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ABSTRACT: The electron localization function (ELF) shows too-high values
when computed from valence densities only (instead of using the total density).
This effect is mainly found when d electrons are present in the outermost shell
of the core. Although no pronounced qualitative differences could be noticed in
the examples studied up to now, it is found that the quantitative differences
between the values of ELF obtained from the valence densities only or from the
total densities can be large. We also show, for the first time, an example (the Be
atom) where ELF is obtained directly from the density. This exemplifies the

possibility of computing ELF from highly accurate calculations (or from
experimental data). © 1997 John Wiley & Sons, Inc. | Comput Chem 18:

1431-1439, 1997
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Introduction

rough picture of the electron density of a

molecule or solid is obtained by superimpos-
ing the atomic electron densities."? Each of the
latter is a piecewise exponentially decaying func-
tion.> It is thus difficult to recognize at first sight
the information about chemical bonding from a
plot of the density, although all information about
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the molecular ground state should be present in
the density.*

One possibility explored mainly by Bader and
coworkers is to analyze the density derivatives.’
Another very efficient way is to explicitly include
effects due to the Pauli principle.®” In our experi-
ence, the electron localization function of Becke
and Edgecombe (ELF) proved to be very useful for
describing different bonding situations.” ™ In a
density functional context, ELF can be defined as’:

1

FLF= — 6]
1+ (tP/tP,h)
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where:

tp =T 7 (2)

is the Pauli kinetic energy density of a closed shell
system. (Vp)?/(8p) is the kinetic energy density of
a bosonic-like system, where orbitals proportional
to y/p are occupied.!! t, is always positive and, for
an assembly of fermions, it describes the addi-
tional kinetic energy density required to satisfy the
Pauli principle. The total electron density, p:

n
p= Z|¢i|2 (3
as well as the kinetic energy density:

T =

Y Vi, (4)

1

N| =

are computed from the orbitals, ;. In both equa-
tions, the index i runs over all occupied orbitals.
Using the homogeneous electron gas, we get, for
the Pauli kinetic energy density, the value tp ,,
which is equal to ¢ p*/® with the Fermi constant
cp = 153723

ELF depends on the ratio tp/tp , as given by
eq. (1). The Pauli kinetic energy density, t,, does
not mirror the ELF topology. This can be shown
for the potassium atom (using Hartree—Fock or-
bitals obtained with the basis of Clementi and
Roetti'?). In this case, ¢, is a monotonically decay-
ing function, as can be seen in Figure 1. This
monotonical decay of t, is indeed very different
from the ELF diagram (Fig. 2). The atomic shell
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FIGURE 1. t, (solid line) and t, , (dashed line) for the
potassium atom.
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FIGURE 2. ELF for the potassium atom. The capital
letters indicate the shells.

structure emerges after the comparision of t, with
tp , as given by the ratio tp/tp , in the ELF for-
mula. ELF takes values between 0 and 1. It reaches
high values in the space regions where ¢, is smaller
than t;, ;, (cf. Figs. 1 and 2). The monotonical decay
of t, is found also for other atoms except of Li, Be,
and B (cf. Figs. 3 and 4).

Although the electron density as well as the
kinetic energy density are computed from the oc-
cupied orbitals, any unitary transformation of these
occupied orbitals leaves both p and 7 unchanged,
and thus ELF is also unchanged.

ELF reveals the shell structure of atoms.”'* For
an nth row atom there are n shells of high ELF
values, separated from each other by regions of
low ELF. In an ionic crystal, each atom is sur-
rounded by the corresponding number of such
nearly spherically symmetric shells. With decreas-
ing ionic character of the bond the ELF region for
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FIGURE 3. ¢ for the Li and Be atom.
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FIGURE 4. t, for the B and C atom.

the valence shell of the electronegative element
becomes more and more deformed. The values of
high localization are concentrated between the
bonded atoms. For a polar bond, those ELF regions
are bent toward the more electronegative partner.
A perfectly covalent bond is characterized by an
ELF region of high localization symmetrically cen-
tered along the bond axis."

In general, the orbitals appearing in the defini-
tion of ELF are those obtained from either
Hartree-Fock (HF) or simplified Kohn—Sham-type
(e.g., in the local density approximation, LDA)
calculations. Is is important to stress that these can
be seen as approximations to exact Kohn-Sham
orbitals' that minimize the expectation value of
the kinetic energy ' '®:

T pl = min < ®,|T|d, > (5)

S
Op—p

(T p] is the kinetic energy of a noninteracting
system with the electron density p, ®, a Slater
determinant, and T the kinetic-energy operator).
The orbitals can be thus obtained directly from
the density. This procedure requires a certain com-
putational effort, but it allows one to obtain ELF
from the electron density without any approxima-
tions. Of course, the generating density could be
an experimental one. To illustrate this procedure,
we used orbitals obtained from highest quality
calculated densities.”” The result for the Be atom is
shown in Figure 5. It is clear that there is no
noticeable difference between the ““exact’”” ELF, and
that obtained from HF or LDA. The HF orbitals are
given by Clementi and Roetti,'” whereas the LDA
ones were obtained with the ADF program of
Baerends et al."® using a double-zeta basis set.

