29 August 1997

CHEMICAL
PHYSICS
LETTERS

b

ELSEVIER

Chemical Physics Letters 275 (1997) 151-160

Combining long-range configuration interaction with short-range
density functionals

Thierry Leininger @, Hermann Stoll 2, Hans-Joachim Werner 2, Andreas Savin °

& Ingtitut fiir Theoretische Chemie, Universitat Stuttgart, D-70550 Stuttgart, Germany
P |_aboratoire de Chimie Théorique, Université Pierre et Marie Curie, F-75252 Paris, France

Received 22 May 1997

Abstract

A density functiona for short-range electron—electron interaction recently developed by one of us, has been implemented
into a multi-reference configuration-interaction code with explicit treatment of long-range interaction only. Possible
advantages of such an approach are discussed, using as examples some closed-shell atoms (Be, Ne) and diatomics (H ,, Li,,

C,, N,, F,). ©1997 Published by Elsevier Science B.V.

1. Introduction

The two-particle electron—electron interaction,
1/r;;, with its singularity for r;; — 0, is the main
source of the complexity of molecular wavefunctions
¢r: long configuration-interaction (CI) expansions in
terms of extended one-particle basis sets are neces-
sary to properly describe the correlation cusp of ¢ at
r;; = 0 [1]. One possibility to overcome this diffi-
culty is the explicit introduction of the inter-elec-
tronic coordinates r;; into ; while being computa-
tionally demanding, this leads to highly accurate
wavefunctions [2,3]. As an aternative, one may
modify the Hamiltonian in such a way that the
correlation cusp of ¢ disappears; this can be done,
e.g., by replacing 1/r;; with g(r;;)/r;; where g(r;;)
is a suitable cut-off function for r;; —»0. This

! Present address: Max-Planck-Institut fur Physik komplexer
Systeme, D-01187 Dresden, Germany.

amounts to retaining only the long-range part of the
electron—electron interaction, and thus is just the
opposite to what has recently been proposed by Gill
et a. [4]. Of course, the short-range part of 1/r;;
cannot simply be neglected, without changing the
spectrum of the Hamiltonian significantly. However,
an efficient and accurate means of implicitly treating
[1—g(r;]/r;;, without ever taking explicit care of
the correlation cusp, is at hand via density-functional
theory (DFT) (cf. e.g. [5]). Current density function-
as are known to yield good approximations for
molecular many-body effects, within a forma one-
particle picture. They should perform even better
when applied to a description of the short-range
(dynamical) correlation hole only, with long-range
correlation and quasi-degeneracy effects explicitly
treated by a Cl-like scheme.

The idea of combining the advantages of Cl and
DFT approaches has quite a long history, cf. e.g. [6].
The particular way of combination sketched above
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was originally suggested some time ago [7], but only
recently have parametrizations of short-range density
functionals become available [8-10], so that applica-
tion to molecules is within reach now. Such applica
tions are presented in Section 3, after a brief outline
of the basic formulae and of the implementation of
the method in Section 2.

2. Theory

Let

7= Z h(i) + 2 f (1)
i<j ri i

be the molecular Hamiltonian, with h representing

its one-electron part. Consider now a separation of

the electron—electron interaction into a long-range

and a short-range part:

iz a(ri;) N 1-g(r)

(2)

A convenient choice of g(r;;), both from a physical
and a computational point of view, is

g(ri;) = ef(ury)), (3

where erf( x) is the standard error function. With this
choice, the first term in (2) quadratically approaches
2M/‘/; as r;; — 0, while the second term exponen-
tially approaches zero as r;; — . It is easy to see
that energy minimization of the expectation value of
the Hamiltonian of Eq. (1) is equivalent to that of

7" +E¥[ p], (4)
with
= Xhi)+ £ o), (5)
i<j ij
and

£°[ p] = min, (| Sh(T) + T AP

i<j 'ij
—minlM§¢p|;%'f|¢p>. (6)

Here, the long-range Hamiltonian .#" is supple-
mented by an energy functional depending on the

one-particle electron density p. In the definition of
ES[pl, 4, denotes the set of al (antisymmetric)
wavefunctions yielding a given p.

