =

∫ ∞
0

x πF(x)dx, (11)

σF =

∫ ∞
0

(x − µF)2πF(x)dx, (12)

GF(η) =
∫ η

0
πF(x) dx, (13)

and they are estimated by

µ̂F ≡ MUE =
1
N

N∑
i=1

ε i, (14)

σ̂F =

√√√
1

N − 1

N∑
i=1

(ε i − µ̂F)2, (15)

ĜF(η) =
1
N

N∑
i=1

1εi≤η . (16)

For simplicity, specific notations are used in the following
for the cumulative probabilities and percentiles of the unsigned
error distribution:

C(η) = ĜF(η), (17)

Qn = Ĝ−1
F (n/100), (18)

where n is an integer between 0 and 100 and n/100 is the
corresponding probability.

3. Statistical uncertainty of the estimators

Due to the limited size of the benchmark datasets, one
has to consider the statistical uncertainty (standard error)
attached to the estimators presented above. The formulae given
below are based on the asymptotic normality of the estima-
tors’ distributions.27 No strong assumption is done on the
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FIG. 2. Construction of the folded nor-
mal distribution (FND) and relation of
some of its properties with respect to the
mean value (µ) and standard deviation
(σ) of the underlying normal distribu-
tion. (a) Construction: the negative tail
of the normal distribution PDF (blue)
is folded on the positive side (dashed),
and addition to the positive error distri-
bution yields the FND PDF (red). (b)
Contour lines of µFN , the mean of the
FND, from Eq. (23). (c) Contour lines of
the cumulative probability C(µFN ), cor-
responding to the values of µFN in panel
(b). (d) Contour lines of the 95th per-
centile of the FND, Q95, superimposed
on the contours of µFN reported from
panel (b).

underlying error distribution, except for the uncertainty on
the mean, where the standard deviation has to be finite.28 The
formulae apply to both signed and unsigned errors by using
the corresponding statistics and are given here for unsigned
errors:

• The standard error of a mean error is estimated by the
usual formula

uµ̂F =
1
√

N
σ̂F . (19)

• The standard error of a cumulative probability C(η) is
given by27

uC(η) =

√
C(η)(1 − C(η))

N
. (20)

• The standard error of a percentile Qn is estimated by
Kendall’s formula27

uQn =
1

100

√
n(100 − n)

N π2
F(Qn)

. (21)

This formula is not well adapted for high percentiles (e.g.,
n > 80) because the estimation of the unknown PDF πF(.) in
this range is typically based on few sample points. We found
it more reliable to estimate uQn and confidence intervals (CIs)
on Qn by bootstrapping29 (Appendix).

4. Remarks

The MSE is a location or centrality estimator, i.e., it is
used to estimate the position of a representative value of the
sample. As such, the MSE is helpful to detect biased error

distributions (distributions for which the MSE is not small in
comparison to the RMSD of the sample) and to modulate the
interpretation of the MUE.

The MUE is particularly interesting as a robust disper-
sion statistics for residuals after model regression, i.e., when
|MSE| � MUE, a scenario where it is much less sensitive to
outliers than the root mean square of the residuals. However,
this property is often lost when considering error distributions:
in conditions where the MSE is not negligible before the MUE,
the latter is no more a dispersion statistics.1 In the limit where
the bias is very large, one gets MUE ' |MSE |, i.e., the MUE
becomes a location statistics. Although the interpretation of
the MUE is reputed to be “easy,”30,31 it is difficult to ana-
lyze in non-ideal conditions. This crucial point is illustrated in
Sec. II C.

Note that for some heavy-tailed distributions (e.g.,
Cauchy, slash, . . .) such statistics as the mean and/or the
variance are not defined, but the CDF and quantiles are.

C. The folded normal distribution

If X is a normally distributed random variable with mean µ
and standard deviation σ, |X | has a folded normal distribution
(FND) with PDF32 [Fig. 2(a)]

πFN (ε ; µ,σ) =
1

√
2πσ2

[
exp

(
−

(ε − µ)2

2σ2

)
+ exp

(
−

(ε + µ)2

2σ2

)]
. (22)
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1. Mean value

The mean µFN of the FND depends in a complex way on
the parameters of the original normal distribution,

µFN (µ,σ) = σ

√
2
π

exp

(
−
µ2

2σ2

)
− µ erf

(
−

µ
√

2σ

)
, (23)

so that a same value of µFN might result from very different
normal distributions (e.g., small µ and large σ, large µ and
small σ). The dependence of µFN on (µ, σ) is displayed by
contour lines in Fig. 2(b). Note that limσ→0(µFN ) = µ.

Note also that a decrease of µFN can be achieved through
a variety of paths in the (µ, σ) space, notably by decreasing
µ and increasing σ, or vice versa. Therefore, in benchmark-
ing studies, a lower MUE does not guarantee overall better
performances, as shown in the following.

2. Cumulative probabilities

The CDF, as the integral of πFN , depends also on µ and
σ,

GFN (ε ; µ,σ) =
1
2

[
erf

(
ε − µ
√

2σ

)
+ erf

(
ε + µ
√

2σ

)]
. (24)

In order to investigate the interest of the MUE (exactly known
here as µFN ) as a probabilistic estimator, one can calculate the
corresponding cumulative probability

C(µFN ) = P(ε ≤ µFN ) = GFN (µFN ). (25)

The value depends on µ andσ [Fig. 2(c)] and varies in the range
[0.5, 0.5753]. Even in ideal conditions of normal error distri-
butions, there is not a unique cumulative probability attached
to the MUE.

