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Abstract

The “extended Overhauser model” [Overhauser, Can. J. Phys. 73, 683 (1995)] for the calculation

of the spherically and system-averaged pair density (APD) has been recently combined with the

Kohn-Sham equations to yield realistic APD and correlation energies. In this work we test this

approach in the high-density (weakly-correlated) limit of the He isoelectronic series and of the

Hooke’s atom isoelectronic series. Unlike many of the commonly used energy functionals, the

Overhauser approach yields accurate correlation energies for both series.
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I. INTRODUCTION

Kohn-Sham (KS) Density Functional Theory1–3 (DFT) is nowadays one of the most pop-

ular methods for electronic structure calculations both in chemistry and solid-state physics,

thanks to its combination of low computational cost and reasonable performances. The ac-

curacy of a KS-DFT result is limited by the approximate nature of the exchange-correlation

energy density functional Exc[n]. Simple approximations (local-density approximation and

generalized gradient corrections) for Exc[n] provide practical estimates of thermodynamical,

structural and spectroscopic properties of atoms, molecules and solids. However, with the

current approximations, KS-DFT is still lacking in several aspects, in particular it fails to

handle near-degeneracy correlation effects (rearrangement of electrons within partially filled

shells) and to recover long-range van der Waals interaction energies. The inaccuracy of KS-

DFT stems from our lack of knowledge of Exc[n], and much effort is put nowadays in finding

new approximations to this term (for recent reviews, see, e.g., Refs. 2–4). A popular trend

in the development of new KS Exc[n] is the use of the exact exchange functional Ex[n] (in

terms of the KS orbitals), and thus the search for an approximate, compatible, correlation

functional Ec[n].

An exact expression for Ec[n] is the coupling-constant integral5,6

Ec[n] =

∫ λphys

0

dλ

∫ ∞

0

dr12 4π r2
12 f

λ
c (r12)

∂wλ(r12)

∂λ
, (1)

where the interaction between the electrons is adiabatically turned on from wλ=0(r12) = 0 to

the Coulomb repulsion wλ=λphys(r12) = 1/r12 by varying a real parameter λ (typical examples

are wλ(r12) = λ/r12, with λphys = 1, or wλ(r12) = erf(λr12)/r12, with λphys = ∞). The one-

electron density n(r) is (ideally) kept independent of λ and equal to the one of the physical

system by means of a suitable external potential vλ(r). In Eq. (1) the correlation part of

the spherically and system-averaged pair density (intracule density) f λ
c (r12) is defined as

follows. For each λ, take the square of the many-electron wavefunction Ψλ ground-state of

the hamiltonian Hλ,

Hλ = −
N

∑

i=1

∇2
i

2
+

1

2

N
∑

i6=j=1

wλ(|ri − rj|) +

N
∑

i=1

vλ(ri), (2)

and integrate it over all variables but the scalar electron-electron distance r12 = |r1 − r2|,

fλ(r12) =
N(N − 1)

2

∑

σ1...σN

∫

|Ψλ(r12,R, r3, ..., rN)|2dΩr12

4π
dRdr3...drN , (3)
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where R = (r1 + r2)/2. The correlation part fλ
c (r12) is then defined as fλ

c (r12) = fλ(r12) −
fKS(r12), where the intracule density of the KS system is fKS(r12) = fλ=0(r12) (and yields

the Hartree plus the exchange energy).

