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ABSTRACT: Sources of energy errors resulting from the replace-
ment of the physical Coulomb interaction by its long-range erfc(μr)/
r approximation are explored. It is demonstrated that the results can
be dramatically improved and the range of μ giving energies within
chemical accuracy limits significantly extended if the generalized cusp
conditions are used to represent the wave function at small r. The
numerical results for two-electron harmonium are presented and
discussed.

■ THE PROBLEM TO BE SOLVED
We have a model system, H(R; μ), and a corresponding
Schrödinger equation,

H ER R R( ; ) ( , ; ) ( ) ( , ; )= (1)

The system is composed of N electrons confined by an external
potential, R and σ stand, respectively, for their orbital and spin
coordinates. All quantities characterizing the system (e.g.,
energy or wave function) depend on the external potential,
but we show this dependence explicitly only when the form of
this potential is specified (e.g., the dependence on ω in the
section “The Model System”.

The interaction between electrons is described by a μ-
dependent model potential vint(r; μ):

• μ = 0: there is no interaction between electrons, so vint(r;
0) = 0.

• μ = ∞: we have the physical, Coulomb interaction, so
vint(r; ∞) = 1/r.

• μ∈(0, ∞): we choose

v r w r
r

r
( ; ) ( ; )

erf( )
int = =

(2)

where r = r12 = |r1 − r2|. Exploring other forms of
interaction may be both interesting and useful as, for
example, in ref 1.

To simplify the notation, we drop μ when μ = ∞.

We assume that the solutions of eq 1 are accessible for
selected finite values of μ. However, we are not interested in the
model system energy, E(μ). We aim at determining E
corresponding to the physical interaction. Stated differently,
we are interested in

E E E E( ) ( ) ( )0= (3)

where Δ0E(μ) is referred to as the error of the energy of the model
system.

To get an idea about the change of E̅(μ) with respect to μ, we
show in Figure 1 some situations where E is known for arbitrary
precision. By construction, E̅(∞) = 0. As μ decreases, the
interaction weakens and disappears for μ = 0. This effect, not
compensated by any change in the external potential, leads to
the absolute values of E̅(μ) increasing with decreasing μ and
becoming very large for sufficiently small μ.

In this paper we explore howmuch one can lower the values of
μ and, by correcting the model, still retain approximations of E̅
within the chemical accuracy (±1 kcal/mol) error bars.
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■ CORRECTING MODELS
Energy Extrapolation−A Historic Solution. A way

proposed in ref 2 is to expand E̅(μ) in the following basis,

E e( ) ( )
k

M

k k
1= (4)

Here χk(μ), k = 1, ..., M are some basis functions, and ek̅ are
coefficients to be determined. There are different ways to
determine these coefficients once the basis functions are given.
One option is to obtain them from the derivatives of E(μ) with
respect to μ. This corresponds to (generalized) Taylor
expansions or to perturbation theory. Another possibility is
calculating E(μ) for several values of μ and then matching the
results to the expansion. This method is called energy
extrapolation:2 from model information, we aim to reach the
physical result.

One way to achieve our aim is to introduce more parameters
into the Hamiltonian,3 e.g.,

H H H HR R R R( ; , ) ( ; ) ( ) ( ; )= + [ ] (5)

The eigenvalue and the corresponding eigenfunction of H(R; λ,
μ) are, respectively, E(λ, μ) and Ψ(R, σ;λ, μ); notice that E(μ) =
E(λ, μ) | λ=0. In the Hamiltonian (eq 5), the interaction potential
is

v r w r w r( ; , ) ( ; ) ( ; )int = +
where

w r
r

w r
r

r
r

r
( ; )

1
( ; )

1 erf( ) erfc( )= = =
(6)

Therefore,

v r
r

r r
( ; , ) (1 )

erf( )
int = +

(7)

We see that we can reach the physical result either with λ = 1
or with μ = ∞. “Shooting” from different points to the same
target may simplify our task. However, this is not further
discussed in this paper.

