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Long-range—short-range separation of the electron-electron interaction
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By splitting the Coulomb interaction into long-range and short-range components, we decompose the energy
of a quantum electronic system into long-range and short-range contributions. We show that the long-range part
of the energy can be efficiently calculated by traditional wave function methods, while the short-range part can
be handled by a density functional. The analysis of this functional with respect to the range of the associated
interaction reveals that, in the limit of a very short-range interaction, the short-range exchange-correlation
energy can be expressed as a simple local functional of the on-top pair density and its first derivatives. This
provides an explanation for the accuracy of the local density approxim@tdA) for the short-range func-
tional. Moreover, this analysis leads also to new simple approximations for the short-range exchange and
correlation energies improving the LDA.
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I. INTRODUCTION calculations with DFT[21,22, and we recall now the for-

In the Kohn-Sham(KS) approach[1] of density func- malism. The Coulomb electron-electron interaction is de-
tional theory (DFT) [2] of inhomogeneous electronic sys- composed as
tems, the central quantity is the unknown exchange- 1 -
correlation energy functiondt,Jn] which encompasses all F=v’e‘e(r) +vki(r), (1)
the many-body effects. The vast majority of approximations

for this functional are based on the Original local denSitywherevle‘e(r) is a |ong_range interactiom_ge(r) is the Comp|e_
approximation(LDA) [2], an approximation that tumed out ment short-range interaction apdis a parameter controlling
to be more accurate and reliable than expected and rathgde separation. The universal functiond23] F[n]
difficult to improve in a systematic wajB].

Actually, it has been realized for a long time, with the
wave-vector analysis dE,{n] by Langreth and Perdep],  tor andVe.==2;-1/r;; is the Coulomb interaction operator,
that the LDA describes accuratelyut not exactly in general can then be decomposed as
[5]) short wavelength density fluctuations, but is inadequate —
for long wavelength fluctuations. A dual analysis in real F[n]=F#n] +F#[n], 2
fep;:jcse toof ttug i);cmhgnggniﬁj;?éiu?ﬁ afrlﬁ(é@fDi?s 5: c[l?r];t e a\{vhereFf‘[n] is the uniyersal functional corresponding to the
small interelectronic distances but fails at large distancedong-range interactioVs.==;jvidri)

This observation lead to the development of the first gradient o

corrected functional§7—12 with the basic objective to cure FAn] = min(W[T + V4] W), 3)
the wrong long-range contribution to the exchange- Wen

correlation energy .Of. the LDA. .and F#[n]=F[n]-F#[n] is by definition the complement

However, describing accurately the nonlocal correlation
effects arising from the long-range character of the CouIomtgsr]_l(_)rzt'rang;a part. d f | : .
interaction by(semjlocal density functional approximations th etexaclztl grolun 'ISt.‘”ilt? e?ergy Ot an e ectromg sysfcﬁm n
still seems out of reach. This idea in mind, it is has beerf"® €Xternal local nuclei-electron potentigl(r) can be wri
proposed to use a density functional approximation only fot€n using this short-range functiorfef[n] via application of
the short-range part of the electronic energy, and treating thée variational principle
long-range part by more appropriate many-body methods
[13—-17. This approach was somehow inspired from early E=min{F“[n]+E“[n]+fn(r)vne(r)dr}
calculations of the correlation energy of the uniform electron n
gas based on a separate treatment of long-range and short- o
range contributiongsee, e.g., Ref418-2Q). = min{(qrﬁw(/géqf) +FHng] +f nqr(r)vne(r)df}

For atoms and molecules, this approach leads to a rigor- K4
ous method for combining traditionab initio wave function

=ming_(¥|T+VeJ¥), whereT is the kinetic energy opera-

= (WH|T + VAWH) + Frlny,] + f Nyu(Mvpdr)dr.  (4)
*Electronic address: savin@Ict.jussieu.fr In this equationW* is given by the Euler-Lagrange equation
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}:|“|\If"> = E4WH), (5) already yields good results for total energies_of atom!c and
molecular systemg21,22,25. The purpose of this paper is to
where |Z|M:i-+{/ge+{/u_ Thus, ¥* is the ground-state mul- analyzed in further details the two separate needed approxi-
tideterminantal wave function of a partially interacting sys-mations of the method: the wave function calculation of Eq.
tem with interaction\A/ge and external local potentia‘f/ﬂ (® and the short-range exchange-correlation functional

