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Abstract

A density functional for short-range electron–electron interaction recently developed by one of us, has been implemented
into a multi-reference configuration-interaction code with explicit treatment of long-range interaction only. Possible

Ž . Žadvantages of such an approach are discussed, using as examples some closed-shell atoms Be, Ne and diatomics H , Li ,2 2
.C , N , F . q 1997 Published by Elsevier Science B.V.2 2 2

1. Introduction

The two-particle electron–electron interaction,
1rr , with its singularity for r ™0, is the maini j i j

source of the complexity of molecular wavefunctions
Ž .c : long configuration-interaction CI expansions in

terms of extended one-particle basis sets are neces-
sary to properly describe the correlation cusp of c at

w xr ™0 1 . One possibility to overcome this diffi-i j

culty is the explicit introduction of the inter-elec-
tronic coordinates r into c ; while being computa-i j

tionally demanding, this leads to highly accurate
w xwavefunctions 2,3 . As an alternative, one may

modify the Hamiltonian in such a way that the
correlation cusp of c disappears; this can be done,

Ž . Ž .e.g., by replacing 1rr with g r rr where g ri j i j i j i j

is a suitable cut-off function for r ™0. Thisi j

1 Present address: Max-Planck-Institut fur Physik komplexer¨
Systeme, D-01187 Dresden, Germany.

amounts to retaining only the long-range part of the
electron–electron interaction, and thus is just the
opposite to what has recently been proposed by Gill

w xet al. 4 . Of course, the short-range part of 1rri j

cannot simply be neglected, without changing the
spectrum of the Hamiltonian significantly. However,
an efficient and accurate means of implicitly treating
w Ž .x1yg r rr , without ever taking explicit care ofi j i j

the correlation cusp, is at hand via density-functional
Ž . Ž w x.theory DFT cf. e.g. 5 . Current density function-

als are known to yield good approximations for
molecular many-body effects, within a formal one-
particle picture. They should perform even better
when applied to a description of the short-range
Ž .dynamical correlation hole only, with long-range
correlation and quasi-degeneracy effects explicitly
treated by a CI-like scheme.

The idea of combining the advantages of CI and
w xDFT approaches has quite a long history, cf. e.g. 6 .

The particular way of combination sketched above
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w xwas originally suggested some time ago 7 , but only
recently have parametrizations of short-range density

w xfunctionals become available 8–10 , so that applica-
tion to molecules is within reach now. Such applica-
tions are presented in Section 3, after a brief outline
of the basic formulae and of the implementation of
the method in Section 2.

2. Theory

Let

1
HHs h i q 1Ž . Ž .Ý Ý

ri ji i-j

be the molecular Hamiltonian, with h representing
its one-electron part. Consider now a separation of
the electron–electron interaction into a long-range
and a short-range part:

1 g r 1yg rŽ . Ž .i j i j
s q . 2Ž .

r r ri j i j i j

Ž .A convenient choice of g r , both from a physicali j

and a computational point of view, is

g r serf mr , 3Ž . Ž . Ž .i j i j

Ž .where erf x is the standard error function. With this
Ž .choice, the first term in 2 quadratically approaches

'2mr p as r ™0, while the second term exponen-i j

tially approaches zero as r ™ ` . It is easy to seei j

that energy minimization of the expectation value of
Ž .the Hamiltonian of Eq. 1 is equivalent to that of

lr sr w xHH qE r , 4Ž .
with

g rŽ .i jlrHH s h i q , 5Ž . Ž .Ý Ý
ri ji i-j

and

1
sr ² < < :w xE r smin c h i q cŽ .Ý Ýc r rr ri ji i-j

² < lr < :ymin c HH c . 6Ž .c r rr

Here, the long-range Hamiltonian HH lr is supple-
mented by an energy functional depending on the

one-particle electron density r. In the definition of
srw x Ž .E r , c denotes the set of all antisymmetricr

wavefunctions yielding a given r.
Ž .The first term in 6 is just the definition of the

w xusual Kohn-Sham density functional 11 , while the
second one only differs in that the electron–electron
interaction is restricted to its long-range part. Thus,
when taking the difference, we are left, in the sim-

