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I. INTRODUCTION

The usual starting point of any first principles construction of an approximate
electron correlation energy functional E_[{n,}] is the homogeneous electron gas weakly
perturbed by an external potential. To lowest non-vanishing order in the gradient of the
electron density, Vn, the correlation energy density, per electron, e.(r,,{), may be
written('? as the usual local spin density (LSD) expression, €. , plus_a term
proportional to |Vn|2. When perturbation theory is employed to calculate ef SD, the
result diverges in each order of the electron-electron coupling due to the zero energy gap
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between states at the Fermi energy and the neighboring unoccupied states in the
continuum. By employing many body perturbation theory techniques, this series may be
summed in the high density limit to S%ield a finite result®. Other numerical calculations
have been employed to calculate e CL for arbitrary uniform density™.

However, when the resulting ecL sD (r, §) is employed to calculate E_ for atoms,
the results are generally too lag%e in magnitude by approximately a factor of two. Thus
the gradient corrections to E CL must be approximately equal to -E_, suggesting that a
simple gradient expansion of E_ is inadequate to describe the contribution from the rapid
variation in electron density in these physical systems. This has prompted the construction
of generalized gradient approximations (GGA’s) which reduce to the gradient expansion
approximation (GEA) results in the slowly varying limit, but are constructed to satisfy
certain important scaling properties® known to be satisfied by the exact E_[n] but not
satisfied by a simple GEA gradient or by an expansion including higher order derivatives
of the density. Perhaps the most interesting GGA is the recent one by Perdew, Burke and
Enzerhof? (PBE), who employ only the e, sD (r5, §), the lowest order term in the gradient
expansion and an ingenious ansatz to obtain an expression for E_[{n,}] that yields results
for molecular dissociation energies which are nearly identical to those predicted by the
much more complicated PWGGA.®) However, although these results reduce the error in
the LSD calculations by a factor of four, the PBE dissociation energies still exhibit an
average error of = 8 kcal/mole, which is eight times larger than the quantum-chemistry
accuracy criterion. Moreover, from a more theoretical point of view, the PBE correlation
energy functional may be criticized because, as with other pure spin density functionals,
it is not self-interaction-free® i.e. for the hydrogen atom it predicts®
E, = -6 mhartree = -4 kcal/mole.

It has long been understood that the LSD overestimate of the magnitude of the
correlation energy for localized electrons arises primarily from the fact that the ground
state of such systems is separated from the higher lying states by a non-zero energy with
the gap to the continuum given by the ionization energy. Thus, if one employs
perturbation theory taking the zeroth order wavefunction to be either the Hartree-Fock
(Moller-Plesset perturbation theory) or the exchange-only Kohn-Sham ground state, the
calculation of E, for atoms converges after only a few orders to nearly the same result as
that obtained by configuration interaction techniques. Moreover, early work by Tong(!?
demonstrated that if electrons were confined to a box of atomic dimensions such that the
density was equivalent to that found in atoms, the existence of discrete states with resulting
energy gaps led to results for E_ that were about a factor of two smaller than that given
by the local density approximation. The foregoing observations therefore suggest that a
more appropriate model to employ in performing density functional calculations of E, is
one that includes an appropriately chosen energy gap.

Generally, it is not possible to define a local potential that yields a homogeneous
electron gas with a non-zero energy gap at the Fermi level for an infinite system.
However, Rey and SavinD have employed a non-local one body operator to shift the
virtual (non-interacting) levels by an arbitrary energy gap G. They then performed
calculations of the correlation energy density of a homogeneous unpolarized electron gas
as a function of both r; and G i.e. €.(r,, G, { = 0) which reduces to the usual local
density approximation when G = 0. In addition, they have obtained an accurate analytic
representation of €.(r,, G, { = 0) so that this functional may be employed to calculate
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E_ for any spin unpolarized system once a prescription is given to determine G for the
system of interest.

