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Some ways of defining pair correlation energies by means of
local spin—-density functionals are shown. Trends are deduced from
numerical examples on atoms and molecules.

1. INTRODUCTION

It is well=~known that the configuration interaction (CI) method
and the local spin—density (LSD) approximation have different merits
in the computation of the correlation energy. While the former shows
the possibility of systematic improvement, the latter has the ad-
vantage of economy. A compromise between these two ways of obtain-
ing the correlation energy is to do the calculation partly by CI,
partly by LSD methods.

It is not clear, however, how to avoid a double counting of the
correlation energy, when the CI and LSD values are added. A%pos~ _
sible approach to this problem ig¢ the assumption that a limited mul—"
ticonfiguration self-consistent field (MCSCF) calculation gives cor-
relation energy contributions that are not included in certain LSD
functionals. Such methods have the advantage that the MCSCF calcu-
lation can be kept to a very small number of configuratioms. Cal-
culations on small moleculesls>2 have shown good agreement with ex—
perimental results. However, choosing the most important configura-
tions in a way which does not interfere with a given LSD functional
is a problem which has not been sclved yet,

Another possible approach would be the partitioning of pair
correlation energies between the CI and the LSD calculation; thus,
it would be possible to gain accuracy for chemically interesting
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pairs, without fully neglecting the contribution of the other pairs.
While the concept of pair energies in CI methods has been the object
of thorough research (see, e.g. Refs. 3 and 4), there exists no
similar definition in LSD theory.

This paper tries teo show that reasonable definitiomns of pair
energies can be made within the LSD formalism, and these definiticns
give pair energies with am accuracy which is comparable with that
for total energies in the LSD approximation.

2. METHOD AND DEFINITIONS

The following notation will be used:
E [0l = foe _(p 10 ) dv

for the LSD correlation enmergy; p(=p, + p.)} for the density, p+,p-
for the partial densities of spin + and spin = e, is the electron—
liquid correlation energy per particle in the parametrization of
Vosko et al.

The contribution of a spinorbital, ¥i, to the demsity is
Pl %; i=l,...,N. The self-interaction correction® for the spin-
orbital y; is ej. The corrvelation energy of the pair of spinorbi-
tals 1 and j is denoted by ejj»

The following differences are used for the calculations of the

ejjt

#

D, le} =E [0} = E_[p-p,]

fi

Dij[p]

They show the effect of pj (or pi+pj) when added to the "background"
density o=pi {or p-pi—pj).

EC{D] - Ec[p—pi—pj] (i%3)

We assume that, in terms of ej; and es;, the correlation energy,
£o, and the differences Dj, Djj can be written as:

E =1/2 )'e ,+ e (1)
c k.1 kl " k
— 1
Di = E e s t e {(2)
k
= - t P
Dij % e * g ekj eij e, + ej (3)

where the summations are over occupied spinorbitals and the primes
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mark the omission of terms with equal indices.
If the definition of Perdew and Zunger6 is uged for the self—
energies, ey = Ecipi], then the following pair energies and sums

over pair energies can be obtained:

~ the total correlation energy:®

/2 Y'e, =E[pl -7 e (4)
K KT e K A

from Eq. (1); this definition will be denoted by "N";

~ the "N-1" definition:

t = -
k
from Eq. (2);
- the "N-2" definition:
eij = —Dij[p] + Si + Sj te, + ej (6)
where

_ — _,_1 1 - - - —-
8, = E' e ; = (¥3) {E D ;lel -8 E e, ~ (N-2) e}

-1
S = §'ey = (W=D L}y, lo) - (29-2) ] e}
K1 < k,1 < Ke
from Eq. (3).

It is possible to avoid any assumption about the explicit form
of the ej with the following definition of the pair energies, which
can be obtained by using Eqs. (2) and (2):

€5 = D, [p] + Dj[p] - Dij[o} v

this will be called the "N-1&N-2" definition.

Of course, it is possible to combine different definitions.

For example, by subtracting the intra-pair emergy calculated in the
N-1&N~2 definition from the W=l sum it is possible (and indeed more
economical than by using the N-2 definition) to obtain the sum of
inter~pair energies ("N-1 - N~1&N-2"). The valence energy can be
summed up from pair energies, but there are also other schemes
which require less computational effort, e.g. that of subtracting
from the total energy (N definitiom) 21l the pair energies of the
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core orbitals (N-1 definition); as the core intra-pair. energy is
subtracted twice, this must be corrected by adding a term which can
be deduced from the N-18&N-2 definition ("N - (N-1) + N-1&N-2").

As it can be expected that only a few LSD pair energies have
to be replaced by CI pair energies, it is possible to subtract only
those pair energies from the total LSD correlation energy ("N,

Eq. (4)).