The first term in (6) is just the definition of the
usual Kohn-Sham density functional [11], while the
second one only differs in that the electron—electron
interaction is restricted to its long-range part. Thus,
when taking the difference, we are l€ft, in the sim-
plest (loca density) approximation (xc-LDA), with
the terms

E“[p]=USTp] + [pei(p)dr, (7)
where

—9(ry)

sl p] —fp(rl) p(r)drydr, (8)

Mo

is the short-range Coulomb interaction, and eg.( p) is
the exchange-correlation energy per partlcle of a
homogeneous electron gas with (modified)
electron—electron interaction [1—g(ry,)]1/ry,. An
expression for the exchange part of g, can be found
in Ref. [10]; numerical data for the correlation part,
restricted to the non-spin-polarized case, have also
been derived in [10], and an analytical parametriza-
tion for €7 is available from the present authors.
As an alternative (denoted c-LDA in the follow-
ing), one can invoke the LDA approximation for
correlation only, while evaluating short-range ex-
change exactly, using its Hartree-Fock (HF) expres-
sion involving the (full) one-particle density matrix.
The separation between 7" and E¥[ p] is con-
trolled by the parameter w in Eq. (3); an optimum
between economy and accuracy should be reached
for finite u values intermediate between the Kohn-
Sham (KS) limit (w = 0) and the CI limit (u— ).
Of course, this optimum is related to a characteristic
length of the system under consideration, and hence
is expected to be different for atomic shells with
different main quantum numbers. Application of the
method in a pseudopotential context, with explicit
treatment of the valence-electron system only, seems
therefore to be most rewarding. The method has been
implemented into the ab initio program system Mol-
pro [12]. A simple modification of the integral code
Seward [13] is sufficient to generate the two-€lectron
integrals < pglrs) with long-range interaction: the
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sum of the exponents of the four Gaussians involved,
M, + Mg+ 7, + 75, has to be supplemented by (1, +
ny)(n, + m9)/u?. The short-range Coulomb interac-
tion UZ[ p], as well as the corresponding non-local
exchange, are calculated directly from the sets of
unmodified and modified integrals, while the LDA
expressions for € ( p), €J( p) are evaluated over a
grid, using the Molpro DFT implementation [14].
These quantities are used to modify in an appropriate
way, cf. Egs. (4) and (7), the energy expression of
the multi-reference CI (MRCI) code [15-17], for
calculations involving long-range integrals only; in
addition, the corresponding functional derivatives,
determined analogously, are inserted as potentials in
the CI iteration. Since input and output densities p
(and density matrices) are different, in genera, we
repeat the MRCI with updated short-range quantities
until self-consistency is reached. Note that although
completely general wavefunctions are admitted,
within the MRCI, the method is restricted, at its
present stage, to wavefunctions dominated by a
closed-shell reference due to the use of non-spin-
polarized short-range density functionals (cf. above).

3. Reaults
3.1. Atoms

Since preliminary results for two-electron atoms
have been published in Ref. [10], we concentrate on
first-row atoms and choose Be and Ne as examples
of atoms with preponderance of static/dynamic cor-
relation effects.

For Be (cf. Fig. 1), we performed single-reference
averaged-coupled-pair-functional (ACPF) [18] calcu-
lations, using the (uncontracted) spdf part of Dun-
ning's v5z basis set [19] and including up to double
excitations from both K and L shells. At u— , i.e
in the limit of a conventional ACPF calculation, the
difference to the ‘experimental’ non-relativistic en-
ergy [20] is ~ 0.1 eV. The deviations at the other
end, w=0, i.e. for conventional Kohn-Sham (KS)
calculations, are much larger 6.0 and —3.6 eV for
xc-LDA and c-LDA, respectively. With increasing
1, these deviations rapidly and monotonicly decrease
to ~0.1eV a w-valuesin the range between 3 and
4, with a dightly better convergence for the xc-

LDA—-CI coupling than for the c-LDA—CI one. Note
that pure long-range ACPF (with HF-like short-range
exchange — label ‘HF' in Fig. 1) yields deviations of
between 0.8 and 1.0 eV in this u-interval, indicating
the validity and efficiency of LDA for describing
short-range correlation effects. It is seen from the
u-dependence of the curves in Fig. 1 that there is a
change in the slope around w = 1; this change is
related to the difference in the characteristic inter-
electronic length of the 1s? and 2s? shells, the
former controlling the behaviour for large w. It isto
be expected, therefore, that the convergence with
is much improved for valence-shell effects alone. In
fact, when subtracting Be and Be?* energies, devia-
tions < 0.1 eV are aready reached for u-values in
the range 0.5...1.0. Note that these values (in bohr 1)
correspond to ‘break-even’ points between short-
and long-range interaction at inter-electronic dis-
tances of 0.3..0.5 A — for comparison, the valence-
shell radius of Beis ~ 1.1 A [21].

