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As shown by Overhauser and others, accurate pair densities for the uniform electron gas may be found by
solving a two-electron scattering problem with an effective screened electron-electron repulsion. In this paper
we explore the extension of this approach to nonuniform systems, and we discuss its potential for density
functional theory. For the spherically- and system-averaged pair density of two-electron atoms we obtain very
accurate short-range properties, including, for nuclear chargeZù2, “on-top” valuesszero electron-electron
distanced essentially indistinguishable from those coming from precise variational wave functions. By means of
a nonlinear adiabatic connection that separates long- and short-range effects, we also obtain Kohn-Sham
correlation energies whose error is less than 4 mhartree, again forZù2, and short-range-only correlation
energies whose accuracy is one order of magnitude better.

DOI: 10.1103/PhysRevA.71.032513 PACS numberssd: 31.15.Ew, 31.25.Eb, 71.15.Mb

I. INTRODUCTION AND SUMMARY OF RESULTS

Density functional theorysDFTd f1–3g is nowadays the
most widely used method for electronic structure calcula-
tions, in both condensed matter physics and quantum chem-
istry, thanks to a combination of low computational cost and
reasonable accuracy.

In the application of this theory within the Kohn-Sham
sKSd formalism f4g, one deals with a model systemsthe KS
systemd of N noninteracting electrons in a local potential
vKSsr d that forces them to yield the same densitynsr d of the
physical system. The energy of the physical system is then
obtained from that of the KS system via a functional of the
density, whose only term not explicitly known is the
exchange-correlation energyExcfng. Correspondingly, in the
local potential vKSsr d there is an unknown term,vxcsr d
=dExcfng /dnsr d.

The success of KS DFT is mostly due to the fact that even
simple physical approximations ofExcfng, like the local den-
sity approximationsLDA d f4g, already give acceptable re-
sults for many purposes. This spurred fundamental research
in the field, and led to a wealth of more and more sophisti-
cated exchange-correlation functionalsf2,3,5g, and to the de-
velopment of different approaches to DFTf6,7g.

Recently, in the search for accurateExcfng, the focus of a
large part of the DFT community has shifted from seeking
explicit functionals of the density like the generalized gradi-
ent approximationssGGAd f8g, to implicit functionals, typi-
cally using the Kohn-Sham orbital kinetic energy densityf9g
or the Kohn-Sham orbitalsssee, e.g., Refs.f3,10,11gd. The
so-called “third generation” of exchange-correlation func-
tionals is based on the exact exchange of the noninteracting
sKSd system, simply obtained by putting in the formal ex-
pression for the Hartree-Fock exchange the Kohn-Sham or-
bitals wissr d. Such expression corresponds to an implicit
functional of the density,Exfng=Exfhwisfngjg. The local po-
tential vxsr d=dExfng /dnsr d that generates the orbitals
wissr dfng can be obtained via the optimized effective poten-
tial methodsOEPd f12g.

In this broad context, sketchily summarized here, we pro-
pose a simplified method to build the “bridge” between the
physical and the KS system, or, more generally, with a ref-
erence model system of partially interacting electrons. We
focus on a quantity which is known to play a crucial role in
DFT and has an intuitive physical meaning, the spherically-
and system-averaged electronic pair densityfsr12d salso
known in chemistry as spherical average of the intracule den-
sity; see, e.g., Refs.f13–16g, and especially Refs.f17,18gd.
Given the spin-resolved diagonal of the two-body reduced
density matrix

gs1s2

s2d sr 1,r 2d = o
s3,. . .,sN

E uCsr 1s1, . . . ,r NsNdu2dr 3, . . . ,dr N,

s1d

we define the spin-summed pair densityn2sr 1,r 2d

n2sr 1,r 2d =
NsN − 1d

2 o
s1s2

gs1s2

s2d sr 1,r 2d, s2d

and we integrate it over all variables butr12= ur 2−r 1u by
switching, e.g., to center-of-mass coordinates,R= 1

2sr 1+r 2d,
r 12=r 2−r 1

fsr12d =E dR
dVr 12

4p
n2SR −

r 12

2
,R +

r 12

2
D . s3d

The function fsr12d times the volume element 4pr12
2 dr12 is

proportional to the probability density for the particle-
particle distance in a system ofN electrons in the stateC,
and is normalized to the number of electron pairs,NsN
−1d /2. This quantity fully determines the expectation value
of the electronic Coulomb repulsionsin hartree atomic units
used throughoutd

