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As shown by Overhauser and others, accurate pair densities for the uniform electron gas may be found by
solving a two-electron scattering problem with an effective screened electron-electron repulsion. In this paper
we explore the extension of this approach to nonuniform systems, and we discuss its potential for density
functional theory. For the spherically- and system-averaged pair density of two-electron atoms we obtain very
accurate short-range properties, including, for nuclear chdeg@, “on-top” values(zero electron-electron
distance essentially indistinguishable from those coming from precise variational wave functions. By means of
a nonlinear adiabatic connection that separates long- and short-range effects, we also obtain Kohn-Sham
correlation energies whose error is less than 4 mhartree, agaiB=&, and short-range-only correlation
energies whose accuracy is one order of magnitude better.
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I. INTRODUCTION AND SUMMARY OF RESULTS In this broad context, sketchily summarized here, we pro-
Density functional theoryDFT) [1-3] is nowadays the POS€ @ simplified method to build the “bridge” betvx_/een the
most widely used method for electronic structure calculaPhysical and the KS system, or, more ger_uerally, with a ref-
tions, in both condensed matter physics and quantum Chenﬁ_rence model system of partially interacting electrons. We

istry, thanks to a combination of low computational cost and ocus on a quantl_ty V\_’h'Ch IS "’?OW“ to pl_ay a crucial rqle in
reasonable accuracy. DFT and has an intuitive physical meaning, the spherically-

In the application of this theory within the Kohn-Sham and sy_stem-a\(eraged eIecFronic pair dens‘i(y_lz) (also
(KS) formalism[4], one deals with a model systeftne KS known in chemistry as spherical average of the intracule den-
system of N noninteracting electrons in a local potential SIY; See, e.g., Refd13-1@, and especially Refd17,18).
vks(r) that forces them to yield the same density) of the Given the spin-resolved diagonal of the two-body reduced

physical system. The energy of the physical system is theHenSIty matrix

obtained from that of the KS system via a functional of the

density, whose only term not explicity known is the 2 _

exchange-correlation enerdy;{n]. Correspondingly, in the 721)02(r1’r2) =2 f'q’(rl‘rl’ Moy [drs, - dry,
local potential vks(r) there is an unknown termy,.(r) 3 ON

= 6E, Jn]/ on(r). (1)

The success of KS DFT is mostly due to the fact that even
simple physical approximations & Jn], like the local den- We define the spin-summed pair densityry,r)
sity approximation(LDA) [4], already give acceptable re-
sults for many purposes. This spurred fundamental research N(N- 1) @
in the field, and led to a wealth of more and more sophisti- Ny(ry,ry) = TE Yoo, F1:72), 2
cated exchange-correlation functiongs3,5], and to the de- 7192
velopment of different approaches to DFG,7].

Recently, in the search for accurdEg[n], the focus of a and we integrate it over all variables buf,=|r,-r,| by
large part of the DFT community has shifted from seekingswitching, e.g., to center-of-mass coordinas,;(r,+r,),
explicit functionals of the density like the generalized gradi-r12=r,=ry
ent approximation$GGA) [8], to implicit functionals, typi-
cally using the Kohn-Sham orbital kinetic energy deng&y/
or the Kohn-Sham orbitalésee, e.g., Refd.3,10,11). The f(rlz):j drR
so-called “third generation” of exchange-correlation func-
tionals is based on the exact exchange of the noninteracting
(KS) system, simply obtained by putting in the formal ex- The functionf(r,,) times the volume elementm3, dr,, is
pression for the Hartree-Fock exchange the Kohn-Sham oproportional to the probability density for the particle-
bitals ¢;,(r). Such expression corresponds to an implicitparticle distance in a system df electrons in the statd’,
functional of the density,[n]=E,{¢;,[n]}]. The local po- and is normalized to the number of electron pal&N
tential v,(r)=0E[n]/én(r) that generates the orbitals —1)/2. This quantity fully determines the expectation value
¢i,(r)[n] can be obtained via the optimized effective poten-of the electronic Coulomb repulsidin hartree atomic units
tial method(OEP [12]. used throughouit

d

0
r12n2<R—r—12,R+r—12). (3)
4 2 2
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0.014 ——————— TABLE |. Our results for the functiorf(ry,) for two-electron
0.012 |\ H A atoms(first line for each properjycompared with the correspond-
0.01 | ‘+—Kohn-Sham ing “exact” quantitieg40]. In the first line of the table we report the

0.008 | average s as defined by Eqg17) and(19). For the “on-top” value

f(r42)

