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Abstract
The distribution of errors is a central object in the assessment and benchmarking of computational chemistry methods. The 
popular and often blind use of the mean unsigned error as a benchmarking statistic leads to ignore distributions features that 
impact the reliability of the tested methods. We explore how the Gini coefficient offers a global representation of the errors 
distribution, but, except for extreme values, does not enable an unambiguous diagnostic. We propose to relieve the ambiguity 
by applying the Gini coefficient to mode-centered error distributions. This version can usefully complement benchmarking 
statistics and alert on error sets with potentially problematic shapes.

Keywords  Benchmarking · Statistics · Large errors · Errors distribution

1  Introduction

The reliability of a computational chemistry method is con-
ditioned by the distribution of its prediction errors. Distribu-
tions with heavy tails elicit a risk of large prediction errors. 
As a benchmarking statistic, the popular mean unsigned 
error (MUE) bears no information on such a risk [1–4]. We 
have recently reported a case where two unbiased error dis-
tributions with identical values of the MUE present widely 
different risks of large errors because of heavy tails in one of 
them [4, 5]. It would therefore be very useful to complement 

the MUE with a statistic indicating or quantifying the risk 
of large errors.

We recently proposed alternative statistics such as Q95 
[2], P� , [2] and systematic improvement probability (SIP) 
[3]. In terms of risk, these statistics offer the following 
interpretations:

•	 There is a 5 % risk for absolute errors to exceed Q95.
•	 There is a probability P� that absolute errors are larger 

than a chosen threshold � . P� provides a direct quantifica-
tion of the risk of large errors, but � has to be defined a 
priori and might be user dependent, which complicates 
its reporting in benchmarking studies.

•	 For two methods M1 and M2 , the SIP provides the sys-
tem-wise probability that the absolute errors of M1 are 
smaller than the absolute errors of M2 , informing on the 
risk incurred by switching between two methods. Inter-
estingly, the SIP analysis provides a decomposition of the 
MUE difference between two methods in terms of gain 
and loss probabilities [3].

The Q95 and P� partly answer the question, but they are point 
estimates on the cumulated density function of the absolute 
errors, and a statistic accounting for the whole distribution 
might be of interest. Besides, it is well established in econo-
metrics that measures of dispersions such as the variance per-
form poorly at risk estimation and that higher moments of 
the distributions have to be considered [6]. This would lead 
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us to such measures as skewness and kurtosis, but none of 
these alone would be able to cover all the scenarios. The risk 
of large errors through heavy tails of the errors distribution 
might be associated with large skewness or large kurtosis or a 
combination of them.

The Lorenz curve [7] is widely used in econometrics to 
represent the distribution of wealth in human populations. 
Its summary statistics, notably the Gini coefficient (noted G) 
[8–10], are used to evaluate the degree of inequality within 
these populations. The Gini coefficient is also used, for 
instance, in ecology, to estimate the inequality of properties 
within plant populations [9, 11], in astronomy, to characterize 
the morphology of galaxies [12], or in information theory, to 
characterize the sparsity of datasets [13].

The Lorenz curve has many mathematical representations, 
the most interesting one, for us, being its formulation as an 
integral of the quantile function, a direct link with our study 
of probabilistic metrics [2–4]. More precisely, we explore 
here the interest of the Gini coefficient as a complement to the 
MUE in benchmarking studies.

We introduce the statistical tools and their implementation 
in Sect. 2, and apply them to a series of datasets to illustrate 
the interest and limitations of the Gini coefficient in Sect. 4. 
An adaptation of the Gini coefficient is proposed to relieve its 
main drawbacks when applied to error datasets.

2 � Statistical methods

2.1 � Definitions

Let us consider a distribution of errors e with probability 
density function (PDF) f(e). The absolute errors � = |e| have 
a folded PDF fF(�) . To avoid ambiguity, statistics based on 
absolute errors are indexed by F.