Energy extrapolation has an important problem: we do not
know how to choose χk(μ). What makes the problem worse is
that we are not willing to use many basis functions. Ideally, we
should use a single function, that is to perform a single model
calculation, M = 1 in eq 4.
The Adiabatic Connection. For R( , ; , ) 1= the

Hellmann−Feynman theorem yields

E H wR R R( , ) ( , ; , ) ( ; , ) ( , ; , ) ( , )= | | =
(8)

where

w WR R R( , ) ( , ; , ) ( ; ) ( , ; , )= | |
(9)

and

W H H w rR R R( ; ) ( ) ( ; ) ( ; )
i j N

ij
1

=
< (10)

By integrating eq 8 over λ, one obtains

E w( ) ( , ) d
0

1
=

(11)

(Notice that E could have also been obtained by integration over
μ, as E = E(1, μ) = E(λ, ∞).) The integrand in eq 11, an integral
over 3N-dimensional configuration space and 2N-dimensional
spin space, can be reduced to a one-dimensional radial integral.
Exploiting the antisymmetry of the wave function and
integrating over spin and over coordinates of electrons 3, 4, ...,
N, yields4

w w r r r r r( , ) ( ; ) ( , ) d d12 , 1 2 1 26
=

(12)

where

i
k
jjj y

{
zzzN

r r R r r r( , )
2

( , ; , ) d d d N, 1 2
,...,

2
3 4

N
N

1
3 6

= | | ···

is the diagonal part of the second-order reduced density matrix,
2RDM, corresponding to Ψ(R, σ; λ, μ); the sum is extended
over spin coordinates of all electrons.

After introducing the relative-motion variables

r r r r
r r

,
21 2

1 2= = ++
(13)

performing integration over r+ and expressing r in spherical
coordinates, r(r, θ, ϕ), eq 12 can be rewritten as

w w r w rr r r r r r( , ) ( ; ) ( , ) d d ( ; ) ( ; , ) d,6 3
= =+ +

(14)

where dr = r2 dr sin θ dθ dϕ, r = r12 = |r1 − r2|, and γ(r; λ, μ) is the
diagonal part of the first-order reduced density matrix, 1RDM.
Since in the coordinate space w̅(r; μ) depends on the radial
coordinate r only, we can do the spherical averaging. In effect,
the integrand of eq 11 is simplified to

w w r r r r( , ) ( ; ) ( ; , ) d
0

2=
(15)

where

r r( ; , ) ( ; , )sin d d
0

2

0
=

The adiabatic connection defined in eq 11 carries no practical
information, as it requires the knowledge of ⟨w̅(λ, μ)⟩ for all
values of λ, while in the present approach it is known only for λ =
0.

At the limit of r → 0, w̅(r; μ) ∼ 1/r. Therefore, also for large μ,
w̅(r; μ) is non-negligible if r is small enough. As is shown
hereafter, the information necessary for correcting the model at
small r can be derived from the generalized cusp conditions
(GCC).

Figure 1. Error of the energy of the model system, Δ0E(μ), for the
lowest energy state of harmonium with ω = 1/2 (red curves) and ω = 1
(thin blue curve), for = 0, full curves; = 1, dot-dashed curve; = 2,
dashed curve.
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Generalized Cusp Conditions. The information about the
behavior of the wave function in the vicinity of the coalescence
point, i.e., for r = r12 ≪ 1, can be derived from general properties
of the Schrödinger equation at r → 0. In general, the approach is
based on the expansion of the wave function and of the potential
as the power series of r and deriving conditions that have to be
fulfilled by the expansion coefficients in order to retain the
consistency of the Hamiltonian eigenvalue problem. The
simplest and most commonly known is the Kato’s cusp
condition,5 which can be derived from the requirement that in
the case of the electrostatic interaction the local energy at r = 0 is
nonsingular. Higher order (generalized) cusp conditions can be
obtained from the demand that the local energies generated by
powers of the Hamiltonian are nonsingular (energy-independ-
ent conditions) and ratios of the local energies generated by the
consecutive powers are constant (energy-dependent condi-
tions).6 Alternatively, one can use the expansion of the wave
function in powers of r and require that the Schrödinger
equation is statisfied.7−9 Both approaches are equivalent, but the
conditions derived from the former one, though more
complicated, have more transparent physical meaning.

In this paper the GCCs are applied to describe the r-
dependence of the wave function in the area of small r, where the
model interaction potential departs from the physical one.