In a system of isolated pairs the following property holds,
for all the definitions presented up to now: the total correlation
energy of the whole system equals the sum of the ej; for the indi-
vidual pairs. Actually one may look at the definitions given above
as extensions to the case of overlapping densities. Such extensions
are already known from the definitions of self-interaction correc-—
tions.%~8 The straightforward extension of the self-interaction
correction of Perdew and Zunger6 to the pair energies:

.. ® B s P pL.)l e, = oe.

e Ec[pl pJ] e; = ey

would give, however, a wrong number-of-particles dependence, in the
cagse of the homogeneous electron liquid: the correlation energy per
particle would increase as N2/3, This is not the case for the defi-
nitions (4)-(7).

The total correlation energy per particle, calculated by sum—
ming up the pair energies of the definitions (5)-(7) remains fimnite,
but does not give the exact £,(p) in the case of the homogeneous
electron liquid. This inconvenience might be removed by defining
a new density functional with correct limiting behavior. One might
ask on the other hand, whether it would not be better to abandon
trying to correctly describe the homogeneous electron iiquid, and
introduce instead an empirical functional, adjusted for atoms and
molecules. As the scope of this paper is merely to study the effect
of Eqs. (5)-(7), none of these possibilities was taken into account.
Based on the analysis of the electron—~liquid behaviour of Egs. (5)-
(7) it is expected that the W-1 and the N-2 definitions give similar
results, smaller than the N definition, but larger than the N-1&N-2
definition. This trend has been confirmed by the calculations which
will be presented in this paper.

3. COMPUTATIONAL DETATILS

Experience in our group has shown that the modification of the
Hartree—-Fock orbitals by the correlation potential has little effect
or the correlation energy computed in the LSD approximation. Thus,
we have used the restricted Hartree-Fock (RHF) densities p and pj,
in order to determine the E,, the Dj's, and the Dij's. The follow-
ing basis sets were used in the RHF calculation:
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- Huzinaga,9 for Li-Ne,

- Roos et al.,10 for Mg and Ar,

—- Huzinaga,” with the contraction coefficients of Dunning and
Hay,!! and the polarization functions of the "small"
basis of Ahlrichs et al.,l? for the first-row hydrides.

The density functionals Ee,Di,Djj were evaluated by three-di-
mensional numerical integration.

The geometries of the hydrides were taken from Ref. (12).

For the purpose of discussing correlation energies, positive
guantities will be considered (—Ec,meij, etc,). A1l walues will be
given in 10=3 Hartree.

4, NUMERICAL TESTS

The dependence of the correlation energy on the atomic number
(Z) is not well described by LSD methods in four—electron atoms.l3
We find, however, that the LSD pair energies show a certain ten-
dency to reproduce Cl characteristics:

~ the 1ls intra-pair energy (roughly constant in CI) increases
less pronouncedly with Z, than the 2s—energy (nearly li-
near with A in CIi4);

- the N-2 inter—pair energies almost coincide with the CI
values.13

We now turn to the discussion of some closed-shell atoms (Be,
Ne, Mg, Ar}., The following trends of the second-order "basis limit"
calculationsl®:17 for intra-pair energies (Fig. 1) are well repro—
duced:
- the ordering of the pair energies for each atom;
~ for the outer s orbitals {(2s in Be, 3s in Mg) larger ener=
gies than for the inner ones (2s in Ne, Mg, and Ar, 3s
in Ar);
- nearly constant energies for inner shell orbitals.
However, the LSD palr emergies show séme errors:
- the 1s values are systematically too large;
~ the LSD np energies are too small; this is connected to the

fact that the ns and np densities are rather similar, but
the CI ns and np energies differ by a factor of 2.
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Figure 1. Intra-pair correlation energies in neutral atoms.
-1 Second-order pair energies {from Ref. 16 for Be,
extrapolated values for Ne, Mg, Arl7),
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Figure 2. Sum of inter-pair correlation energies for spinorbital 1.
.t Second-order (16 for Be, 17 for Ne, Mg, Ar).
0: N-2
x: (N-1)-(N-1&N-2) .
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The case of Be is of special interest. Tt is known that the
second-order values (even in the "basis-set 1imit", used in Fig. 1)
cannot entirely reproduce the 2s correlation energy of Be, due to
a degeneracy effect (see, e.g. '8). Thus, it has to be stressed
that the LSD functional has not reproduced the entire 2s intra-pair
energy (46 mH15).

In Fig. 2 the sum of all inter-pair energies for orbital i
(i=1s,2s,2p,3s,3p) is shown. The only larger discrepancy appears
again in the case of the p orbitals, where the LSD results are too
gmall,

We now present results for pair energies of some First row
hydrides. The orbitals were localized using the method of Foster
and Boys.19
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In Fig. 3 valence energies are plotted. . The Ne atom is in-
cluded, also in the localized representation. A comparison is made
with coupled electron pair approximation (CEPA) results, obtained
in two different calculations,Z one described in 12 as being per-
formed with the "small" basis set (of triple zeta plus polarization
quality) and a larger ome, with the "standard" basis set. TFor Lil
values are taken from an independent electron pair approximation
(tEPA)20 and CEPA“l calculation. The latter uses a larger basis
set than the "standard" ome.