The traditional DFT approach to the construction of approximate Ec[n] is based on the

idea of universality. For example, the familiar local-density approximation (LDA) consists

in transfering, in each point of space, the pair density from the uniform electron gas to

obtain an approximation for fλ
c (r12) in Eq. (1). In a couple of recent papers,7–9 we have

started to explore a different way of constructing Ec[n], based on an “average pair density

functional theory” (APDFT), which was inspired by the seminal work of Overhauser10 and

its subsequent extensions.11–13 In this approach, we solve a set of radial (one-dimensional)

Schrödinger-like equations that give, in principle, the exact f λ(r12) along the DFT adiabatic

connection. In practice, this formalism contains an unknown effective electron-electron in-

teraction that needs to be approximated. The APDFT equations must be solved for each

system, and combined self-consistently with the KS equations.9 Preliminary applications

of this approach, combined with a simple approximation7 for the effective electron-electron

interaction that enters in the formalism, gave accurate intracule densities f(r12) and corre-

lation energies Ec[n] for the He isoelectronic series.7,9

Katriel et al.14 have recently tested most of the currently available correlation energy

functionals in the high-density (weakly-correlated) limit of the He and of the Hooke’s atom

isoelectronic series, finding that, while several functionals are accurate for the He sequence,

none is satisfactory for the Hooke’s atom series. Motivated by their findings, in this work

we compute the correlation energy and the intracule density in the high-density limit of the

two series via the APDFT approach,7–9 finding accurate results in both cases.

The paper is organized as follows. In the next Sec. II we recall the basic equations that

define the high-density limit of the He and Hooke’s atom sequences, to which we apply, in

Sec. III, the formalism of Refs. 7–9 to compute the correlation energy and the intracule

density. In Sec. V we also analyze the failure of LDA in this limit from the point of view of

f(r12). The last Sec. VI is devoted to conclusions.
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II. THE HIGH-DENSITY LIMIT OF THE HE AND HOOKE’S ATOM ISOELEC-

TRONIC SERIES

The two hamiltonians analyzed in this paper read

H = −∇2
1

2
− ∇2

2

2
+ v(r1) + v(r2) +

1

r12
, (4)

v(r) =







−Z
r

He series

1
2
k r2 Hooke′s atom series.

We are interested in the high-density (weakly-correlated) limit, which corresponds to Z → ∞
and k → ∞. By switching to scaled coordinates s = r/α, with α = Z−1 (He series) and

α = k−1/4 (Hooke’s series), both hamiltonians have the form

H =
1

α2

(

−∇2
s1

2
− ∇2

s2

2
+ ṽ(s1) + ṽ(s2) +

α

s12

)

≡ 1

α2
(H̃0 + αH̃1), (5)

where ṽ(s) = −1/s for the He series, and ṽ(s) = s2/2 for the Hooke’s atom series. We thus

study pertubatively the system described by H̃0 + αH̃1.

The order zero of the one-electron density n(r) and of the intracule density f(r12), in

scaled units, is simply

ñ(0)(s) =







2
π
e−2 s (He)

2
π3/2 e

−s2

(Hooke)
(6)

f̃ (0)(s12) =







1
24π

(3 + 6 s12 + 4 s2
12) e

−2 s12 (He)

1
(2π)3/2 e

−s2
12/2 (Hooke)

(7)

These functions are correctly normalized, so that if we switch back to coordinates r we have

n(0)(r) = α−3 ñ(0)(α−1r), etc.

The first-order correction to the scaled density, ñ(s) = ñ(0)(s) + α ñ(1)(s) + ... is given by

ñ(1)(s) = 2ñ(0)(s)χ(s), (8)

where15

χ(s) = −23

32
− e−2s

4
− 3

8
γ +

3

16

1 − e−2s

s
+

5

8
s+

3

8
Ei(−2s) − 3

8
ln(s), (9)

for the He isoelectronic series, with γ = 0.577216..,

Ei(−x) = −
∫ ∞

x

e−t

t
dt, (10)
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and16

χ(s) =
erf(s)

s
−

√
2(1 + ln 2)√

π
− 1

s
√
π

∫ ∞

0

dx
(

e−(x−s)2 − e−(x+s)2
)

[

ex2/2erfc

(

x√
2

)

+
√

2x

∫ x/
√

2

0

dt et2erfc(t)

]

, (11)

for the Hooke’s atom isoelectronic series.