0.006 | f(0) we also show the LDA resuftwith f(0) for the uniform elec-
0.004 | tron gas from Ref{23]}. All values are in hartree atomic units.
0.002
0 H- He Li* Be? Ned+
f12 Ts 2.1 0.86 0.54 0.39 0.15
IH f(0) 0.0021 0.104 0.528 1.526 32.6
016 1\ 'gxact ] “Exact” 0.0027 0.106 0534 1523  32.7
. 012} Kohn-Sham LDA 0.0047 0.119 0.563 1.587 33.0
= 008 rrlnzax 0.835 0.193 0.083 0.0465 0.0074
0.04 + “Exact” 0.927 0.194 0.083 0.0465 0.0074
L ma
0 05 1 15 2 25 f(riy 0.0031 0.114 0.55 1.56 32.74
“Exact” 0.0040 0.117 0.56 1.56 32.74

(Veo—(Vedxs  -0.12 -0.097 -0.10 -0.10 -0.10

Lt “Exact” -0.07 -0.078 -0.082 -0.089 -0.09

speaking, in the classic DFT approach to correlation, the dif-
ference in energy arising when we evaluate the right-hand
side of Eq.(4) with the twof(ry,), the physical and the KS,
is what one tries to describe withumiversalfunctional of
2 the densityf21]. Here, we follow a different approach: we try
to build realisticf(r,,) from a set of simple radial equations,
to be solved foreachsystem, and eventually coupled to a
" " " " ] DFT calculation.

" Kohn-Sham Bo®* Our approach is inspired by the seminal work of Over-
i T hauser{22] and its subsequent extensif#8], in which the
function f(r,,) for the uniform electron gas is obtained from
a set of geminals, solutions of a radial Schrodinger equation
with an effective electron-electrqe-€e) potential. Simple ap-
proximations for such effective-e potential give indeed ac-

. . . : curate results at all relevant densiti@8—25. Here, we try

0 02 04 06 08 f to generalize this approach to systems of nonuniform density
2 to get accuraté(r,,). The main goal of the present work is
understanding whether the method is promising, and whether
it is worth developing and refining. To this purpose, we de-
fine the formalism(Sec. I), we give a physically motivated
prescription for the effective-e potential(Sec. Ill), and we
test it on the simple but not trivial case of two-electron atoms
(Sec. IV). The prescription for the effective-e potential
used here is not very sophisticated. Improvements along the
lines of what has been done for the uniform electron gas
[23—25 will be the subject of future work. Yet, even at this
simple first stage of the theory we already obtain rather ac-
curate results, especially for the short-range part(of,)
and is a measurable quantity, being essentially the Fourigsee Fig. 1 and Table).IIn Sec. V we show that with the
transform of the electronic static structure facf@®]. By  present approach we can also recover the difference in ki-
construction, the one-electron dengily ) is the same in the petic energy between the physical and the KS system. Fi-
KS and in the physical system, wherdds,,) will be differ-  nally, Sec. VI is devoted to conclusions, perspectives, and
ent in the two cases, as shown, e.g., in Fig. 1 for some twoepen questions.
electron atoms. In the physical systefir;,) has a much
lower “on-top” valuef(r,»,=0) than in the KS system, and it Il. FORMALISM
has a cusp20], as expected from the fact that the electrons In addition to the work on the “Overhauser model”
repel each other via the Coulomb interaction. Roughly[22-24, the approach described here takes advantage of in-

f(ry2)

o I I I I I
0 02 04 06 08 1 1.
M2

f(rq2)

FIG. 1. Spherically- and system-averaged pair densities for two
electron atoms: “exact” resulfgl0] are compared with the values
obtained for the Kohn-Sham system and with the present approac
which is designed to get realistidr,,) starting from the Kohn-
Sham ones.

f(ryp

l2

(Veo = (V|Ved W) = f J 4 ri, dr, (4)
0
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spiring papers on the possibility of constructing a pair- f
density functional theornf26—29, and a local-density-of- E=min{ min >, (| _Vr212|¢’i>+f r_dr12+ FKE[f;Vne]}'
states functional theor30]. bt 12

Our starting point is a constrained search oiitN-1) (10
“effective” orthonormal geminalg/i(r,,) that minimize the _ . o _ _ _
electron-electron relative kinetic enerdy,=-V?_(the re- Searching this minimum by directly varying thg (with

duced mass for the relative motion is L&nd yield the exact 91VEN. fixed,Vye) leads to Eqs(6) and(7) with the identifi-
f, Zilh(r)P=f(ry) cation

. =Ly el FiVoel
min 2 (] = V7 J4h), (5 vel12) = L (1)