In section II we discuss their results and propose that, tc a first approximation,
G[n] be taken as the simplest function of the gradient of the electron density that reduces
to the ionization energy in the large r limit, i.e. the energy gap to the continuum. It then
follows that €.(r,G[n], =0) >0 as |Vn| —> o and thate (r,, G[n], { = 0)
saturates under uniform scaling to the high density limit without the need to introduce any
further ansatz to construct a GGA. The correlation energy density for any { is then
obtained by employing the von Barth-Hedin!? interpolation formula between the{ = 0
and { = 1 results, the latter having recently been obtained by Savin1®, When the
resulting e.(7y, G[n],{) is employed to calculate E,. for atoms and positive ions for
Z < 18, we find that the discrepancy from highly accurate CI calculations!!* is less than
half that obtained by employing the LSD with G = 0.

The e.(r,G[n],{) functional is further improved by performing an orbital
dependent self-interaction-correction similar to one first suggested by Becke.(1» The
resulting eflc is invariant under ?1 gnitary transformation among the occupied orbitals. We
find that the corresponding E_. ~ for both atoms and positive ions with Z < 18 are
significantly improved being approximately 10 to 20% too large in magnitude.

Finally, in order to ensure that e.(r, G[n],{) for { =0 and { = 1 yields the
correct small gradient expansion in the hiéh density limit, we construct the simplest
possible eCGGA (rs, [Vn],$) to replace ef D(rs, ¢) in the analytic representation of
€. (rs, G, £). This GGA is constructed by requiring the correct small gradient expansion
as well as satisfying the conditions that eCGG 4 0 for |Vn| > o and ¢, 4 saturates
under uniform scaling in the high density limit Sthe three conditions required by PBE).

With this modification, the resulting eCGG sic (rs, |Vn|, G[n], {) yields results for
E_/N the average energy per electron, in atoms and positive ions with Z < 18, that are
on average in error by = 1 mhartree compared to an average error of = 40 mhartree
when the LSD approximation is employed. Our results for E, generally lie between those
given by the PWGGA and PBE functionals and are closer to the latter with the PWGGA
calculations generally lying deeper and the PBE calculations always lying more shallow
than the exact results for atoms and ions with more than three electrons.

II. CONSTRUCTION OF THE CORRELATION ENERGY FUNCTIONAL

A) Local Density Approximation for a Homogeneous Electron Gas with an Energy
Gap

In order to account explicitly for the fact that the perturbation theory calculation of
the correlation energy for systems containing localized electrons depends on the energy gap
between the ground state and the higher lying states of the non-interacting (Kohn-Sham)
system, Rey and Savin! have performed detailed calculations of € 75, G), the correlation
energy per particle for an unpolarized uniform electron gas with energy gap G separating
the Fermi energy from the continuum. The results of their calculations have been tabulated
for a wide range of densities 0.1 < r, < 10 relevant to atomic and molecular electron
densities with 0 < G < 20e; where ¢ is the Fermi energy of the homogeneous electron
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gas. In addition, they have provided an analytic fit to €,(r,,G) which is accurate to a few
tenths of a milli-hartree when compared to their numerical results.

They find that

EfDA (rs) * Cl (rs) G (1)

1+ Cy(r)G + C4(r)G*

Gc(rs!G) =

where C,C), G arLeD fiven as analytic functions of r,.  Obviously, in the limit
G =0, e(r,G) = ¢, (r).

In order to apply eq. (1) to physical systems, in addition to the usual local density
approximation for r; = ry[n(r)], it is necessary to choose an approximate ansatz for G.

If in the zeroth approximation we neglect any contribution to the correlation energy
calculation from unoccupied localized KS orbitals then the smallest excitation energy is
given by the ionization energy to the continuum, 1. However, it is clear that such a
choice for G is not consistent with the condition that the E, for two dissimilar atoms that
are very far apart must be the sum of the two separate correlation energies. This follows
from the fact that E_ for each separate atom will depend on its own I, but the composite
system with large interatomic distance will have only a single 1, that of the atom with the
lowest ionization energy. We therefore seek a definition of G[n] which is local so that the
E, of two sub-systems far apart will be the sum of the separate correlation energies and
that for any isolated system, G = [ as r = . In addition we require that G - 0 when
applied to a homogeneous electron gas so that e (r,G) — ecLDA in that limit. This suggests
that G depends on gradients of the density. Moreover, since G = 0, the latter suggests
that G is a function of |Vn|?.