PHYSICAL REVIEW A 71, 032513s2005d

1050-2947/2005/71s3d/032513s9d/$23.00 ©2005 The American Physical Society032513-1



kVeel ; kCuVeeuCl =E
0

`

4p r12
2 fsr12d

r12
dr12, s4d

and is a measurable quantity, being essentially the Fourier
transform of the electronic static structure factorf19g. By
construction, the one-electron densitynsr d is the same in the
KS and in the physical system, whereasfsr12d will be differ-
ent in the two cases, as shown, e.g., in Fig. 1 for some two-
electron atoms. In the physical systemfsr12d has a much
lower “on-top” valuefsr12=0d than in the KS system, and it
has a cuspf20g, as expected from the fact that the electrons
repel each other via the Coulomb interaction. Roughly

speaking, in the classic DFT approach to correlation, the dif-
ference in energy arising when we evaluate the right-hand
side of Eq.s4d with the two fsr12d, the physical and the KS,
is what one tries to describe with auniversal functional of
the densityf21g. Here, we follow a different approach: we try
to build realisticfsr12d from a set of simple radial equations,
to be solved foreachsystem, and eventually coupled to a
DFT calculation.

Our approach is inspired by the seminal work of Over-
hauserf22g and its subsequent extensionf23g, in which the
function fsr12d for the uniform electron gas is obtained from
a set of geminals, solutions of a radial Schrödinger equation
with an effective electron-electronse-ed potential. Simple ap-
proximations for such effectivee-e potential give indeed ac-
curate results at all relevant densitiesf23–25g. Here, we try
to generalize this approach to systems of nonuniform density
to get accuratefsr12d. The main goal of the present work is
understanding whether the method is promising, and whether
it is worth developing and refining. To this purpose, we de-
fine the formalismsSec. IId, we give a physically motivated
prescription for the effectivee-e potentialsSec. IIId, and we
test it on the simple but not trivial case of two-electron atoms
sSec. IVd. The prescription for the effectivee-e potential
used here is not very sophisticated. Improvements along the
lines of what has been done for the uniform electron gas
f23–25g will be the subject of future work. Yet, even at this
simple first stage of the theory we already obtain rather ac-
curate results, especially for the short-range part offsr12d
ssee Fig. 1 and Table Id. In Sec. V we show that with the
present approach we can also recover the difference in ki-
netic energy between the physical and the KS system. Fi-
nally, Sec. VI is devoted to conclusions, perspectives, and
open questions.

II. FORMALISM

In addition to the work on the “Overhauser model”
f22–24g, the approach described here takes advantage of in-

FIG. 1. Spherically- and system-averaged pair densities for two-
electron atoms: “exact” resultsf40g are compared with the values
obtained for the Kohn-Sham system and with the present approach,
which is designed to get realisticfsr12d starting from the Kohn-
Sham ones.

TABLE I. Our results for the functionfsr12d for two-electron
atomssfirst line for each propertyd compared with the correspond-
ing “exact” quantitiesf40g. In the first line of the table we report the
averager̄s as defined by Eqs.s17d ands19d. For the “on-top” value
fs0d we also show the LDA resulthwith fs0d for the uniform elec-
tron gas from Ref.f23gj. All values are in hartree atomic units.

H− He Li+ Be2+ Ne8+

r̄s 2.1 0.86 0.54 0.39 0.15

fs0d 0.0021 0.104 0.528 1.526 32.6

“Exact” 0.0027 0.106 0.534 1.523 32.7

LDA 0.0047 0.119 0.563 1.587 33.0

r12
max 0.835 0.193 0.083 0.0465 0.0074

“Exact” 0.927 0.194 0.083 0.0465 0.0074

fsr12
maxd 0.0031 0.114 0.55 1.56 32.74

“Exact” 0.0040 0.117 0.56 1.56 32.74

kVeel−kVeelKS −0.12 −0.097 −0.10 −0.10 −0.10

“Exact” −0.07 −0.078 −0.082 −0.089 −0.09
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spiring papers on the possibility of constructing a pair-
density functional theoryf26–29g, and a local-density-of-
states functional theoryf30g.