Thus, in principle we could recover the whole ground-state
energy via the (unknowrn system-dependent functional
Fxelf; Viel- In practice, it seems much more feasible to com-
5 bine Egs.(6) and(7) with a DFT calculation that yields the
[= Vi, + vei(r12 14i(rin) = & #i(r1o), (6)  complementary information (the density, and thus
(P|V,d¥)). The steps of Eqs8)—<(11) can be repeated for
arbitrary electron-electron interaci%n and external one-body
_ potential. In particular, we can s&t;,=\V, and V.=V,
gl [i(r1l? = F(r1p). @) whereV is an external potential thatekeeps the density equal
to the one of the physical system. One could thus olftadat
each coupling strength between 0 and 1 from Eq&) and
r(7) with a suitablevgﬁ. The correlation energy of KS theory
Yis then simply given by6,33,34

thus leading to a set of radial equations formally similar to
the KS ones

N(N-1)/2

These equations imply that an expansion in spherical ha
monics of f(ry,) has been done, so that the kinetic energ
operator also contains the usu&l¢+1)/r? term. To fully
define these equations we need a rule for the occupancy of 1 N (ryp) - 1)
the effective geminals. In analogy with what has been done EJn] :f d\ J drj,—2——12
for the uniform electron gaf23,24], we can assign spin de- 0
generacy 1 to even-angular-momentum stdssgley and
spin degeneracy 3 to odd-angular-momentum si@tidet), Alternatively, this procedurdusually called adiabatic con-
up to N(N-1)/2 occupied states. More generally, for open-nection[34]) can be performed along a nonlinear path, e.g.,
shell systems it could be better to develop the formalism fobPY setting[6,35-37 ve.=erf(Ar)/r, where erx) is the error
the spin-resolved quantities, starting from Et). This will ~ function (see Sec. Y. Eventually, the two sets of equations,
be investigated in future work. KS and(6) and(7) plus(12), could be solved together self-
The effective electron-electron potential(r;,) of Eq.  consistently. This last issue is discussed in Sec. VI. Notice
(6) is the Lagrange parameter féfr,,), and is a functional that if we combine Eqs(6), (7), and(12) with a DFT calcu-
of f itself and of the electron-nucleus external poteridigl  lation, we only need to approximate the potentigh(r;,)
[or, equivalently, of the density(r)]. To see this, we can and not the whole functiond g since the remaining infor-
rewrite our Eqgs(6) and(7) in terms of a minimization of the ~Mation is provided by DFT.
total energy in two steps, using the constrained search for- Itis also worth to stress at this point that there is no wave

malism [31,32 for the ground-state energ= mim,(\P|T function behind our Eq96) and (7): the effective geminals
+Veet Vod W) 5 are defined via Eq5), and by specifying their occupancy
(e.g., triplet and singlet A bosonic version of the theory, in

(12
2

¢ which only one gemindlproportional toy/f(ry,)] is occupied

E = minmin{ min >, (] - V? |¢i>+f —dr i+ (¥|T can also be considerd@9,38. In this paper we only focus
fow—f| {y—f | 12 r on two-electron systems for which the two choices are
equivalent. A careful comparison of performances of the

+Vod W) = min > (4] = V7 _|yi) |- (8)  “fermionlike” and of the “bosonlike” occupancy in the uni-
{uit—f 12 form electron gas is the subject of current investigations

[39].

Defining the kinetic and external-potential functional as As for KS DFT, the formalism just described can be use-

ful only if simple approximations fove(r,,) yield accurate
. . results. This is what we start to check in the rest of this
Fielf:Vnel = \T_',QOP'T *Vnd¥) - {?}sz (Wil - Vf212|¢’i>' paper. First, we construct a physically motivated for two-
' ' electron atoms for the fully interacting system, and we com-
9) pare our results with “exact” on¢40]. Then, we generalize
our construction to build.; along the adiabatic connection,
we can rewrite and we calculate the KS correlation energy.
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Ill. EFFECTIVE ELECTRON-ELECTRON POTENTIAL: mations also fopé?_? (see Sec. VI Examples of function$ys
THE OVERHAUSER MODEL for nuclear chargeg=1,2,3,4 aregiven in Fig. 1: they
have a maximum at;,=0, as expected in a system of two

For the interacting electron gas of uniform density ) 4 i " o) C
Overhausef22] proposed a simple and reasonable effec,[ivenonlnteractlng electrons with antiparallel spins in a confining

potentialy(r1,): he took the sphere of volunte® around a one-body external potential. When the interaction is turned

. . . on, the average distance between the two electrons increases,
given electron as the boundary within which the other elec-". . . : )

: with the constraint that(r) is kept fixed. We can thus imag-
trons are excluded, due to exchange and correlation ef'fectsrie that. with respect to the Kohn-Sham svstem. in the physi-
In the standard uniform-electron-gas model, a rigid, posi.l | t’ wi " Cp o sl \% o ,Il t physi
tively charged background maintains the electrical neutralityca system the Loulomb repuision between he electrons cre-

Thus, the exclusion regiotor “hole”) around a given elec- ates, on average, a lscreenirg ‘hole” around the reference
tron, modeled with a sphere of rading=(4mn/3)"¥3, un- electron of volume&n)~, wheren'is an average densify.e.,

covers the background of positive charge, leading to an eir-](r) integrated over the wave functipn
fective screened Coulomb potential with screening lemgth