But for any KS system of non-interacting electrons for which the external potential
vanishes as r > o, Vgg > 0 as r > o (6) 5o the density for large r is dominated by
the highest lying occupied orbital corresponding to

n(n ~ exp-2[(-2¢,)"*r] @

r—= >

Consequently if we define

GOl = %|V1nn|2 3)

then it follows from egs. (2) and (3) that

Gonl > ey ()
r —
But in an exact KS theory1”, -¢, =1 so
G'lm - I . Q)]

r—= @

We also note that since
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n(r)y ~ exp(-2Zr) 6)

r—=0

near the nucleus of an atom of atomic number Z, then

Gmml - z¥2>1 forz>1 , o)

r—-20

so that G° tends to increase in the atomic core and approximates the excitation energy
necessary to move an electron to the continuum from these deeper levels i.e. approximates
the energy denominators appearing in a perturbation theory treatment. In taking
GO = G°[n] we are of course depending on the fundamental theorem of density functional
theory!® which guarantees that E, = E_[n] so that in applying eq.(1) to real physical
systems, it should be possible to write G = G[n].

Moreover, if eq.(3) is employed to approximate G in eq.(l), then it not only
follows that

LDA
c

€ (r,Gnl) - €P4(r)  for |Vn| -0 @®

but in addition
€(r,G°nl) - 0 for |[Vn| » o . )
Furthermore, under uniform scaling i.e. n(r) = ny(r) = )\3n()\r) in the high density limit

AN>1)r, ~ AL efDA ~ —yln\, Gn] ~ N?, and employing the analytical
behaviorD of C,, C,, C; in eq.(1) we find

C 1
eryGln) > — ~ —— ~ X\ (10)
A= GG r’G°

i.e. the correlation energy saturates. Thus e.(r,,G°[n]) automatically satisfies some of
the important exact scaling properties often imposed in constructing approximate GGA’s
for the correlation energy(7).

B) Extension to Spin Polarized System

In order to perform calculations on spin polarized systems, we require
€,(r,,G,¢) which is not yet available for partial spin polarization i.e. 0 < ¢ < L.
However, since the results for { = 00D and ¢ = 103 have been calculated, we can
employ the von Barth-Hedin(!? interpolation formula to obtain the results for intermediate
¢ i.e.

(7, G.S) = €(r,G.§ = 0) +AD[e(r,G,§ = 1) - €(r, G, ¢ = 0)] an
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where

_ (1 +g-)4/3 _4_(1 _D4/3 =7
A = YL : (12)

In order to employ eq. (11) for continuous values of 7, and G, we require an analytic fit
to Savin’s numerical results for €. (r,,G, { = 1). Taking the same functional form given by
eq. (1) we find C(r,,£=1) = 0.70 Cy(r, £ =0), G (r,$=1) = 1.50 G (7, £ =0), and
C(rg, ¢ =1) = 259 G(r, § = 0) yields e, (r,,G, = 1) which are within 1 mhartree for
0.1<r,<10and 0 <G <20 ¢x. Although the accuracy of the von Barth-Hedin formula
cannot be tested for arbitrary G, we have compared the results of employing this
interpolation to those given by a more precise SESIB polarized fit to numerical calculations
for G = 0. We find that when the two €.~ (r,,{) are employed to calculate the
correlation energy for atoms using exact exchange-only densities!®), the two results for E,
are within a few tenths of one percent for atoms with Z < 18 with the exception of
nitrogen for which they differ by 1%.

When the local density approximation is made for r, and G is given by eq.(3), we
shall refer to eq.(10) as the LSDGAP approximation.