Ž . Ž .plest local density approximation xc-LDA , with
the terms

sr w x sr w x srE r sU r q re r d r , 7Ž . Ž .Hc xc

where

1yg rŽ .12sr w xU r s r r r r d r d r 8Ž . Ž . Ž .Hc 1 2 1 2r12

sr Ž .is the short-range Coulomb interaction, and e r isxc

the exchange-correlation energy per particle of a
Ž .homogeneous electron gas with modified

w Ž .xelectron–electron interaction 1yg r rr . An12 12

expression for the exchange part of e sr can be foundxc
w xin Ref. 10 ; numerical data for the correlation part,

restricted to the non-spin-polarized case, have also
w xbeen derived in 10 , and an analytical parametriza-

tion for e sr is available from the present authors.c
ŽAs an alternative denoted c-LDA in the follow-

.ing , one can invoke the LDA approximation for
correlation only, while evaluating short-range ex-

Ž .change exactly, using its Hartree-Fock HF expres-
Ž .sion involving the full one-particle density matrix.

lr srw xThe separation between HH and E r is con-
Ž .trolled by the parameter m in Eq. 3 ; an optimum

between economy and accuracy should be reached
for finite m values intermediate between the Kohn-

Ž . Ž . Ž .Sham KS limit m s 0 and the CI limit m™ ` .
Of course, this optimum is related to a characteristic
length of the system under consideration, and hence
is expected to be different for atomic shells with
different main quantum numbers. Application of the
method in a pseudopotential context, with explicit
treatment of the valence-electron system only, seems
therefore to be most rewarding. The method has been
implemented into the ab initio program system Mol-

w xpro 12 . A simple modification of the integral code
w xSeward 13 is sufficient to generate the two-electron
² < :integrals pq rs with long-range interaction: the
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sum of the exponents of the four Gaussians involved,
Žh qh qh qh , has to be supplemented by h qp q r s p

.Ž . 2h h qh rm . The short-range Coulomb interac-q r s
srw xtion U r , as well as the corresponding non-localc

exchange, are calculated directly from the sets of
unmodified and modified integrals, while the LDA

srŽ . srŽ .expressions for e r , e r are evaluated over ax c
w xgrid, using the Molpro DFT implementation 14 .

These quantities are used to modify in an appropriate
Ž . Ž .way, cf. Eqs. 4 and 7 , the energy expression of

Ž . w xthe multi-reference CI MRCI code 15–17 , for
calculations involving long-range integrals only; in
addition, the corresponding functional derivatives,
determined analogously, are inserted as potentials in
the CI iteration. Since input and output densities r

Ž .and density matrices are different, in general, we
repeat the MRCI with updated short-range quantities
until self-consistency is reached. Note that although
completely general wavefunctions are admitted,
within the MRCI, the method is restricted, at its
present stage, to wavefunctions dominated by a
closed-shell reference due to the use of non-spin-

Ž .polarized short-range density functionals cf. above .

3. Results

3.1. Atoms

Since preliminary results for two-electron atoms
w xhave been published in Ref. 10 , we concentrate on

first-row atoms and choose Be and Ne as examples
of atoms with preponderance of staticrdynamic cor-
relation effects.

Ž .For Be cf. Fig. 1 , we performed single-reference
Ž . w xaveraged-coupled-pair-functional ACPF 18 calcu-

Ž .lations, using the uncontracted spdf part of Dun-
w xning’s Õ5z basis set 19 and including up to double

excitations from both K and L shells. At m™ ` , i.e.
in the limit of a conventional ACPF calculation, the
difference to the ‘experimental’ non-relativistic en-

w xergy 20 is ;0.1 eV. The deviations at the other
Ž .end, ms0, i.e. for conventional Kohn-Sham KS

calculations, are much larger 6.0 and y3.6 eV for
xc-LDA and c-LDA, respectively. With increasing
m, these deviations rapidly and monotonicly decrease
to ;0.1 eV at m-values in the range between 3 and
4, with a slightly better convergence for the xc-

LDA–CI coupling than for the c-LDA–CI one. Note
Žthat pure long-range ACPF with HF-like short-range