1
1 N n:—fdr n(r)2. (17)
ver(rizir) = — = f dr, (13 N
Frio Jirj=rg Ir=r13 ) )
An approximatev(rq2) could thus be simply constructed as
equal to
2. 3 veri(r12) = V(1) + oG (r12iT9), (18)
Ov . - 112 -
Ueff(rIZvrs) - + 2 3 2 losTs, . . o
Mz g 4l with an averages in vg of Eq. (14)
erflf}(r12; rg=0, rp>rs (14) To= (4_77ﬁ> e (19)
S_ .
3

Equations(6) and (7), combined with the Overhauser effec-

tive potential of Eq(14), gave extremely accurate results for o ,
: = ; ; The Overhauser-type potentlai’ﬁ(rlz;r_s) is thus a correla-

the short-range parfr;,<r,) of the functionf(ry,) in the _ ¢

uniform electron gas at all relevant densitj@s]. A more  tion potential to be added to the one that generags It

sophisticated effective potential, based on a self-consistef{escribes the correlation between pairs of electrons due to

Hartree approximation, extended such accuracy to the long=0ulomb interaction, and keeps the information on the one-

range part ofi(r;,) at metallic densitie§24]. Other approxi- ©/ectron density in an approximate way, via the averagé

mate ver(ro) for the uniform electron gas have also beenEq'(l?j' Of course, fk(]).r moregomp"cated systems we expect

proposed 25], and exact properties have been deri{4éd. to need a more sophisticated constructionrior

To produce realistid(r4,) for nonuniform systems from

Egs. (6) and (7), here we generalize the original idea of IV. RESULTS

Overhausef22,23 to two-electron atoms, and show that it ) _ )

gives rather accurate results, especially for the short-range e have inserted the potential of E@.8) into Egs.(6)

part of f(ry,). We start from the effective potentia[ﬁ?(rlz) and(7), and solved .ther.n for several two—e_Iectrpn atoms. Our

that generate$s(r;,), the spherically- and system-averaged "ZseuIttﬁa?ﬁ:r;?r\;vnléne;gd&/ :n%tzl:l?;%?zﬁed?s)m 'il\'/aebsleall_. We

pair density of the Kohn-Sham system. In the special case of P P g

a spin-compensated two-electron system, the KS wave funds ady reasona_ble results mp L and 2, and that the accuracy

tion is simply equal tO%\,WVW- Because, at this first of the results increases with (as the system becqmes less

stage, we are interested in testing our method as a “bridge@nd less correlatedThe on-top valud(0) is essentially ex-

' 8 act forZ=2, and is much better than the LDA estiméater-
between the KS and the real system, here we use the “exa : :
Kohn-Sham system. We thus tZlke accurate one-electron dgﬁw_ally _regarded as accurater all Z. Th!s feature s appeal—

y : fﬁg, since the on-top value plays an important role in DFT

sities[40], and constructys(rs») [44], and accuraté(0) are not easy to obtain fromb initio

1 r r dQ, methods(see, e.g., Ref[45] and references therginThe
frs(rin) == f n(R - —12>n<R + —12>dR—12, (15 term 1k, in the effective potential ensures that the calcu-
4 2 2 4ar lated f(ry,) satisfies the exact cusp conditidh(0)=f(0).

and the corresponding exact potenti§)(r;,), that can be ~Table | also shows that the positiarf;™ and the height
calculated by inverting Eq€6) and (7) f(r'3 of the maximum off are very well predicted by the
o present approach. The presence of this maximum is essen-
0 _ V2 fs tially due to the combined effect of the Coulomb repulsion
Velt = " + const. (18)  petween the electrons and the confining external potential.
KS In Fig. 2 we consider He and Rie and we compare the
For systems with more than two electrons, the potem@%l correlated part of ouf, f.=f-fys, with the “exact” result
could be calculated, e.g., with the methods of Rp1&,43. [40] and with the corresponding quantity calculated within
In practice, it would be much more efficient to build approxi- LDA, i.e.,

032513-4
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47145, 1.€., the integrand of Ed4) for the correlation part of
(Vep: the area under each curve g4 —(Veoks IN the

last line of Table | we report quantitative results /.o
—(Veoks This quantity is less accurate than the short-range
properties, but it is still encouraging. Moreover, it saturates
for largeZ as in the exact case.

-0.02
-0.04

felr12)

-0.06 ¢

-0.08

V. ADIABATIC CONNECTION AND CORRELATION
ENERGY

For the calculation of the energy of the physical system,
in addition toV[Nn]=(Vee —(Veoks ONe needs to know the
kinetic-energy differencel[n]=(T)—(T)ks, that can be ob-
tained via the adiabatic connection formali$6;33,34. By

fe(ri2)

3 thi'se‘ﬁ}; 1 varying a parametex, the interactionv}(r,,) between the

'3:2 , , IDA - ] electrons is switched on continuously from zero ta3,/
0 01 02 03 04 05 while the density is kept fixed by an external one-body po-