2.1.1 � CDF and quantile function

The cumulative distribution function (CDF) of the absolute 
errors is noted

from which the quantile function is the inverse

2.1.2 � Mean unsigned error

The mean unsigned error (MUE) is defined as

(1)CF(z) = ∫
z

0

fF(�) d�

(2)qF(p) = C−1
F
(p)

Using the change of variable � = C−1
F
(p) , p = CF(�) and 

dp = fF(�) d� , the MUE also can be shown to be the integral 
of the quantile function

2.1.3 � The Lorenz curve

The Lorenz curve gives the percentage of cumulated abso-
lute errors due to the 100 × p % smallest values or, equiva-
lently, the portion of the MUE due to the 100 × p % smallest 
absolute errors:

As shown in Fig. 1a, it is the ratio between the slanted 
shaded area and the total slanted area. Its value for p′ is 
reported on the corresponding Lorenz curve graph (Fig. 1b).

The Lorenz curve provides a scale-invariant rep-
resentation of the CDF CF(z) [14], with the following 
properties: LF(p) is concave, increasing with p, such as 
0 ≤ LF(p) ≤ p ≤ 1 , LF(0) = 0 and LF(1) = 1 . LF(p) lies one 
the identity line ( LF(p) = p ) when all the errors are equal, 
i.e., fF(�) = �(� − c) . Note that this case corresponds to a 
discontinuous CDF, with a jump at � = c . The deviation of 
an error distribution from this extreme case can be measured 
by the Gini coefficient.

2.1.4 � The Gini coefficient

It is related to the area between LF(p) and the identity line 
(Fig. 1b)

where the factor two is used to scale GF between 0 and 1. 
The smaller GF , the closer the Lorenz curve to the identity 
line. The Gini coefficient, usually noted G, is generally used 
for distributions with positive support. Our notation GF is 
a reminder that we are working here with distributions of 
absolute errors fF(�).

(3)�F = ∫
∞

0

�fF(�) d�

(4)�F = ∫
1

0

C−1
F
(p) dp

(5)= ∫
1

0

qF(p) dp

(6)LF(p) =
1

�F
∫

p

0

qF(t) dt

(7)GF = 2∫
1

0

{p − L(p)} dp
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For sets of absolute errors with a normal distribution 
N(�;�F, �F) , GF is proportional to the coefficient of vari-
ation cv = �F∕�F [11], where �F the standard deviation of 
the absolute errors

Note that this relationship does hold only when all errors are 
of the same sign ( 𝜇F ≫ 𝜎F ), therefore with small cv values.

Two typical values of GF will be useful in the following:

•	 for any zero-centered normal distribution of errors 
N(0, �) , the distribution of absolute errors is the half-
normal distribution, with value GFN =

√
2 − 1 ≃ 0.41 

[15];
•	 for any zero-centered uniform distribution, U(−a, a) , or 

any uniform distribution with a bound at zero, U(−a, 0) 
or U(0, a), folding produces a uniform distribution with 
the minimal bound at zero, with value GFU = 1∕3 [15].

2.1.5 � Skewness and kurtosis

Skewness measures the asymmetry of a distribution, 
while kurtosis is used as a measure either of its “peaked-
ness” or “tailedness” [16] The moment-based formulae 
for skewness and kurtosis are not robust to outliers, and 
more robust quantile-based formulae have been proposed 
by several authors [6, 16–18].

For the skewness, we use a measure using the difference 
between the mean and median

(8)GF ∼ cv∕
√
�

(9)𝛽GM =
𝜇 − q(0.5)

< |e − q(0.5)| >

where the brackets indicate the mean value, q(0.5) is the 
median of signed error, e, and the GM subscript refers to the 
authors of this definition, Goeneveld and Meeden [17]. �GM 
takes its values between −1 and 1, and is 0 for symmetric 
distributions.

For kurtosis, an estimate based on quantiles is used [6] 
(originating from a similar form proposed by Crown and 
Siddiqui [19], hence the CS subscript)

where q(.) is the quantile function for signed errors. The cor-
rection factor for the normal distribution (2.91) makes that 
�CS measures an excess kurtosis. Datasets with 𝜅CS > 0 have 
heavier tails than a normal distribution, and the opposite for 
negative values.

Specific notations will be introduced below when these 
statistics are applied to sets of absolute errors.