Our starting point is a constrained search over1
2NsN−1d

“effective” orthonormal geminalscisr12d that minimize the
electron-electron relative kinetic energyT12=−¹r12

2 sthe re-
duced mass for the relative motion is 1/2d and yield the exact
f, oiucisr12du2= fsr12d

min
hcij→f

o
i

kciu − ¹r12

2 ucil, s5d

thus leading to a set of radial equations formally similar to
the KS ones

f− ¹r12

2 + veffsr12dgcisr12d = ei cisr12d, s6d

o
i=1

NsN−1d/2

ucisr12du2 = fsr12d. s7d

These equations imply that an expansion in spherical har-
monics of fsr12d has been done, so that the kinetic energy
operator also contains the usual,s,+1d / r2 term. To fully
define these equations we need a rule for the occupancy of
the effective geminals. In analogy with what has been done
for the uniform electron gasf23,24g, we can assign spin de-
generacy 1 to even-angular-momentum statesssingletd and
spin degeneracy 3 to odd-angular-momentum statesstripletd,
up to NsN−1d /2 occupied states. More generally, for open-
shell systems it could be better to develop the formalism for
the spin-resolved quantities, starting from Eq.s1d. This will
be investigated in future work.

The effective electron-electron potentialveffsr12d of Eq.
s6d is the Lagrange parameter forfsr12d, and is a functional
of f itself and of the electron-nucleus external potentialVne
for, equivalently, of the densitynsr dg. To see this, we can
rewrite our Eqs.s6d ands7d in terms of a minimization of the
total energy in two steps, using the constrained search for-
malism f31,32g for the ground-state energyE=minCkCuT
+Vee+VneuCl

E = min
f

min
C→f

H min
hcij→f

o
i

kciu − ¹r12

2 ucil +E f

r12
dr 12 + kCuT

+ VneuCl − min
hcij→f

o
i

kciu − ¹r12

2 ucilJ . s8d

Defining the kinetic and external-potential functional as

FKEff ;Vneg = min
C→f

kCuT + VneuCl − min
hcij→f

o
i

kciu − ¹r12

2 ucil,

s9d

we can rewrite

E = min
f
H min

hcij→f
o

i

kciu − ¹r12

2 ucil +E f

r12
dr 12 + FKEff ;VnegJ .

s10d

Searching this minimum by directly varying theci swith
given, fixed,Vned leads to Eqs.s6d and s7d with the identifi-
cation

veffsr12d =
1

r12
+

dFKEff ;Vneg
dfsr12d

. s11d

Thus, in principle we could recover the whole ground-state
energy via the sunknownd system-dependent functional
FKEff ;Vneg. In practice, it seems much more feasible to com-
bine Eqs.s6d and s7d with a DFT calculation that yields the
complementary information sthe density, and thus
kCuVneuCld. The steps of Eqs.s8d–s11d can be repeated for
arbitrary electron-electron interaction and external one-body
potential. In particular, we can setVee

l =lVee and Vne=Vl,
whereVl is an external potential that keeps the density equal
to the one of the physical system. One could thus obtainfl at
each coupling strengthl between 0 and 1 from Eqs.s6d and
s7d with a suitableveff

l . The correlation energy of KS theory
is then simply given byf6,33,34g

Ecfng =E
0

1

dlE dr 12
flsr12d − fl=0sr12d

r12
. s12d

Alternatively, this proceduresusually called adiabatic con-
nectionf34gd can be performed along a nonlinear path, e.g.,
by settingf6,35–37g vee

l =erfslrd / r, where erfsxd is the error
function ssee Sec. Vd. Eventually, the two sets of equations,
KS ands6d and s7d plus s12d, could be solved together self-
consistently. This last issue is discussed in Sec. VI. Notice
that if we combine Eqs.s6d, s7d, ands12d with a DFT calcu-
lation, we only need to approximate the potentialveff

l sr12d
and not the whole functionalFKE since the remaining infor-
mation is provided by DFT.

It is also worth to stress at this point that there is no wave
function behind our Eqs.s6d and s7d: the effective geminals
ci are defined via Eq.s5d, and by specifying their occupancy
se.g., triplet and singletd. A bosonic version of the theory, in
which only one geminalfproportional toÎfsr12dg is occupied
can also be consideredf29,38g. In this paper we only focus
on two-electron systems for which the two choices are
equivalent. A careful comparison of performances of the
“fermionlike” and of the “bosonlike” occupancy in the uni-
form electron gas is the subject of current investigations
f39g.

