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Abstract. Regions of space are defined to maximize the probability to
find two electrons in it. They can be interpreted as regions where Le-
wis’ electron pairs are most likely to be found. These maximum proba-
bility domains (MPDs) provide information similar to that obtained

Introduction
Professor Hans Georg von Schnering did not only understand
the importance of theory, he actively supported it. For some
time, one of us (A.S.) strongly interacted with him, and it is
now clear that one of the tools, which we consider to be very
useful to interpret bonding in crystals, the electron localization
function (ELF),[1] would have never had the success it had
without his extraordinary chemical insight that made von
Schnering proposing relevant applications for it. In this paper,
we continue a line, which would have been, we believe, in a
spirit he would have liked. We even borrowed the title of the
present contribution from a paper of von Schnering and co-
workers: “Electron Localization in the Solid-State Structures
of the Elements: the Diamond Structure”,[2] a paper where, for
the first time, ELF was applied to crystalline structures.
ELF is a function, defined in each point in three-dimensional
space, designed to get maximal values in regions where elec-
tron pairs are localized. One can join all points around a maxi-
mum to form a so-called basin, by following the uphill paths
from each of the points. All points leading to the same maxi-
mum, belong to the same basin. In this paper the same class
of electronic systems is studied, but a new technique is used
to find the regions of space where electron pairs localize.
These regions are called maximum probability domains, and
are defined as the regions of space for which the probability
to find a pair of electrons is maximal. In order to be more
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from the electron localization function (ELF), but is not identical to it.
The elements in the diamond structure provide examples for a compari-
son.

precise, let us consider an electronic system described by a
wave function Ψ. The probability to find ν and only ν electrons
out of N in a three-dimensional region Ω is given by

(1)

where Ω is the remaining part of the three dimensional space,
R3\Ω, and the binomial coefficient is added to take into ac-
count that electron cannot be distinguished. A maximal proba-
bility domain, MPD, is a region of space maximizing pν(Ω). It
will be denoted by Ων.
The computation of pν (Equation (1)) is less difficult as it

may seem, at least for certain forms of the wave function. In
particular, for a single Slater determinant, as it is produced by
Hartree–Fock, or Kohn–Sham calculations, one first computes
the overlaps of all occupied orbitals over the regions Ω,

(2)

Next, the eigenvalues of the matrix with elements Sij are ob-
tained (Equation (2)). From them, the probabilities are quickly
computed for all ν with a recursive formula.[3] To obtain the
MPDs, the presently running programs use a grid of small
cubes, over which the Sij are obtained analytically. A collection
of such small cubes defines a domain Ω. Next, small cubes are
added or deleted, modifying Ω to maximize a chosen pν.[4] An
alternative optimization technique used triangulates the surface
of Ω. The so-called “shape derivative” is computed on this
surface, and the triangles are moved to increase pν.
Hartree–Fock wave functions for the crystals have been ob-
tained using a modified version of the program Crystal.[5,6] A
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new program was written to produce the MPDs which were
plotted using the program Xcrysden.[7]

Programs are now available to obtain MPDs for molecules,
too, e.g., from the Gaussian program package.[8] MPDs can be
produced also with correlated wave functions, via a Quantum
Monte Carlo program, cf.[9,10] Presently, this implementation
works only for molecules, but the same techniques could be
applied to solids, too, e.g., by using the Casino program.[11]

Probabilities can be computed for multi-determinant wave
functions (see, for example[12]), but the optimization of Ω is
not implemented yet.
The MPDs are close to ELF basins.[13] For single Slater de-
terminants, in the ideal limiting case of strictly localized (non-
overlapping) orbitals, the localization domain of the orbitals,
the ELF basins and the MPDs become identical.[14]

We will also look at the populations, by integrating the elec-
tron density over regions of space, either given by MPDs or
by ELF basins.

Results
We can divide space with Wigner–Seitz (Voronoi) cells,[15]

using the midpoints between the nearest neighbor atoms as
centers. Such a cell is shown on Figure 1. It corresponds to
one of the ELF basins when only valence electrons are taken
into account (in a pseudopotential calculation), and, within our
numerical accuracy, it corresponds to the MPD for a pair of
electrons, Ω2 (from the same calculation). The probability to
find two electrons in it is between 0.4 and 0.5 (cf. Table 1).
Although this value may seem low, one has to keep in mind
that the probability to find two out of eight independent parti-
cles cannot be larger than 0.312.