CORE -VALENCE SEPARATION
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FIGURE 5. ELF for the Be atom. The “exact” ELF is
computed from CI density; the LDA and HF values are
given by the orbitals from the DF ADF program and the
HF data of Clementi and Roetti, respectively.

Orbital Contributions to ELF

Following the formula for ELF [eq. (1)] we see
that it is not possible to separate ELF into a va-
lence and core part. Here, only the electron density
and the kinetic energy density can be divided into
the orbital contributions. But, this is no more pos-

sible for the Pauli kinetic energy, because of the
2

1
term g

. Also, the ratio tp/tp ;, is not exactly

separable into orbital contributions. Only if in the
sum of orbital contributions to the electron density
and its gradient some terms are negligibly small, is
it possible to neglect these orbitals in the calcula-
tion of ELF. Thus, in the bond region, the valence
ELF (computed from the valence density only) can
be analyzed only if there is a clear separation
between the core and valence density. Then the
core density can be neglected and the valence ELF
is practically identical with the all-electron ELF.
Traditionally, however, chemical properties are
assigned to the valence regions. Many quantum
chemical calculations carried out with pseudopo-
tentials or with frozen core sustain this assumption
by yielding good results for bond distances and
atomization energies. We now ask about the possi-
bility of using valence-only calculations also for
analyzing their density; for example, for obtaining
ELF. This can be studied by limiting the sums in
egs. (3) and (4) to the valence orbitals only (in case
of pseudopotentials the valence orbitals are either
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nodeless or exhibit fewer nodes than in an all-
electron calculation).

Of course, no statement is made about the core
region (orbitals from an all-electron and pseudopo-
tential calculation differ mainly in this region),
which can be considered unimportant. In the va-
lence region, however, the core and valence or-
bitals can strongly overlap. From the formal point
of view, we can expect good results from a
valence-only approach only when both the valence
and the core orbitals do not have large contribu-
tions in the same region of space. The amount to
which one can expect such core-valence superposi-
tion is shown in two examples: Be and Zn.

In the valence-only calculation, the case of the
Be atom is trivial. As the valence shell has only
two electrons, ELF is equal to 1 everywhere as can
be easily verified. When the total density is used,
there are two electron pairs and therefore a clear
minimum appears, corresponding to the separa-
tion between core and valence (see Fig. 5). After
this minimum, ELF quickly reaches the value of 1,
obtained also from valence-only calculation.

For Zn, a different picture is obtained (cf. Fig.
6—ELF computed from the HF data of Clementi
and Roetti,”* and an LDA calculation performed
with ADF using the same basis set as valence
functions). Whereas a two-electron pseudopoten-
tial would again yield a uniform value of 1, it can
be seen that the all-electron ELF only slowly ap-
proaches this value in the outer atomic region. For
a better understanding of this effect we will now
turn to the contributions of different subshells to
ELF, namely to the values obtained by limiting the
summations appearing in eqs. (3) and (4) to the

o

0.75

ELF
o
4

[

L

(=}

]

a
|

L1

o
o

T T T T T T T T [ T T 7 [ T T T T [ T T 11
0 1 2 3 4 5

rla.ul]

FIGURE 6. ELF for the Zn atom computed from the
orbitals given by the DF ADF program and the HF data
of Clementi and Roetti,”® respectively.

terms arising from a given subset of orbitals. ELF
changes with the angular momentum of the sub-
shell. A simplified argument can show that this
change is related to the increase of the kinetic
energy with angular momentum.

Let us suppose Cartesian Slater functions of the
form (like that utilized in the ADF program):

l/jl — leiyjzkrmefa,r (6)
where N, stands for the normalization constant:
1/2
N Q@I+ DNRe)™"™!
Pl 4mQi - DR - DR — DIQ2n)!

)

and m=mn—1—1 with the principal quantum
number 7 and the orbital quantum number /.