By definition, the Kohn-Sham hamiltonian describes a non-interacting system that has

the same density of the physical, interacting, system. Thus, the first-order change in the

electron density of Eq. (8) corresponds to a first-order change in the KS system. Therefore,

we write the scaled intracule f̃(s12) up to orders α as

f̃(s12) = f̃ (0)(s12) + α
[

f̃
(1)
KS(s12) + f̃ (1)

c (s12)
]

+O
(

α2
)

, (12)

where we have separated the first-order correction into a Kohn-Sham part and a correlation

part. The KS part f̃
(1)
KS is entirely determined by the first-order density ñ(1) of Eq. (8),

f̃
(1)
KS(s12) =

∫

ds ñ(0)(s + s12) ñ
(0)(s)χ(s), (13)

and is reported in Appendix A in analytic form for the He isoelectronic series, while is

obtained numerically for the case of the Hooke’s series.

The total first-order intracule f̃ (1) = f̃
(1)
KS + f̃

(1)
c is known analytically in the case of the

Hooke’s series,16

f̃ (1)(s12) =
2 e−s2

12/4

(2π)3/4

[

1− 1 + ln 2√
2π

+
1

s12

− es2
12/2

s12

erfc

(

s12√
2

)

+
√

2

∫ s12/
√

2

0

et2erfc(t) dt

]

. (14)

III. EFFECTIVE EQUATIONS FOR f(r12) IN THE HIGH-DENSITY LIMIT

A. Formalism

We are interested in calculating f̃
(1)
c and the corresponding second-order correlation en-

ergy E
(2)
c with the method of Refs. 7–9, in which the intracule density f(r12) of the physical

system is obtained from a set of effective equations, which for two-electron systems reduce

to

[−∇2
r12

+ weff(r12)]ψ(r12) = ε ψ(r12), (15)
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with f(r12) = |ψ(r12)|2. Equation (15) can be derived by considering8,9 a set of Hamiltonians

characterized by a real parameter ξ,

Hξ = −
N

∑

i=1

∇2
i

2
+

1

2

N
∑

i6=j=1

wξ(|ri − rj|) + ξ

N
∑

i=1

vne(ri), f ξ(r12) = f(r12) ∀ξ (16)

that describe a set of systems in which the external potential is turned off as ξ → 0, and

the intracule density is kept fixed, equal to the one of the physical system, by means of

a suitable electron-electron interaction wξ(r12). In the case N = 2, when ξ = 0 we have

a translationally-invariant system (the center-of-mass degree of freedom is described by a

plane wave) of two fermions in a relative bound state (similar to the case of positronium,

but with a different interaction). This relative bound state is such that the square of the

wavefunction for the relative coordinate r12 is equal to f(r12) of the starting physical system,

and is thus described by Eq. (15).8,9 For more than two electrons, in the case of a confined

system (atom, molecule), the limit ξ → 0 in Eq. (16) describes a cluster of fermions, and

Eq. (15) becomes an approximation8,9,17 for the internal degrees of freedom of the cluster.

Here we focus on the high-density limit of the hamiltonians of Eq. (5) and we thus

stick to the case N = 2. In general, the effective electron-electron interaction weff(r12) in

Eq. (15) is not known, and must be approximated. In the case of the He series, we have

found7–9 that a simple approximation based on the original idea of Overhauser10,11 gives

very accurate results for 2 ≤ Z ≤ 10. In what follows we analyze the performance of the

same approximation in the very Z → ∞ limit, and we extend our study to the k → ∞
limit of the Hooke’s atom series. Of course, in the special case of the Hooke’s series, the

hamiltonian (5) is exactly separable into center-of-mass and relative coordinates, so that the

exact weff(r12) is directly available. However, the point here is to check whether the same

approximate weff(r12) that accurately describes the He series is capable to yield also good

results for the Hooke’s series, since this seems to be not the case for the currently available

correlation energy functionals.14

The construction of an approximation for the e-e effective potential weff starts with the

decomposition7–9

weff(r12) = wKS
eff (r12) + wc

eff(r12), (17)

where wKS
eff = ∇2

√
fKS/

√
fKS is the potential that generates the Kohn-Sham fKS via Eq. (15),

and wc
eff(r12) is a correlation potential that needs to be approximated. In the usual DFT

language, Eq. (17) implies that we are treating exchange exaclty.
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In scaled units s, using standard perturbation theory we obtain the equation for the first-

order contribution to f̃ [see Eq. (12)], that separates into the Kohn-Sham and the correlation

parts:

