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Abstract: Confirming the result of a calculation by a calculation with a different method is often seen
as a validity check. However, when the methods considered are all subject to the same (systematic)
errors, this practice fails. Using a statistical approach, we define measures for reliability and similarity,
and we explore the extent to which the similarity of results can help improve our judgment of
the validity of data. This method is illustrated on synthetic data and applied to two benchmark
datasets extracted from the literature: band gaps of solids estimated by various density functional
approximations, and effective atomization energies estimated by ab initio and machine-learning
methods. Depending on the levels of bias and correlation of the datasets, we found that similarity
may provide a null-to-marginal improvement in reliability and was mostly effective in eliminating
large errors.

Keywords: statistics; methods comparison; benchmarking; band gaps; atomization energy

1. Introduction

When all computational methods yield similar results, one often assumes that these
cannot be wrong. However, logically, one cannot prove this: an argument is not necessarily
right because the majority thinks so. One might, therefore, ask whether obtaining similar
results with different methods gives a higher chance of achieving reliable results (one has to
keep in mind that the better accuracy of a method when compared to another is a statistical
assessment but is not necessarily valid for all systems [1,2].

In this paper, we propose and test a statistical approach to address this question in
the context of computational approximations. The concepts of reliability and similarity are
defined and measured by probabilities estimated from benchmark error sets. The interplay
between reliability and similarity is estimated by conditional probabilities. Reliability, as
defined here, is closely related to measures we used in previous studies, based on the
empirical cumulative density function (ECDF) of error sets [3]. As for similarity, there is
a link with correlation between error sets as illustrated in refs. [1,2]. Unlike correlation,
similarity is affected by bias between methods, i.e., correlation does not imply similarity.

The following section (Section 2) presents the method. The Applications section
(Section 3) illustrates the method on a toy dataset of normal distributions and on two
real-world datasets. In order to be able to draw conclusions, we chose literature benchmark
datasets with sufficient points to enable reliable numerical results, and a variety of meth-
ods encompassing various scenarios of bias and correlation. The main observations are
summarized in the conclusion. The aim of this paper is to exemplify a statistical approach
to similarity and not to draw general conclusions nor to recommend any of the studied
methods.
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2. Methodology
2.1. Frame

For a given computational method, M, and a given system, S, let the value calculated
for a chosen property be denoted by X(M, S). A benchmark provides reference values,
R(S). The error for the method M and the system S is given by

E(M, S) = X(M, S)− R(S) (1)

2.2. Reliability and Similarity of Computational Results

A benchmark data set is expected to provide a large set of data. We can use statistical
measures on this set to make assessments on the reliability of the computational method.
Let us first define what we mean by the results of a calculation being reliable or being similar.

The computational method M is considered reliable for the system S if

|E(M, S)| = |X(M, S)− R(S)| < εr (2)

where the reliability threshold, εr, is chosen by the user of the method, depending on his
needs. We consider here that two methods, M1 and M2 provide similar results for system
S when

|X(M1, S)− X(M2, S)| = |E(M1, S)− E(M2, S)| < εs (3)

where the similarity threshold, εs, is also defined by the user. When we consider a set of
methods, we say that the results of these methods are similar when all pairs of methods of
the set yield similar results. If not specified otherwise, we will use, in this paper, εs = εr = ε.

Figure 1 schematically presents the problem. The set of systems for which method M1
is reliable is represented by a red disk; for method M2, this is a blue disk. The systems for
which the two methods are similar are contained in the gray disk. The overlapping region
of the red (or blue) disk with the gray disk indicates the set of systems that are reliable with
the method M1 (or M2), and, at the same time, close to the result provided by the other
method.

Figure 1. A schematic representation of the properties of the systems. The region within the square
represents the set of all benchmark systems. The red disk represents the set of systems for which
method M1 is reliable. The blue disk represents the set of systems for which method M2 is reliable.
The gray disk represents the set of systems for which methods M1 and M2 give similar results.

Let us define the following notations characterizing those sets, where the indices r and
s refer to the reliability and similarity, respectively:
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• N, the number of systems in the data set (corresponding to the white square in
Figure 1).

• Ns(M1, M2, . . . ; εs), or Ns(εs) for brevity, the number of systems that yield similar
results (within εs) using methods M1, M2, . . . . (corresponding to the gray disk in
Figure 1).