For Ne, let us concentrate on valence-shell effects
from the outset (cf. Fig. 2), by using energy-con-
sistent pseudopotentials replacing the K shell [22],
together with an extended (uncontracted) 9s9p4d3f2g
valence basis set [22] (v5z polarization functions
from [26]); correlation effects are treated at the sin-
gle-reference ACPF level again. The deviation from
the estimated limit (determined from large-basis-set
pseudopotential CCSD(T) calculations, corrected for
the difference between experimental [20] and calcu-
lated all-electron correlation energy) is quite substan-
tial here (0.6 eV); ~ 25% of the error is due to the
neglect of triples with ACPF, most of the rest has to
be attributed to the absence of h and higher polariza-
tion functions. In the following, we restrict the dis-
cussion of the DFT-CI coupled results to deviations
from the ACPF limit a¢ ©— . The best results are
obtained with c-LDA: here, a rapid and (nearly)
monatonic convergence is observed, with a reduction
of the u =0 KS error (with respect to the CI limit)
of 65 eV to <0.7 eV for w>1. The maximum
xc-LDA error for w> 1 is around 1.3 eV, but till
thisisonly ~ 0.14% of the total valence energy and
is of the same order of magnitude (and the same
sign) as the ACPF error itself. It is interesting to see,
from the HF curve, that only ~ 10% of the (dynami-
cal) correlation effects in Ne are treated explicitly,
i.e. by long-range ACPF, for w=1; again, this
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underlines the significant improvement induced by
the short-range density functionals. As aready men-
tioned, an important advantage of the present DFT-CI
coupling should be the reduced one-particle/many-
particle basis-set requirements. In fact, the computa-
tional efficiency of pure KS calculations (i.e. no
need for d,f polarization functions or configura-
tional mixing at . = 0) partialy transfers to interme-
diate u-values: for u =1, restriction to a s,p basis

set yields an energy loss of 0.5 eV for c-LDA, the
restriction to a single determinant another 0.3 eV; the
corresponding numbers in the ACPF limit (. — )
are 4.0 eV each.

3.2. Molecules

Let us begin with the simplest case here — H,.
CISD calculations have been performed here, using

0.25 T

0.20

0.15

0.05

Energy (hartree)

——CI limit

0.00!

c-LDA

Experimental limit

-0.051 T
-0.10[, T
i 1 1 1
0 2 4 6 8 10
u (1/bohr)

Fig. 1. Tota energy of the Be atom, relative to the (non-relativistic) experimental limit [20], for various short-range methods coupled to

long-range ACPF.
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the spdf part of Dunning's v5z basis set [19], and
results have been obtained, for each wu-value sepa-
rately, for the bond length r,, vibrational frequency
w,, and dissociation energy D,. The D, values, cf.
Fig. 3, are taken with respect to the (conventional)
SCF energies of the separate atoms. It is seen that
the convergence to the CI limit is quite rapid for D,:
xc-LDA istoo smal by 1.0 eV, c-LDA too large by
15 eV for u =0, but a uniform accuracy of better

than 0.05 eV isreached for u > 1. The improvement
with DFT-CI mixing is less spectacular for r,, be-
cause the KS results at =0 are adready quite
accurate (to 2 pm), but here too the improvement is
noteable (deviation from the CI limit < 0.2 pm for
u=2). For o, KSerrorsof +300cm ™t at w=0
become < 20 cm™?! (0.5%) for w > 2. In all cases,
pure long-range Cl (HF curve in Fig. 3) is much
inferior to the DFT-CI results, by ~ 0.8 eV for D, at

0.30

0.20

?
[
5 0.10
w©
<
>
[+]
®
1=
w
_ Cl limit
0.00 Estimated limit
c-LDA
-0.10f T
-0.20 : : ' '
o 2 4 6 8 10
p (1/bohr)