3. Percentiles

Similarly, a chosen value of µFN corresponds to a wide
range of values for the percentiles of the folded distribution
(e.g., Q95). In Fig. 2(d), one can see that a single µFN con-
tour line crosses several contour lines for Q95. For instance,
the µFN = 2 contour intersects with Q95 lines varying in the
[2, 5] kcal/mol range. This shows that in benchmarking studies,
a small value of the MUE does not guarantee good predictive
performance of a method.

However, a pair of values (µFN , µ) might enable to deter-
mine a percentile uniquely. Using Fig. 2(d), one can check,
for instance, that the contour line for µFN = 2.5 intersects the
vertical line for µ = 2 at a point where the value of Q95 is about
6. This suggests that, at least for normal error distributions,
the (MUE, MSE) pair provided by many benchmark studies
might be used to infer probabilistic information on unsigned
errors, in the same way as the (MSE, RMSD) pair would on
signed errors. This will be tested in Sec. III B 2.

D. Probabilistic estimators

We have shown above that model error distributions are
not a priori normal, and that, even for normal error distri-
butions, the MUE cannot provide unique probabilistic estima-
tions. One is therefore in need of the other kind of estimators to
answer the questions posed in the introduction of this section.
One needs in fact to be able to estimate probabilities associated

with a chosen error level and/or error levels associated with a
chosen probability. The central tool for this kind of inquiry
is the CDF. As we are interested mostly in the amplitude of
errors, we will use the ECDF of unsigned errors ĜF [Eq. (16)].

In order to be more realistic than with the FND, we illus-
trate the following points on a concrete example: Fig. 3 shows
the ECDF of the absolute errors on intensive atomization
energies (IAEs) by the Becke–3 parameters–Lee, Yang, Parr
(B3LYP) DFA. The definition of IAE is not relevant at this
stage and is presented in Sec. III A. The shaded area delimits
the 95% uncertainty band on the ECDF due to the sample size
of the G3/99 dataset.

1. Probability of obtaining acceptable results

For the approach presented in this section, users have to
decide what is an acceptable absolute error η for their applica-
tions. Based on the data in the reference set, users can conclude
whether their aim of getting acceptable results can be reached.

A trivial strategy would be to retain only methods for
which max (ε) < η. Unfortunately, as most methods present
large errors for some systems, this would hopelessly deplete
the pool of usable methods. One has thus to accept some risk
and use a probabilistic criterion. The probability to obtain
an acceptable absolute error level η with a given method is
estimated from the ECDF as C(η) [Eq. (17)].

As an illustration, consider Fig. 3: if one chooses an accep-
tance threshold for errors on IAE of η = 2 kcal/mol (red arrow),
one gets C(2) ' 0.85. Considering the statistical uncertainty
on the ECDF, one has indeed between 80% and 90% chances
to achieve this maximum error level with B3LYP. So, out of 10
calculations for new systems with this DFA, one should expect
that, on average, only 1 or 2 will provide the IAE results with
errors exceeding the chosen limit of 2 kcal/mol.

2. High confidence error level

Instead of obtaining the probability C(η) after specifying
the reliability parameter η, one may decide on a required con-
fidence level about the outcome of a calculation and check the

FIG. 3. Empirical cumulative distribution function for B3LYP absolute errors
on IAE for the G3/99 set. The shaded area delimits the 95% confidence interval
on the ECDF. The colored lines provide examples of the inquiries that can be
done from the ECDF (see the text).
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corresponding error level. One has to thus specify first a prob-
ability of success (e.g., p = 0.90 or 0.95) and then search for
the largest absolute error ε one has to accept so that this prob-
ability level can be reached. Here again, the answer is given
by the ECDF, through its inverse function and the percentiles
Qn, with n = 100 × p [Eq. (18)].

For instance, using the ECDF for B3LYP (Fig. 3), the IAE
absolute error corresponding to a 0.95 probability level is Q95

' 4.4 kcal/mol. Considering the uncertainty on the ECDF, the
error level to accept lies between 3.4 and 5.5 kcal/mol.

The risk level associated with the choice of a high-
probability percentile can also be stated in terms of the per-
centage of new calculations for which the absolute errors are
expected to exceed the chosen percentile. For Qn, this number
is on average (100 � n)%. For a new molecule with similar
properties to the ones in the reference dataset, one has on aver-
age only 5% chance to exceed the Q95 error level. Of course,
there is a distribution of excess chances, which depends on the
size of the reference dataset and on the probability level.

For the choice of a success/risk level, one has to appre-
ciate that, due to the errors’ sample size, the uncertainty on
the percentiles increases with the probability. For B3LYP,
for instance, the upper bound of a 95% confidence interval
(CI) on Q95, noted dQ95e, is about 5.5 kcal/mol (Table II). If
one is ready to accept a 10% risk, the values are somewhat
smaller, with Q90 = 3.2 and dQ90e = 3.9 kcal/mol. The choice
of a success/risk level has therefore to be guided by several
considerations:

• For small reference datasets, the uncertainty on high
percentiles might be large (Appendix), and it might be
pointless to discern Q90 from Q95. This would be the
case for datasets with less than 100 points. In the present
study case, with more than 200 points, their 95% confi-
dence intervals still overlap (see also Table II), but the
median value of one percentile lies outside of the 95%
CI of the other.