M2 tential VA. If v33%=0 andv}?=1/ry,, the KS correlation en-

ergy E[n]=TJ[n]+VJ]n] is given by[6,34
FIG. 2. The correlated part of the spherically- and system- gy Ednl=Tdnl+Velnlis g yi6,34

averaged pair density.(rqo) =f(ro)—frs(ri). Our results for He

a % A
and Né* are compared with the “exact” ones and with the LDA _ 2 £\ Ivedr12)
EJfn]=] d\| dr riofe(Fp)——, 21
result (the hole for the uniform electron gas is taken from Ref. dnl fo fo 1A 32fc(r12) IN (21)
[46]).

wheref}=f*-fys.
1 Usually, the adiabatic connection is performed along a

D=3 J N(r)?ge(riz:n(r)dr, (200 jinear “path”[11,33, by settingu).=\/ry,, which leads to
Eq. (12). If one is able to compute the exa‘tgt the resulting
E. from Eq. (21) is independent of the choice of, How-
ever, when approximations are made some paths can give
much better results than othdi8]. As we shall see, this is
the case with the present approach.

We build an Overhauser-type potential for interacti@g

whereg_ is the pair-correlation function of the uniform elec-
tron gas at full coupling strength, taken from Ref6]. (For

an extended system of uniform density we have g
=2f./nN.) Figure 3 shows the same quantities multiplied by

(0)
0,004 (to be added tw ) as
N 0 |
5 -0.004 e N(r12iTd = vadr o) = - nogd|r —rig)dr. (22)
5 r=<r
w -0.008 °
¥ o012} That is, the average densityof Eq. (17) (and thus the av-
0016 erager,) is kept fixed to mimic the fact that the one-electron
density does not change along the adiabatic connection. The
modified interactiorvge is screened by a sphere of radiys
0.02 and of positive uniform charge of densitythat attracts the
' o electrons with the same modified interaction. This attractive
o 002 background approximates the effect of the external potential
e y N
3 004 V* on f.
Eo 0.06 |
< 008 A. Linear adiabatic connection
01t
012 . LDA If we choosevh,=\/ry, we simply obtainvSe™(ry,;Ty)
0 01 02 :"3 04 05 06 =\ v (r1p;Ts), Wherev ¥ (ry,;T9) is given by Eq.(14).
2 The results foKVA)—(Veoks for He and N&* are shown

FIG. 3. The real-space analysis of the correlation part of thdn Fig. 4, and are compared with the “exact” ones of Ref.
expectation value o¥.s the area under each curve giveé.o [42]. The correlation energlg. can be calculated as the area
—(Veoks [se€ also Eq4) and Fig. 4. Our results for He and Né  under each curve. We obtal=-0.052 hartree for He and
are compared with the “exact” ones and with the LDA retiie  E.=-0.053 hartree for N, to be compared with the corre-
hole for the uniform electron gas is taken from Rdf6]). sponding exact results, —0.042 and —0.045, respectively.
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(] . o
ovoh 0.002 |
« 002} this work ——— ] .
3 -0.004 | He
3 04 N S .0.006 |
| ", 3 - |
2 1 W -0.008
© -0.01 |
-0.08 | He \\_ oo Izit
-0.1 L L N N "~ o | r‘esu t .
0 02 04 06 08 1 ] 5 10 15 20
" A
i ' | : - 0
Jexact’
-0.02 | this work - ] 0o | ]
(Q e
:8 ace] S -0.001 |
i - 3
3 o W 00015 |
<8 -008| NeB*
© -0.002 | a
el resultls .
0.12 . : . . -0.0025 pa—— 40 éo 3'0 S
""0 02 04 06 08 1 x

A

FIG. 5. The derivativedE}/d\ along the nonlinear adiabatic
connection defined by Eq$23) and (24) for He and N&*. Our
results are compared with the derivative of the fitting function of
Eq. (25). The area under each curve from zerod@ives the cor-
relation energyE. of standard Kohn-Sham theory.

FIG. 4. Correlation part ofViy along the linear adiabatic con-
nection for He and N¥. Our results are compared with the “exact”
ones of Ref[42]. The area under each curve gives the correlation
energyE, of standard Kohn-Sham theory.

B. A nonlinear adiabatic connection

The technical details of this calculation are as follows.

As shown by Figs. 1-3 and Table I, the Overhauser-typ he potentiabgﬁ'*(rlz;r_s) of Eq. (22) can be computed ana-

potential gives accurate results for the short-range part . X ; : .
fo(ri2). We can thus expect to obtain better correlation eneﬁ—ytma"y’ and is reporte<}j\ n tﬁe Appfndm. WéJthAszrgbta|ned,
gies from the adiabatic connection formalism if we choose &2 Eds.(6) and (7), dE;/d\=fdr,fe(r;p)(2/Vm)e™ 112 for
modified interactionv), that is able to separate long-range 23 values ofx between 0 and 20 for He, and between 0 and

and short-range contributions, like the “erf’ interaction 100 for Né*. We then fitted our results with the derivative of