2.2 � Estimation

We consider in this section the application of the previous 
statistics to finite error samples, and the corresponding for-
mulae. Let us consider a set of errors ( E =

{
ei
}N

i=1
 ), derived 

from a set of N calculated values ( C =
{
ci
}N

i=1
 ) and reference 

data ( R =
{
ri
}N

i=1
 ), by ei = ri − ci . The absolute errors are 

noted � =
{
�i = |ei|

}N

i=1
.

MSE, MUE and mode The mean signed error (MSE) is 
estimated as � =

1

N

∑N

i=1
ei , and the mean unsigned error 

(MUE) as �F =
1

N

∑N

i=1
�i.

As one is not dealing with necessarily symmetric distri-
butions, the mode is an interesting location statistic, notably 
in correspondence to the tails of a distribution. The mode 
locates the part of the population with the highest density, 

(10)�CS =
q(0.975) − q(0.025)

q(0.75) − q(0.25)
− 2.91

Fig. 1   Schematic cumulative 
density function a and Lorenz 
curve b for a folded standard 
normal density function of 
absolute errors. The area above 
the CDF (slanted) is the mean 
unsigned error (MUE). For a 
given probability p′ , the ratio 
of the shaded area to the total 
slanted area gives the value of 
the Lorenz curve Lp� = L(p�) . 
Qp′ is the quantile for prob-
ability p′ . The area between the 
Lorenz curve and the identity 
axis (vertical bars) is half the 
Gini coefficient.
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which is expected to bring a large contribution to �F and 
therefore influence the Lorenz curve and Gini coefficient. As 
one cannot assume the unimodality of the underlying distri-
butions, one will consider the main mode. A nonparametric 
robust method, Bickel’s half-range mode (HRM) estimator 
[20, 21], is used to estimate the location of the error samples 
main mode. This methods proceeds by iterative bipartition 
of modal intervals (intervals with highest density).

LF(p) and GF

Let us introduce the cumulated sum of the n ≤ N smallest 
absolute errors

where �[i] is the ith order statistic (i.e., the value with rank 
i) of the sample of absolute errors. For consistency, one sets 
S0 = 0.

The Lorenz curve is estimated as

where 0 ≤ p ≤ 1 . Note that, due to the use of finite samples, 
p takes its values in {i∕N}N

i=0
.

Using a fast sorting of the sample of absolute errors, an 
efficient estimation of GF uses the formula [9, 15, 22, 23]

A slower, but equivalent expression in terms of mean values 
is [10]

where �1 and �2 are two elements of � and the mean is taken 
on all pairs.

�GM and �CS
For skewness and kurtosis, Eqs. 9 and 10 are applied 

directly, with the robust method to estimate quantiles due to 
Harrell and Davis [3, 24, 25].

Uncertainty
Uncertainty on any statistic X, noted u(X), is estimated 

by bootstrapping [26] with 1000 samples. Note that there 
is a known risk of underestimation of GF for small datasets 
( N < 100 ) [15].

2.3 � Implementation

All calculations have been made in the R  language 
[27], using several packages, notably for the Gini coeffi-
cient (package ineq [23]), the HRM estimator (package 

(11)Sn =

n∑

i=1

�[i]

(12)LF(p) =
Sp×N

SN

(13)GF =

∑N

i=1
(2i − N − 1)�[i]

N
∑N

i=1
�[i]

(14)GF =
1

MUE
< max{0, 𝜀1 − 𝜀2} >

genefilter [28]) and bootstrapping (package boot 
[29]).

The Gini coefficient, Lorenz curves, GMCF , �GM , �CS and 
mode estimator have been implemented in the freely avail-
able R [27] package ErrViewLib (v1.3, https​://doi.
org/10.5281/zenod​o.36284​75). The datasets can be analyzed 
with the ErrView graphical interface (source: https​://doi.
org/10.5281/zenod​o.36284​89; web interface: http://upsa.
shiny​apps.io/ErrVi​ew).

