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Correlation energy per particle from the coupling-constant integration
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The adiabatic connection can be used in density functional theory to define the unkexshiange and
correlation density functional. Using conventional wave-function techniques, accurate estimates of thus defined
(exchange andcorrelation energy densities can be obtained for specified systems. In this paper, numerical
results are presented for the He and the Be atom, as well as the isoelectron Ne ions. A generalized gradient
approximation is tested against these results. The comparison shows that the generalized gradient approxima-
tion has the ability to detect local featur@he shell structure In one case (N&), however, it turns out that
the accurate correlation energy per particle is lower than that obtained within the local-density approximation,
and thus not properly corrected by the generalized gradient approximation.
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INTRODUCTION a transition is made between the noninteracting, Kohn-Sham
system, and the real, physical system by multiplying the
The unknown quantity in the Kohn-Sham density- electron-electron interaction by a factar (between 0, the
functional theory is the universal correlation functional value taken for the Kohn-Sham system, and 1, the value
E.n]. It is the difference between the exact ground-statdaken for the physical systemf the density is kept constant
energyE of a system, having ground-state densityand the  during this processcf. Refs.[2,3] which is by no means
expectation value of the HamiltoniaH, taken with the necessary, cf. Ref§l]), the correlation energy is given by
Kohn-Sham wave functiod (the ground-state wave func-
ion of m ohoninteractingparticl ieldin nsi 1
';()). of a system ohoninteractingparticles yielding density Ec[n]:%f d3r1d3r2f i
E [ n] is approximated in practice by an expression of the °

type 1
X[Pz(rl,rz;x)—Pz(rl,rz;x=0)]r—l2. 3

£fn)= | ednniner, &
Here,P,(r{,r,;\) is the reduced two-particle density matrix

wheree(r) is constructed via(r) in the local-density ap- for the ground state at interaction strength

proximation(LDA), or vian(r) andVn(r) in the general-
ized gradient approximations.

Equation(1) is not sufficient to define, when we know
the exack,, the reason being that the latter is just a number, -0.
while the former is a function of: adding toe. a function

g(r) satisfying

-0.
€ -0.

f g(r)n(r)d®=0 2) -0.
-0.

does not change the left-hand side of EL.

In order to understand approximations using an ansatz 4
similar to Eq.(1), it has been proposed to look at it as the r
realization of an adiabatic connection pFOCElSS3] in which FIG. 1. The accurate correlation energy per partie@" as a

function of r in the He atom(full curve) and in the atom with
exponential density, (Z/m)exp(—2¢r), for /=2, dashed curve, in
*Electronic address: savin@Ict.jussieu.fr atomic units.
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FIG. 2. The correlation energy per particlg,, as a function of I/ in the He atom(full curve) and in the atom with exponential density,
(223 w)exp(—2¢r), for =2, dashed curve. The left-hand panel shows the accurate curves and the right-hand panel the approximate,
generalized gradient approximation, PBE val{i&2], in atomic units.

1 L[ RESULTS
r=—-1 dr J dA
8C( 1) 2n(l’1)j 2 0

1
X[PZ(rler;)\)_PZ(rlirZ;)\zo)]r_lz1 (4)

Figure 1 shows . as a function of, for the He atom and
the system having the densit;é(r)=2§3/wexp(—2§r), for
{=2, which is the density of a noninteracting He atom. No-
tice that in both cases;. behaves as one would expect in
density-functional-theory approximations: as the density in-
then Eq.(1) is satisfied[The reverse is not true, it may be creases, so does, in absolute value. In order to emphasize
that Eq.(1) holds without satisfying Eq(4).] this effect, we choose to plat, also as a function of i,

As g, as given by Eq(4), is sometimes viewed as the where r,=(3/(4mn(r)])*2. As, in these examples) is a
paradigm of the density functional, we decided to comparenonotonically decaying function af, there is a one-to-one
more closely accurate and approximdtdA, generalized correspondence betweenandr, or rq andr, and we can
gradient approximatiorvalues for it. In a previous papg#],  produce such a plot. As large densities correspond to large
we presented results for the He atom. In this paper, we willlfr ¢, the atomic center lies at the extreme right of the plot.
show results for the Be atom, and show the behavior in thgyrthermore, in theXa approximation, or when using the
series, by considering the ions of Ne,®Ne and N&€*, re-  Wigner crystal expression, the correlation energy is propor-
spectively. Similar studies exist for a strongly inhomoge-tional ton''3, or to 1t (a plot of &, in such an approxima-
neous electron ga5] and for the silicon crystal6]. An  tion is a straight line passing through the origifrigure 2
accurate model for He has also been presented in[Ref.  showse, as a function of ¥/; in the left-hand panel for the

Notice that in density-functional theory the exchange parsame two-electron systems. The right-hand panel exemplifies
Exs that with increasing density;; (in absolute valugalso in-

creases in density-functional approximations. In this paper,
1 e we compare with an approximate in the generalized gra-
ex(r)= 2n(r1)f d fzfo dr dient approximation of Perdew, Burke, and ErnzertRBE)
[12]. In spite of some details, the qualitative agreement be-
1 tween the accurate and approximate curves is good.
X[Pa(ry,r2;A=0) = n(rl)n(rz)]r—lz, ) A more complicated case is that of the Be atom. The shell
structure there produces a double-minimum structure in the
also plays an important role. We will not insist on it in this accurateec(r). The maximum around =1 bohr corre-
paper, since it is defined at=0, and was already explored Sponds to the separation between the shells. As can be seen
by others(see, e.g., Ref.8]).