• It is also noteworthy that higher quantiles might be
more influenced by outliers. However, a level of 10% or
even 5% of outliers in a dataset starts to be problematic
anyway, and they should be treated before performing
statistical estimation.

• Some heavily corrected methods, such as the compos-
ite methods for thermochemistry, lead to quasi-normal
error distributions.33 In such cases, it has been recom-
mended by Ruscic3 to use an enlarged uncertainty u95%

to summarize the errors. Using an enlarged uncertainty
assumes the symmetry of the error distribution, not
its normality, and provides probabilistic information
on the performance of the method:8 P(µ̂ − u95% ≤ e
≤ µ̂ + u95%) = 0.95. In the case of unbiased meth-
ods (µ̂ ' 0), this translates for unsigned errors as P(ε
≤ u95%) = 0.95, which is the definition of Q95 [Eq. (18)].
Therefore, by using Q95 as a probabilistic estimator in
the case of general error distributions, one ensures a
direct link to the recommended usage for symmetric
distributions.

III. APPLICATION
A. Exploring the datasets

To illustrate the concepts developed in this article, we
consider the errors on the atomization energies (AEs) of the
G3/99 database.24 We base our study on published data,34 pro-
duced with the following DFAs: PW86PBE,35,36 B3LYP,37,38

PBE0,39 CAM-B3LYP,40 LC-ωPBE,41,42 PBE,36 BLYP,37,43

BH&HLYP,38 and B97-1.44 BLYP, PBE, and PW86PBE are
pure functionals, and the remaining are hybrids, CAM-B3LYP
and LC-ωPBE using range-separation.

Due to the extensivity of the atomization energies, it has
been shown that errors typically increase with the size of
the system.23,45,46 To eliminate this trend, we also consider
the atomization energies per atom, noted IAEs for intensive
atomization energies.45

1. Benchmarking statistics

First, we report reference statistics as found in most CC
methods benchmarking studies (Table I), namely, the MUE,
MSE, RMSD, Lowest Negative Error (LNE), and Highest
Positive Error (HPE). We omit the root mean squared error
(RMSE, mean of the uncentered errors) which is often reported
alongside the MUE, but has no practical interest here, and
include instead the RMSD, which is useful to assess the

TABLE I. Statistics of AE and IAE errors on the G3/99 dataset for a selection of DFAs. MUE: mean unsigned
error; MSE: mean signed error; RMSD: root mean square deviation; LNE: lowest negative error; HPE: highest
positive error. Boldface figures signal the smallest MUE values.

Error statistics for AE (kcal/mol) Error statistics for IAE (kcal/mol)

DFA MUE MSE RMSD LNE HPE MUE MSE RMSD LNE HPE

B3LYP 7.8 7.2 7.9 �7.8 39.5 1.2 1.0 1.5 �3.9 7.4
B97-1 6.1 4.8 6.8 �9.3 24.7 0.9 0.5 1.1 �3.2 4.6
BH&HLYP 32.3 32.2 18.5 �7.4 83.4 4.8 4.8 3.5 �3.7 20.5
BLYP 11.4 7.5 12.9 �25.4 45.3 1.6 0.4 2.2 �8.5 7.0
CAM-B3LYP 4.2 2.3 6.6 �7.8 32.7 0.9 0.6 1.5 �3.9 6.8
LC-ωPBE 5.1 2.9 6.4 �14.0 27.3 1.1 0.7 1.7 �3.6 9.5
PBE 18.9 �17.9 15.5 �75.0 14.0 2.8 �2.5 2.7 �13.6 2.8
PBE0 5.5 �1.0 8.2 �31.1 29.3 0.9 0.2 1.4 �2.9 6.5
PW86PBE 9.4 �1.5 12.2 �33.8 29.8 1.6 �0.5 2.5 �11.3 5.9
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importance of the bias. See Sec. II B for definitions of these
statistics.

Considering AE, the DFA with the smallest MUE is CAM-
B3LYP (4.2 kcal/mol). It has a noticeable bias (MSE) of about
2.3 kcal/mol, to be compared to a RMSD of 6.6 kcal/mol.
The errors are dispersed in a range |HPE-LNE| of about
40 kcal/mol. The DFA with the smallest error range in the set is
B97-1 (34 kcal/mol), but it is more strongly biased than CAM-
B3LYP (4.8 kcal/mol) and has a larger MUE (6.1 kcal/mol).

For intensive atomization energies, three DFAs share
the lowest MUE of 0.9 kcal/mol (B97-1, CAM-B3LYP, and
PBE0). Among those, PBE0 is the least biased, but B97-1 has
the smallest error range. However, one should keep in mind that
the error range might reflect the presence of outliers and not
characterize properly the properties of the error distribution.

So, which DFA is the best, in the sense that it minimizes
the risk to get a large error when predicting the AE or IAE
of a new system? It is difficult to conclude from these statis-
tics, and additional information is clearly needed: one has to
go beyond elementary summary statistics and consider the
underlying error distributions.