3 � Datasets

3.1 � Model datasets

Before applying the Gini coefficient to literature datasets, 
one explores its properties on error sets generated from 
distributions with controlled properties: uniform, normal, 
Student’s-t, lognormal [30] and g-and-h [3, 25, 31].

It is important to note that we explore only distributions 
with a single dominant, more or less structured peak, such 
as the ones encountered in most computational chemistry 
error datasets. In the list of analytical distributions above, 
the uniform is an exception because of its undefined mode. 
We use it as an extreme case of single peaked, continuous 
distribution, with negative excess kurtosis.

Besides, it is easy to design multi-peaked distributions for 
which our conclusions on the Gini coefficient would not be 
valid. In fact, none of the usual summary statistics (MUE, 
MSE, skewness, kurtosis...) would describe properly such 
distributions.

3.2 � Literature datasets

The statistical tools described above are applied to datasets 
gathered in the computational chemistry literature. These 

Table 1   Literature datasets: N is the number of systems in the dataset 
and K is the number of methods.

Case Property N K Source

BOR2019 Band gaps (eV) 471 15 [32]
NAR2019 Enthalpies of formation (kcal/mol) 469 4 [33]
PER2018 Intensive atomization energies (kcal/

mol)
222 9 [2]

SCH2018 Adsorption energies (eV) 195 7 [34]
THA2015 Polarizability (relative errors, in %) 135 7 [35]
WU2015 Polarizability (relative errors, in %) 145 36 [36]
ZAS2019 Effective atomization energies (kcal/

mol)
6211 3 [37]

ZHA2018 Solid formation enthalpies (kcal/mol) 196 2 [38]

https://doi.org/10.5281/zenodo.3628475
https://doi.org/10.5281/zenodo.3628475
https://doi.org/10.5281/zenodo.3628489
https://doi.org/10.5281/zenodo.3628489
http://upsa.shinyapps.io/ErrView
http://upsa.shinyapps.io/ErrView
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are summarized in Table 1 and strongly overlap with those 
studied in more details in a previous article [4], from which 
we removed small datasets ( N < 100 ). The statistics, empiri-
cal cumulative density functions and Lorenz curves corre-
sponding to these datasets are provided as Supplementary 
Information.

4 � Applications

In its usual application fields, the Gini coefficient is applied 
to distributions with positive support. Our application to 
computational chemistry error sets involves the intermedi-
ate folding operation, which is not reversible. In a first part, 
we show how this limits the information on the errors dis-
tribution that can be inferred from the Gini coefficient. To 
relieve this difficulty, we propose a mode-centering opera-
tion before folding, which better preserves some of the tail 
properties of the original distributions. The Gini coefficient 
is then compared to other tails statistics, notably at the level 
of statistical uncertainty.

4.1 � Gini coefficient versus bias

The link between the Gini coefficient and the coefficient of 
variation (Eq. 8) tells us that, for a normal distribution of 
given standard deviation, a decreasing bias should result in 
increasing values of GF . At some point, this relation is bro-
ken by the folding operation: as noted earlier, for a centered 
normal distribution, one has GF = 0.41 , for which Eq. 8 
does not hold. The dependence between a distribution shift 
and GF is plotted in Fig. 2a for uniform U(−1, 1), normal 
N(0, 1), Student’s-t(� = 2) , lognormal LN(1, 0.5) and g-and-
h GH(g = 1, h = 0) distributions.

The zero-centered unimodal symmetric distributions 
(normal and Student’s-t) have their maximal GF value when 
the bias is null. The GF curve for the uniform distribution 
reaches GFU = 1∕3 when the distribution is centered or 
shifted by ±1 . For intermediate absolute values of the bias, 
the folded distribution is not uniform and presents higher 
values of GF . The value decreases when the bias is large 
enough to exclude zero from the range of non-null densities. 
Having heavier tails, the Student’s-t distribution has a larger 
Gini coefficient than the normal. Any added bias leads to a 
decrease in GF.

The decay curves are symmetric with respect to the sign 
of the bias. This is no longer the case for asymmetric dis-
tributions (lognormal and g-and-h), for which the peak is 
reached for non-null values of the bias and the decay curves 
are non-symmetric.