Fig. 2. Valence energy of the Ne atom, relative to a combined theoretical /experimental limit, cf. text, for various short-range methods

coupled to long-range ACPF.
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w=1 and 100 cm™* for w, a u=2 — thisis
further indication of the physical soundness of the
DFT approximation for describing short-range dy-
namical correlation. It is interesting to note that even
in the r— limit of the H, curve, the present
DFT-CI coupling scheme seems to work moderately
well, athough the use of non-spin-polarized density
functionals is certainly not optimum: whileat =0,
xc-LDA and c-LDA are off by 0.11 and 0.21 E",
respectively, the deviations from the exact result

(—1EM"), are only 6 mE" at = 2. Turning now to
the question of the computational efficiency of the
DFT-CI coupling for H,, we find that reasonable
results can be obtained aready at the slimit, i.e
with a basis set containing s functions exclusively.
At the xc-LDA KS limit ( u = 0), this leads to quite
small errors, with respect to the extended spdf basis
set mentioned above, of 0.1 pm for r,, 39 cm~* for
w,, and 0.1 eV for D,; at the w-values discussed
above (n=1 for D,, u=2 for r, and w,), the
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Fig. 3. Dissociation energy D, of H,, relativeto the E*~ (r — ) limit, for various short-range methods coupled to long-range CISD.
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errors are till tolerable (< 0.1 pm for r,, 66 cm™*
for w,, 0.2 eV for D,), while they blow up, of
course, a the Cl limit (u— ). Ar,=05 pm,
Aw,=130cm %, AD, =05 eV.

Li, is a case with strong near-degeneracy effects
and a quite unusual bond-length shortening, by 10
pm, due to correlation. We performed CISD cacula
tions for Li,, using our energy-consistent pseudopo-
tentials [23], together with a flexible even-tempered

8s6p2d yaence basis set. Theresultsat u—  (r,
= 268 A, D, = 104 eV, w, = 346 cm ') ae
quite near to the experimenta values (r, = 2.67 A,
D, = 1.06 eV, w, = 351 cm™ ). Results for r, at
intermediate w values are shown in Fig. 4; it is seen
that deviations from the ClI limit at w=0 (Ar,=3
pm for c-LDA, 10 pm for xc-LDA, a u = 0) have
already damped out to <1 pm for u=1; for w,
(not shown) changes are < 0.5% in the interval

2.850

xc-LDA|

2.750

c-LDA

2.700

—+ — & ———f~ Cl limit
. | Explerimental limit
0 2 4 6 8 10
uw (1/bohr)

Fig. 4. Bond length R, of Li,, for various short-range methods coupled to long-range CISD.
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n € (2, ). D, which is much too small (0.2 V) at
the SCF level and grossly overestimated with c-LDA
(1.7 eV, when comparison is made to separate SCF
atoms) converges even faster: AD, < 0.05 eV for
> 0.5. For all properties considered, the substantial
differences between conventional xc-LDA and c-
LDA calculations virtually disappear with DFT-CI
coupling for w > 0.5. It should be mentioned that the

conclusions drawn here on the basis of pseudopoten-
tial calculations carry over, virtually without modifi-
cation, to all-electron calculations.

F, is known as a particularly difficult molecule,
with a stretched o bond requiring multi-reference
treatment (the single-reference CISD bond length is
too small by 5 pm [24]), and unbound with respect to
separate atoms at the SCF level. Accordingly, we

1.460 T T

1.4401 ,°

1.4201 N

,o/ol—o———__b ol limit
o

1.400

1.360

1.340

1.320

Experimental limit

1.300 : :
0

6 8 10

w (1/bohr)
Fig. 5. Bond length R, of F,, for various short-range methods coupled to long-range CASSCF/MRACPF (or CASSCF, in the case of the