2. Error distributions in the G3/99 AE and IAE sets

Assuming that the level of uncertainty in the reference
data is negligible (less than 1 kcal/mol on formation enthalpies
according to Curtiss et al.24) and that the numerical errors in
the calculated data are assumed to be well controlled,4 the dis-
crepancy between the calculated and reference values in the
present dataset reflects either systematic errors from the DFA
(modeling and discretization errors) or improper reference
data.1

Figure 4 shows histograms of the B3LYP errors. A nor-
mal distribution having the same mean and standard deviation
as the error set has been overlaid on the histogram. At a first
glance, one notices that the normal distribution does not faith-
fully describe the distribution of errors. The latter has a more
pronounced peak slightly right of the origin and presents some
asymmetry: positive errors, even very large ones, occur more
often than negative ones. The deviation towards positive errors
explains why the normal distribution does not have its center
on the sharp peak and also is broader than this peak.

Note that the non-normality observed on the histograms
might also be an effect of the limited size of the sample. Some

FIG. 4. Histograms of the B3LYP errors for AE in the G3/99 set. A normal
probability density function having the same mean and standard deviation is
superimposed. (a) Atomization energies (µ = 7.2 kcal/mol,σ = 7.9 kcal/mol);
(b) intensive atomization energies (µ = 1.0 kcal/mol, σ = 1.5 kcal/mol).

numbers below suggest, however, that this cannot be the only
cause of discrepancy: the sampling errors seem to be system-
atically lower than the discrepancies one sees in Fig. 4. One is
therefore in need of statistics that convey useful information
on non-normal distributions.

3. Histograms do not tell the whole story

Histograms themselves are summaries that can hide
important features in the error set. It is generally rewarding
to analyze the errors’ sample for underlying features, such as
systems classes to be treated separately.47 Even histograms
with a single maximum (mode) can hide some heterogene-
ity in the sample. A very useful graphical representation to
reveal such features is to plot the errors as a function of the
calculated or reference property, as in Fig. 5, which displays
side-by-side a scatterplot and the corresponding histogram.
The latter results from the projection and binning of the data
cloud on the ordinates axis: trends and heterogeneity in the
data cloud contribute to features in the histogram (asymmetry,
multimodality, . . .).

In the B3LYP case, one sees immediately that there are
two problems: (i) two branches in the dataset, with different
trends, and (ii) a strong (linear) dependence of the main set of
errors with the atomization energy. The upper, almost vertical,
branch can be exclusively assigned to molecules containing
atoms out of the {C, H, O, N} set (noted CHON). The main,
lower branch contains mostly CHON-type molecules but also
some non-CHON systems. The linear trend in the main branch

FIG. 5. Distributions of the B3LYP
errors for AE and IAE in the G3/99 set.
Errors are plotted as a function of the ref-
erence data. Histograms of the error sets
are plotted for comparison: (a) atomiza-
tion energies; (b) intensive atomization
energies.
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is linked to the extensivity of atomization energies. This can
be checked by plotting the errors as a function of the number
of atoms in the molecule (Fig. 6, top left). The monotonous
increase of the main branch with the number of atoms is clear,
whereas the effect is less marked for the non-CHON branch.
From this simple analysis, one sees that the prediction error for
an AE calculation with B3LYP will depend (1) on the nature
of the molecule and (2) on its size.

Considering the error distribution for the other DFAs
in Fig. 6, different cases are observed: the linear increase
of the AE errors with the number of atoms is also
observed for BLYP, BH&HLYP, and B97-1, whereas CAM-
B3LYP and LC-ωPBE errors are mostly independent of
the molecule size, and an overall decrease is observed
for PBE and PBE0. The heterogeneity of non-CHON sys-
tems is mostly observed for B3LYP, CAM-B3LYP, LC-
ωPBE, PBE0, and B97-1, whereas PBE, PW86PBE, and
BH&HLYP errors seem mostly uncorrelated with the chemical
composition.

To achieve the most accurate results for some DFAs, it
would be desirable to split the G3/99 set and perform statistics
on the separate subsets. However, for the sake of simplicity
and fairness with regard to other DFAs, we will continue here
to work with the full G3/99 test set, without questioning its
homogeneity.

The use of IAE solves in a large part the size-dependence
problem of AE (Fig. 7), but one is left with the composition
heterogeneity problem for some DFAs. Note that even for IAE,
most error distributions are neither normal nor zero-centered
(e.g., B3LYP, PBE, BLYP, BH&HLYP, B97-1).

4. Searching for outliers

Points lying far in the wings of the histograms of error
sets might suggest inconsistent data in the reference set. Con-
sidering the linear trends in the AE errors for several DFAs,
extreme points might rather be due to the molecule size than
to a data problem. It is therefore best to use IAE to identify
outliers.45 Outliers have been tagged here as systems having

FIG. 6. Distribution of the errors for AE as a function of the number of atoms in the molecules of the G3/99 set for nine DFAs. The data points are coded for
CHON-type molecules (gray squares and histogram) and the other ones (red circles and histogram). The histograms corresponding to the partial and whole
datasets are displayed in the left panel of each graph. The histogram for the whole dataset is traced with blue lines.
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FIG. 7. Same as in Fig. 6 for IAE.

IAE errors outside of the 95% signed error range for a given
DFA. The most common outliers in the present DFA set are
NO2 (7/9 DFAs), SO2, SiF4, N2O, SO3, O2 (6/9 DFAs), and
BeH (5/9 DFAs). Some of these outliers have already been
identified by Perdew et al.,45 who discuss them with regard to
the DFA properties.