As for KS DFT, the formalism just described can be use-
ful only if simple approximations forveffsr12d yield accurate
results. This is what we start to check in the rest of this
paper. First, we construct a physically motivatedveff for two-
electron atoms for the fully interacting system, and we com-
pare our results with “exact” onesf40g. Then, we generalize
our construction to buildveff along the adiabatic connection,
and we calculate the KS correlation energy.
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III. EFFECTIVE ELECTRON-ELECTRON POTENTIAL:
THE OVERHAUSER MODEL

For the interacting electron gas of uniform densityn,
Overhauserf22g proposed a simple and reasonable effective
potentialveffsr12d: he took the sphere of volumen−1 around a
given electron as the boundary within which the other elec-
trons are excluded, due to exchange and correlation effects.
In the standard uniform-electron-gas model, a rigid, posi-
tively charged background maintains the electrical neutrality.
Thus, the exclusion regionsor “hole”d around a given elec-
tron, modeled with a sphere of radiusrs=s4pn/3d−1/3, un-
covers the background of positive charge, leading to an ef-
fective screened Coulomb potential with screening lengthrs

veff
Ovsr12;rsd =

1

r12
−E

ur uørs

n

ur − r 12u
dr , s13d

equal to

veff
Ovsr12;rsd =

1

r12
+

r12
2

2rs
3 −

3

2rs,
r12 ø rs,

veff
Ovsr12;rsd = 0, r12 . rs. s14d

Equationss6d and s7d, combined with the Overhauser effec-
tive potential of Eq.s14d, gave extremely accurate results for
the short-range partsr12ø rsd of the function fsr12d in the
uniform electron gas at all relevant densitiesf23g. A more
sophisticated effective potential, based on a self-consistent
Hartree approximation, extended such accuracy to the long-
range part offsr12d at metallic densitiesf24g. Other approxi-
mate veffsr12d for the uniform electron gas have also been
proposedf25g, and exact properties have been derivedf41g.

To produce realisticfsr12d for nonuniform systems from
Eqs. s6d and s7d, here we generalize the original idea of
Overhauserf22,23g to two-electron atoms, and show that it
gives rather accurate results, especially for the short-range
part of fsr12d. We start from the effective potentialveff

s0dsr12d
that generatesfKSsr12d, the spherically- and system-averaged
pair density of the Kohn-Sham system. In the special case of
a spin-compensated two-electron system, the KS wave func-
tion is simply equal to1

2
Însr 1dÎnsr 2d. Because, at this first

stage, we are interested in testing our method as a “bridge”
between the KS and the real system, here we use the “exact”
Kohn-Sham system. We thus take accurate one-electron den-
sities f40g, and constructfKSsr12d

fKSsr12d =
1

4
E nSR −

r 12

2
DnSR +

r 12

2
DdR

dVr 12

4p
, s15d

and the corresponding exact potentialveff
s0dsr12d, that can be

calculated by inverting Eqs.s6d and s7d

veff
s0d =

¹2ÎfKS

ÎfKS

+ const. s16d

For systems with more than two electrons, the potentialveff
s0d

could be calculated, e.g., with the methods of Refs.f42,43g.
In practice, it would be much more efficient to build approxi-

mations also forveff
s0d ssee Sec. VId. Examples of functionsfKS

for nuclear chargesZ=1,2,3,4 aregiven in Fig. 1: they
have a maximum atr12=0, as expected in a system of two
noninteracting electrons with antiparallel spins in a confining
one-body external potential. When the interaction is turned
on, the average distance between the two electrons increases,
with the constraint thatnsr d is kept fixed. We can thus imag-
ine that, with respect to the Kohn-Sham system, in the physi-
cal system the Coulomb repulsion between the electrons cre-
ates, on average, a screening “hole” around the reference
electron of volumesn̄d−1, wheren̄ is an average densityfi.e.,
nsr d integrated over the wave functiong

n̄ =
1

N
E dr nsr d2. s17d

An approximateveffsr12d could thus be simply constructed as

veffsr12d < veff
s0dsr12d + veff

Ovsr12; r̄sd, s18d

with an averager̄s in veff
Ov of Eq. s14d

r̄s = S4p

3
n̄D−1/3

. s19d

The Overhauser-type potentialveff
Ovsr12; r̄sd is thus a correla-

tion potential to be added to the one that generatesfKS. It
describes the correlation between pairs of electrons due to
Coulomb interaction, and keeps the information on the one-
electron density in an approximate way, via the averagen̄ of
Eq. s17d. Of course, for more complicated systems we expect
to need a more sophisticated construction forr̄s.