C) Inclusion of Self-Interaction-Correction

The exact correlation energy functional must vanish indentically for any one-
electron system independent of the form of the external potential. As in the case of the
LSD approximation, the LSDGAP expression for E [n] does not satisfy this condition and
thus a self-interaction correction (SIC) must be introduced.

Early work by Perdew and Zunger®® employed an ad hoc SIC for E, which
consisted of subtracting the sum of the segarate orbital contributions to E, of each
electron. The resulting expression for ECS 1€ was self-interaction free and significantly
reduced the overestimate of E‘{‘SD. However, this method is not invariant under a unitary
transformation of the occupied orbitals and thus does not yield a unique E, for different
orbital representations of the same density. Subsequently, Becke(l showed that the
correlation energy of any system of electrons may be written as the sum of the contribution
from interactions between electrons with opposite spins and a contribution from electrons
with parallel spin, the latter being proportional to an orbital dependent factor
D, = L |V, 6|2 - |Vn61/2|2. D, is invariant under a unitary transformation of
the occu'pied orbitals and is identically zero if there is only one occupied orbital of a
given spin.

Then, if €.[n,,ng] is the uncorrected correlation energy density,

Ecopp = IdT {nec[nwnﬁ] - E ”gfc[na,o]} 13)
7

and

E |V¢ia|2 - ‘V”;/2|2
E. = [d J n,0] . (14)
s = [47E I
i

468



The only difference between eqs.(13) and (14) and Becke’s prescription is the choice of
the denominator in eq. (14). In Becke’s original treatment, the kinetic energy density in
the LSD approximation was employed as a normalizing factor so the factor multiplying
n,e.[n,,0] should reduce to unity in the homogeneous gas limit. However, he found that
for atoms with large interatomic distances, this could lead to an enhancement of E_,, due
to this SIC which was unphysical. The choice of the exact kinetic energy density as the
normalizing factor obviously ensures that the fraction is always <1 @y,
Adding egs.(13) and (14) yields

1/2,2
j dr{ne n,,ngl - }'j II '2 ngedng, 0} . (15)

When the LSDGAP expression given by eq.(11) is employed for ¢, in eq. (15), we shall
refer to this approximation as LSDGAPSIC. As in the case of the LSD approximation for

E_[{n,}]1, the correlation energy functional given by the LSDGAP and LSDGAPSIC
approximations have no adjustable parameters, depending only on results of calculations
on the homogeneous electron gas with a gap.

D) Inclusion of Gradient Correction to efSD

In the limit of high but slowly varying density it has been shown(1+?) that

Prott) = e0(r) + B8 + .. 16)

where

8 - 0.0667252_2 ) = [(1+02’3;(1-02’3],
0

4k
t = I Vn I ; k = _£
2¢0kn d ma,

However, if we take the small G expansion of the LSDGAP approximation
discussed in Sec. IIB, employ eq. (3) and write the result in terms of 2 instead of G, we
find that the correction to eXSP(r (ry) of order £ vanishes in the high density limit.

The si Lglest approach to ensure the correct small . expansion of eLSDGAP is to
modify the €, (r) term appearing in eq. (1) for { = 0 and in the correspondmg
expression for ¢ = 1 sothat e (r;,G,{) given by eq.(11) exactly reduces to eq.(16) at least
for { = 0 and 1. As in the case of the LSD approximation, it is not p0551b1e to simply
employ eq.(16) to describe the inhomogeneous electron gas for arbitrary 12 because for

0)
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sufficiently large t? in the high density limit the expansion for €, would become positive.

Alternatively, we consider the construction of e(r,,G, ;‘,tzsgcg Ae}:pxtended states such
that in the ¢ = 0 limit, the resulting e.(r,,G,?) is identical to €, given by eq.(11),
and in the G = 0 limit is identical to eq.(16) for t> < 1 (at least for { = 0 and ¢ = 1),
and in addition satisfies the three conditions required by PBE in constructing a suitable
GGAD,

In the simplest approximation this can be accomplished bzcreplacing efDA(rs) in
eq.(1) (and in the corresponding expression for { = 143) by an ¢, 4(r,,¢,1) that satisfies
the conditions given by egs. (9,10) and reduces to e(r,,{,f) given by eq.(16) for 2 <.