An important observation is that no outlier is common to
all DFAs (Fig. 8), which indicates that the observed extreme
values are essentially due to limitations of the models, not
to abnormal reference data. There is therefore no solid rea-
son to prune the dataset in order improve the normality of
the error distributions. As stated above, one has definitely
to deal with non-normal distributions and adopt informa-
tive statistics enabling final users to make their choice of
DFA.

5. Summary

A useful tool to reveal features in the error sets is to plot
the errors as a function of the calculated or reference val-
ues, or any other relevant property. Histograms contain more

information than summary statistics, but they do not tell the
whole story!

From the exploration of the G3/99 dataset for AE and IAE,
one might underline that the error distributions are complex
and structured by several properties, such as the chemical com-
position (CHON vs. non-CHON) and the size of the molecule.
Moreover, in these error sets, the non-normality of the distri-
butions is the rule rather than the exception, which implies that
the usual summary statistics are not sufficient to enable reliable
error predictions. This justifies the need to turn to statistical
tools not currently used in the CC methods benchmarking lit-
erature, such as the cumulative probabilities and percentiles
presented in Sec. II.

Considering the size-dependence of AE errors for most
DFAs in our set (Fig. 6), it is worthless to design simple and
reliable probabilistic indicators for this property. For instance,
the B3LYP calculation for CHON molecules with more than 40
atoms will present errors exceeding those present in the G3/99
set. In consequence, only IAE error sets will be considered in
the following.
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FIG. 8. Parallel plot of the IAE errors in the G3/99 dataset. All error sets
have been linearly rescaled to a common [−1, 1] range. Lines join identical
molecules in each set. The DFAs have been ordered to display similarity
in outlier patterns. The labels on the right show the selected outliers for
B3LYP.

B. Probabilistic estimators for unsigned errors

In this section, we analyze the probabilistic estimators
for unsigned errors. Working on unsigned errors implies
to accept the loss of information to concentrate on the
amplitude of errors. Note that probabilistic estimators could
also be designed for signed errors, for instance, a pair
of 2.5% and 97.5% quantiles delimiting a 95% probabil-
ity interval, but they would lead to more complex ranking
procedures.

1. Statistics of unsigned errors and their uncertainty

Statistics of unsigned IAE errors and their uncertainty
have been computed for all DFAs listed above: MUE, cumu-
lative probability for several thresholds, and a set of per-
centiles and limits of 95% CI for the higher percentiles.
The uncertainties are reported in the parenthetical nota-
tion, where “the number in parentheses is the numerical
value of the standard uncertainty referred to the corre-
sponding last digits of the quoted result.”8 The percentiles’
uncertainty and CI limits have been calculated by boot-
strapping, with 1000 repetitions (Appendix). The results
are presented in Table II. The corresponding ECDFs are
shown in Fig. 9, with the Q95 percentile and its 95% CI.
Besides, these curves enable to estimate C(ε) and Qn at any
level.

If one considers the cumulative probabilities, several
points are outstanding. C(η) for small values of η (below the
“chemical accuracy” of 1 kcal/mol) are small for all DFAs, with
a maximum of 0.76(3) for CAM-B3LYP at η = 1 kcal/mol.
Imposing smaller error limits means accepting less reliable
predictions. If one increases the acceptance threshold to
η = 2 kcal/mol, one reaches reasonable confidence levels
of 0.92(3) for B97-1 and 0.90(3) for PBE0. To achieve the
widely used confidence limit of 95%, one has to accept higher
IAE error levels, for instance, 3.9 kcal/mol for CAM-B3LYP
(cf. Q95 values in Table II).

The fact that, in order to make a statement that is valid
with high probability, one has to accept large errors is not
conveyed by the MUE. The latter might induce us to think that
a typical IAE error level for methods such as B97-1, CAM-
B3LYP, and PBE0 is around 1 kcal/mol. In fact, the cumulative
probabilities at the MUE [C(MUE) in Table II] range between

TABLE II. Statistics for the unsigned errors of IAE for the G3/99 dataset. The lower and upper limits of 95%
confidence intervals on the Q90 and Q95 percentiles are noted as floor ( bxc) and ceiling ( dxe), respectively. The
optimal value in each column is noted by bold characters.

DFA MUE C(MUE) C(0.25) C(0.5) C(1.0) C(2.0)

B3LYP 1.2(1) 0.73(3) 0.15(2) 0.29(3) 0.68(3) 0.86(2)
B97-1 0.85(5) 0.64(3) 0.20(3) 0.35(3) 0.75(3) 0.92(2)
BH&HLYP 4.8(2) 0.64(3) 0.018(9) 0.02(1) 0.07(2) 0.12(2)
BLYP 1.6(1) 0.70(3) 0.08(2) 0.19(3) 0.41(3) 0.79(3)
CAM-B3LYP 0.90(9) 0.76(3) 0.41(3) 0.62(3) 0.76(3) 0.86(2)
LC-ωPBE 1.1(1) 0.69(3) 0.30(3) 0.51(3) 0.69(3) 0.82(3)
PBE 2.8(2) 0.63(3) 0.04(1) 0.06(2) 0.18(3) 0.45(3)
PBE0 0.92(8) 0.66(3) 0.30(3) 0.49(3) 0.68(3) 0.90(2)
PW86PBE 1.6(1) 0.69(3) 0.13(2) 0.24(3) 0.55(3) 0.75(3)