■ THE MODEL SYSTEM
The simplest nontrivial model system containing one pair of
electrons is composed of three particles: two electrons
interacting by a repulsive model potential, and a third particle,
“nucleus”, which interacts with electrons by an attractive force.
Commonly known examples of such systems are helium atom,
the nucleus attracts electrons by the Coulomb force, and
harmonium (Hooke atom), the nucleus attracts electrons by the
Hooke force. After the separation of the center of mass, the
system is reduced to two interacting particles in an external
potential vext. In the case of harmonium,

v r r r r( , ; )
2

( )ext 1 2

2

1
2

2
2= +

(16)

The potential depends on a parameter, ω, which defines the
strength of the confinement. In the case of quantities that
depend on this potential, the dependence on ω is explicitly
shown. For example, E(ω, μ) stands for the special case of E(μ),
corresponding to the external potential (eq 16).

To our knowledge, harmonium is the only bound system
containing a pair of interacting electrons for which the
Schrödinger equation is known to be separable. Apart from
the three-dimensional free-particle equation describing the
motion of the center of mass, the two-particle Schrödinger
equation for harmonium is separable into six one-dimensional
equations: five are exactly solvable, and the sixth one can be
solved numerically to an arbitrary precision (for some specific
values of ω it is also solvable analytically). It is important to note
that the separability holds for all forms of the interaction
potential including the form given by vint(r; λ, μ). (In principle,
the term “harmonium” refers to two confined Coulomb-
interacting electrons. In this paper, we extend this term to the
case of model potentials vint.) Therefore, harmonium is
particularly suitable for pilot studies of the consequences of
using various non-Coulombic forms of the interaction
potentials. Motivated by these observations, at this stage, we
explore our problem using harmonium as the model system.

The Schrödinger equation for harmonium

T v r r v rr r r r( , ) ( , ; ) ( ; , ) ( ) ( , ; ) 01 2 ext 1 2 int 1 2[ + + ] =
(17)

where T(r1, r2) is two-particle kinetic energy operator, depends
on three parameters, collectively denoted , ,= { }, and

r r( , ; )1 2 is the orbital part of the two-electron wave function.
After transformation (eq 13), eq 17 can by split into two
spherically symmetric equations. The first one depends on the
interaction potential and describes the relative motion of
electrons:

v r E r( ; ) ( ) ( ; ) 0r rel[ + ] = (18)

where

v r
r

v r
r r

r r
( ; )

4
( ; , )

4
(1 )

erf( )2 2

int

2 2
= + = + + (19)

The second equation describes the motion of the center of mass
of the electron pair in the external potential:

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑr r

4
( ) ( ) ( ; ) 0r 2 2

cm+ =+ ++

(20)

where r+ = |r+|. By construction, we have

E r r r r( ) ( ) ( ), ( , ; ) ( ; ) ( ; )1 2 rel cm= + = +

(21)

The interaction potential appears only in eq 18. So, for our
study, we deal with this equation only. The potential is
spherically symmetric. Therefore,

r Yr( ; ) ( ; ) ( , )mrel = (22)

where r( ; ) is determined by the radial equation
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑr r

v r E r rd
d

( 1)
( ; ) ( ) ( ; ) 0

2

2 2+ + + [ ] =

(23)

The two-electron wave function, r r( , ; )1 2 , symmetric/
antisymmetric with respect to the transposition of (r1, r2)
correspond to singlet/triplet. As one can see, singlet states
correspond to the even parity (even ) spherical harmonics in eq
22, and triplet states to the odd ones.
Generalized Cusp Conditions for the Model System.

Using10

i
k
jjjjj

y
{
zzzzz

r
r

r r rerf( ) 2
1

( )
3 1

( )
5 2

( )
7 3

...
2 4 6

=
· !

+
· ! · !

+

one can expand the potential (eq 19) as

v r v r( ; ) ( )
i

i
i

1

=
= (24)

with

v v v v

v

, (1 )
2

, 0,
4

(1 )
2

3
,

0, ...

1 0 1 2

2 3

3

= = = =

= (25)

The wave function, for small r, can be represented by the
following power series

r r c r c r c r( ; ) ( ) ( ) ( )
k

K

k
k

k

K

k
k

0
0

0

=
= = (26)
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where c c c( ) ( )/ ( )k k 0= . General formulas for GCC are given
in refs 6−9. Here we give equations defining c̃k for k ≤ 4:

Ù
Ù

Ù
ÙÙ

Ù
Ù

Ù
Ù

Ù

A c v

A c v c

A A c A A v c v c A v

A A c A A v c v c A v c v v A v

0,

0,

( ) 0,

( ) ( ) 0,
... ... ...