[6,35-31 the following functional form:
erf(n r
vedr1d) = —12) (23 L aplrax@ranl®
ri Ec=- (1+b22° ' 7’ (25)

With this choice, Eq(21) becomes

% o 2 L, which has exact asymptotic behaviors for small and large
Ec[n]:f d)\f dry, 4w rizfé(rlz)? AT (24)  [37). (We have numerical evidence that our results fulfill
0 0 N such exact behaviopsin Fig. 5 we report our numerical
values fordEé‘/ d\, together with the derivative of the fitting
For large\, when we are approaching the physical systemfunction of Eq.(25). The parameters and the rms of residuals
the Gaussian factoe—szfz in Eq. (24) quenches the long- are reported in Table Il. The KS correlation enefgyn] is
range contribution of} to the energy integrand. At the KS then given byag/b™.
end of the adiabatic connection, when- 0, the interaction,
and thusf}, become small, so that the contribution B

coming from values for which the long-range part Qf is TABLE II. Optimal fit parameters and rms of the residuals for

. . _ the derivative of Eq.(25), which parametrizes our results for
hot quenched is moderate. Moreover, the funclﬁbms cor dEé/d)\ along the nonlinear adiabatic connection defined by Egs.

rectly normalized to zero so that far— 0, not only isfé (23 and (24). See also Fig. 5
small, but also the integral itself vanishes. In the linear adia- i -
batic connection of Eq.12) , instead, the long-range part of
fé plays an important role in the energy integrand athall
Indeed, with this nonlinear adiabatic connection we obtairHe 1.2047  2.3253  2.7788  1.5263 x40°
E.=-0.0405 hartree for He arfe,.=-0.0413 for N&*, much

closer to the exact values with respect to the results from thg s+ 0.3983 04711 04026 1.2557 xd0®
linear adiabatic connection.

a; a, as b rms
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for A= 1/r, which is a very reasonable choice for the value
001 | of \ to be used in the CI+DFT method of Ref§,35-37.
TP -0.02
|
w003 ¢ VI. CONCLUSIONS AND PERSPECTIVES
004 b ‘exact —— | : i
this Work In this work we have started to explore the possibility of
00 T T, & 8 10 solving simple radial equations to generate realistic
A spherically- and system-averaged electronic pair densities
f(r4») for nonuniform systems. With a simple approximation
0 for the unknown effective electron-electron interaction that
001 | appears in our formalism, we have obtained, for two-electron
29 002 | Ne® atoms, results that are in fair agreement with those coming
R from accurate variational wave functioni&igs. 1-3 and
w003 ¢ Table ). We have then extended our approach along a non-
-0.04 | oxact —— 1 linear adiabatic connection and obtained Kohn-Sham corre-
, ,this work ——— lation energies whose error is less than 4 mhartrees, and
0 10 20 30 40 50 60 70 80 short-range-only correlation energies whose accuracy is one
A order of magnitude bettdFig. 6).

. S ) In Sec. Il, we have introduced a general formalism for
FIG. 6. A nonlinear adiabatic connection that separates long- - .

e . many-electron systems that will be further tested in future
and short-range effects: difference between the correlation enerqxl K So f that this f i bined with
E. of the physical systertwith full interaction 1) and the corre- .Or I Ohar_WeI can Say a. IS om:(a ISm, Comlllrf]e Wi
lation energyEé of the system with partial interaction éxfr)/r, simple physical approximations, works very well for two

for He and N&. Our results are compared with the “exact” ones of COMPpletely different systems: the uniform electron gas
Ref. [36]. [23-25 and the He series. We think that this fact makes the

method promising.

To fully develop the approach described in this paper,
nection is of particular interest for the method of Refs_mhanyﬁsteps have to be_ pl)er(gc))rmed.fFérst olf8all, }he KhS p;’:(ljrt of
[6,35-37, which combines multideterminantal wave func- 1€ € ectl\{ee-e potential,ugq(r1) 0 q.'( ), also shou
tions (configuration interaction, Clwith density functional be approxma’ged, to make the_ extension to many—_electron
theory(* CI+DFT”). In such an approach, instead of the KS systems practlca_l. The correlatlon part .Of the effective
system, one chooses a reference system of partially intera otential can be |mproved, in analogy with the recent devel-
ing particles, usually with the potential of E3). This opments for t.he uniform electron-gas C@G’ZS} It should
model system is treated with a multideterminantal wavelt.hen be pOSS|bI_e to constructaself-conSISI'ent SCK@E@'
function, in a CI fashion, that allows one to treat near- ike) that combines the Kohn-Sham equations with the cor-
degeneracy effects. The remaining part of the energy is caf-EIat'on energy functional arising from our approgétys.
culated via a density functional, which needs to be approxi—(G) and(7) at different couplmg_ gtrengtha plus Eq.(_12) or
mated. The largek, the larger is the energy fraction treated Ea. (2.4)]' With respect to traditional DFT calculatlgns,. this
with the CI calculation, and thus the larger is the computa-comb'ned scheme would have the ad""’?”tage of yielding not
tional cost. The correlation energy functional that needs to b nly the ground-sta_te one-electron density) and ener.g)E, .
approximated i$6,35-37 ut also the sph.encally- and system—averageq pair density

f(r1»), thus allowing one to calculate expectation values of
o two-body operators that only depend on the electron-electron
Eg[n]EEC[n]_Eé[n], (26) distance. The combination of our approach with the CI
+DFT method of Refd.6,35-37 also could be implemented
and, in view of the results of Fig. 6, it is even more promis-
ing. We are presently working in all of these main directions.