DFA Q50 Q75 Q90 bQ90 c , dQ90 e Q95 bQ95 c , dQ95 e

B3LYP 0.80(4) 1.2(1) 3.2(5) 2.0, 3.9 4.4(6) 3.4, 5.5
B97-1 0.70(4) 1.0(1) 1.6(2) 1.4, 2.1 2.5(4) 1.8, 3.3
BH&HLYP 3.8(2) 6.3(5) 10.0(7) 8.4, 11.0 11.6(6) 10.3, 12.4
BLYP 1.3(1) 1.8(1) 3.9(5) 2.9, 4.6 5.2(6) 4.3, 6.4
CAM-B3LYP 0.30(5) 0.9(2) 3.1(4) 1.9, 3.8 3.9(4) 3.4, 4.9
LC-ωPBE 0.5(1) 1.4(2) 2.8(4) 2.2, 3.8 4.1(6) 3.4, 5.5
PBE 2.2(1) 3.5(3) 5.3(7) 4.8, 7.1 7.6(9) 6.4, 9.8
PBE0 0.5(1) 1.3(1) 2.0(3) 1.7, 2.7 3.0(5) 2.5, 4.0
PW86PBE 0.9(1) 2.0(2) 3.6(5) 2.8, 4.8 5.8(1) 4.2, 7.7
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FIG. 9. Empirical cumulative distribution function for unsigned errors on IAE, based on calculations for the G3/99 set. The shaded area delimits the 95%
uncertainty band on the ECDF. The Q95 percentile is indicated by a vertical green line, and the orange area delimits its 95% CI.

0.63(3) and 0.76(3). Note that this is higher than the upper
limit of 0.5753 estimated for the FND [Sec. II C; Fig. 11(a)],
but still low in terms of prediction confidence. In consequence,
the risk for the user to get absolute errors exceeding the MUE
is unpredictable from the MUE alone and rather high (up to
40%). This disqualifies the MUE as a basis for probabilistic
estimations.

Looking at Q95, one can see that three methods having
similar MUEs (B97-1, CAM-B3LYP and PBE0) can have sig-
nificantly different values of this high probability percentile,
ranging from 2.5(4) for B97-1 to 3.9(4) kcal/mol for CAM-
B3LYP. This raises the interest of Q95 as a ranking metric, as
reported below.

2. Estimation of percentiles from MUE and MSE

We have shown in Sec. II C that, in the ideal case of a nor-
mal error distribution, it is possible to estimate percentiles of
the corresponding folded distribution from MSE (µ̂) and MUE
(µ̂F). This property is tested here on more realistic error dis-
tributions. Q95F has been estimated from the MUE and MSE,

following the procedure described in Sec. II C. A 95% CI has
been obtained by bootstrapping. Figure 10 compares Q95F and
Q95. Considering the position of the points and the absence of
intersection of the error bars with the identity line, one can
conclude that Q95F significantly underestimates Q95, except
for B97-1, where the uncertainty on Q95 is large enough to
leave a question. Due to the non-normality of the error dis-
tributions, one cannot reliably estimate Qn from the generally
available MSE and MUE statistics.

C. DFA ranking
1. Impact of statistical uncertainty
on MUE-based ranking

When ranking DFAs by their MUE, the sampling
uncertainty on the statistic has ideally to be taken into
account, which, to our knowledge, is never reported in the
literature.

Considering the MUE for two DFAs, MUE1 and MUE2

with mean values and standard errors µF 1 ± u1 and µF 2 ± u2
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FIG. 10. Comparison of Q95 and its approximation Q95F . The error bars
represent 95% confidence intervals.

[Eq. (19)], the probability density function of MUE1 � MUE2

is a normal PDF with mean µ = µF 1 � µF 2 and variance
σ2 = u2

1 + u2
2. Therefore, one gets P(MUE1 � MUE2 < 0)

as the cumulative probability,

P(MUE1 < MUE2) ' Φ(0, µ = µF1 − µF2,σ2 = u2
1 + u2

2),

(26)

where Φ(x; µ, σ2) is the cumulative distribution function
for a normal distribution with mean µ and variance σ2 (cf.
Sec. II B 3). Using Eq. (26), an ordering inversion probabil-
ity has been evaluated for pairs of DFAs with µF 1 > µF 2 and
reported in Table III. Note that this configuration implies that
the upper limit of the inversion probability is 0.5.

There is a neat segregation of the DFAs in two groups: (1)
B97-1, CAM-B3LYP, PBE0, LC-ωPBE and B3LYP, among
which the inversion risk is medium to very high, and (2)
BLYP, PW86PBE, PBE and BH&HLYP, which have vanish-
ing chances to outperform any DFA of the first group. In the

second group, the MUE ranking of PW86PBE and BLYP is
not statistically significant.

2. Ranking by percentiles

As we have ruled out the use of MUE for probabilis-
tic estimation, could it also be replaced for DFA ranking?
Ranking of approximations could be done according to the
values of C(ε) for a given ε : the higher the C(ε) the better
the method. Alternatively, one can rank approximations by
choosing a percentile Qn: the lower the Qn, the better the
method. As one can more easily and generally agree on a
reference percentile than on an error level, the former being
independent on the type of analyzed property, we test here
how high-probability percentiles such as Q95 can be used for
the ranking of DFAs and how they compare to MUE-based
ranking.