• Nr(M, εr), the number of systems for which method M is reliable (corresponding to
the red or blue disk in Figure 1).

• Nr(M, εr ∩ εs), the number of systems for which method M is reliable and similar to
the other methods (corresponding to the overlap region of the three disks in Figure 1).

2.3. Probabilities

If the data set is sufficiently large, we can estimate probabilities as frequencies from
these numbers:

• The probability to obtain a reliable result with method M,

Pr(M, εr) =
Nr(M, εr)

N
(4)

• The probability to obtain similar results for the set of considered methods,

Ps(M1, M2, . . . ; εs) = Ps(εs) =
Ns(εs)

N
(5)

For a finite sample, the smallest value of εs for which Ps(εs) = 1 is called the Hausdorff
distance [4].

• The (conditional) probability to obtain reliable results with method M, given that this
method is similar to the other methods in the set,

Pr|s(M, εr, εs) =
Nr(M, εr ∩ εs)

Ns(εs)
(6)

• The (conditional) probability that a result with method M is similar to that of the other
methods, given that it is reliable,

Ps|r(M, εs, εr) =
Nr(M, εr ∩ εs)

Nr(M, εr)
(7)

with the limit values

Pr|s(M, εr = ∞, εs) = Ps(εs) (8)

Pr|s(M, εr, εs = ∞) = Pr(M, εr) (9)

Ps|r(M, εs = ∞, εr) = 1 (10)

Ps|r(M, εs, εr = ∞) = Ps(εs) (11)

Furthermore, even for εs = εr = ε, in general, Ps(ε) 6= Pr(M, ε) and
Ps|r(M, ε) 6= Pr|s(M, ε), where the notations were shortened to imply the equality of
both thresholds.

The main objective of this paper is to investigate whether choosing methods with
similar results is a good criterion of reliability, i.e., to what extent Pr|s(εr, εs) > Pr(εr). Even
if this aim is achieved, this does not go without a drawback: the systems for which similarity
is not reached are eliminated from the study with a probability 1− Ps(εs). Ps|r(M, εs, εr)
gives us an indication about the quality of our selection criteria by similarity.

An important limitation of this approach is the sample size. Even for large data sets, it
may happen that the number of similar results, Ns(εs) is small, e.g., because at least one
of the methods yields results systematically different from that of the other methods or
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because εs was chosen too small. In such a case, the uncertainty of the empirical estimates
becomes large.

2.4. Statistical Measures

Often, the distribution of errors is summarized by numbers, such as the mean error,
the mean absolute error, and the standard deviation. Although these numbers convey
some information, they sometimes hide the misconception that the distribution of errors
is normal. In the cases we analyze below, as in most cases we studied previously [5], the
distributions of errors are not normal. This justifies the use of probabilistic estimators, such
as those presented in our previous work [1–3], or the ones introduced here.

A direct link can be made between the statistics based on the empirical cumulative
distribution function (ECDF) of the absolute errors, presented in ref. [3], and some of those
introduced above:

• The reliability probability Pr(M, εr) is equivalent to the ECDF of the absolute errors,
noted C(ε) in our previous work.

• The qth percentile Qq(M) of the absolute errors is the value of εr, such as Pr(M, εr) = q/100.

The conditional probabilities Pr|s(M, ε) and Ps|r(M, ε) will, thus, be represented as
conditional ECDFs as a function of ε, generalizing our former probabilistic statistics.

3. Applications
3.1. Guidelines

In order to obtain a better understanding of the situations arising from data extracted
from the chemical literature, let us first consider pairs of points generated randomly
according to normal distributions: each point is assimilated to a “system”, where the values
on the abscissa are interpreted as “errors” for M1 while those on the ordinate as “errors”
for M2. The results are presented in Figure 2. The panels on the left show the randomly
produced “errors” (green dots).

The red stripe shows the reliability region for M1, where |E(M1, S| < εr (cf. Equa-
tion (2)), and the blue stripe shows the same for M2. The gray stripe shows the region
where the results produced by M1 and M2 are within ±εs (Equation (3)). Some points are
marked by numbers. The polygon with corners corresponding to the points (2, 4, 6, and 8)
delimits the region where M1 is both close to M2 and is reliable. The polygon with corners
corresponding to the points (1, 3, 5, and 7) delimits the region where M2 is both close to M1
and is reliable. The plots were drawn by choosing εr = εs = 1.