The technique we use for producing the ground state of a
system at interaction strength having densityn, has been
described beforé[9] and will not be repeated in detail here.
We first generated an accurate densityy performing(mul-
tireference configuration interaction calculations for these
systems with Gaussian basis sets. At eacltihe density is
kept constant within a high accuracy by using a supplemen-
tary N-dependent potentiad (r;\) described in terms of
rMiexp(—aq;r?). The parameters of this potential are obtained
in a way to ensure only second-order errors in the universal 6o 2 4 6 8 10 12
density functionalLegendre transforinby slightly modify- 1/zs
ing the programmoLPRO[10]. For each of tha, v(r;\) and
the modified interaction\/r,, determine a Hamiltonian
which has a ground staté(\) and the reduced two-particle
density matrix P,(r,,r,;\), obtained with the program
CAsDI [11].

0 —

FIG. 3. The correlation energy per partictg,, as a function of
r in the Be atom. Accuratéull curve) and two approximate results:
in the local-density approximatiofiower dashed curyeand in the
generalized gradient approximation, PBE vall&3 (upper dashed
curve, in atomic units.
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FIG. 4. The correlation energy
per particlee, as a function of
in the Né&T(full curve) and
NeP*(dashed curve ions, in
atomic units. The left-hand panel
shows the accurate results and the
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FIG. 5. The correlation energy per particlg,, as a function of
r, in atomic units, for the N& ion: accuratéfull curve), within the
local-density approximatiofdashed curve
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FIG. 6. The reduced gradient in g as a function ofr, in
atomic units.
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FIG. 7. Exchange and correlation energy per parti€lg, as a
function of r, for the N&* ion, in atomic units: accuratéull
curve, in the local-density approximatioffong-dashed curyeand
a generalized gradient approximatiBE, short-dashed curue

15 5 55 3 right-hand panel those obtained in
r ' the PBE approximatiofil2].

in Fig. 3, this feature is also present in the PBE approxima-
tion (the upper dashed curve following the trends of the ac-
curate, full curveé. The local-density approximation, also
shown in Fig. 3, not only yields significantly too lowy, but
only gives a hint to the shell structure. Figure 3 shows that
the PBE approximation works better for the core region of
Be than for the intershell and valence region.

We show in Fig. 4 similar curves for K& and Né™,
isoelectronic with He and Be, respectively. Notice that Ne
is quite well described by the approximation and thatis
transferable from N& to the Né™ core. The valence cor-
relation is underestimated, however, in the approximation.

The description of the double minimum eaf, is not
present in the local-density approximation, as can be seen in
Fig. 5. It appears within the PBE approximate functional due
to the presence of the reduced gradient,
=|Vn|/[n"®4(3/7)Y¢], shown in Fig. 6 for N&". It is not
able to fully correct the local-density approximation: nor-
mally, the gradient correction reduced the effect of LDA,;
from Fig. 5 it is evident, however, that the effect of LDA
should be enhanced in the valence rediaround 0.5 bohr

It is often believed that using exchange and correlation
together improves on the results. We show in Fig. 7 the ex-
change and correlation energy density fo®Neby compar-
ing the accurate values with those obtained within the local-
density and a generalized gradient approximation. The
definition of the accurate,. is given by the sum o¢, [Eq.
(5)], ande. [Eq. (4)]. Although the agreement is not perfect,
the PBE curve follows significantly better the accurate one
than the curve obtained within the local-density approxima-
tion.

A more detailed analysis is presented in Fig. 8, which

o O O O O O

O P N W b

FIG. 8. Errors of the energy per particle of Ne as a function
of r, in the local-density(long-dashed curveésand a generalized
gradient approximatioitPBE, short-dashed curyesxchange and
correlation(upper pair of curvesand correlation onlylower pair of
curves, in atomic units.
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Ne6+

FIG. 9. Accurate correlation
energy per particles ., of Be (left
pane), and N&*, as a function of
1/, together with linear fits to
segments of it, in atomic units.
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shows the errors in the local-density and the generalized granergy per particles, is not forced to vanish for the inner-
dient correction for N&". The generalized gradient correc- shell part, if a constant term~0.01 au) is included in the
tion always improves om,.. As mentioned before, the gra- fit.

dient correction on the correlation energy per partiele, is

not always improving on the local approximation. As the

exchange and the correlation gradient correction work in op- CONCLUSIONS

posite directions, it is possible to compensate errors in the
gradient correction correlation part by that in the exchang
part.

The present calculations support with numerical evidence

?absent up to nowthe view, defended by many active re-

A further investigation is shown by analyzing the Correla_searchers in thg field OT density—fun_ctional theory, that t_he
success of density-functional theory is based upon the ability

tion energy per particle;., plotted as a function of i{, cf. i ) :
Fig. 9. (Please note that in this figure the scale is different ont0 successfully model the two-body density matrix averaged

the two plots showiAn attempt to find a simple form of along the adiabatic connection. We hope that calculations of
P tempt P . this kind could be further pursued and provide more hints for
shows that for each atomic region, core and valence, a line

fit shows a reasonable agreement. This reminds one of tr?ée construction of approximations.

Xa approximation, giving a linear dependence on1too,

and ha}vmg an atom-dependent coefficient cn_g 1Here, the . ACKNOWLEDGMENTS
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