[

−∇2 + w
KS (0)
eff − ε(0)

]

ψ
(1)
KS =

[

ε
(1)
KS − w

KS(1)
eff

]

ψ(0) (18)
[

−∇2 + w
KS(0)
eff − ε(0)

]

ψ(1)
c =

[

ε(1)c − w
c (1)
eff

]

ψ(0), (19)

where ψ(0) =

√

f̃ (0), f̃
(1)
KS = 2ψ(0)ψ

(1)
KS, f̃

(1)
c = 2ψ(0)ψ

(1)
c , and

w
KS (0)
eff (s12) =

2 (8 s4
12 − 8 s3

12 − 38 s2
12 − 36 s12 − 9)

(4 s2
12 + 6 s12 + 3)2

− 1 (He series) (20)

w
KS (0)
eff (s12) =

s2
12

4
(Hooke′s series). (21)

In Eq. (18), f̃
(1)
KS is exatly known for both series, so that we can also obtain w

KS(1)
eff by

inversion.

We thus concentrate on the correlation part, since we want to test approximations for

wc
eff . Defining uc(x) = xψ

(1)
c (x) and u0(x) = xψ(0)(x), we have

[

d2

dx2
− w

KS (0)
eff + ε(0)

]

uc =
[

w
c (1)
eff − ε(1)c

]

u0. (22)

Following the method of Refs. 15,18,19 we look for a solution of the kind uc(x) = u0(x) y(x).

The function y(x) is then given by

y(x) =

∫ x

0

dx′

u2
0(x

′)

∫ x′

0

u2
0(x

′′)[w
c (1)
eff (x′′) − ε(1)c ] dx′′ + C2. (23)

The constant C2 is fixed by requiring the proper normalization,
∫ ∞

0

f̃ (1)
c (x) x2dx = 0 ⇒

∫ ∞

0

y(x)u2
0(x) dx = 0. (24)

The other integration constant has been fixed in Eq. (23) by setting equal to zero an un-

physical term C1

∫ x
u−2

0 (x′)dx′ that would make uc(x) diverge for large x.

B. Testing approximations: the Overhauser potential

In Refs. 7–9 an approximation for wc
eff was built as an average “Overhauser-type”

potential,10,11

wc
eff(r12) ≈

(

1

r12
+
r2
12

2 r3
s

− 3

2 rs

)

θ (rs − r12) , (25)
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FIG. 1: The correlation part of the intracule density, fc = f − fKS, divided by Z2, as a function

of the scaled variable s12 = Zr12 for the He isoelectronic series. The “exact” results are obtained

from the accurate wavefunctions of Ref. 20. Approximate results at finite Z using the “Overhauser

model” are taken from Ref. 7. The Z = ∞ result corresponds to Eq. (23) with the potential of

Eq. (28).

where θ(x) is the Heaviside step function and rs is related to the average density, or, better

to the dimension of the system. For two-electron atoms it was simply estimated as7

rs =
(

4π
3
n
)−1/3

, (26)

where

n =
1

N

∫

drn(r)2. (27)

The idea beyond this approximation is the following. The e-e correlation potential wc
eff(r12)

changes the Kohn-Sham f into the physical one, and must thus keep the information on

the one-electron density (which is the same in the two systems) while turning on the e-e

interaction 1/r12. In Eqs. (25)-(27) this information is approximately kept via the average

density.