The ratio of the number of points in the red or blue stripe to the total number of
points gives Pr. The ratio of the number of points in the gray stripe to the total number
of points gives Ps. The ratio the number of points in the polygons (1, 3, 5, and 7) or (2,
4, 6, and 8) to the number of points in the gray stripe gives Pr|s. The ratio the number of
points in the polygons to those in the red or blue stripe give Ps|r. The panels on the right
show the dependence of the probabilities on εr = εs. The results for M1 are in blue, those
for M2 in red. Pr(Mi) are drawn as thin curves, Pr|s as thick curves, and those for Pr|s as
dashed curves.

The top row is produced for errors centered at the origin (the mean errors are equal to
zero for both methods; the variance is different for the two methods). In the second row,
the mean errors are different and non-zero. In the third row, a correlation is introduced
between the errors produced by the two methods. In the last row, the effect of correlation is
enhanced. In the first three rows, the parameters are inspired from those obtained for the
PBE/HSE06 pair (see Section 3.2), in the last row different parameters are used, namely
those of PBE0/HSE06.
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Figure 2. Examples of reliability and similarity configurations (left) and the corresponding probabil-
ity curves (right) for two error sets sampled from normal distributions. See the text for description.

Let us start by discussing the first row. We see that, from the choice made for εr and
εs, an important number of points is in the region where |E(Mi, S)| < εr, (i = 1, or 2) and
|E(M1, S)− E(M2, S)| < εs. However, there are points that are within the reliable range
for both methods (in the region where the red and blue stripes overlap) are not within the
region of similarity (gray stripe).

This could be corrected by increasing εs to
√

2εr, but there is a price to pay for it: for
each of the methods, the number of points selected increases by including systems for
which the method does not yield reliable results. Furthermore, we notice that there are
points that are reliable with one method but not similar to the other method. There are
also points that are similar but unreliable (inside the gray stripe but outside either the red
or the blue stripe). Finally, there are points that where the methods are both unreliable
and dissimilar (on white background). Let us now look at the evolution of probabilities
with εr = εs (top right panel). We see that M1 is globally of worse quality than M2, as
Pr(M1) < Pr(M2) (thin curves).
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When first selecting the results by similarity and then checking the reliability, we see
that the conditional probabilities Pr|s are close for M1 and M2 and better than the Pr curves.
Checking similarity has eliminated part of the good results (that were reliable with either
M1 or M2) but provides a higher probability to obtain a good result. Note that, while Pr|s is
slightly better for M2 than for M1, the inverse is true for Ps|r, a consequence of the division
by Pr.

Let us now shift the point cloud by analyzing it for the case when the mean errors are
non-zero. If the shift for at least one of the methods is important, none of the “systems”
produces similar results for the two methods (the point cloud is shifted outside the gray
stripe). The figure shows an intermediate case, where the shift is not so important and
plays a role mainly for M1.

The similarity (gray stripe) essentially retains the results that are good for M2 (within
the blue stripe) because the number of points that are both similar and reliable for M1 is
reduced. As a result (second row, right panel), the similarity hardly improves the probability
to obtain a good result for the better method (M2) but eliminates a number of systems for
which M2 would provide reliable results. However, there is still an improvement for the
method of lower quality (M1).

Another effect reducing the improvement is the existence of positive correlation
between the “errors”. This is exemplified in the last two rows, where the position of the
points are concentrated around a line. In the limit of perfect correlation, these points lie
all on a line. If the mean errors make the lines lie in the similarity region, Pr|s = Pr: no
gain is obtained through similarity. If the line lies outside the similarity region (outside the
gray stripe), even worse, no point is selected by similarity: if we rely on similarity only, we
cannot use any of the calculations.

Note that the correlation between data produces an increase in Ps|r: if a method is
producing a reliable result, by correlation, it is likely that the other method produces also a
reliable result, except when one of the methods is strongly biased compared to the other.