1 1 1

2 2 1 1

1 3 3 1 2 1 2 1
2

1 1 1

2 4 4 2 3 1 3 1
2

2 2 1 1 1 1 2 2
2

+ =
+ =

+ + + + =

+ + + + + + =

(27)

where Ai = −i(2 + i + 1) and ϵ = E − v0. Coefficients c̃k, energy
parameter ϵ, and coefficients vi depend on the parameters ω, λ,
and μ. For simplicity, in eq 27 this dependence has not been
shown explicitly. All coefficients c̃k depend on and on v−1. The
coefficients ck̃, with k≥ 3, depend on v1. In general, vi shows up in
ck̃, with k ≥ (i + 2).6 The external potential is proportional to r2
and vanishes at r = 0. Therefore, in expansion (eq 26) the ω
dependence begins at c̃4.

For the construction of ck̃ with even values of k, the state
energy is needed. In these cases we use the expectation value of
the Hamiltonian defined in eq 5:

E E w r( , , ) ( , ) ( ; , 0, )+

where E(ω, μ) = E(ω, λ, μ) |λ=0. For the definition of ⟨w̅(r; ω, λ,
μ)⟩, see eq 28. Numerical tests using the exact E(ω, λ, μ) have
shown that this approximation is negligible in comparison to the
other approximations made in the present paper.
Dependence on λ and Normalization. The GCC

provides only ratios c c c( )/ ( ) ( )k k0 . If r( ; ) is known
in the whole range of r then c ( )0 can be determined by the
normalization condition. In our case this approach is non-
applicable since only the small-r part of r( ; ) is defined by the
cusp conditions. But c ( )0 appears as a prefactor in the
approximation (eq 26) for r( ; ), and its value is necessary for
any practical use of this approximation. Therefore, c ( )0 has to
be estimated in a different way using only the information about
the short-range behavior of the wave function.

We have to introduce additional information to deal with this
issue. Let us first consider the dependence of c0 on λ. It is needed
for the adiabatic connection expression (eqs 11 and 15). We
select r( ; ) 1cm =+ . Then the substitution of the wave
function defined in eqs 21 and 22, and of its expansion (eq 26),
to eq 14 yields

w w r r r

r w r r r

c r c r w r r

r( ) ( ; ) ( ; ) d sin d d

( ; ) ( ; ) d ,

( ) ( ) ( ; ) d
k

K

k
k

0

2

0 0 rel
2 2

0

2 2

0
2

0

1

0

2

= | |

= | |

| | +

= (28)

and according to eq 11,

E w( , ) ( , , ) d
0

1
=

(29)

For models close to the exact interaction (for large μ), one can
derive the following relationship3,11 (a derivation is given in the
Appendix):

i
k
jjjj

y
{
zzzzc O( , , ) 1

1
( )0

2+ +
(30)

where is a still unknown normalization constant. As one can
see,

c c c( , 1, ) ( , , ) ( )0 0 0= =

Notice that c0(ω, 1, μ) and c0(ω, λ, ∞) do not depend,
respectively, on μ and λ and are equal to c0(ω) corresponding to
the physical (Coulomb) interaction potential.

We introduce the notation

i
k
jjjj

y
{
zzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
r c r w r r( , , ) 1

1
( , , ) ( , ) dK

k

K

k
k

2

0

1

0

2

= + +

=

(31)

As stated at the beginning of this Article, we know the model
wave function at λ = 0. Therefore, we can calculate

w r w r r r( , 0, ) ( , , 0, ) ( , ) d
0

2 2= |
(32)

Since does not depend on λ, we can assume that

w( , 0, )
( , 0, )K

2

(33)

Combining eqs 29, 28, and 33, we get

E
w

( , )
( , 0, )
( , 0, )

( , , ) d
K 0

1

(34)

Corrections to theModel.Assume that ω is fixed and λ = 0.
For simplicity, in the next equations, we skip these parameters.
Also the r-dependence, in most cases obvious, is not shown
explicitly. We designate μ-dependence only, retaining the
convention that we drop μ, if μ = ∞. Our model is defined by
the analog of eq 1:

H E E H( ) ( ) ( ) ( ), i.e., ( ) ( ) ( ) ( )= = | |
(35)

For the physical (Coulombic) interaction, μ = ∞ and we have E
= ⟨ψ|H|ψ⟩.