In scaled units, the Overhauser potential to first order in α, to be used in Eq. (19),

becomes

w
c (1)
eff (s12) ≈

(

1

s12
+
s2
12

2 s3s
− 3

2 ss

)

θ (ss − s12) , (28)

where, if we adopt the prescription of Eqs. (26)-(27), ss = 31/3 +O(α) for the He series and

ss = (3
√
π)1/3 +O(α) for the Hooke’s atom series.

Equation (23) with the potential of Eq. (28) can be evaluated analytically as a function

of s12 and ss for both series, although the final expressions are cumbersome and will be not
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FIG. 2: The correlation part of the first-order intracule, f̃c(s12) [see Eq. (12)], for the Hooke’s

series. The exact values are compared with the results from the Overhauser-type approximation

of Eq. (28).
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FIG. 3: The decomposition of the first-order intracule intracule density f̃ (1)(s12) [see Eq. (12)]:

the Kohn-Sham part and the correlation part.

reported here. The resulting f̃
(1)
c for the He series is shown in Fig. 1, together with the cor-

responding scaled quantity, Z−2fc(s/Z), for some finite Z. [Since f̃
(1)
c (s) = limZ→∞Z f̃c(s),

and f̃c(s) = Z−3fc(s/Z), the quantity to be compared with f̃
(1)
c (s) is Z−2fc(s/Z).] For

finite Z we show both the “exact” result20 and the approximate result7 obtained with the

Overhauser-type potential of Eqs. (25)-(27). We see that the Z dependence of the short-

range part of fc is very well captured by this simple approximation. Figure 1 also suggests

that the Z → ∞ limit of the short-range part of fc is well described by this approach. In

Fig. 2 we show the result for f̃
(1)
c in the case of the Hooke’s series from the Overhauser

potential compared to the exact one, finding very accurate agreement.

The KS and the correlation components of f̃ (1) are shown in Fig. 3 for both series. We

see that in the case of the He series the KS and the correlation parts have roughly the same
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depth, while in the case of the Hooke’s series the correlation part is much deeper than the KS

one. This is due to the fact that the KS part gives the change in the e-e distance probability

distribution only due to the first-order change in the one-electron density. In the case of

the Hooke’s series the first-order change in the density is much smaller, since the harmonic

confining external potential is stronger than the Coulombic one. Indeed, the function χ(s)

of Eq. (8) in the case of the He series is about twice the one for the Hooke’s atom series.

IV. ADIABATIC CONNECTION AND CORRELATION ENERGY

The APD f̃
(1)
c (s12) gives the correlation contribution to second order to the expectation

〈Vee〉 of the Coulomb electron-electron repulsion operator, Vee = 1/r12,

〈Vee〉 =
1

α2

[

α〈Vee〉(1) + α2〈Vee〉(2) +O(α3)
]

, (29)

where 〈Vee〉(2) = 〈Vee〉(2)KS + 〈Vee〉(2)c , and

〈Vee〉(2)c =

∫ ∞

0

4π s12 f̃
(1)
c (s12) ds12. (30)

Our f̃
(1)
c from the Overhauser potential give 〈Vee〉(2)c = −0.10256 Ha for the He sequence

(to be compared with the exact21 value, −0.09333 Ha), and 〈Vee〉(2)c = −0.10377 Ha for the

Hooke’s series (to be compared with the exact16 value, −0.09941 Ha). The error is thus

9 mH for the He series and 4 mH for the Hooke’s series.

The correlation energy can then be otbained via the adiabatic connection formula of

Eq. (1), which for E
(2)
c reads

E(2)
c =

∫ λphys

0

dλ

∫ ∞

0

ds12 4π s2
12 f̃

λ (1)
c (s12)

∂wλ(s12)

∂λ
, (31)

where f̃
λ (1)
c is the first-order correlated part of f̃ for the system with interaction αwλ(s12).

If we were able to calculate the exact f̃
λ (1)
c for any wλ, the resulting E

(2)
c from Eq. (31)

would be independent of the choice of wλ. However, when we deal with approximations, we

can obtain better results with some choices rather than others.