IV. RESULTS

We have inserted the potential of Eq.s18d into Eqs.s6d
ands7d, and solved them for several two-electron atoms. Our
results are shown in Fig. 1 and summarized in Table I. We
see that the simple effective potential of Eq.s18d gives al-
ready reasonable results forZ=1 and 2, and that the accuracy
of the results increases withZ sas the system becomes less
and less correlatedd. The on-top valuefs0d is essentially ex-
act forZù2, and is much better than the LDA estimatesnor-
mally regarded as accurated for all Z. This feature is appeal-
ing, since the on-top value plays an important role in DFT
f44g, and accuratefs0d are not easy to obtain fromab initio
methodsssee, e.g., Ref.f45g and references thereind. The
term 1/r12 in the effective potential ensures that the calcu-
lated fsr12d satisfies the exact cusp conditionf8s0d= fs0d.
Table I also shows that the positionr12

max and the height
fsr12

maxd of the maximum off are very well predicted by the
present approach. The presence of this maximum is essen-
tially due to the combined effect of the Coulomb repulsion
between the electrons and the confining external potential.

In Fig. 2 we consider He and Ne8+, and we compare the
correlated part of ourf, fc= f − fKS, with the “exact” result
f40g and with the corresponding quantity calculated within
LDA, i.e.,
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fc
LDAsr12d =

1

2
E nsr d2gc„r12;nsr d…dr , s20d

wheregc is the pair-correlation function of the uniform elec-
tron gas at full coupling strength, taken from Ref.f46g. sFor
an extended system of uniform densityn, we have gc
=2fc/nN.d Figure 3 shows the same quantities multiplied by

4pr12, i.e., the integrand of Eq.s4d for the correlation part of
kVeel: the area under each curve giveskVeel−kVeelKS. In the
last line of Table I we report quantitative results forkVeel
−kVeelKS. This quantity is less accurate than the short-range
properties, but it is still encouraging. Moreover, it saturates
for largeZ as in the exact case.

V. ADIABATIC CONNECTION AND CORRELATION
ENERGY

For the calculation of the energy of the physical system,
in addition toVcfng=kVeel−kVeelKS, one needs to know the
kinetic-energy difference,Tcfng=kTl−kTlKS, that can be ob-
tained via the adiabatic connection formalismf6,33,34g. By
varying a parameterl, the interactionvee

l sr12d between the
electrons is switched on continuously from zero to 1/r12,
while the density is kept fixed by an external one-body po-
tential Vl. If vee

l=0=0 andvee
l=a=1/r12, the KS correlation en-

ergy Ecfng=Tcfng+Vcfng is given byf6,34g

Ecfng =E
0

a

dlE
0

`

dr124pr12
2 fc

lsr12d
]vee

l sr12d
]l

, s21d

where fc
l= fl− fKS.

Usually, the adiabatic connection is performed along a
linear “path” f11,33g, by settingvee

l =l / r12, which leads to
Eq. s12d. If one is able to compute the exactfc

l, the resulting
Ec from Eq. s21d is independent of the choice ofvee

l . How-
ever, when approximations are made some paths can give
much better results than othersf6g. As we shall see, this is
the case with the present approach.

We build an Overhauser-type potential for interactionvee
l

sto be added toveff
s0dd as

veff
Ov,lsr12; r̄sd = vee

l sr12d −E
ur uør̄s

n̄vee
l sur − r 12uddr . s22d

That is, the average densityn̄ of Eq. s17d sand thus the av-
erager̄sd is kept fixed to mimic the fact that the one-electron
density does not change along the adiabatic connection. The
modified interactionvee

l is screened by a sphere of radiusr̄s
and of positive uniform charge of densityn̄ that attracts the
electrons with the same modified interaction. This attractive
background approximates the effect of the external potential
Vl on f.

A. Linear adiabatic connection

If we choosevee
l =l / r12 we simply obtainveff

Ov,lsr12; r̄sd
=l veff

Ovsr12; r̄sd, whereveff
Ovsr12; r̄sd is given by Eq.s14d.