When using only one Slater-type function for
each orbital, the electronic density contribution, p;,
of a closed subshell with the orbital quantum
number, /, is given [with N(«,) = N?I:

p; =221 + 1) N(a,) r2"=De= 2 ®)

The kinetic energzy density contribution, 7;, and the
(Vpl)
P

quantity, & , are:

7, =21+ 1)N(0c1)r2(”_2)e_2°"r
x[(n=1—er)’+1U0+D] (@

1 (Vp)’
8 p

= QI+ 1D N(a)r2= =2 (g —1—a,r)

(10)

Note that the last term appearing on the r.h.s. of
eq. (9) will finally lead to an increase of the ratio
tp/tp ), (and the decrease of ELF) with I For a
fully occupied p or d subshell we get, with ¢, , =
cr o/

tp II+1) e
A 2/3 n5/3 2@2n+1) (1D
toon [+ DN(a)]”” 27, 3"

For convenience, using the same exponent o for
all orbitals, it is obvious that the ratio t,/t, ,
differs for various orbital quantum numbers [ only
by the factor /(I + 1)/(2] + 1)*/3. This factor in-
creases with increasing orbital quantum number.
And, consistently, the ELF values for a d-subshell
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are lower than the ones for a p-subshell with the
same principal quantum number.

If the shell is built up from fully occupied
orbitals with the same principal quantum number,
n, but with different orbital quantum numbers, 1,
then the formula for the t,/t, , ratio is more
complicated:

ty  LL(LA+DQL+1)N(a;)e 2" 1

tp, [Zj(zlj + 1)N(aj)e*20¢jr]5/3 25/3¢, p3@n+D)

(12)

To make the influence of the particular orbitals
more evident, suppose all the orbitals have almost
the same value for the exponents «; and this is
approaching the value of o. Near the ELF maxi-
mum the ELF value is almost independent of the
exponents ;. Then we can also take e 2" as well
as N(a) for all orbitals. With those assumptions,
tp/tp , can be written as:

tp 1 XLL+DQL+D
oy 27% [z + D]

e
N(OL)I’(Z n+1)

(13)

2ar r/s

The value of t,/t, , for the different combinations
of orbitals is given by the I-dependent part of eq.
(13). In the case of the s-, p-, and d- subshells we
have foung the following: The addition of a sub-
shell with an orbital quantum number higher than
those already present in the atomic shell (e.g.,
adding a d-subshell to an s- or sp-subshell) in-
creases the tp/t, , value (ie., the ELF value de-
creases). The same is valid for the f-subshell with
one exception. The combination of the d- and f
subshells has a higher ELF value than the d-sub-
shell alone (on the condition that the orbital
exponents are of the same magnitude for the two
subshells).

The above theoretically derived behavior of ELF
for different subshells can be studied with the case
of an LDA calculation of the Zn atom (ADF pro-
gram; the basis of Clementi and Roetti was used
for the valence functions).

So, we find in Figure 7, where we depict the
ELF for the subshell contributions in the M shell of
the Zn atom, that the maximum for the 3d sub-
shell, which only comes close to ELF = 0.3, is
located underneath the 3p curve [cf. eq. (11)]. Of
course, if the 3s orbitals were alone they would
yield ELF = 1.

CORE -VALENCE SEPARATION

Further inspection of Figure 7 demonstrates ELF
behavior in the case of a combination of fully
occupied orbitals with various orbital quantum
numbers [ in the M-shell [cf. eq. (13)]. If the
electron density is constructed from the 3s and 3p
orbital densities, then the ELF maximum (the 3sp
curve) is positioned above the 3p curve (i.e., be-
tween 3s and 3p). Analogously, we can find the
ELF maximum for the 3pd curve between the 3p
and 34 maximum, and the one for the 3spd curve
between the 3sp and 3d maximum. We state that a
density contribution from orbitals with a higher
orbital quantum number than is already available
in the given shell produces a decrease in ELF.

This influence can propagate even in the next
higher atomic shell. The 3s4s curve in Figure 8
was computed for the density constructed from
the fully occupied 3s and 4s orbitals; it shows a
sharp ELF increase in the N-shell. An addition of
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FIGURE 7. ELF for the density contributions in the
M-shell of the Zn atom.
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FIGURE 8. ELF for the Zn atom computed from the 3s,
3p, and 4s orbital densities.
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FIGURE 9. ELF for the M —N-shell of the Zn atom with
and without the 3d orbital density.

the 3p orbital density (the 3sp4s curve) results in a
decrease of ELF in the N-shell of the Zn atom.
However, due to the elimination of the 3d-subshell
from the computation of ELF, a steep increase of
ELF is still seen in the valence region (cf. also Fig.
9). The 3spd4s curve in Figure 9 shows the inclu-
sion of the entire M-shell. There is, once again, a
pronounced decrease of ELF in the valence shell.
To make the picture complete we demonstrate that
the decrease of ELF in the valence shell is due
mainly to the influence of the 34 orbitals. In Figure
10, the 3spd4s curve resolves in the valence region
ELF for the total density of the Zn atom. Calcula-
tion of ELF without the 3s or the 3p orbital den-
sity exhibits only a minute effect in the valence
shell, as is manifested by the 3pd4s and 3d4s
curve of Figure 10.