We consider a GGA of the form

GGA ~ e (1) a8)
EC (r ’g- ’ t) - ‘1+—
flry, §,0)

Then, under uniform scaling in the high density limit™

P - yInh and 2~ A a9

c
A= A= o

so that if eCGGA saturates in the limit A - oo, then

f ~ Inx ~ Imt?% 20)

A= o

where p can be taken as a constant >0. Furthermore, if we take

3.2 p
f = Bin [1 T £ l} @D
(rs,$)

with p > 0, then it follows from eq.(18) that ecGGA -0 as t* > o, and for 12 <1,
the expansion of ecGGA satisfies eq.(16) independent of the choice of p. In addition, since
f=0,e8% <0 forall r, and r.

We thus find that there is a family of eCGG A, each corresponding to a different
choice of the parameter p, that satisfy the PBE conditions for an acceptable GGA. This
result suggests that it may not be possible to derive a unique ¢, even if more scaling
conditions are imposed and that the only way to obtain a highly accurate e, by
employing only scaling prg%irties and the small ¢? expansion of e, is to bias the choice
of parameters that enter ¢, . Itis clear that the PBEGGA yields results close to those
of PWGGA, not simply because it satisfies the conditions given by eq.(9,10,16) but
because it was constructed to mimic the PWGGA which is not a unique theoretical fit but
is somewhat biased toward atoms by the use of a sharp real-space cut-off of the gradient
expansion for the correlation hole®.

However, as long as we employ the exact exchange-only functional®®, we can in
principle determine the best p based on purely theoretical considerations by requiring the
ionization theorem be satisfied i.e. the self consistently calculated -¢, and
I = E(N-1) - E(N) agree as closely as possible. Such a method has been successfully
employed to calculate the best exchange-mixing coefficient®?. For simplicity, the
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calculations reported here employ the simplest choice of p in egégl) ie.p = 1.
In the following we shall refer to the method in which e."" (r,,G,{) is replaced by
eCGGA(rS,G, §,0) in the LSDGAPSIC approximation as the GGAGAPSIC approximation.

III. DISCUSSION OF NUMERICAL RESULTS

It is interesting to study the effect on the calculated correlation energy density as
the sequence of approximations described in Section II are implemented. All calculations
reported here are performed by employing the KLI approximation®? for the exact
exchange-only single particle wavefunctions.

Figure 1 is a graph of the radial correlation energy density for helium versus the
distance from the nucleus so that the area under the horizontal axis is the corresponding E,,
in _each approximation. For helium, the exact!® E_ = -0.0420 a.u. and
ECL P~ -0.1125 a.u. using the PW®® parametrization of ecLSD (r,) which will be
employed throughout these calculations. We see that when the LSDGAP for e, is
employed with G given by eq.(3), the resulting radial correlation energy density is
significantly smaller in magnitude with the resulting E_ = -0.0715 a.u., thus
reducing the error in the LSD result by = 60%. In addition, when the self-interaction
correction is included, the correlation energy density is further everywhere reduced with
E CL SDGAPSIC _ _().0470 a.u. which corresponds to an error of = 7% of the original LSD
error. Finally, the implementation of the GGAGAPSIC approximation leads to a further,
smaller, decrease in the magnitude of the correlation energy density yielding
E CGGA 4PSIC = _0.0408 a.u., thus overshooting the exact result and leaving an error of
only 1.2 mhartree which is less than 2% of the LSD error.