In order to facilitate the comparison between methods, the
percentiles in Table II have been plotted together in Fig. 11(a),
along with the MUE, and sorted by increasing Q95 values.
One sees that CAM-B3LYP is best at the 50% level but is
challenged by B97-1 at the 75% level and then by PBE0
at higher probability levels. As noted above, CAM-B3LYP,
B97-1, and PBE0 have the same MUE for this property
(∼0.9(1)). The high percentiles can thus provide additional
discriminating ranking criteria. Note that it is not surprising
that, as a rule, hybrid methods (with the notable exception
of the pioneering BH&HLYP) come out better than pure
functionals.

Globally, if one compares the ranking by MUE and Q95

[Fig. 11(b)], the correlation is strong, except for the CAM-
B3LYP/PBE0 inversion, which is not statistically significant,
considering the high inversion probability estimated from the
MUE standard errors (Table III). The consideration of the
error bars on the statistics shows that a strict ranking by
the mean value of the statistics is not pertinent here. The
definition of groups of methods would be more statistically
relevant.

So, it appears that Q95, beyond its added value for pre-
diction errors estimation, would also be a relevant substitute
to MUE for the ranking of DFAs or any computational chem-
istry methods. In the present dataset, it does not profoundly
scramble the usual ranking, which is a reassuring point for its
introduction in future benchmarks.

TABLE III. Inversion probabilities in the MUE ranking. These give the probability (as percentage) that a row
DFA achieves a lower MUE than a column DFA with smaller mean MUE value because of sampling uncertainty.
The DFAs are ordered by increasing mean MUE. Bold type indicates values higher than 20%.

B97-1 CAM-B3LYP PBE0 LC-ωPBE B3LYP BLYP PW86PBE PBE

B97-1
CAM-B3LYP 44
PBE0 40 47
LC-ωPBE 23 28 30
B3LYP 14 19 20 39
BLYP 1 2 2 6 9
PW86PBE 2 2 3 7 11 49
PBE 0 0 0 0 0 0 0
BH&HLYP 0 0 0 0 0 0 0 0
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FIG. 11. Comparison of statistics for
ranking. (a) MUE and Q50, Q75,
Q90,Q95 percentiles for the set of DFAs,
sorted by increasing the value of Q95;
(b) correlation between MUE and Q95.
The error bars represent 95% confidence
intervals.

IV. CONCLUSION

Although testing computational chemistry methods on
reliable datasets is nowadays the preferred validation method,
finding relevant measures to validate and rank them is still
an open problem. One of the difficulties is that the distribu-
tions of errors for uncorrected methods are often far from a
normal distribution. They are typically asymmetric, not zero-
centered, and correlated, which precludes the estimation of
a prediction uncertainty, i.e., without applying corrections of
systematic errors. Even for normally distributed errors, the
unsigned errors are not normally distributed, but follow the
so-called “folded normal distribution” [Fig. 2(a)]. One should
thus avoid thinking about a normal distribution when ana-
lyzing unsigned errors. Their mean value (MUE) is neither
close to the mode of the unsigned error distribution, nor to its
median.

An important aspect of the present study is the assess-
ment of the statistical uncertainty on the estimators due to
the limited size of reference data sets and the illustration of
their impact on the conclusions that are drawn from them.
For instance, the rank differences between some methods are
not significant in view of the ranking statistics uncertain-
ties. Although the error sets cannot generally be assumed
to be uncorrelated, we recommend that the standard errors
of the statistics should be systematically published. These
standard errors are most certainly underestimated, but they
still can be useful to assess the statistical reliability of
rankings.

We have shown that, because of the non-normality of the
error distributions, the MUE cannot be used to communicate
probabilistic statements. In the examples and error samples
studied here, the probability that absolute errors exceed the
MUE range from 0.2 to 0.5. In consequence, we propose to
use estimators based on the empirical cumulative distribution
function (ECDF) of the unsigned errors: the cumulative prob-
abilities C(η) and the percentiles Qn. They can be used in two
typical scenarios:

• the end-users choose first a value η of the maxi-
mal admissible absolute error for their application and
obtain from the reference dataset an estimate of the

percentage of acceptable results for a given method at
this error level, C(η); or

• the users choose a percentage of acceptable results
required for their application (n%) or a risk level (100
� n)% and get the maximal error they have to accept
when using a given method, Qn.

In the latter case, one is typically interested in high percent-
ages, such as n = 90% or 95%, the latter being preferred in
order to link with the recommended usage in thermochemistry
to report an enlarged uncertainty u95%.3 We have seen that,
due to the shape of error distributions, high-probability per-
centiles, such as Q95, cannot be reliably estimated from the
usual statistics (MSE, MUE, RMSE, . . .). Besides, we have
shown that, for the end-user, they convey much more useful
information than the MUE and also that they provide similar
methods’ rankings as the latter. We therefore recommend that
Q95 percentiles should be tabulated in addition to the conven-
tional statistics, along with their standard errors. Systematic
publication of the ECDF curves could also be a very interesting
addition.