Figure 1. Domains corresponding to one of the bonds. From left to
right: Wigner–Seitz (Voronoi) cell, ELF valence basin (all-electron cal-
culation), MPD for a pair of electrons, (all-electron calculation), and
the domain present in the ELF basin, not present in the MPD.

Table 1. Probabilities to find two electrons in a region of space attrib-
uted to the bonds, as defined by ELF basins and by MPDs.

Element Valence only Voronoi cell All-Electron
ELF MPD

C 0.42 0.40 0.40
Si 0.45 0.43 0.43
Ge 0.43 0.36 0.37
Sn 0.43 0.36 0.36

Of course, there is a finite probability to find less or to find
more than two particles in the cell. The distribution of proba-
bilities is shown in Figure 2, and although it is a discrete distri-
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bution, a fit by a Gaussian function passing through the points
works well (as was assumed by Fulde and co-workers[16,17]).

Figure 2. Discrete probability distribution for the diamond bond maxi-
mum probability domain and a Gaussian fit to it.

It was noticed[18] that the values of ELF are sensitive to the
use of pseudopotentials. The penetration of core orbitals into
the valence region significantly lowers ELF. However, the
probabilities are only slightly reduced in all-electron calcula-
tions (cf. Table 1). The effect is more pronounced for germa-
nium and tin, and slightly more important for ELF basins than
for MPDs. The origin of this reduction comes from the pene-
tration of the cores into the valence region, which is more
important for the heavier elements.
One can notice that the change in the populations is smaller
than one per cent (which corresponds to our numerical accu-
racy), when MPDs are considered, but more significant for
ELF basins. This can be also seen in the core populations. The
MPDs give numbers are within our numerical accuracy to
those expected from the filling of the inner shells, whereas the
ELF basins yield larger deviations, especially for germanium
(28.0 for the MPD and 27.6 with ELF basins) and tin (46.1 for
the MPD and 45.7 for the ELF basin). The deviation of the
population of ELF basins was already noticed before.[19] One
may ask why probabilities are less sensitive than populations.
If we consider the difference between them and ELF basins to
be of first order, so are the populations. The difference between
the probabilities will be, however, only in second order, due to
the variational nature of MPDs.
From the numbers given above for the cores, it is clear that
the populations of the ELF basins for the bond regions in all-
electron calculations are close to 2, and even more so for
MPDs. The population of the Wigner–Seitz cells (and thus also
that of the bonding regions in valence-only calculations) is
equal to 2.
Interestingly, one can notice in Figure 1 that the MPD ob-
tained in the all-electron calculation looks closer to what one
would expect “chemically” for a bond region, but does not fill
out the space, as does the ELF basin. The volume difference
is not small, as can be seen in the last panel of Figure 1. We
do not know at the present stage whether this ‘shrinking’ of
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the domain is real, or just an artifact of our limited numerical
accuracy. Even if the latter applies, it would not have shown
up if the contribution of the outer region would have been
significant for the MPD. If we make the hypothesis that the
real MPD looks closer to the ELF basin, it thus certainly is
very easy to “compress” it to the domain shown in the Figure
A systematic “compression” of MPDs was studied, and will
be published elsewhere.[20] Of course, the existence of “com-
pressible” regions might be associated with places where room
can be made for other atoms.

Conclusions
The results presented in this paper show that the regions of
space maximizing the probability to find a pair of electrons in
them (Ω2s), are, for C-Sn (diamond structure) close to the ba-
sins of ELF. In this simple structure, one can see also these
regions as Wigner–Seitz cells on a lattice of points given by
the centers of the bonds. Up to this point, there is no essential
improvement over ELF and MPDs might be seen as an alterna-
tive way of understanding ELF. It turns out, however, that the
core-valence separation works better for MPDs than for ELF
basins. This is also in agreement with earlier atomic
calculations,[21] and may become interesting for crystals con-
taining transition metal elements, where this separation was
worse than for main group elements.
There is also a conceptual advantage of MPDs over using
basins (based upon ELF or other similar quantities). Whereas
the function used for constructing the basin (e.g. ELF) may
have a sound physical significance, its basin stays an a posteri-
ori mathematical construction. For MPDs the physical defini-
tion is present from their definition.
We would like to notice also that MPDs have more flexibility
than ELF, as the number of electrons and the number of do-
mains defining it can be chosen by the user.
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