The accuracy of our results with the “erf” adiabatic con-

and it can be rewritten as

—_ * . ’ 2 12,2
Eﬁ[n]=J dk’J dryp 4 rf, ) (rlZ)\(_TT N, ACKNOWLEDGMENTS
A 0 V
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tional Eé[n], and we expect to get accurate results with thehelpful suggestions. This research was supported by a Marie
present approach. Indeed, this is the case, as shown in Fig. 6urie Intra-European grant within the 6th European Commu-
where we compare our results as a function\oivith the  nity Framework Programmé&Contract No. MEIF-CT-2003-
“exact” ones of Ref[36]. The error is less than 0.5 mhartree 500026.
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APPENDIX: OVERHAUSER-TYPE POTENTIAL erf(us) 1

FOR THE ERF INTERACTION u(s,p) == Vs S+ (-2+s+)u?
The evaluation of Eq.(22) with the interactionuv), ) # -
=erf(\ rip)/rq, gives +eS (=1 +(2+s-Pud)]e @ -9K
ooy — _ U(Su) —\mu[3s+2(1 -9)*(2 +s)u*lerfu(1 - 9)]
Veff (23T = ——, (A1) —
s + Vo[- 3s+2(2 —s)(1 +9)?u?lerf u(1 +9)]}.
wheres=r,/t, =\, and (A2)
[1] W. Kohn, Rev. Mod. Phys71, 1253(1999. [20] A. K. Rajagopal, J. C. Kimball, and M. Banerjee, Phys. Rev. B
[2] A. E. Mattsson, Scienc®98, 759 (2002. 18, 2339(1978; X.-Y. Pan and V. Sahni, J. Chem. PhyKkL9,
[3] A Primer in Density Functional Theoygdited by C. Fiolhais, 7083(2003.
F. Nogueira, and M. Marque$Springer-Verlag, Berlin, 2003  [21] The difference in kinetic energy can be obtained from the adia-
[4] W. Kohn and L. J. Sham, Phys. Re¥40, A1133(1965. batic connection formula that can be viewed as a generaliza-
[5] J. P. Perdew and K. Schmidt, iDensity Functional Theory tion of the above argument, and is treated in Sec. V.
and Its Applications to Materialsedited by V. VanDorert al. [22] A. W. Overhauser, Can. J. Phyg3, 683(1995.
(AIP, New York, 2003, and references therein. [23] P. Gori-Giorgi and J. P. Perdew, Phys. Rev.d&, 155102
[6] A. Savin, F. Colonna, and R. Pollet, Int. J. Quantum Chem. (2002.
93, 166 (2003, and references therein. [24] B. Davoudi, M. Polini, R. Asgari, and M. P. Tosi, Phys. Rev. B
[7] V. Sahni, Quantal Density Functional TheorySpringer- 66, 075110(2002.
Verlag, Berlin, 2004 [25] M. Corona, P. Gori-Giorgi, and J. P. Perdew, Phys. ReG®B
[8] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. L&ff. 045108(2004; I. Nagy, R. Diez Muifio, J. I. Juaristi, and P. M.
3865(1996); 78, 1396(1997); A. D. Becke, Phys. Rev. A38, Echeniquejbid. 69, 233105(2004).
3098 (1988; J. Chem. Phys.84, 4524 (1986; C. Lee, W. [26] P. Ziesche, Phys. Lett. A95 213 (1994; M. Levy and P.
Yang, and R. G. Parr, Phys. Rev. B7, 785 (1988; J. P. Ziesche, J. Chem. Phy415 9110(2002.
Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.[27] A. Gonis, T. G. Schulthess, J. van Ek, and P. E. A. Turchi,
Pederson, D. J. Singh, and C. Fiolhaisd. 46, 6671(1992; Phys. Rev. Lett.77, 2981(1996; A. Gonis, T. G. Schulthess,
48, 4978(1993. P. E. A. Turchi, and J. van Ek, Phys. Rev.38, 9335(1997.
[9] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuserid,28] A. Nagy, Phys. Rev. A66, 022505(2002.
Phys. Rev. Lett.91, 146401(2003. [29] F. Furche, Phys. Rev. A0, 022514(2004).