In Fig. 2b we plot similar curves for distributions centered 
on their mode before adding a bias (the symmetric distribu-
tions have been left unchanged). This shows that the maxi-
mal value of GF is reached when the mode of the distribution 
is at, or near, the origin. This assertion is validated in the 
next section (Sect. 4.2).

Another important point illustrated by these curves is that 
the level of information that can be recovered from GF is not 
uniform over the range of GF values. For instance, GF = 0.41 
might as well occur for a centered normal distribution as 
for positively or negatively biased Student’s-t, lognormal of 
g-and-h distributions, whereas values above 0.41 exclude 
normal and uniform distributions. Within the restrictions 
on the distributions shapes we considered above, one might 
infer that a value smaller than GFU = 1∕3 is likely to reveal 
a biased error distribution, while a value above GFN = 0.41 
is likely to signal distributions with one or two extended 
tail(s) (compared to normal tails), and with a possible bias. 
Between these bounds lies a blind zone where compensation 

Fig. 2   Variation of GF with 
a bias value added to several 
model distributions: a no cen-
tering applied; b mode center-
ing applied before adding bias 
(Uniform, Student and Normal 
are unchanged).
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between bias and shape factors prevent any inference on 
either of them.

4.2 � Does mode centering maximize G
F
?

In order to avoid the blind zone effect observed above and 
be able to characterize the shape of a distribution from its 
GF value, mode centering seems to offer an interesting way 
to relieve the bias/shape compensation. Mode centering a 
distribution results in a folded distribution where both tails 
overlap and mix, but it ensures that the contribution of the 
most extended tail will prevail. In the absence of mode cen-
tering, when a biased distribution has a large tail encom-
passing zero, the folding around zero might considerably 
reduce this tail.

The assertion that mode centering maximizes GF is tested 
here by comparing the results for mode centering with those 
obtained by explicitly maximizing the Gini coefficient with 
respect to a bias value. We define bmax as the value of the 
bias which maximizes GF

and note GFmax = GF(|E − bmax|) . This equation is solved 
numerically by the Nelder and Mead optimizer [39].

The values of bmax and GFmax were computed for the lit-
erature datasets and compared to the mode m(E) and GMCF 
respectively, through z-scores

and

(15)bmax = max
b

GF(|E − b|)

(16)zb =
m(E) − bmax√

u(m(E))2 + u(bmax)
2

(17)zG =
GMCF − GFmax√

u(GMCF)
2 + u(GFmax)

2

where the uncertainties are estimated by bootstrap.
In the hypothesis of a normal distribution of z-scores, a 

test threshold of 2 is generally chosen for the absolute value 
of the z-score [40]. For absolute values above 2, there is less 
than 5 percent of probability that the difference is due to 
sampling effects. For values below, one does not reject the 
hypothesis that the compared values are equal [3].

Histograms for the z-scores are shown in Fig. 3. At the 
exception of one point, the absolute value of all z-score val-
ues are smaller than 2, and we have therefore no reason to 
reject the hypothesis that these values are equal consider-
ing their uncertainty. The outlying point, with zb = −3.8 
and zG = −2.5 corresponds to the MP2 method in dataset 
ZAS2019, which has a practically normal distribution [5]. 
One has GMCF = 0.418(6) and GFmax = 0.436(3) for a dis-
tance of 1.07 between the mode and bmax , to be compared 
to the standard deviation of the distribution, 1.7. As shown 
in Fig. 2a, there is a flat area near the top of the GF curve 
as a function of bias for a normal distribution: very small 
deviations from a perfect normal distribution (as hinted to 
by the value of GFmax being larger than 0.41) can deviate the 
optimal point over a wide range.

For all practical purposes in the present study, one can 
therefore estimate that mode centering maximizes the value 
of the Gini coefficient, at a fraction of the computing cost 
for the search for bmax . We further note that for distribu-
tions having distinct mean and mode, centering on the mean 
would not maximize GF and therefore preserve some of the 
ambiguity due to bias/shape compensation.