3.2. The BOR2019 Dataset

We consider a set of band gaps obtained for 471 systems with a selected set of density
functional approximations (DFAs): LDA [6,7], PBE [8], PBEsol [9], SCAN [10], PBE0 [11,12],
and HSE06 [13,14]. All the data were taken from Borlido et al. [15], and most summary
statistics referred to below were reported in a previous study [1,2] (case BOR2019).

3.2.1. Performance of Individual Methods

The errors in the band gaps are quite large for this set of methods. The mean absolute
errors lie between 0.5 eV (HSE06) and 1.2 eV (LDA), while Q95 varies between 1.7 eV
(HSE06) and 3.2 eV (LDA) (Figure 3). The probability to have more reliable than unreliable
results occurs at the median absolute error, which defines a minimal value εr = 0.33 eV for
HSE06—the best method in this set.

Figure 3 shows the dependence of Pr(M, ε) on ε. One can can safely qualify HSE06 as
the best (most reliable) among the methods as Pr(HSE06, ε) is never smaller than any of the
other Pr(M, ε) curves (within the sampling uncertainty). While PBE0 becomes competitive
with HSE06 for ε > 1.7 eV, it behaves rather like SCAN for the values of ε ≈ 1 eV and
like the group of the three methods that perform worst (LDA, PBE, and PBEsol) for small
ε values.

It is important to have in mind that, even if PBE0 and SCAN are identically reliable at
the ε = 1 threshold (Pr(PBE0, ε = 1) ' Pr(SCAN, ε = 1)), this is not necessarily true for
the same subset of systems.
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Figure 3. Empirical cumulative distribution functions for the absolute errors of the six DFAs
considered in this paper. They correspond also to Pr(M, ε), the fraction of systems for which the DFA
produces errors smaller than ε. The uncertainty bands are obtained by bootstrapping the ECDF and
estimating 95% confidence intervals.

3.2.2. Similarity and Reliability

Figure 4 shows the absolute errors made by two methods (HSE06 and PBE or PBE0)
and the distance between the results obtained with the two methods. We choose, for
example, a threshold for the similarity of the two methods, εs = 1 eV. We take the same
value for the threshold defining a method reliable, εr = 1 eV.

If we assume that the similarity of the results is a good criterion to select the reliable
results, the points should lie either in the bottom left rectangle (|X(M1, S)− X(M2, S)| <
εs, |E(M, S)| < εr), meaning that the selected results are reliable, or in the top right rectangle
(|X(M1, S)−X(M2, S)| > εs, |E(M, S)| > εr), meaning that dissimilarity eliminates the bad
results. However, we see many points in the top left rectangle (|X(M1, S)− X(M2, S)| <
εs, |E(M, S)| > εr), showing that it is possible that similar results should be rejected.

This naturally shows up when the methods are highly correlated, as it is the case
for HSE06 and PBE0. Furthermore, we notice the presence of points in the bottom right
rectangle (|X(M1, S)− X(M2, S)| > εs, |E(M, S)| < εr), especially for the HSE06/PBE pair,
indicating that the similarity criterion has eliminated good results obtained with one of
the methods.

PBE
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Figure 4. Similarity between HSE06 and PBE (left panel) and PBE0 (right panel) compared to the
reliability of the three methods (PBE: red circles, PBE0: blue circles, and HSE06: purple triangles). The
points correspond to the absolute errors made by the two methods, |E(M, S)|, Equation (2) (on the
ordinate) and the distance between the results obtained by the two methods, |X(M1, S)− X(M2, S)|,
Equation (3) (on the abscissa). The dashed lines exemplify choices for the thresholds for similarity, εs,
and reliability, εr.
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3.2.3. Impact of Similarity on Reliability

Let us now look at the probabilities as functions of ε (we take εs = εr = ε), Figure 5.
As a reference, we plot Pr(M, ε) (thin curves, identical to the ECDF curves in Figure 3), the
estimation of reliability when no similarity check is made. The thick curves correspond
to Pr|s(M, ε), the probability to obtain with method M errors smaller than ε if the results
of method M are within ±ε of the other method(s). The dashed curves indicate Ps|r(M, ε),
the probability of a reliable result obtained with method M to be in the subset selected
by similarity.

LDA
PBE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

PBE
HSE06
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Figure 5. Probabilities for the pairs LDA/PBE (left panel) and PBE/HSE06 (right panel): Pr(M, ε)

(thin curves), Pr|s(M, ε) (thick curves), and Ps|r(M, ε) (dashed curves). The gray rectangle covers the
region where the selected sample size is less than 100.