The results forkVee
l l−kVeelKS for He and Ne8+ are shown

in Fig. 4, and are compared with the “exact” ones of Ref.
f42g. The correlation energyEc can be calculated as the area
under each curve. We obtainEc=−0.052 hartree for He and
Ec=−0.053 hartree for Ne8+, to be compared with the corre-
sponding exact results, −0.042 and −0.045, respectively.

FIG. 2. The correlated part of the spherically- and system-
averaged pair density,fcsr12d= fsr12d− fKSsr12d. Our results for He
and Ne8+ are compared with the “exact” ones and with the LDA
result sthe hole for the uniform electron gas is taken from Ref.
f46gd.

FIG. 3. The real-space analysis of the correlation part of the
expectation value ofVee: the area under each curve giveskVeel
−kVeelKS fsee also Eq.s4d and Fig. 2g. Our results for He and Ne8+

are compared with the “exact” ones and with the LDA resultsthe
hole for the uniform electron gas is taken from Ref.f46gd.
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B. A nonlinear adiabatic connection

As shown by Figs. 1–3 and Table I, the Overhauser-type
potential gives accurate results for the short-range part of
fcsr12d. We can thus expect to obtain better correlation ener-
gies from the adiabatic connection formalism if we choose a
modified interactionvee

l that is able to separate long-range
and short-range contributions, like the “erf” interaction
f6,35–37g

vee
l sr12d =

erfsl r12d
r12

. s23d

With this choice, Eq.s21d becomes

Ecfng =E
0

`

dlE
0

`

dr12 4p r12
2 fc

lsr12d
2

Îp
e−l2r12

2
. s24d

For largel, when we are approaching the physical system,

the Gaussian factore−l2r12
2

in Eq. s24d quenches the long-
range contribution offc

l to the energy integrand. At the KS
end of the adiabatic connection, whenl→0, the interaction,
and thusfc

l, become small, so that the contribution toEc
coming froml values for which the long-range part offc

l is
not quenched is moderate. Moreover, the functionfc

l is cor-
rectly normalized to zero so that forl→0, not only is fc

l

small, but also the integral itself vanishes. In the linear adia-
batic connection of Eq.s12d , instead, the long-range part of
fc

l plays an important role in the energy integrand at alll.
Indeed, with this nonlinear adiabatic connection we obtain
Ec=−0.0405 hartree for He andEc=−0.0413 for Ne8+, much
closer to the exact values with respect to the results from the
linear adiabatic connection.

The technical details of this calculation are as follows.
The potentialveff

Ov,lsr12; r̄sd of Eq. s22d can be computed ana-
lytically, and is reported in the Appendix. We thus obtained,

via Eqs.s6d and s7d, dEc
l /dl=edr 12fc

lsr12ds2”Îpde−l2r12
2

for
23 values ofl between 0 and 20 for He, and between 0 and
100 for Ne8+. We then fitted our results with the derivative of
the following functional form:

Ec
l = −

a1x
6 + a2x

8 + a3x
10

s1 + b2x2d5 , x =
l

Z
, s25d

which has exact asymptotic behaviors for small and largel
f37g. sWe have numerical evidence that our results fulfill
such exact behaviors.d In Fig. 5 we report our numerical
values fordEc

l /dl, together with the derivative of the fitting
function of Eq.s25d. The parameters and the rms of residuals
are reported in Table II. The KS correlation energyEcfng is
then given bya3/b10.

FIG. 4. Correlation part ofkVee
l l along the linear adiabatic con-

nection for He and Ne8+. Our results are compared with the “exact”
ones of Ref.f42g. The area under each curve gives the correlation
energyEc of standard Kohn-Sham theory.

FIG. 5. The derivativedEc
l /dl along the nonlinear adiabatic

connection defined by Eqs.s23d and s24d for He and Ne8+. Our
results are compared with the derivative of the fitting function of
Eq. s25d. The area under each curve from zero to` gives the cor-
relation energyEc of standard Kohn-Sham theory.