Correlation energy density distribution for He

0.04 , , : - T
"GGAGAPSIC" —
"LSDGAPSIC" -
“LSDGAP” ~
0.02 |- 2l i
0
002 | ) .
@ oo4b S .
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Nh o
E 006} : ; i
5 006
-0.08 | E . |
01k -
-0.12 . r . : ;
0 05 1 15 2 25 3

r(a.u.)
Fig. 1 The radial correlation energy density for the helium atom in several approximations vs. the
distance from the nucleus. Results are exhibited in the local spin density (LSD) approximation as well as

approximations described in Section II.
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Similarly, Figure 2 is a graph for the magnesium atom for which the shell structure
is apparent due to the weighting of the correlation energy density by the radial density.
Here the best available estimate of the correlation energy(14) (see also eq. (23)) is
E, = -0.4424 a.u., and ECLSD = -0.8876 a.u. We see that the application of the
LSDGAP energy functional decreases the depth of e, in the vicinity of the n = 1 shell i.e.
near r = 0.1 a.u., to about 60% of its LSD value whereas the corresponding decrease
for r near the n = 2 radial density maximum i.e. r = 0.5 a.u., is to approximately 85%
of its LSD value. This is a general characteristic of the LSDGAP functional: the core
electron contribution to E, is reduced by a greater factor than that from the higher lying
electron shells and for atoms with larger Z, the radial correlation ener% [c’l(e;g%ity near then = 2
shell is deeper than that near the n = 1 shell. For magnesium, E_ = -0.6183 a.u.
which corresponds to a reduction in the LSD error of = 60%. As in the Z = 2 case, the
implementation of the LSDGAPSIC approximation further reduces the magnitude of
¢, everywhere with the greatest depth of the radial correlation energy density now in the
vicinity of the n = 2 subshell, with ECL SDGAPSIC _ _0.5029 a.u. corresponding to an
error of = 14% of the LSD error. Finally, the application of the GGAGAPSIC
approximation results in a further decrease in the magnitude of e, everywhere and a value

of E CGG AGAPSIC _ _() 4362 a.u. thus overshooting the needed correction by less than 2%
of the LSD error.
Correlation energy density distribution for Mg
05 T T T T
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Fig. 2 The radial correlation energy density for the magnesium atom vs. the distance from the nucleus.
The approximations employed are the same as in Fig. 1.

Figures 3 and 4 exhibit the correlation energy per electron for atoms and positive
ions versus the number of electrons in each system for which accurate CI calculations have
been performed(14) i.e. Z < 18. We see that as each successive correction is made to the
correlation energy functional, the calculated E, more closely approximate the most
accurate available Efn results with the GGAGAPSIC yielding a discrepancy of

=~ 1 mhartree on average for the correlation energy per electron compared to an average
error of = 40 mhartree for E_/N when the LSD approximation is employed.
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Ec for atoms Z=1-18 (P=1)
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Fig. 3 The negative of the correlation energy per electron vs. the number of electrons, N, for atoms with
nuclear charge Z < 18. The DFT results are obtained from eq. (23) and ref. 14. The straight lines
connecting the DFT results for integer values of N have no physical significance. The approximations

employed are the same as in Fig. 1.

Ec for singly charged positive ions Z=2-18 (P=1)
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Fig. 4 The negative of the correlation energy per electron vs. the number of electrons, N, for singly
charged positive ions with nuclear charge Z < 18. The methods employed are the same as in Fig. 3.
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Table 1. Comparison of calculations of the correlation energy (-E in hartrees) of
neutral atoms for Z=1 to 18 with accurate DFT results

Z DFT PWGGA PBEGGA GGAGAPSIC
1 0.0000 0.0066 0.0060 0.0000
2 0.0420 0.0459 0.0420 0.0408
3 0.0455 0.0574 0.0514 0.0498
4 0.0950 0.0941 0.0854 0.0860
5 0.1255 0.1269 0.1158 0.1187
6 0.1561 0.1599 0.1473 0.1499
7 0.1858 0.1932 0.1797 0.1804
8 0.2553 0.2583 0.2383 0.2466
9 0.3249 0.3217 0.2956 0.3085
10 0.3929 0.3822 0.3510 0.3665
11 0.3988 0.4061 0.3711 0.3903
12 0.4424 0.4497 0.4104 0.4362
13 0.4740 0.4896 0.4466 0.4756
14 0.5094 0.5316 0.4856 0.5153
15 0.5447 0.5742 0.5258 0.5548
16 0.6095 0.6406 0.5865 0.6209
17 0.6728 0.7062 0.6467 0.6843
18 0.7314 0.7702 0.7060 0.7452