As we already said, the solutions of the crude model, E(μ) and
ψ(μ), are known. The error of this model, Δ0E(μ), has been
defined in eq 3. Our aim is to add corrections to the model. The
first-order perturbation correction to E(μ) is

H H w( ) ( ) ( ) ( ) ( ) ( )| | = | | (36)

From here we have the correction:

E H E E E w( ) ( ) ( ) ( ) ( )H = | | = +
(37)

Plots of Δ0E(μ) and ΔHE(μ) are given in Figure 2. At μ = 0,
that is, for the noninteracting system, Δ0E(μ) is huge. For the
ground state of harmonium with ω = 1/2, E(μ = 0) = 0.75
instead of E = 1.25 hartree, giving Δ0E(μ) = 0.5 hartree. But,
Δ0E(μ) does not fall to the chemical accuracy error bars in the
entire range of μ − up to 3 bohr−1. The improvement due to the
first-order perturbation (without any reference to a specific
structure of the wave function) is impressive. For ΔHE(μ), the
chemical accuracy is reached if μ > 1.5 bohr−1. The error at μ = 0
is reduced from 0.5 hartree to ∼0.06 hartree, that is of the same
order of magnitude as obtained with mean-field approximations
(∼0.04 hartree for Hartree−Fock or Kohn−Sham). The sign of
the errors in Figure 2 is (i) negative for E(μ) − E (asw(r, μ) ≤ 1/
r) and (ii) positive for ⟨ψ(μ)|H|ψ(μ)⟩ − E (by the variational
principle).

Equation 34 may be rewritten as
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E E E C w( ) ( ) ( )K
K = + (38)

where

C
1

( , 0, )
( , , ) dK

K 0

1
=

(39)

Equation 38 can be interpreted as a generalization of eqs 3 and
37. The prefactor of ⟨w̅(μ)⟩ in these two equations is,
respectively, 0 and 1. Prefactor CK in eq 38 has been derived
using some information about the structure of the wave function,
specifically, GCC and the adiabatic connection. Therefore, one
can expect that

E E E( ) ( ) ( )0 H K| | | | | | (40)

The correctness of this expectation is demonstrated in the next
section.

The integrals over r in eq 31 can be computed analytically10

r r r
k k

k
erfc( ) d

( /2)
2 ( 1)

k
k0 1=

+ + (41)

Therefore, ( , , )K can be expressed as an algebric function
of ω, λ, and μ. Explicit formulas for c ( )k can be easily deduced
from eq 27. Consequently, the effort for computing the prefactor
CK in eq 38 is negligible. Notice that in eq 41 Γ(k/2) introduces
a fast increase to the absolute value of ( , , )K with K (the
maximum power of r in the expansion).

The approximation is valid only asymptotically for sufficiently
large μ. Notice that expressions (eq 30) for c ( )0 and ( ) given
in eqs 30 and 31 are divergent at μ = 0.

■ RESULTS
General Considerations. In the following we will consider

only harmonium systems. Of course, this can be seen as futile,
because solving the one-dimensional differential Schrödinger
equation, eq 23, is trivial (to obtain accurate results, we did it on
a grid of the order of 105 points). The choice of this simple
system is motivated by the desire to study uniquely the effect of
the approximations introduced without adding other effects,
such as the dependence on the one-particle basis set or the

expansion in terms of Slater determinants. To avoid introducing
new effects, the one-particle (external) potential is independent
of μ. In view of future practical applications, we are interested to
see how weak the model interaction can be taken (how small μ
can be chosen) and still obtain an estimate of the energy within
“chemical accuracy”.

We now define the “smallest acceptable μ”, SAμ: for μ ≥ SAμ,
the absolute errors are smaller than the chemical accuracy (1
kcal/mol). The range of errors between ±1 kcal/mol is indicated
in the plots by horizontal dashed lines. For the system
considered in Figure 2, E(μ) has a SAμ slightly above 3
bohr−1. So, it is not interesting to discuss corrections if the
interaction already reaches this strength. Weaker interactions
can be considered if we simply correct the energy to first order,
with ⟨ψ(μ)|H|ψ(μ)⟩, SAμ ≈ 1.5.