This shows that the lower value for the correct
ELF compared to the one obtained from valence-
only calculations is mainly due to the d-orbitals
which penetrate the valence region. This effect has
also been noticed for other quantities related to the
analysis of electron density (see, e.g., refs. 19-22).

Examples and Results

The ELF representations of heavy metal com-
pounds used earlier in the literature were com-
puted from the valence density®'’ (in the mean-
time, calculations with total density were also
performed.” #* Both core (frozen core) and valence
densities were obtained with the TB-LMTO pro-
gram.** We chose, as a first example, the diamond
structure of C, Si, Ge, and Sn (Fig. 11). All of these
crystals are characterized by a covalent bond. Let
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FIGURE 10. ELF for the M—N-shell of the Zn atom.
Influence of the 3s, 3p, and 3d orbital densities on ELF
in the valence region.

us at first examine the second- and third-row com-
pounds. As expected, the only difference between
the total and valence representations is the evi-
dence of the additional core shells (i.e., there is a
hole in the core region for the valence-only dia-
grams). ELF undergoes only small changes in the
valence region. From the element Scandium the 34
orbitals begin to fill up in the M shell. The same
holds for the 4d orbitals in the penultimate shell of
Yridium and so forth. Germanium possess 10d
electrons in the penultimate shell. These fully oc-
cupied d orbitals penetrate the valence shell. It is
now no longer possible to ignore the core density
in the valence region. In this case, taking into
account the core density results in a decrease of
ELF in the valence region. For heavy metals the
bond regions with high ELF values become smaller.

For all compounds in Figure 11, the valence
diagrams exhibit high localization along the bond
axis. This is indicative of a strong covalent bond.
The inclusion of the core density produces a flat-
tening of ELF in the bond region and thus a rather
regular localization, especially for the compounds
of the heavier atoms.

The penultimate-shell d electrons can produce
considerable ELF diminution in the valence region.
The examples of B-Sn (Fig. 12) illustrates how
deep ELF can drop in the bond region (from the
value of 0.7 to 0.4), if the core density is taken into
consideration.

For this compound there is large penetration of
d-subshell electrons into the valence shell. In this
case, the core density cannot simply be neglected
in the valence region. Indeed, the ELF computed
from the total density differs substantially from
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ELF

ELF

FIGURE 11. ELF for the diamond structure of C, Si, Ge, and Sn. The figures in the upper row are computed from the

valence density, in the lower row from the total density.

B - Sn

FIGURE 12. ELF for the 8-Sn computed from the valence density (left) and the total density (right).

the valence ELF (i.e., ELF computed from the va-
lence density only). Close inspection of Figure 12
reveals a somewhat higher localization along the
bond axis; that is, a partially covalent character.
Besides ELF magnitude, the general distribution of
the localization is also very important.

In Figure 13 we present diagrams for the binary
MI-V compounds in the sphalerite structure. Go-
ing from the valence to the total density the afore-

mentioned changes in ELF also hold for these
polar compounds. The reduction of the high ELF
magnitude bond regions is, in the case of BN,
negligible, but is evident for AIP, although still
relatively small. In the bond regions of the com-
pounds GaAs and InSb, ELF drops to a value of
about 0.7 and these regions are formed in narrow
areas bent in the direction of the anion. This effect
of the d electrons can be noticed even if only one
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FIGURE 13. ELF for the binary lll -V compounds in the sphalerite structure computed from the valence density (upper

row), and the total density (lower row).

Albs

ELF

FIGURE 14. ELF for the sphalerite structure of AlAs computed from the valence density (left) and the total density

(right).

of the participant elements possesses occupied d
orbitals. Computing ELF from the valence density
of AlAs (Fig. 14) we find a large area of high-mag-
nitude ELF along the bond axis. Taking into ac-
count the core densities results in shrinking of
these regions, although not to such an extent as in
case of GaAs.

Conclusions

ELF has proven to be a useful tool in the charac-
terization of chemical bonding. Care is recom-
mended, however, when valence-only results are
used to produce ELF. In particular, the d-subshell
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tends to penetrate the valence region and its exclu-
sion produces values for ELF that are too high
when compared with those obtained from all-
electron calculations.

We have also shown that it is possible to pro-
duce ELF by using only electron densities. This
procedure shows that it is possible to use experi-
mentally accessible data for generating ELF plots.
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