4.3 � G
MCF

 versus G
F

We note the Gini coefficient of mode-centered folded dis-
tributions GMCF . Figure 4a displays GMCF versus GF for the 
literature datasets. It is clear that mode centering increases 
all G values, i.e., GMCF ≥ GF for all datasets, within the 

Fig. 3   Histograms of z-scores 
for a the position of the mode 
versus the GF maximizer and b 
the values of the corresponding 
Gini coefficients.
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estimation uncertainties. The G-scale is now reduced to 
values above 0.4, in conformity with our interpretation that 
all values below GFU = 1∕3 were due to bias.

The uncertainties are reported in Fig. 4(b), showing that 
for some datasets the uncertainty on GMCF is larger than the 
uncertainty on GF , up to a factor two. This extra uncertainty 
is due to the uncertainty on the mode value. We note also a 
size effect, the smallest datasets (THA2015, N = 145 ) hav-
ing the largest uncertainty, and the largest dataset (ZAS2019, 
N = 6211) , the smallest one.

4.4 � G
MCF

 as a shape statistic

In parallel with the Gini coefficient, the skewness of the 
distribution has also been considered as an estimator of 
inequality [11]. One is interested here in comparing GMCF 
with �MCF , which is the skewness �GM (Eq. 9) of the mode-
centered folded distribution.

The values for our selection of literature datasets are 
shown in Fig. 4c. There is an excellent correlation between 
those statistics, considering the uncertainties reported in 

Fig. 4d. Using model datasets of large size ( N = 106 ) for 
Student’s-t and g-and-h distributions with a range of shape 
parameters, one observes a nearly perfect nonlinear cor-
relation (dashed line, resulting from a quadratic fit of the 
sampled values). The dispersion of the points for the lit-
erature datasets about this curve is mostly due to statistical 
uncertainty (the points for the largest dataset (ZAS2019, 
N = 6211 ) are very close to the curve). It is important to 
note that the uncertainty on GMCF is a factor two to five 
smaller than the uncertainty on �MCF and therefore per-
forms better for smaller datasets.

We can therefore conclude that GMCF is apt at estimat-
ing the heaviness of the errors distribution tail after mode 
centering and folding. In order to appreciate the information 
about the signed error distribution that can be extracted from 
GMCF , we plotted it against the skewness �GM and excess 
kurtosis �CS (Fig. 5).

Considering skewness (Fig. 5a), all the points seem to 
lie within an angular sector, indicating that distributions 
with large skewness have necessarily large GMCF values. 
For instance, if the absolute value of the skewness is above 

Fig. 4   Comparison of GMCF 
with other statistics: a cor-
relation of GF and GMCF for 
the literature datasets and b 
comparison of their uncertain-
ties (the dashed line has a slope 
of 2); c correlation of GMCF and 
�MCF for the literature datasets 
(points) and a series of large 
samples ( N = 106 ) of Student’s-
t and g-and-h distributions with 
a range of shape parameters 
(dashed line) and d comparison 
of their uncertainties (the points 
are bracketed by lines of slope 
2 and 5).



	 Theoretical Chemistry Accounts          (2021) 140:24 

1 3

   24   Page 8 of 11

0.3, GMCF is larger than 0.5. Reciprocally, GMCF provides 
only an upper limit to |�GM| (for GMCF = 0.55 , the absolute 
value of the skewness cannot be above 0.4). For kurtosis 
(Fig. 5b), there is a lax positive trend between both statistics, 
and, globally, large values of GMCF are associated with large 
excess kurtosis, which might be due to heavy tails or outli-
ers. In both graphs, values of GMCF below 0.45 are associated 
with low skewness and excess kurtosis. Although informa-
tion is lost because of folding, GMCF can still provide some 
information about the shape of the distribution of signed 
errors, and notably about the kurtosis.