As in Ref. 7, we build an Overhauser-type potential along the adiabatic connection as

wc, λ
eff (s12; ss) = wλ(s12) −

∫

|s|≤ss

nwλ(|s − s12|) ds, (32)
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where, in scaled units, if we stick with the choice of Eqs. (26)-(27), n = (4π)−1 for the He

series and n = (4π3/2)−1 for the Hooke’s series. The idea behind Eq. (32) is that the average

density n (and thus the average ss) is kept fixed to mimic the fact that the one-electron

density does not change along the adiabatic connection while we turn on the e-e interaction.

A. Linear adiabatic connection

If we set wλ(s12) = λ/s12, Eq. (32) simply gives the Overhauser potential of Eq. (28)

with a multiplying factor λ in front. From Eq. (23), we see that this corresponds to E
(2)
c =

〈Vee〉(2)c /2, as in the exact case. I.e., the simple approximation of Eq. (32) has the correct

scaling behavior in the α → 0 limit. Our result for E
(2)
c with the linear adiabatic connection

thus gives an error of 4.5 mH for the He series and 2 mH for the Hooke’s series.

B. The “erf” adiabatic connection

A choice for wλ that separates short- and long-range effects is the “erf” adiabatic con-

nection7,22–25, wλ(s12) = erf(λ s12)/s12, for which Eq. (31) becomes

E(2)
c =

∫ ∞

0

dλ

∫ ∞

0

ds12 4π s2
12 f̃

λ (1)
c (s12)

2√
π
e−λ2 s2

12 . (33)

The Overhauser-type potential corresponding to this interaction is reported in the appendix

of Ref. 7. For the He isoelectronic series with 2 ≤ Z ≤ 10, the Overhauser-type approxi-

mation combined with the “erf” adiabatic connection gives7 correlation energies with errors

within 4 mH, better than the linear adiabatic connection that gives errors within 10 mH.

In the weakly-correlated limit, instead, we obtained, via Eq. (33), E
(2)
c = −0.041 Ha for

the He series and E
(2)
c = −0.046 Ha for the Hooke’s series. The errors with respect to the

exact values, 6 mH and 4 mH, respectively, are thus slightly worse than those obtained with

the linear adiabatic connection.
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[see Eq. (12)]: the present calculation is compared with the LDA approximation (panel a). Panel b
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part of the second order contribution to the expectation value 〈Vee〉, which diverges in the case of

LDA.
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FIG. 5: The correlated part of the intracule density, f̃
(1)
c (s12), of order α = k−1/4 for the Hooke’s

atom series [see Eq. (12)]: the exact result is compared with the LDA approximation (panel a).

Panel b shows the same quantities multiplied by 4πs12: the integral under each curve gives the

correlation part of the second order contribution to the expectation value 〈Vee〉, which diverges in

the case of LDA.

V. THE LDA FAILURE IN THE HIGH-DENSITY LIMIT: AN ANALYSIS FROM

THE INTRACULE DENSITY

As a further element of comparison, we also computed the first-order f̃
(1)
c (s12) within the

local-density approximation (LDA),

f̃ (1)LDA
c (s12) = lim

α→0

1

α

∫

ñ(0)(s)2

2
gc

(

k̃F (s) s12;α r̃s(s)
)

ds, (34)
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where gc(r12; rs) is the pair-correlation function of the uniform electron gas26 of density

n = (4πr3
s/3)−1, and

k̃F (s) = [3π2ñ(0)(s)]1/3, r̃s(s) =

[

4π

3
ñ(0)(s)

]−1/3

. (35)

With these definitions, the density parameter rs of the uniform electron gas is locally pro-

portional to α. We have numerically evaluated the right-hand-side of Eq. (34) at smaller

and smaller α (i.e., at larger and larger Z and k), for 0 ≤ s12 ≤ 5. As α decreases, the

results tend to a well defined curve, shown in Figs. 4 and 5, together with the result from

the Overhauser model (He series) and the exact result (Hooke’s series).