TABLE II. Optimal fit parameters and rms of the residuals for
the derivative of Eq.s25d, which parametrizes our results for
dEc

l /dl along the nonlinear adiabatic connection defined by Eqs.
s23d and s24d. See also Fig. 5.

a1 a2 a3 b rms

He 1.2047 2.3253 2.7788 1.5263 4310−5

Ne8+ 0.3983 0.4711 0.4026 1.2557 9310−6
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The accuracy of our results with the “erf” adiabatic con-
nection is of particular interest for the method of Refs.
f6,35–37g, which combines multideterminantal wave func-
tions sconfiguration interaction, CId with density functional
theorys“ CI+DFT” d. In such an approach, instead of the KS
system, one chooses a reference system of partially interact-
ing particles, usually with the potential of Eq.s23d. This
model system is treated with a multideterminantal wave
function, in a CI fashion, that allows one to treat near-
degeneracy effects. The remaining part of the energy is cal-
culated via a density functional, which needs to be approxi-
mated. The largerl, the larger is the energy fraction treated
with the CI calculation, and thus the larger is the computa-
tional cost. The correlation energy functional that needs to be
approximated isf6,35–37g

Ēc
lfng ; Ecfng − Ec

lfng, s26d

and it can be rewritten as

Ēc
lfng =E

l

`

dl8E
0

`

dr12 4p r12
2 fc

l8sr12d
2

Îp
e−l82r12

2
.

s27d

Thus, only the short-range part offc
l contributes to the func-

tional Ēc
lfng, and we expect to get accurate results with the

present approach. Indeed, this is the case, as shown in Fig. 6,
where we compare our results as a function ofl with the
“exact” ones of Ref.f36g. The error is less than 0.5 mhartree

for l*1/ r̄s, which is a very reasonable choice for the value
of l to be used in the CI+DFT method of Refs.f6,35–37g.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we have started to explore the possibility of
solving simple radial equations to generate realistic
spherically- and system-averaged electronic pair densities
fsr12d for nonuniform systems. With a simple approximation
for the unknown effective electron-electron interaction that
appears in our formalism, we have obtained, for two-electron
atoms, results that are in fair agreement with those coming
from accurate variational wave functionssFigs. 1–3 and
Table Id. We have then extended our approach along a non-
linear adiabatic connection and obtained Kohn-Sham corre-
lation energies whose error is less than 4 mhartrees, and
short-range-only correlation energies whose accuracy is one
order of magnitude bettersFig. 6d.

In Sec. II, we have introduced a general formalism for
many-electron systems that will be further tested in future
work. So far we can say that this formalism, combined with
simple physical approximations, works very well for two
completely different systems: the uniform electron gas
f23–25g and the He series. We think that this fact makes the
method promising.

To fully develop the approach described in this paper,
many steps have to be performed. First of all, the KS part of
the effectivee-e potential,veff

s0dsr12d of Eq. s18d, also should
be approximated, to make the extension to many-electron
systems practical. The correlation part of the effectivee-e
potential can be improved, in analogy with the recent devel-
opments for the uniform electron-gas casef24,25g. It should
then be possible to construct a self-consistent schemesOEP-
liked that combines the Kohn-Sham equations with the cor-
relation energy functional arising from our approachfEqs.
s6d ands7d at different coupling strengthsl, plus Eq.s12d or
Eq. s24dg. With respect to traditional DFT calculations, this
combined scheme would have the advantage of yielding not
only the ground-state one-electron densitynsr d and energyE,
but also the spherically- and system-averaged pair density
fsr12d, thus allowing one to calculate expectation values of
two-body operators that only depend on the electron-electron
distance. The combination of our approach with the CI
+DFT method of Refs.f6,35–37g also could be implemented
and, in view of the results of Fig. 6, it is even more promis-
ing. We are presently working in all of these main directions.
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FIG. 6. A nonlinear adiabatic connection that separates long-
and short-range effects: difference between the correlation energy
Ec of the physical systemswith full interaction 1/rd and the corre-
lation energyEc

l of the system with partial interaction erfsl rd / r,
for He and Ne8+. Our results are compared with the “exact” ones of
Ref. f36g.
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APPENDIX: OVERHAUSER-TYPE POTENTIAL
FOR THE ERF INTERACTION

The evaluation of Eq.s22d with the interaction vee
l

=erfsl r12d / r12 gives

veff
Ov,lsr12; r̄sd =

uss,md
r̄s

, sA1d

wheres=r12/ r̄s, m=l r̄s, and

uss,md =
erfsmsd

s
−

1

8Îpsm3
h2f1 + s− 2 +s+ s2dm2

+ e−4sm2
s− 1 + s2 + s− s2dm2dge−s1 − sd2m2

− Îpmf3s+ 2s1 − sd2s2 + sdm2gerffms1 − sdg

+ Îpmf− 3s+ 2s2 − sds1 + sd2m2gerffms1 + sdgj.

sA2d
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