.exchange – label ‘HF’ in Fig. 1 yields deviations of
between 0.8 and 1.0 eV in this m-interval, indicating
the validity and efficiency of LDA for describing
short-range correlation effects. It is seen from the
m-dependence of the curves in Fig. 1 that there is a
change in the slope around ms1; this change is
related to the difference in the characteristic inter-
electronic length of the 1s2 and 2 s2 shells, the
former controlling the behaviour for large m. It is to
be expected, therefore, that the convergence with m

is much improved for valence-shell effects alone. In
fact, when subtracting Be and Be2q energies, devia-
tions -0.1 eV are already reached for m-values in

Ž y1 .the range 0.5...1.0. Note that these values in bohr
correspond to ‘break-even’ points between short-
and long-range interaction at inter-electronic dis-

˚tances of 0.3...0.5 A – for comparison, the valence-
˚ w xshell radius of Be is ;1.1 A 21 .

For Ne, let us concentrate on valence-shell effects
Ž .from the outset cf. Fig. 2 , by using energy-con-

w xsistent pseudopotentials replacing the K shell 22 ,
Ž .together with an extended uncontracted 9s9p4d3f2g

w x Žvalence basis set 22 Õ5z polarization functions
w x.from 26 ; correlation effects are treated at the sin-

gle-reference ACPF level again. The deviation from
Žthe estimated limit determined from large-basis-set

Ž .pseudopotential CCSD T calculations, corrected for
w xthe difference between experimental 20 and calcu-

.lated all-electron correlation energy is quite substan-
Ž .tial here 0.6 eV ; ;25% of the error is due to the

neglect of triples with ACPF, most of the rest has to
be attributed to the absence of h and higher polariza-
tion functions. In the following, we restrict the dis-
cussion of the DFT-CI coupled results to deviations
from the ACPF limit at m™ ` . The best results are

Ž .obtained with c-LDA: here, a rapid and nearly
monotonic convergence is observed, with a reduction

Ž .of the ms0 KS error with respect to the CI limit
of 6.5 eV to F0.7 eV for mG1. The maximum
xc-LDA error for mG1 is around 1.3 eV, but still
this is only ;0.14% of the total valence energy and

Žis of the same order of magnitude and the same
.sign as the ACPF error itself. It is interesting to see,

Žfrom the HF curve, that only ;10% of the dynami-
.cal correlation effects in Ne are treated explicitly,

i.e. by long-range ACPF, for ms1; again, this



( )T. Leininger et al.rChemical Physics Letters 275 1997 151–160154

underlines the significant improvement induced by
the short-range density functionals. As already men-
tioned, an important advantage of the present DFT-CI
coupling should be the reduced one-particlermany-
particle basis-set requirements. In fact, the computa-

Žtional efficiency of pure KS calculations i.e. no
need for d, f polarization functions or configura-

.tional mixing at ms0 partially transfers to interme-
diate m-values: for ms1, restriction to a s, p basis

set yields an energy loss of 0.5 eV for c-LDA, the
restriction to a single determinant another 0.3 eV; the

Ž .corresponding numbers in the ACPF limit m™ `

are 4.0 eV each.

3.2. Molecules

Let us begin with the simplest case here – H .2

CISD calculations have been performed here, using

Ž . w xFig. 1. Total energy of the Be atom, relative to the non-relativistic experimental limit 20 , for various short-range methods coupled to
long-range ACPF.
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w xthe spdf part of Dunning’s Õ5z basis set 19 , and
results have been obtained, for each m-value sepa-
rately, for the bond length r , vibrational frequencye

v , and dissociation energy D . The D values, cf.e e e
Ž .Fig. 3, are taken with respect to the conventional

SCF energies of the separate atoms. It is seen that
the convergence to the CI limit is quite rapid for D :e

xc-LDA is too small by 1.0 eV, c-LDA too large by
1.5 eV for ms0, but a uniform accuracy of better

than 0.05 eV is reached for mG1. The improvement
with DFT-CI mixing is less spectacular for r , be-e

cause the KS results at ms0 are already quite
Ž .accurate to 2 pm , but here too the improvement is
Žnoteable deviation from the CI limit -0.2 pm for

. y1mG2 . For v KS errors of "300 cm at ms0e
y1 Ž .become -20 cm 0.5% for mG2. In all cases,

Ž .pure long-range CI HF curve in Fig. 3 is much
inferior to the DFT-CI results, by ;0.8 eV for D ate