The data set contains originally 471 systems. However, by making selections, e.g., of
systems where the DFAs yield similar results, the size of the sample is reduced, and the
use of statistical estimates is hampered. We estimate that, below 100 selected systems, the
statistics become unreliable. The region for which the size of the sample is smaller than 100
is marked by a gray rectangle in Figure 5.

We notice that, for LDA and PBE, which provide close reliability curves, practically
no distinction can be made between the thin and thick curves: similarity has no impact on
reliability. We also see that Ps|r(M, ε) ≈ 1 for almost the whole range of ε: if one method
gives a reliable result for a system, the other one is very likely to give a reliable result too.
Thus, the size of the sample of similar results is reaching a size comparable to that of the
complete sample already for a small value of ε (the gray rectangle is very thin).

The situation changes when we compare PBE to HSE06. The region where the size of
the sample of similar results is below 100 reaches a large value of ε ≈ 0.6 eV. For ε > 0.6 eV,
we notice an improvement for each of the methods: Pr|s(M, ε) > Pr(M, ε). However, we
notice that the improvement of the worse of the two methods is not compensating the
difference of quality between the two methods.

Even as ε increases beyond 0.6 eV, Ps|r(M, ε) is at first relatively small: if one method
gives a reliable result, the probability that the other provides a reliable result too, is relatively
small. Without surprise, the risk of the better of the two methods (HSE06) to eliminate
systems by selection is higher than that of the worse of the two methods (PBE), cf. dashed
curves in Figure 5. In this case, one should take the result provided by the better of the two
methods, not, e.g., the average of the results of the two methods.

The improvement has to be paid: for some of the systems, the methods provide results
that are not similar, and are not taken into consideration - we have no answer to give for
these systems. Figure 6 shows an example by choosing PBE, finding how many systems
from the data set are similar (within ε) to those obtained with another method. The graph
confirms that an important number of systems are lost, unless one declares similarity by
choosing a large value for ε.
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Figure 6. Number of systems that yield band gaps close to those obtained with PBE, for different
methods, as a function of ε.

Let us attempt to condensate the results by looking at the values of ε for which the
probabilities of having an absolute error smaller than ε is 0.95, Q95(M), cf. Table 1. This
provides only an exploration of the behavior at large ε. Nevertheless, it leads to the
conclusions above: LDA and PBE do not gain by using similarity: Q95(LDA) = 3.1 eV and
Q95(PBE) = 2.9 eV, even after similarity is imposed. However, Q95(HSE06) decreases from
1.7 to 1.3 eV when the similarity with PBE is taken into account.

Table 1. Q95(M1), in eV, for the method indicated by the row (M1), when similar to the method
described by the column (M2), for εs = εr.

M1\M2 LDA PBE PBEsol SCAN PBE0 HSE06

LDA 3.1 3.1 3.1 3.1 2.1 3.1
PBE 2.9 2.9 2.9 2.9 2.1 2.9
PBEsol 3.0 3.0 3.0 3.0 2.2 3.0
SCAN 2.4 2.4 2.4 2.4 2.1 2.4
PBE0 1.4 1.4 1.4 1.5 1.8 1.8
HSE06 1.1 1.3 1.1 1.7 1.7 1.7

We can expect the errors of different DFAs to be highly correlated [2]. (For example,
recall that making the approximation valid for the uniform electron gas is a basic ingredient
in almost all DFAs.) In other words, this could mean that if one method is right, all are
right, and if one method is wrong, all are wrong: little improvement can be expected from
agreement between methods.

Another measure of similarity is Spearman’s rank correlation coefficient (Table 2). This
varies between 0.76 (LDA and PBE0), and 0.99/1.00 (within the group of lower performance:
LDA, PBE, and PBEsol). For PBE and HSE06, it takes an intermediate value (0.83). The
correlation coefficients gives a hint for grouping the methods; however, it is more difficult
to extract from them the information given in Figure 5 than it is from Q95(M).

Table 2. Rank correlation matrix between error sets.