It is perhaps interesting to note that in the tenm-electron
systems (CHA, NHg, H,0, HF, Ne) the LSD method predicts an increase
of the valence correlation energy with increasing Z, as does the
better of the two CEPA calculations.

An analysis of the individual contributions are shown in the
following figures. In Figs. 4 and 5 the intra-pair energies are
shown for the bonding and non—bonding orbitals, respectively. The
N-1&N-2 values are not shown because they parallel the N-2 values
by a few mH. The LSD and CI trends are similar, as can be seen,
e.g., by comparing the value of the B-H bonding orbital intra-pair
energy in BH and BH,, A discrepancy (of less than 10 mH) appears,
however, in the compounds where the bonding orbital is localized
on the H atom. The LSD definition yields values which are close
to the U™ value (42 mHZ?2), while CEPA predicts lower values.

The sum of the singlet and triplet CEPA inter-pair energies
are compared in Fig. 6 to the corresponding LSD values. The LSD
values are too small, but the correct order ig predicted; in par-
ticular, it is correctly described that the correlation emergy is
smaller when bonding orbitals are involved than in the case of non-

bonding orbitals. s
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Figure 4. Intra-pair correlation energies in MH, molecules; the
M-H localized molecular orbital.
: CEPA (2l for LiH, otherwise "standard" basisll).
A: TEPA (20 for LiH, otherwise "small" basisll).
o: N-2,
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Figure 5. Intra-pair correlation energies for non-bonding loca-

lized molecular orbitals,
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5. CONCLUSION

In all cases studied so far, it has been observed that trends
are correctly predicted by the LSD pair correlation energies de-
fined in this paper. While the possibility of refining the densi-

ty functional leaves these definitions open to further improvement

E]

it may be stated that a combination of CI and LSD pair energies

seems to be feasible.
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Figure 6. Sum of singlet and triplet inter-pair correlation ener-
gies, between localized pairs (b: bonding, n: non-

bonding) .

CEPA {("standard" basisl2),

o: N=2.



272 A, SAVINET AL,
ACKNOWLEDGEMENT

One of us (A.S5.) is grateful to the Fonds der Chemischen In-
dustrie for financial support.

REFERENCES

1. G.C., Lie and E. Clementi, J.Chem.Phys. 60, 1275, 1288 (1974).

2. R. Montagnani, P. Riani, and 0. Salvetti, Theor.Chim.Acta 60,
399 (1982).

3. W. Kutzelnigg, in "Methods of Electronic Structure Theory",
H.F. Schaefer I1I, Ed. (Plenum, New York, 1977), ». 129,

4. W. Meyer, in '"Methods of Electronic Structure Theory", H.F.
Schaefer 111, Ed. (Plenum, New York, 1977), p. 413.

5. S.H. Vosko, L. Wilk, and M. Nusair, Can.J.Phys. 58, 1200 (1980).

6. J.P. Perdew and A. Zunger, Phys.Rev. B23, 5048 (1981).

7. H. Stoll, C.M.,E. Pavlidou, and H. Preuss, Theor.Chim.Acta 49,
143 (1978). o

8. H. Stoll, E. Golka, and H. Preuss, Theor.Chim.Acta 55, 29
{1980} .

9. 5. Huzinaga, J.Coem.Phys. 42, 1293 (1965).

10. B. Roos, A. Veillard, and G. Vinot, Theor.Chim.acta 20, 1
{1971).

11. F.E. Dunning and P.J. Hay, in "Methods of Electronic Structure
Theory", H.F. Schaefer III, Ed. {(Plenum, New York, 1977},
p. 1.

12. R. Ahlrichs, F. Driessler, H. Lischka, V. Staemmler, and W.
Kutzelnigg, J.Chem.Phys. 52, 1235 (1975).

13. J.P. Perdew, E.R. McMullen, and A. Zunger, Phys.Rev., A23, 2785
(1981).

14. J. Linderberg and H. Shull, J.Mol.Spectr. 5, 1 (1960}.

15. G.A., Petersson and S.L. Licht, J.Chem.Phys. 75, 4556 (1981).

16. T.P. Eggarter and E. Eggarter, J.Phys. B; Atom.Molec.Phys. 11,
1157 (1978).

17. K. Jankowski, P?. Malinowski, and M. Polasik, J.Phys. B: Atom.
Molec.Phys. 12, 3157 (1979).

18. T.P. Eggarter and E. Eggarter, J.Phys. B: Atom.Molec.Phys.
11, 3635 (1978).

19. J.M. Foster and S.F. Boys, Rev.Mod.Phys. 32, 300 (1960).

20. M. Jungen and R. Ahlrichs, Theor.Chim.Acta 17, 339 (1970).

2. W. Meyer and P. Rosmus, J.Chem.Phys. 63, 2356 (1975).

22. E. Clementi, J.Chem.Phys. 38, 2252 (1962) .