Table 2. Comparison of calculations of the correlation energy (-E, in hartrees) of
singly charged positive ions for Z=2 to 18 with accurate DFT results

z DFT PWGGA PBEGGA GGAGAPSIC
2 0.0000 0.0074 0.0062 0.0000
3 0.0435 0.0506 0.0448 0.0461
4 0.0477 0.0620 0.0541 0.0551
5 0.1119 0.1028 0.0919 0.0955
6 0.1394 0.1368 0.1236 0.1298
7 0.1658 0.1703 0.1556 0.1614
8 0.1909 0.2039 0.1885 0.1922
9 0.2590 0.2733 0.2506 0.2626
10 0.3257 0.3384 0.3091 0.3261
11 0.3906 0.3999 0.3654 0.3852
12 0.4028 0.4222 0.3838 0.4085
13 0.4548 0.4669 0.4238 0.4557
14 0.4897 0.5085 0.4619 0.4961
15 0.5257 0.5507 0.5014 0.5359
16 0.5596 0.5932 0.5417 0.5753
17 0.6266 0.6621 0.6045 0.6436
18 0.6884 0.7286 0.6655 0.7079
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Tables 1 and 2 provide a comparison between our results and those of both the
PWGGA and PBE approximations. The E.”F7 results are obtained from reference 14
adjusted for the fact that the spin-density functional theory definition of the correlation
engx;%y is slightly different from that employed in quantum chemistry (QC) i.e. we define
E

c
E,, = ERHF . g9C - pUOEPX +EPFT (22)

Therefore
gPF . © CQC + (ERHF _ EUOEPX) (23)

[

i.e. the adjustment is the difference between the total energy in the restricted Hartree Fock
(RHF) approximation and the corresponding exact unrestricted optimized effective
potential1® result for exchange-only (UOEPX) which corresponds to exact KS exchange-

only theory. (This definition of E_ PFT s slightly different from the conventional
E_" which would employ the expectatlon value of the Hamiltonian, H, with a determinant
of the exact KS orbitals rather than EVOEPX which is the expectation value of H with a
determinant of the exact exchange-only KS orbnals. Ef given by eq. (23) is then easy
to calculate because EVOEFX is available for any atom, whereas <H>XS is not because
the exact KS orbltals are dlfﬁcult to obtain. We expect that the different DFT definitions
of E_ lead to |E l >|E | by < 1 mhartree.)

We find that with few exceptions the PWGGA overestimates the magnitude of E,
and the PBE underestimates the same with the GGAGAPSIC results generally lying
between the two and closely approximating the PBE results especially for first row atoms.
For second row atoms, the GGAGAPSIC results always lie between the results of the other
two approximations and generally are significantly closer to the DFT results.

One can attempt to improve the accuracy of the GGAGAPSIC approximation by
treating p as a parameter and studying the p dependence of the calculated E_.. We find that
in this approximation, |E_| is monotomically decreasing for increasing p for each atom
and positive ion which follows from the observation that f increases with increasing p so
ecGGA given by eq.(18) decreases in magnitude with increasing p. As a result, for a choice
of p = 5/4, all calculated E_ are reduced in magnitude by = 2% so the GGAGAPSIC
calculation for Z = 15to 18 ylelds results within 1 mhartree of E T for atoms and within
6 mhartree for the positive ions. However, the decrease in IE | for lighter atoms and
ions generally yields results which are slightly further from the exact values. This negates
the utility of simply increasing p because the largest percent errors in our calculatedE,
for chemically active atoms and ions are for N = 4,5, and 6, all of which are already too
small in magnitude.