There are a few caveats on the use of probabilistic esti-
mators. They should not be used for error sets where there is
a notable trend, such as the molecule size dependence known
for the atomization energies. In this case, all calculated val-
ues for molecules larger than the ones in the reference set
are expected to have errors beyond the estimated Q95, break-
ing the probabilistic interpretation and usefulness of the latter.
The second caveat concerns the size of the reference dataset.
The uncertainty in the high percentiles increases rapidly as
the set size decreases. It is probably not reasonable to trust
a Q95 value for datasets with less than typically 100 points
(see the Appendix). In any case, the confidence limits on the
percentiles should be estimated, for instance, by bootstrapping
techniques.

The calculation of the C-type estimators depends on the
users choice of an application-dependent acceptable error
level, and therefore cannot be easily tabulated, or maybe
for some typical error values (chemical accuracy. . .). It is
therefore desirable that reference databases provide an easy
access to error data and tools to extract and treat them.
This would make it more easy to the end-users to make a



241707-14 P. Pernot and A. Savin J. Chem. Phys. 148, 241707 (2018)

rational and informed choice of method. On a more general
basis, authors of benchmarking/ranking studies should aim at
reproducibility and provide their error datasets in machine-
readable format (e.g., in tabular form, as supplementary
material .csv files).48,49 Data recovery from tables in pdf
files often requires error-prone human post-treatment, notably
when the data tables are rotated or contain empty cells, ref-
erences as superscripts, or typographical minus signs for
negative numbers.

Although we do not intend to make recommendations
for, or against, a given DFA, the present results confirm the
widespread opinion that hybrids are, in many cases, superior
to pure functionals. We have also seen that the performances
of the studied density functionals are not very high.50 How-
ever, some of them are widely used and appreciated. Could it
be that the need for high accuracy is often exaggerated? Let us
consider that, even if the chemical accuracy is far to be reached
for AE, this does not prevent more accurate results to be gen-
erated for reaction enthalpies, thanks to error cancellations.46

Moreover, it has been repeatedly shown that reliable conclu-
sions on catalytic and surface reactions can be drawn from
moderately accurate density funtional theory (DFT) calcula-
tions, provided prediction uncertainties and their correlations
are carefully estimated and accounted for.51–53

SUPPLEMENTARY MATERIAL

See supplementary material for access to datasets and R
code for data analysis and generation of figures and tables of
the article.54
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APPENDIX: ESTIMATION OF PERCENTILES’ CI
BY BOOTSTRAPPING

The uncertainty of percentiles Qn has been estimated
by Kendall’s formula [Eq. (21)] and by bootstrapping of the
B3LYP errors for IAE. To compute Kendall’s formula, an
estimation of the probability density function πF has been

generated by a kernel density method (density() func-
tion of the R language55). 95% confidence intervals have been
approximated by a normal enlargement factor (±1.96 × uQP )
and plotted in Fig. 12 (red dashed curves).

A sample of 1000 bootstrapped error sets has been gen-
erated by random sampling the original error set with replace-
ment. From this sample of error sets, ECDFs have been
plotted as reference in Fig. 12 (blue curves), and 95% confi-
dence intervals have been estimated for all percentiles. These
CIs have been plotted in Fig. 12 (black dashed curves).
They are indistinguishable of the confidence limits on the
cumulative probabilities C(ε) obtained by Wald’s formula
[Eq. (20)].

By contrast, the CI on Q95 (red-dashed) starts to devi-
ate notably from the reference CI above p ' 0.8 [Fig. 12(b)].
Even with a fairly large error sample (N = 222), the esti-
mation of the tails of πF cannot be relied upon for use
in Kendall’s formula. The quantiles’ uncertainty and con-
fidence limits are better estimated by bootstrap, in which
case they are consistent with the cumulative probabili-
ties’ uncertainty estimated by Wald’s formula. These val-
ues for Q50, Q90, and Q95 are reported in Table II, for all
DFAs.

1. Sample size effect

The results above raise the question of the impact of the
sample size on the CI limits of high percentiles. In order to
appreciate this effect, we performed a Monte Carlo study
by generating 10 000 random samples of the folded nor-
mal distribution πFN (ε ; µ = 0, σ = 1), for sizes between
N = 10–500. For each value of N, the mean and 95% confidence
limits of Q90 and Q95 have been estimated from the sam-
ple of 10 000 values. The corresponding curves are shown in
Fig. 13(a).

Below N = 100, there is a strong overlap of the distribu-
tions, in the sense that the mean value of one percentile lies
within the 95% CI of the other. Above this value, there is a
better discrimination, but one has to wait until N ' 400 to get
non-overlapping 95% CI intervals.

A similar plot has been done by bootstrapping subsets of
the B3LYP data to evaluate the effect of the non-normality of
the error distribution on this analysis. One sees in Fig. 13(b)

FIG. 12. Verification of formulae for
vertical and horizontal uncertainties on
the ECDF for IAE errors by B3LYP. (a)
Full probability range; (b) closeup on
the high probability range.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-007891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-007891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-007891
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FIG. 13. Convergence with the sample
size, N, of the estimated percentiles Q90
and Q95. (a) Folded normal distribution
πFN (ε ; µ = 0, σ = 1), noted FND(0, 1);
(b) subsets of the B3LYP error set. Full
lines represent the mean value of the per-
centiles and shaded areas delimit 95%
confidence intervals.

that the conclusions are similar: indiscernibility of Q90 and Q95

below N ' 100, with a small overlap of the 95% CIs around
N = 200.
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