In the following, the presented plots show the errors of the
approximations of E as functions of μ using the same scale as the
inset in Figure 2.
How Weak Can the Interaction Be? Let us consider the

ground state of harmonium with ω = 1/2. Now we use the GCC
to correct themodel energy, E(μ) as in eqs 34 and 38, and cut off
the expansion of the wave function r( , ), limiting the
expansion in eq 26 to a maximal power of r,K = 1, 2, 3, and 4, see
Figure 3a. When K = 1 we satisfy only Kato’s cusp condition.
This improves over E(μ), and also over first-order perturbation
theory, bringing the SAμ to 1.3 bohr−1. Increasing K further
reduces the SAμ until a “wall” at around 0.5 bohr−1 is reached.
Notice that not only the error is reduced by increasing K, but
also the stability with respect to the change of the results by
chaning μ is increased when going beyond satisfying only the
Kato cusp condition. This is important because (i) in practice,
there is an arbitrariness in the choice of μ, and (ii) the SAμ is
system-dependent, as will be illustrated further down. The latter
is of importance for size-consistency.

The derivations presented above never supposed that the
state considered corresponds to the ground state. So, let us now
consider some excited states. We consider first the lowest energy
states with = 1 and 2. The first corresponds to a triplet state,
(Figure 3b), the second to a non-natural singlet state12 (Figure
3c); for = 2, the singlet cusp condition does not give a prefactor
(1 + r/2), but (1 + r/6). King13 remarks that, in an orbital
picture, the = 2 state corresponds to a strong mixture of sd and
p2 configurations. Notice that both the values provided by the
model and the expectation value of the physical Hamiltonian are
now in much better agreement with the exact value than for =
0: the prefactor rl appearing in eq 26 already keeps the electrons
apart. Even for K = 4, for this system and these states, there is no
significant gain over using just H( ) ( )| | . For = 2, the
SAμs obtained for K ≤ 4 are not improved over that of the
expectation value of the Hamiltonian.

We also present the first two excited states with = 0, Figure
3d,e. Themodel system hasmuch larger errors which fall outside
the domain of the plots. We notice an overall worsening ot the
quality of the approximations. The model shows errors that fall
outside the range of the plots. The SAμ for the expectation value
of the Hamiltonian is around 2 bohr−1. Using the Kato cusp
condition reduces it to ≈1.5 bohr−1. Increasing the order of the
expansion, K, moves the SAμ down to somewhere between 1
and 0.5 bohr−1.

We have seen above that the SAμs can be quite sensitive to the
state described. They can also be sensitive to the system.
Modifying ω affects the SAμs. Figure 3f,g show the effect of

Figure 2. Errors of the model energy, Δ0E(μ), eq 3, gray curve, and of
the expectation value of the physical Hamiltonian, H, with the model
wave function, ψ(μ), ΔHE(μ), eq 37, black curve, for the ground state of
harmonium with ω = 0.5. The inset zooms on the same curves (by 2
orders of magnitude), the horizontal dashed lines indicating the region
of “chemical accuracy” (±1 kcal/mol).
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making the systemmore compact (ω = 1 au) or diffuse (ω = 1/4
au) for the respective ground states.
Comparisons. Using the GCC is not the only way to

describe the short-range behavior. One can replace the
expansion in powers of r, eq 26, by a simple form that does
not diverge as r → ∞. For example, one can ignore all terms
arising from the external potential and the energy in the
Schrödinger equation, in the limit μ → ∞, and we get, to order
μ−4 (see ref 11 and eq 21 in ref 3),

d ( , )

( 0, )
1.06385 0.31982

1.37544 0.487806
0

1
2

2=
= + +

+ + (42)

A comparison of Figure 3a, f, or g to h shows that this
approximation performs very well compared to those obtained
from the GCC: the “walls” are at comparable values of μ. This is
encouraging because the GCC require, in general, taking into
account the external potential and the energy.