HF — CAS curve).
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performed complete-active-space SCF (CASSCF)
caculations, with 3oy, 30, as active orbitals, fol-
lowed by multi-reference ACPF (MRACPF). The K
shell of fluorine was replaced by an energy-con-
sistent pseudopotential [25] and an optimized 6s6 p
vaence basis set [27] with 2d1f polarization func-
tions from Dunning's vtz set [26] was employed.
Results for r,, as afunction of the DFT-CI screening
parameter u, are shown in Fig. 5. It is seen that the
convergence to the full MRACPF limit for increas-
ing w is slower than for H, and Li,: even for
=4, the deviation from the experimental bond
length is around 1 pm. Of course, this is partly due
to the F valence shell being more compact than for H
or Li — the ratio of the atomic radii of Li and F is
~ 4 [21]. However, part of this behaviour has also to
be attributed to the relatively slow convergence of
non-dynamical correlation effects, cf. the ‘HF —
CAS' curve in Fig. 5 which describes the transition
from SCF to CASSCF as a function of w. The
density functionals are expected to account for
(bond-shortening) dynamical correlation but cannot
describe the large bond-lengthening near-degeneracy
effect (Ar,= 14 pm); they thus are at a disadvan-
tage against the pure long-range CI (HF curvein Fig.
5) which exhibits an error compensation between
missing short-range dynamical and static correlation.
For the dissociation energy, calculated with respect
to the sum of conventional ACPF atomic energies,
the situation is more favourable for the DFT-CI
coupling, since static and dynamical correlation con-
tributionsare of the same sign. In fact, cf. Table 1,
both xc-LDA and c-LDA are much more accurate
here than the pure long-range ClI (labelled HF in
Table 1). Asin the case of H ,, the non-spin-polarized

Table 1

density functionals work remarkably well even in the
case of dissociation (r —» ) so that the dissociation
energy when calculated as the difference between
E*(r) and E*( ), for a given u, is accurate to 0.2
eV for w =4 with both xc-LDA and c-LDA, see
Table 1.

Results for dissociation energies of C, and N,
from single-point full-valence-space CASSCF-
MRACPF caculations at the experimental r,, are
aso shown in Table 1. Again, energy-consistent
pseudopotentials [25] are used, together with even-
tempered 10s10p valence basis sets and the 3d2f1g
vqgz polarization sets from Ref. [26]. The situation
for D(C,) issimilar to F,, whereas in the case of N,
the high-spin atomic limit seems to deteriorate some-
what the convergence of D, with w, when reference
is made to atoms at r — , calculated with the same
non-spin-polarized DFT-CI coupling as for the
molecule. The basis-set dependence, as judged from
the difference between D, values with vdz and vqz
polarization sets, is 0.1 (0.5) eV and 0.1 (0.8) eV for
C, and N, a& u=2 (p— ), when reference is
made to conventional ACPF atomic energies, E ( );
the corresponding w =2 numbers for the E*( )
reference are 0.3 and 0.4 eV, respectively. A more
complete discussion will be given elsewhere.

4. Conclusions

Density functionals for short-range electron—elec-
tron interaction can be used to effectively remove the
need to describe correlation cusps with Cl wavefunc-
tions. It has been shown, using examples of closed-
shell atoms (Be, Ne) and molecules (H,, Li,, C,,

Dissociation energies (eV) for various short-range methods coupled to long-range MRACPF, at selected values of the coupling parameter .
In each case, the upper entry refersto E*(r,) — E ( ), the lower oneto E#(r,) — E*( ). (Experimental values are 6.33, 9.90, and 1.69 eV

for C,, N,, and F,, respectively)

I C, Ny F
2 4 2 2 4
HF 4.06 5.59 6.24 6.11 8.52 9.68 -534 —0.96 1.55
6.36 6.26 6.24 11.21 10.12 9.68 2.16 1.74 1.55
c-LDA 5.80 6.21 6.24 9.25 9.68 9.68 1.45 175 1.55
6.61 6.36 6.24 11.64 10.28 9.68 2.30 1.79 1.55
xc-LDA 5.95 6.22 6.24 9.63 9.73 9.68 3.23 211 1.55

6.63 6.36 6.24 1153 10.27 9.68 2.19 1.78 1.55
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N,, F,), that a simple short-range LDA, depending
on the total density only, gives quite a reliable
account of dynamical correlation, so that usually
only a moderate portion of explicitly (Cl-like) treated
long-range interaction has to be mixed in. While the
results in this regime are more accurate than with
pure DFT, one-particle/many-particle basis-set re-
quirements are less severe than with pure CI. Further
improvements, currently underway in our laboratory,
include accounting for spin polarization and develop-
ing gradient-corrected short-range density function-
als.
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