Since, as shown by Eq. (34), the α → 0 limit corresponds to the rs → 0 limit of the

uniform electron gas pair-correlation function gc, to better understand the LDA result for fc

we now analyze more in detail the high-density behavior of gc. When rs → 0, the short-range

part of gc scales as

gc(x, rs → 0) = rs g
(1)
c (x) +O(r2

s ln rs), x = r12/rs, (36)

where the function g
(1)
c (x) does not depend explictily on rs and has been computed by

Rassolov et al.27. It is accurately recovered by the model gc of Ref. 26 that we have used in

the evaluation of Eq. (34). The scaled variable x is locally proportional to the scaled variable

s12 [see Eq. (35)]. Equation (36) thus shows that the short-range part (corresponding to

values of the scaled variable x not too large) of gc in the rs → 0 limit has a scaling similar

to the one of the He and Hooke’s series in the α→ 0 limit. This is also reflected by a good

performance of LDA for s12 . 1, as shown by Figs. 4 and 5.

However, the high-density electron gas is an extended system with important long-range

correlations that are not present in finite systems like atoms and molecules. In fact, the

scaling of Eq. (36) is not valid when x � 1: it has been shown that the long-range part of

gc scales as26,28,29

gc(x� 1, rs) → r2
s h(v), (37)

where v is another scaled variable, v =
√
rs x, which is thus locally proportional to

√
α s12.

The function h(v) has the following asymptotic behaviors:

h(v � 1) ∝ v−2, h(v � 1) ∝ v−4, (38)

which are also correctly included in the model gc of Ref. 26. When rs → 0 (i.e., α → 0),

even for very large x the scaled variable v is small, so that the long-range (x� 1) behavior

13



of gc is more and more dominated by the small v part of h(v), i.e., it behaves more and more

like v−2 rather than like v−4. It is this increasing dominance of the “short-range component

of the long-range part” that causes the ∝ log(rs) behavior in the correlation energy per

electron of the high-density electron gas, and thus the divergence of the LDA correlation

energy in the large-Z and large-k limit of the He and Hooke’s atom sequences (see, e.g.,

Ref. 30). In fact, when Z → ∞ (or k → ∞), the high-density long-range behavior of gc

affects the long-range part of f̃LDA
c (s12) in Eq. (34).

The small-v behavior ∝ v−2 of the function h(v) is related to the 1/r12 divergence of the

Coulomb potential at small r12. For this reason, the ∝ log(rs) high-density behavior of the

correlation energy is still present in a uniform electron gas with screened (or short-range

only) Coulomb interaction (e.g.,31 erfc(λr12)/r12), while is absent in an electron gas with

long-range-only interaction (e.g.,32,33 erf(λr12)/r12).

VI. CONCLUSIONS

We have computed the intracule density and the correlation energy for the high-density

(weakly-correlated) limit of the He and Hooke’s atom isoelectronic series via an approach7–9

based on an “average pair density functional theory” (APDFT), and inspired by the sem-

inal work of Overhauser.10–13 Unlike the currently available correlation energy functionals

analyzed in Ref. 14, the APDFT approach gives accurate results for both series. The LDA

failure in this same limit has been also analyzed in terms of the intracule density.
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APPENDIX A: f
(1)
KS(r12) FOR THE HE ISOELECTRONIC SERIES

For the He isoelectronic series Eq. (13) corresponds to

f̃
(1)
KS(x) =

1

864π x

{

4e−4x[−41 + 3 x (1 + 9 x)] + 81e2x(x− 1)[Ei(−6 x) − Ei(−4 x)]

+e−2x[164 + 27(3 + x (9 + 4 x (3 + 2 x)))[Ei(−2 x) − γ − log(x)] + 3 x [−163

+6 x (15 + x (7 + 10 x)) − 27 log(4/3)] − 162 log(2) + 81 log(3)]
}

, (A1)

where γ and the function Ei have been defined after Eq. (9).
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