From a more fundamental point of view, we recognize that in constructing the
correlation energy functionals discussed in Section II, we have neglected the contributions
from the unoccupied orbitals with single particle energy eigenvalues lying in the gap when
we required that G° - I rather than to an energy gap corresponding to the energy
difference to the lowest lying unoccupied orbital. However, we find that no matter how
we modify our definition of G to include this contribution, the resulting GGAGAPSIC
correlation energy functional always saturates for fixed N when Z - o . On the other
hand, it is well known(¥) that E, diverges for the isoelectronic series with N = 4,5 or 6
electrons and converges for the other first row atoms. As can be seen from Moller- Plesset
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 perturbation theory, the reason for this is clear: for these isoelectronic series there are
unoccupied 2p levels in both spin channels that are nearly degenerate with the highest lying
occupied states in the n = 2 shell. As a result, the energy denominator in second order
perturbation theory corresponding to two electrons from the n = 2 shell excited into these
2p states is proportional to Z in the large Z limit, while the matrix element in the
numerator (which is squared) is proportional to Z. Thus, the contribution to E, is
~ Z2/Z ~ Z instead of converging for other first row atom isoelectronic series for which
the two particle excitation energy to the lowest lying states ~ Z 2, Although this behavior,
as well as the saturation of the correlation energy under uniform scaling in the large
\ limit, are both in principle properties of the exact DFT E_, it is difficult to imagine how
both properties can be obtained from any GGA which saturates such as our GGAGAPSIC
or the PBE functional without explicitly including the contributions from nearly degenerate
states. Although this divergence is not immediately relevant to questions concerning the
binding of atoms or molecules, we believe the omission of contributions to E, from low
lying nearly degenerate electron states is the primary reason for the significant disparity
between the calculated and exact E, for atoms and ions with N = 4,5 or 6 electrons.

We therefore plan to investigate whether accurate values of E, may be calculated
by employing the GGAGAPSIC to approximate the contribution to E, from states in the
continuum and to employ second order perturbation theory (or a more sophisticated
wavefunction approach) to include the contributions to E, from the low lying KS states
above the ground state which have been previously omitted for all atoms and ions.
Preliminary calculations indicate that this latter contribution is generally small compared
to the contributions to E. from the continuum and is the correct order of magnitude to
eliminate most of the discrepancy of the GGAGAPSIC results from the exact values. We
anticipate that the inclusion of such terms will be of particular importance in improving the
accuracy of calculations of E. for molecules due to the frequent existence of low-lying
unoccupied orbitals in such systems.

In concluding, we note that the inclusion of matrix elements involving unoccupied
KS orbitals does not violate the Hohenberg-Kohn (HK) theorem that the correlation energy
is a functional of the ground state electron density. This follows from the fact that the
external potential and consequently all the orbitals, whether occupied or unoccupied, are
in principle functionals of n. Thus any expression involving the single particle KS orbitals
is an implicit functional of the density as in the case of exact KS exchange®?.

Finally, we observe that the suggestion that the correlation energy may be
accurately calculated by making a density functional approximation for the large
contribution from states that are relatively far from the highest occupied states and to
include the contribution from nearby states by calculating matrix elements is similar to the
work of Krieger er al. @) on accurately calculating the ionization potential and electron
affinity, A, in an exchange-only theory. They found that if the exchange energy for the
interaction of the core electrons with each other, which is the greatest contribution to E,,
was approximated by a density functional and the interaction between the electrons in the
two occupied subshells having the highest orbital energy with each other and with the core
electrons was calculated by employing the exact exchange integrals, then I and 4 could be
calculated with errors of only 0.1 mhartree compared with an exact KS exchange-only
calculation. Moreover, they found that the KS exchange potential could be accurately
calculated in the region occupied by the valence electrons with the correct asymptotic
behavior as r = oo leading to accurate highest occupied orbital energy eigenvalues as
well.
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