Let us consider a few examples to illustrate this point. We 
see in Fig. 5 that most points fall between 0.4 and 0.55, but 
a few methods reach higher values. The largest GMCF value 
in this study is 0.66 (orange dot) for method CAM-B3LYP 
in the PER2018 set [2] (cf. Table 2). This corresponds to 
large values of both �GM and �CS . The authors discussed how 
this DFA is in the head group of two methods with similar 
MUE values, but does not minimize the risk of large errors 
(Sect. II.A [2]). From the same set, B3LYP has the second 

largest GMCF value (0.61) and presents the same tail features 
than CAM-B3LYP. The third largest GMCF value (0.61, vio-
let dot) belongs to the ZAS2019 dataset, and it presents a 
null skewness and a large kurtosis. An in-depth study has 
been published for this case [5], where the errors distribu-
tion for the SLATM-L2 method was shown to have large 
tails, despite having the smallest MUE among the compared 
methods. In the same set, the MP2 method has a practically 
normal errors distribution and can be found in the lower part 
of the Gini scale (0.42). This analysis can be repeated for 
the ten methods with largest GMCF values (Table 2), showing 
that large GMCF values point indeed toward error sets with 
high kurtosis and/or skewness.

4.5 � Application of G
MCF

 to ranking

To evaluate the interest of GMCF in a practical scenario, one 
might consider it as an alert mechanism to complement a 
MUE ranking. But a question remains: “What is the thresh-
old for GMCF one should use to detect problematic error dis-
tributions ?” We have seen above that the ten largest GMCF 
values, above 0.55, point to distributions with notable tails. 
We propose for the present study to adopt an alert value 
based on the median of the GMCF values for our full dataset 
(0.51) and round it to 0.5. This might be reevaluated when 
more data are analyzed. Using this threshold, one might flag 
distributions suspected of having tails unsuitable for reliable 
predictions.

Figure 6a shows, for each dataset, the flagging of the 
methods with the best ranking. If one considers the first rank, 
five methods are flagged, but it is striking that three data-
sets have all their 10 lowest MUE-ranked methods flagged 
(BOR2019, PER2018 and THA2015). For BOR2019, all 
methods present some excess kurtosis and variable levels 
of skewness. We can relate this to an increasing trend of the 
errors with the band gap value [4]. In the case of PER2018, 

Fig. 5   Comparison of GMCF 
with shape statistics of error 
distributions: a absolute value 
of skewness |�GM| ; b excess 
kurtosis �CS.

Table 2   The ten methods with the largest G
MCF

 values and the cor-
responding skewness and kurtosis.

Dataset Methods G
MCF

�
GM

�
CS

PER2018 CAM-B3LYP 0.663(16) 0.572(57) 5.1(1.3)
PER2018 B3LYP 0.614(20) 0.301(74) 4.93(96)
ZAS2019 SLATM_L2 0.6086(59) 0.052(22) 4.48(25)
PER2018 LC-�PBE 0.602(20) 0.447(64) 2.82(82)
PER2018 PBE0 0.568(24) 0.349(63) 2.99(86)
PER2018 BH&HLYP 0.561(20) 0.416(52) 0.60(48)
WU2015 �HCTHhyb 0.560(24) −0.273(84) 2.45(83)
BOR2019 HLE16 + SOC 0.560(19) 0.372(43) 1.64(47)
PER2018 BLYP 0.555(20) −0.241(67) 3.47(78)
WU2015 B97-2 0.552(22) −0.281(80) 2.33(77)
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the error distributions present also large skewness and kurto-
sis, which can be associated with the chemical heterogeneity 
of the dataset [2]. For THA2015, it was noted previously [4, 
35] that some experimental reference data with large meas-
urement uncertainty could not be reproduced by any method 
in the studied set. These outliers contribute to the tails of all 
the error distributions (so-called global outliers) and affect 
GMCF values. Note that, more generally, reference data are 
not necessarily the origin of global outliers, as a missing 
physical contribution in the tested methods could produce 
similar effects.

To explore the role of global outliers, Fig.  6b 
reports the same analysis after search and removal 
of global outliers, defined as systems lying out of the 
[q(0.025), q(0.975)] interval for all methods of a data-
set. The removal of 6 systems affects strongly the case 
THA2015, confirming the previous analysis. The results 
for BOR2019 are mostly unchanged, except for the best 
MUE-ranked method (mBJ) which benefits from the 
removal of a single global outlier. No effect is observed 
for the PER2018 dataset, confirming the intrinsic heavy-
tailed shape of these heterogeneous atomization energy 
error sets [2].