Figure 3. Errors of the different approximations for the energy of harmonium systems. The errors of the model energy, Δ0E(μ), eq 3 are represented as
gray curves, that of the expectation value of the physical Hamiltonian with the model wave function, ΔHE(μ), eq 37, by black curves. Panels a−g show
the errors for different orders K in the GCC expansion, eq 26, the value of K being indicated next to the curve. Panel h shows the error of the
approximation of order μ−4, as given in eq 42. Chemical accuracy (±1 kcal/mol) is indicated by horizontal dashed lines. a: ω = 1/2, n = 1, = 0; b: ω =
1/2, n = 1, = 1; c: ω = 1/2, n = 1, = 2; d: ω = 1/2, n = 2, = 0; e: ω = 1/2, n = 3, = 0; f: ω = 1, n = 1, = 0; g: ω = 1/4, n = 1, = 0; h: ω = 1/4, 1/2, or 1,
and n = 1, = 0.
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Density functional approximations have been used for many
years to correct models for missing short-range interac-
tion.14,15Figure 4 shows the corrections provided for two

approximations, the local density approximation, LDA, and that
of Perdew, Burke, and Ernzerhof, PBE, modified to depend on
μ.15−17 The SAμs are around 1 bohr−1, thus, improving over
using only Kato’s cusp condition (cf. Figure 3a). It may be at first
surprising that in Figure 4 LDA is slightly better than PBE.
However, PBE becomes better than LDA for small μ. This
cannot be seen in Figure 4 because it shows only the region of
“chemical accuracy”; the errors for small μ are much larger.

■ CONCLUSIONS
Summary. We have considered model systems, where

electrons interact only via a long-range potential, eq 2. In
order to obtain the physical energy we explored corrections
based upon the short-range behavior of the wave function, both
for the ground and excited states. The numerical results were all
obtained for harmonium, eqs 16−22, where accurate results are
easy to reach due to separability.

We are interested in having corrections to models where the
interaction is very weak. However, the approximations proposed
can be systematically improved in an asymptotic sense: as the
order of the approximation increases, there is a domain of
models close enough to the exact solution that gets systemati-
cally better. Unfortunately, at present, the approximations fail
when the range of the interaction between particles becomes too
large (our parameter μ becomes too small). We attribute it to
imposing only the short-range behavior of the wave function.
For short-range, the results turned out to be more reliable than
obtained by correcting the models with density functional
approximations. Unfortunately, the range of validity is system-
and state-dependent.
Perspectives. In quantum chemistry there are different

approaches to tackle the problem raised by the singularity of the
Coulomb potential. A “brute force” pathway is to use a large
expansion in Slater determinants. The burden can be reduced
significantly by using “selected configuration interaction”
techniques (see, e.g., ref 20 and references therein). Another
way is to improve the description of the wave function by the use

of correlation factors, like Jastrow factors in Quantum Monte
Carlo (see, e.g., refs 21−24) or F12 methods (see, e.g., refs 25
and 26). Still another way to approach this problem is to use
density functionals that transfer the short-range behavior from
other systems (as a rule, from the uniform electron gas).

In this paper, we combine the spirit of the last two approaches.
As in density functional calculations, we compute a model
system for which the interaction has no singularity (and thus is
expected to converge faster, in general). However, in contrast to
density functional calculations, no density functional approx-
imations are present, and the Hohenberg−Kohn theorem
(formulated for ground states) is not used. The approach is
applicable to ground and excited states.

As in methods using correlation factors we use the exact short-
range behavior of the wave function. The trick allowing to use it
comes from having a correction that depends only on the
missing part of the interaction that is short-ranged.

The present paper did only show exploratory calculations.
However, it is possible to extend considerations presented in this
paper to other systems. Already Kurokawa et al.8 have shown
that the GCC can be applied when the Schrödinger equation for
the relative coordinate cannot be separated from that of the
center of mass (the He atom).