M1\M2 LDA PBE PBEsol SCAN PBE0 HSE06

LDA 1 0.99 1.00 0.95 0.76 0.81
PBE - 1 1.00 0.97 0.78 0.83
PBEsol - - 1 0.96 0.77 0.82
SCAN - - - 1 0.83 0.87
PBE0 - - - - 1 0.98
HSE06 - - - - - 1
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Another problem of using the correlation index is its invariance with respect to a
monotonous transformation of the calculated values (a linear transformation for the Pearson
correlation). If one of the methods is biased and another not, these methods are not likely
to give similar results, despite a high correlation index. Of course, this dissimilarity can be
reduced by correcting the bias, typically, by subtracting the estimated mean error from the
values obtained.

Figure 7 shows the probability that the results of two methods are similar (within ε).
The similarity of LDA and PBE can be recognized immediately, as well as the dissimilarity
between LDA and PBE0 or HSE06. One can also notice the improvement after centering
the errors (i.e., correcting the bias by subtracting the mean signed error for each of the
methods). At the same time, the difference between methods (PBE0 and HSE06) is reduced.

LDA,PBE
LDA,PBE0
LDA,HSE06

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. Probabilities Ps(M1, M2; ε) that a pair of methods (M1, M2) yields similar results (within
ε) for (LDA and PBE), (LDA and PBE0), and (LDA and HSE06). The dashed curves are obtained after
centering the errors.

One may want to summarize the information present in Ps(M1, M2; ε) by its mean,
µs(M1, M2), and standard deviation, σs(M1, M2):

µs(M1, M2) =
∫ ∞

0
ε[1− Ps(M1, M2; ε)]dε (12)

σ2
s (M1, M2) =

∫ ∞

0
ε2[1− Ps(M1, M2; ε)]dε− µ2

s (13)

The numerical results are given in Table 3. The similarity of LDA, PBE, and PBEsol is
well visible from these numbers.

Table 3. The mean and the standard deviation of the probability distribution of having two DFAs
giving similar results, µs(M1, M2)(σs(M1, M2)), Equations (12) and (13).

M1\M2 LDA PBE PBEsol SCAN PBE0

PBE 0.1(0.1) - - - -
PBEsol 0.1(0.1) 0.1(0.0) - - -
SCAN 0.4(0.3) 0.3(0.2) 0.4(0.2) - -
PBE0 1.6(0.6) 1.5(0.5) 1.6(0.5) 1.2(0.4) -
HSE06 1.1(0.5) 0.9(0.5) 1.0(0.5) 0.6(0.3) 0.6(0.2)

Let us now increase the number of methods that we are considering. Taking into
account the closeness of the results of LDA, PBE, and PBEsol, we do not expect anything
considering the similarity of these three methods. However, one might ask whether
comparing PBE, HSE06, and SCAN, or PBE, HSE06, and PBE0 provides any improvement.
In the first case, Q95(HSE06) stays at 1.3 eV; in the second, it slightly increases to 1.4 eV.
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Increasing the number of methods for similarity checks does not provide necessarily
an improvement on reliability (as one increases the number of “bad” methods to compare
with). All six methods provides, at best, Q95(M) ≈ 1.3 eV, while the best value in Table 1
is of 1.1 eV. This can be also seen in Figure 8, the analogue of Figure 5, showing the
probabilities obtained when similarity among all six methods is taken into account. This
also shows the increase of the region of poor sampling.

LDA
PBE
PBE_SOL

SCAN
PBE0
HSE06

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Probabilities : Pr(M, ε) for M in the set of 6 methods (thin curves), Pr|s(M, ε) (thick curves),
and Ps|r(M, ε) (dashed curves). The gray rectangle covers the region where the selected sample size
is less than 100.

3.2.4. Eliminating Strange Results?

The distribution of errors in density functional approximations is often not normal [5].
This can be seen in Figure 9. It seems that similarity confirms (in part) the prejudice that
a strange behavior of one method is not repeated by another, different method. After
restricting the data set to similar values, the distribution of errors is more compact. This
explains the lowering of the Q95(M). Recall, however, that wrong results obtained with
both methods are not excluded.

PBE

HSE06

PBE

HSE06

Figure 9. Histograms showing the distribution of errors before and after introducing similarity (left,
and right panel for ε = ∞ and ε = 1 eV, respectively), for PBE (red) and HSE06 (blue). The normal
distributions using the mean and standard deviation of these error distributions are shown as curves.