Fig. 2. Valence energy of the Ne atom, relative to a combined theoreticalrexperimental limit, cf. text, for various short-range methods
coupled to long-range ACPF.
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ms1, and 100 cmy1 for v at ms2 — this ise

further indication of the physical soundness of the
DFT approximation for describing short-range dy-
namical correlation. It is interesting to note that even
in the r™ ` limit of the H curve, the present2

DFT-CI coupling scheme seems to work moderately
well, although the use of non-spin-polarized density
functionals is certainly not optimum: while at ms0,
xc-LDA and c-LDA are off by 0.11 and 0.21 Eh,
respectively, the deviations from the exact result

Ž h. hy1 E , are only 6 mE at ms2. Turning now to
the question of the computational efficiency of the
DFT-CI coupling for H , we find that reasonable2

results can be obtained already at the s-limit, i.e.
with a basis set containing s functions exclusively.

Ž .At the xc-LDA KS limit ms0 , this leads to quite
small errors, with respect to the extended spdf basis
set mentioned above, of 0.1 pm for r , 39 cmy1 fore

v , and 0.1 eV for D ; at the m-values discussede e
Ž .above ms1 for D , ms2 for r and v , thee e e

m™ ` Ž .Fig. 3. Dissociation energy D of H , relative to the E r™ ` limit, for various short-range methods coupled to long-range CISD.e 2
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Ž y1errors are still tolerable -0.1 pm for r , 66 cme
.for v , 0.2 eV for D , while they blow up, ofe e
Ž .course, at the CI limit m™ ` : D r s0.5 pm,e

Dv s130 cmy1, D D s0.5 eV.e e

Li is a case with strong near-degeneracy effects2

and a quite unusual bond-length shortening, by 10
pm, due to correlation. We performed CISD calcula-
tions for Li , using our energy-consistent pseudopo-2

w xtentials 23 , together with a flexible even-tempered

Ž8 s6 p2 d valence basis set. The results at m™ ` re
˚ y1 .s 2.68 A, D s 1.04 eV, v s 346 cm aree e

˚Žquite near to the experimental values r s 2.67 A,e
y1 .D s 1.06 eV, v s 351 cm . Results for r ate e e

intermediate m values are shown in Fig. 4; it is seen
Žthat deviations from the CI limit at ms0 D r s3e
.pm for c-LDA, 10 pm for xc-LDA, at ms0 have

already damped out to -1 pm for ms1; for ve
Ž .not shown changes are -0.5% in the interval

Fig. 4. Bond length R of Li , for various short-range methods coupled to long-range CISD.e 2
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Ž . Ž .mg 2,` . D which is much too small 0.2 eV ate

the SCF level and grossly overestimated with c-LDA
Ž1.7 eV, when comparison is made to separate SCF

.atoms converges even faster: D D - 0.05 eV fore

m)0.5. For all properties considered, the substantial
differences between conventional xc-LDA and c-
LDA calculations virtually disappear with DFT-CI
coupling for m)0.5. It should be mentioned that the

conclusions drawn here on the basis of pseudopoten-
tial calculations carry over, virtually without modifi-
cation, to all-electron calculations.

F is known as a particularly difficult molecule,2

with a stretched s bond requiring multi-reference
Žtreatment the single-reference CISD bond length is

w x.too small by 5 pm 24 , and unbound with respect to
separate atoms at the SCF level. Accordingly, we

ŽFig. 5. Bond length R of F , for various short-range methods coupled to long-range CASSCFrMRACPF or CASSCF, in the case of thee 2
.HF ™ CAS curve .
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Ž .performed complete-active-space SCF CASSCF
calculations, with 3s , 3s as active orbitals, fol-g u

Ž .lowed by multi-reference ACPF MRACPF . The K
shell of fluorine was replaced by an energy-con-

w xsistent pseudopotential 25 and an optimized 6 s6 p
w xvalence basis set 27 with 2 d1 f polarization func-

w xtions from Dunning’s Õtz set 26 was employed.
Results for r , as a function of the DFT-CI screeninge

parameter m, are shown in Fig. 5. It is seen that the
convergence to the full MRACPF limit for increas-
ing m is slower than for H and Li : even for2 2

ms4, the deviation from the experimental bond
length is around 1 pm. Of course, this is partly due
to the F valence shell being more compact than for H
or Li – the ratio of the atomic radii of Li and F is

w x;4 21 . However, part of this behaviour has also to
be attributed to the relatively slow convergence of
non-dynamical correlation effects, cf. the ‘HF ™

CAS’ curve in Fig. 5 which describes the transition
from SCF to CASSCF as a function of m. The
density functionals are expected to account for
Ž .bond-shortening dynamical correlation but cannot
describe the large bond-lengthening near-degeneracy

Ž .effect D r s 14 pm ; they thus are at a disadvan-e
Žtage against the pure long-range CI HF curve in Fig.