[10] J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E[30] J. M. Soler, Phys. Rev. B9, 195101(2004).
Scuseria, and G. I. Csonka, J. Chem. Plifsbe published [31] M. Levy, Proc. Natl. Acad. Sci. U.S.A76, 6062(1979.
[11] M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. L8%.5070  [32] E. Lieb, Int. J. Quantum ChenR4, 243 (1983.

(2000. [33] J. Harris and R. Jones, J. Phys. F: Met. Ph4s1170(1974);

[12] See, e.g., S. Kimmel and J. P. Perdew, Phys. Re\68B D. C. Langreth and J. P. Perdew, Solid State Commilir).
035103(2003; W. Yang and Q. Wu, Phys. Rev. LetB89, 1425(1979; O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B
143002(2002; R. J. Magyar, A. Fleszar, and E. K. U. Gross, 13, 4274(1976.

Phys. Rev. B69, 045111(2004); M. Griining, O. V. Gritsenko, [34] W. Yang, J. Chem. Phys109, 10107(1998.
and E. J. Baerends, J. Chem. Ph§48 7183(2003. [35] A. Savin, inRecent Developments and Applications of Modern

[13] C. A. Coulson and A. H. Neilson, Proc. Phys. Soc. Lond@ Density Functional Theory edited by J. M. Seminario
831 (1961). (Elsevier, Amsterdam, 1996 T. Leininger, H. Stoll, H.-J.

[14] J. Cioslowski, B. B. Stefanov, A. Tan, and C. J. Umrigar, J. Werner, and A. Savin, Chem. Phys. Le®75 151(1997); R.
Chem. Phys.103 6093(1995. Pollet, A. Savin, T. Leininger, and H. Stoll, J. Chem. Phys.

[15] J. Cioslowski and G. Liu, J. Chem. Phy$09, 8225(1998. 116, 1250(2002.

[16] E. Valderrama, J. M. Ugalde, and R. J. BoydMany-electron  [36] R. Pollet, F. Colonna, T. Leininger, H. Stoll, H.-J. Werner, and
Densities and Reduced Density Matricesdited by J. A. Savin, Int. J. Quantum Chen®1, 84 (2003; J. Toulouse
Cioslowski (Kluwer Academic/Plenum Publishers, New York, (private communication
2000. [37] J. Toulouse, F. Colonna, and A. Savin, Phys. Rev.78,

[17] E. R. DavidsonReduced Density Matrices in Quantum Chem- 062505(2004).
istry (Academic Press, New York, 19¥6 [38] B. Davoudi, R. Asgari, M. Polini, and M. P. Tosi, Phys. Rev. B

[18] A. J. Coleman and V. I. YukalovReduced Density Matrices: 68, 155112(2003; R. Asgari, B. Davoudi, and M. P. Tosi,
Coulson’s ChallengéSpringer-Verlag, New York, 2000 Solid State Commun131, 301 (2004).

[19] See, e.g., G. Mazzone, F. Sacchetti, and V. Contini, Phys. Rey39] R. Asgari, B. Davoudi, M. Polini, and M. P. Togunpub-

B 28, 1772(1983; C. Petrillo and F. Sacchetihid. 51, 4755 lished.
(1995. [40] D. E. Freund, B. D. Huxtable, and J. D. Morgan lll, Phys. Rev.

032513-8



SIMPLE MODEL FOR THE SPHERICALLY AND.. PHYSICAL REVIEW A 71, 032513(2005

A 29, 980(1984. We used an improved versigprovided to  [42] F. Colonna and A. Savin, J. Chem. Phyid.0, 2828(1999.
us by C. Umrigar of the accurate variational wave functions [43] Q. Zhao, R. C. Morrison, and R. G. Parr, Phys. Rev58,

described in this work to obtain one-electron densitigs and 2138(1994; R. van Leeuwen and E. J. Baerenit&d. 49,
functionsf(ry,). See also C. J. Umrigar and X. Gonze, Phys. 2421(1994).
Rev. A 50, 3827(1994, and Ref[14]. [44] J. P. Perdew, A. Savin, and K. Burke, Phys. Revba 4531

[41] P. Ziesche, Phys. Rev. B7, 233102(2003; P. Ziesche, K.
Pernal, and F. Tasnadi, Phys. Status SolidiB239 185
(2003. In these papers interesting exact properties of the
“Overhauser geminals” are derived, using thieracting mo-
mentum distribution to define the geminal occupancy. Notice [45] X- Fradera, M. Duran, E. Valderrama, and J. M. Ugalde, Phys.
however, that the uniform-electron gas equivalent of our Egs. Rev. A 62, 034502(2000.

(6) and (7) employs thenoninteractingmomentum distribu-  [46] P. Gori-Giorgi and J. P. Perdew, Phys. Rev.@8, 165118
tion, as has been done in Refg3-25. (2002.

(1995; K. Burke, J. P. Perdew, and M. Ernzerhof, J. Chem.
Phys. 109 3760(1998; E. Valderrama and J. M. Ugalde, Int.
J. Quantum Chem86, 40 (2002.

032513-9