Before extending our approach there are several issues to be
explored. Probably the first one is its formulation in terms of
reduced density matrices. In this paper we use GCC for the wave
function. To generalize our approach, it might be useful to
express the GCC in terms of the 2RDM.18,19

One may ask whether it is not more convenient to re-express
our formulation in terms of the 1RDM. In 1975 Kimball found a
relationship between the 2RDM at coalescence and the
distribution of momentum, in fact, the behavior of the
1RDM.27 At the same time Yasuhara demonstrated that the
energy of the uniform electron gas can be expressed in terms of
the kinetic energy (one-particle operators) instead of the two-
body interactions.28 This gave rise to studies on using the
adiabatic connection on the kinetic energy (i.e., the 1RDM)
rather than on two-body interactions.29−31 Recently, the effects
of the electron−electron coalescence on the properties of the
natural orbitals and structure of the 1RDM have been
revealed.32,33

Another issue is the dependence of the GCC on the
coalescence point.6−9 For this, we can get inspiration from
density functional approximation: in each point of space one has
a different approximation. Even the Kato cusp condition (that
seemingly is universal) contains a state dependence (through ).
In density functional calculation it is treated by using the spin
polarization,34 but it can be treated in the context of a pair
density (see, e.g., ref 35).

We illustrate the problematic with two two-electron
harmonium systems (A and B) that instead of being treated
separately are treated together (for example, having two
quantum dots). The system may be described by a double-
well potential with two wells sufficiently separated and deep, so
that each of them can be approximated by a harmonic potential.
We assume that this separation is large enough to neglect the
exchange effects between electrons in A and B. Consequently,
the spin part may be separated and, in effect, we can cosider the
total wave function which depends on the orbital variables only.
It can be written as a product of two harmoniumwave functions:

r r r r r r r r( , , , ) ( , ) ( , )total 1 2 3 4 A 1 2 B 3 4= (43)

Figure 4. Errors in the ground state energy estimate for harmonium (ω
= 1/2) using density functional approximations (μ-LDA and μ-PBE).
Also shown are the errors of the model energy, Δ0E(μ), gray curve, and
of the expectation value of the physical Hamiltonian, ΔHE(μ), black
curve.
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Let us first consider that subsystemA is in a state with = 0, while
subsystem B is in a state with = 1. In region A the coefficient
c 1/21 = , while in region B, c 1/41 = . Let us now consider
another example. In both subsystems we have = 0. However,
the values of ω differ: A B. We can see from Figure 3a,f−h
that the range of where results are reliable depend on the model
chosen. For example, we see in Figure 3h that if we choose μ =
0.5 we will have chemical accuracy for a subsystemwith ω = 1/4,
but that the error is significantly larger for a subsystem with ω =
1 where chemical accuracy is reached only for μ = 1. Do we
choose tomake themore expensive global calculation, say with μ
= 1, or do we decide to lose quality and make the cheaper
calculation at μ = 1/2? Alternatively, we might consider making
calculations withmodels that change from one region of space to
another.

In how far do we need to go beyond the Kato cusp condition?
Using eq 42, Figure 3h, shows that this might not be needed.
Furthermore, eq 50 of the Appendix (see also discussion in ref
11) shows that there are terms that are important when r > 1/μ
even when r is small, and they may need a more careful
treatment.

Another question is raised by analyzing the dependence on
the external potential. It was shown by Kurokawa et al.8 that for
small interelectronic distance r, the leading term in the
expansion of the Coulomb potential of the nuclei is quadratic.
So, some of the conclusions drawn from the present treatment of
harmonium might be applied in systems where the external
potential is Coulombic.

■ APPENDIX: A DERIVATION OF EQ 30
We repeat here the argumentation given in ref 11, section III,
where the result was obtained for λ = 0.

We consider the behavior of the Schrödinger equation
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at the limit of large μ. After a change of the variable r to x = μr
and defining u(x) = ψ(x/μ) one obtains
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For large μ, we neglect terms proportional to (1/μ)n with n > 1
and to the resulting equation apply perturbation theory up to the
first order in 1/μ. We set

u x u x u x( ) ( )
1

( )(0) (1)= +
(46)

The 0th order in 1/μ gives
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From here we get

u x
x

( )0
0

1= +
(48)

where 0 and 1 are integration constants. The wave function
has to be finite at x = 0. Therefore, 01 = . Furthermore, as u(0)

corresponds to the solution at μ = ∞, namely, to the exact
solution independent of either λ or μ, we set 0 = .
Consequently, the equation for u(1)(x) is
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After solving this equation and changing variable x to r, we get
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where 0 and 1 are integration constants. To avoid singularity
of the wave function at r = 0, 01 = . In order to recover results
for λ = 011 we have to set 00 = . Finally, in the limit r→ 0, up to
the first-order in 1/μ, we have
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where is a normalization constant independent of either λ or
μ.
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