.5 which exhibits an error compensation between
missing short-range dynamical and static correlation.
For the dissociation energy, calculated with respect
to the sum of conventional ACPF atomic energies,
the situation is more favourable for the DFT-CI
coupling, since static and dynamical correlation con-
tributionsare of the same sign. In fact, cf. Table 1,
both xc-LDA and c-LDA are much more accurate

Žhere than the pure long-range CI labelled HF in
.Table 1 . As in the case of H , the non-spin-polarized2

density functionals work remarkably well even in the
Ž .case of dissociation r™ ` so that the dissociation

energy when calculated as the difference between
mŽ . mŽ .E r and E ` , for a given m, is accurate to 0.2

eV for ms4 with both xc-LDA and c-LDA, see
Table 1.

Results for dissociation energies of C and N ,2 2

from single-point full-valence-space CASSCF-
MRACPF calculations at the experimental r , aree

also shown in Table 1. Again, energy-consistent
w xpseudopotentials 25 are used, together with even-

tempered 10 s10 p valence basis sets and the 3d2 f 1 g
w xÕqz polarization sets from Ref. 26 . The situation

Ž .for D C is similar to F , whereas in the case of Ne 2 2 2

the high-spin atomic limit seems to deteriorate some-
what the convergence of D with m, when referencee

is made to atoms at r™ ` , calculated with the same
non-spin-polarized DFT-CI coupling as for the
molecule. The basis-set dependence, as judged from
the difference between D values with Õdz and Õqze

Ž . Ž .polarization sets, is 0.1 0.5 eV and 0.1 0.8 eV for
Ž .C and N at ms2 m™ ` , when reference is2 2

` Ž .made to conventional ACPF atomic energies, E ` ;
mŽ .the corresponding ms2 numbers for the E `

reference are 0.3 and 0.4 eV, respectively. A more
complete discussion will be given elsewhere.

4. Conclusions

Density functionals for short-range electron–elec-
tron interaction can be used to effectively remove the
need to describe correlation cusps with CI wavefunc-
tions. It has been shown, using examples of closed-

Ž . Žshell atoms Be, Ne and molecules H , Li , C ,2 2 2

Table 1
Ž .Dissociation energies eV for various short-range methods coupled to long-range MRACPF, at selected values of the coupling parameter m.

mŽ . ` Ž . mŽ . mŽ . ŽIn each case, the upper entry refers to E r yE ` , the lower one to E r yE ` . Experimental values are 6.33, 9.90, and 1.69 eVe e
.for C , N , and F , respectively2 2 2

m C N F2 2 2

2 4 ` 2 4 ` 2 4 `

HF 4.06 5.59 6.24 6.11 8.52 9.68 y5.34 y0.96 1.55
6.36 6.26 6.24 11.21 10.12 9.68 2.16 1.74 1.55

c-LDA 5.80 6.21 6.24 9.25 9.68 9.68 1.45 1.75 1.55
6.61 6.36 6.24 11.64 10.28 9.68 2.30 1.79 1.55

xc-LDA 5.95 6.22 6.24 9.63 9.73 9.68 3.23 2.11 1.55
6.63 6.36 6.24 11.53 10.27 9.68 2.19 1.78 1.55
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.N , F , that a simple short-range LDA, depending2 2

on the total density only, gives quite a reliable
account of dynamical correlation, so that usually

Ž .only a moderate portion of explicitly CI-like treated
long-range interaction has to be mixed in. While the
results in this regime are more accurate than with
pure DFT, one-particlermany-particle basis-set re-
quirements are less severe than with pure CI. Further
improvements, currently underway in our laboratory,
include accounting for spin polarization and develop-
ing gradient-corrected short-range density function-
als.
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