3.3. The ZAS2019 Dataset

The effective atomization energies (EAE) for the QM7b dataset [16], for molecules up
to seven heavy atoms (C, N, O, S, and Cl) are issued from the study by Zaspel et al. [17]. We
consider here values for the cc-pVDZ basis set, and the prediction error for 6211 systems
for the SCF, MP2, and machine-learning (SLATM-L2) methods with respect to CCSD(T)
values as analyzed by Pernot et al. [18].

In contrast to the case of the DFAs presented in the previous section (Table 2), the
errors in this dataset present negligible rank correlation coefficients (smaller than 0.1 in
absolute value). Similarity will, thus, be dominated by the bias in the errors and their
dispersion. The Pr(M, ε) and Pr|s(M, ε) curves are shown in Figure 10. When comparing
HF to MP2, one sees that both methods benefit from similarity as soon as ε > 0.2 kcal/mol.
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Naturally, HF benefits much more from the similarity selection than MP2: its Q95
decreases from 6.1 to 4.2 kcal/mol, while Q95 for MP2 decreases slightly from 3.4 to
2.9 kcal/mol. A similar behavior is observed in the comparison of HF to SLATM-L2 with a
larger onset of improvement for SLATM-L2 (ε∼0.5 kcal/mol). For HF, Q95 decreases from
6.1 to 3.8 kcal/mol and for SLATM-L2 from 4.7 to 2.5 kcal/mol. The comparison of MP2
to SLATM-L2 provides an intermediate case, where both methods present more balanced
improvements: for MP2, Q95 decreases from 3.4 to 2.4 kcal/mol and for SLATM-L2 from
4.7 to 1.9 kcal/mol.

HF
MP2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

HF
SLATM-L2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

MP2
SLATM-L2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

HF
MP2
SLATM-L2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 10. Pr(M, ε) (thin curves) and Pr|s(M, ε) (thick curves) for the pairs and triple in the set (HF,
MP2, and SLATM-L2).

Adding HF to the MP2/SLATM-L2 pair produces a marginal gain for the latter meth-
ods, whereas HF presents a strong gain in reliability: the final Q95 values are 2.5 (HF),
1.8 (MP2) and 1.7 kcal/mol (SLATM-L2). However, this comes at the price of a large num-
ber of system rejections: for ε∼2.0 kcal/mol, only 1/4th of the 6211 systems are selected
by their similarity. For comparison, this number is about 2/3rd for the MP2/SLATM-L2
comparison.

In this context of uncorrelated error sets with different accuracy levels, one sees that
similarity selection has a notable positive impact on the reliability of predictions by any
of the methods, even the most accurate ones. It is striking that MP2 or SLATM-L2 might
benefit from comparison with HF, but, as already discussed for band gaps (Figure 9) , this
proceeds mainly by elimination of systems with large errors.

4. Conclusions

We asked whether picking only results that are similar to different methods would
improve the accuracy of their predictions (in spite of possibly eliminating a significant part
of the calculations done). The use of probabilities to treat reliability and similarity was
illustrated on two benchmark data sets, one of band gap calculations with different density
functional approximations, the other of effective atomization energies with two ab initio
methods and one machine-learning method.
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For the properties and methods studied, the thresholds for reliability and similarity
were chosen quite generously. For the band gap data set, we found that similarity of the
density functional results had only a marginal impact on improving the prediction accuracy.
This is consistent with previous findings that the differences between density functional
approximations are less important when considering the error distributions [1,2], or taking
into account experimental uncertainty [19].

For the effective atomization energies data set, in which the error sets are uncorrelated,
notable improvements of reliability after similarity selection were observed for all methods,
even the most accurate ones. Roughly, we observed two categories of results:

1. methods that always give close results, for which similarity is irrelevant; and
2. methods for which an improvement can be achieved, especially by eliminating certain

systems that behave strangely with one or the other methods—similarity is mainly
effective for eliminating large errors.

Note that the size of the data sets might have an impact on the uncertainty of all the
statistics. For the smaller datasets, this uncertainty might be comparable with the observed
differences between statistics. Bootstrapping approaches, such as the ones used in our
previous works [1,3], could be used to this effect. This was not the focus of the present
study, and uncertainty management will be considered in forthcoming research.
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