The other datasets with leading GMCF-flagged methods 
are ZAS2019 and ZHA2018. The former has already been 
discussed (Sect. 4.4), and the removal of several global 

outliers has no impact. In the case ZHA2018, the first 
MUE-ranked method is SCAN, which has a GMCF value 
just above the threshold (0.503) and presents no skewness 
and a slight level of kurtosis. Removal of 4 global outli-
ers does not improve the shape of the errors distribution. 

Fig. 6   Flagging of large GMCF 
values after mode centering of 
at most 10 lowest MUE-ranked 
methods in each dataset.

Table 3   Statistics for the 
methods of the ZHA2018 
dataset, before and after linear 
correction (“lc-” prefix).

Methods MUE (kcal/mol) MSE (kcal/mol) Q
95

 (kcal/mol) �
GM

�
CS

G
MCF

PBE 0.2106 (98) −0.205(10) 0.467(34) −0.043(64) −0.17(28) 0.408(18)
SCAN 0.1024 (69) −0.0165(97) 0.291(21) −0.007(67) 1.49(53) 0.503(19)
lc-PBE 0.0923 (61) 0.0 0.287(38) −0.138(71) 1.02(43) 0.479(24)
lc-SCAN 0.0917 (63) 0.0 0.276(26) −0.082(67) 1.27(41) 0.475(20)

Fig. 7   Example of different error distributions having the same MUE 
(1.0) and offering contradictory results for some tail statistics. The 
probability to have absolute errors larger than 1.0 is P

1
= 0.50 for the 

blue curve and 0.42 for the red curve, hiding the fact that the red dis-
tribution contains much worse results that the blue one. In this case, 
the problem is solved by the values of Q

95
 , giving 1.16 for the blue 

curve, and 2.46 for the red one. Shape statistics, such as the kurtosis, 
would not enable to discriminate between both normal distributions.
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However, the errors on the formation enthalpies present 
a linear trend as a function of the calculated values. Cor-
recting this trend [1] improves slightly the performance 
and the shape of the SCAN distribution, but most notably 
of the PBE distribution, which performances get indistin-
guishable from those of SCAN (Table 3).

4.6 � Limits of the G
MCF

 coefficient

We have shown above that GMCF might be a useful comple-
ment to the usual ranking statistics, in order to detect error 
distributions with shapes that might reveal problem in pre-
diction reliability. However, there remain cases where the 
GMCF index is insufficient to reveal underlying problems. 
Figure 7 proposes a scenario of two normal distributions 
( GMCF = 0.41 ) with the same value of the MUE (1.0) and yet 
very different risks of large prediction errors. This is clearly 
a case showing that a quantile-based statistic, such as Q95 , 
is an essential complement to the MUE.

5 � Conclusion

The Gini coefficient presents an interesting addition to the 
computational chemistry benchmarking statistical toolbox. 
We focused here on its properties in relation to features of 
the error distributions, such as bias and shape (skewness and 
kurtosis). The interest of the Gini coefficient is that it corre-
lates with these features and offers a one-number summary. 
This is also one of its weaknesses, as there is no unique map-
ping from the Gini coefficient to these features.

To unscramble this situation, we propose to use the Gini 
coefficient of the mode-centered distributions, GMCF , which 
offers a simpler to interpret, shape-based, measure of tailed-
ness. Large GMCF values, e.g., above 0.5, alert us about large 
tails that might be due to large skewness, kurtosis and/or 
the presence of outliers. For high ranking methods, this is 
an incentive to inspect closely the error distributions and 
check whether the selected methods might have problems 
of reliability in their predictions. It might then be worth to 
investigate whether the distorted shape of the distribution is 
due to systematic trends in the errors, as they can often be 
corrected by simple linear transformations [1, 41–44]. The 
impact of such corrections on the shape of error distributions 
is the prospect of further studies.

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s0021​4-021-02725​-0.

Data availability statement  The data and codes that support the find-
ings of this study are openly available at the following URL: https​://
doi.org/10.5281/zenod​o.43332​17
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