=3 .0#(r;) where v™(r)=v,Jr)+SF[Nyu]/ N(r). By virtue ELIn]. Accurate calculations have been performed on a few
of the Hohenberg-Kohn tﬁeore[ﬁ] v#(r) is the unique po- small atomic systems to assess the approximations. Concern-

tential (up to an additive constanwhich insures that the ing the wave function part, we show that the modification of

ground-state density of this fictitious system is identical tothe interaction enables to decrease the effort, or alternatively

: . _ increase the accuracy, of a Cl-type calculation. Concerning
the ground-state density of the physical system=n. the functional part, we gain more insights into the short-

The short-range functiond#*[n] is further decomposed  range functional and explain the performance of the LDA by

studying the behavior oEiJn] with respect to the interac-
E,L[n] :U/*[n] +E§0[n], (6) tion parametem. In particular, we show that, when the in-
_ - teractionv’, is short ranged enougE%|n] can be expressed
whereU*[n]=1/2[ [n(r n(r)vgdriz)drydr; is the comple-  as a simple local functional of the on-top pair density and its
ment short-range Hartree energy functional Eﬁdn] is the first derivatives, explaining the accuracy(eémi)local func-
unknown complement short-range exchange-correlation eriional approximations. This analysis also enables us to pro-

ergy functional. Once an approximation is chosengffn], ~ Pose new approximations fén] which correct the LDA
the wave function¥* can be computed by solving self- in the domain ofu where it fails.

consistently Eq(5) using ab initio wave function methods  The paper is organized as follows. In Sec. I, we give two
like configuration interactionCl) or multiconfigurational ~possible choices for the long-range interactigigr). In Sec.
self-consistency fieldMCSCP and the total energy is cal- lll, technical details concerning the calculations made on
culated according to the last line of E@). Notice also that ~atomic systems are given. In Sec. IV, the impact of the modi-
it is possible to separate the functior&}[n] into short- fication of the interaction on the performance of wave func-

h d lati ibutiorg” tion calculation is investigated. In Sec. V, we study the be-
range exchange and correlation contributior§i{n]  pavior of the corresponding short-range exchange and

as

=EX[n]+EX{n], with correlation functionals with respect to the interaction param-
. - . eter u. In Sec. VI, we test the obtained exact behaviors and
EXn] = (D|VE{ D) — U¥[n] (7)  compared them with the LDA. In Sec. VII, interpolations for

the short-range exchange and correlation functionals with re-
spect tou are proposed and tested. Finally, Sec. VIII draws a
— — — conclusion of this work.
E¢In]=F*[n] - (®|VedD), ®) Atomic units(a.u) will be used throughout this work.

and

where @ is the KS determinant an@ezflee—flge is the
complement short-range interaction operator.
A simple approximation foE.{n] is the LDA associated In a number of previous workgl7,21,22,26,2]; a split-
to the modified interactiofil7,24 ting of the Coulomb interaction based on the error function
has been studied to describe the long-range part of the

DA = f n(r)& " (n(r))dr, (9) electron-electron interaction

erf(ur)

(n) is the complement short-range exchange- Veger 1) =~ - (11

1. LONG-RANGE-SHORT-RANGE SEPARATION

where g "

correlation energy per particle obtained by difference from

the exchange-correlation energies per particle of the unifornThis interaction, referred to as the erf interaction, has also

electron gas with the standard Coulomb interactigffii(n), ~ been used by other authors in DFT for various purposes

and with the long-range interactiart,, &% (n), [28-33. In this work, we _mtroduce another interaction
o _ _ achieving a sharper separation of long-range and short-range
els"™(n) = ele"(n) — e4"™(n). (10 interactions by subtracting a Gaussian function from the erf

The method has been implemented at an experimental levéjteraction

into the quantum chemistry package Molpro, allowing a erf(ur)
combination of Cl-type wave function and DFT calculations Véeerfgall) = -
[21]. Recently, the method has also been efficiently imple-

mented into the quantum chemistry program Dalton, perwhere the coefficient and the exponent of the Gaussian have
forming the coupling of MCSCF wave function calculations peen chosen so that,ra(r) and its derivative with respect
with DFT [25]. For a reasonable long-range—short-rang&g r vanish atr =0. This modified interaction is referred to as
separation and using only the LDA f&/[n], the approach the erfgau interaction. Notice that this partition of Coulomb

2
Lew 1)
r \NTT
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: For each system, accurate potentiaf$r) needed in Eq.
I (5 and corresponding value of the universal long-range
: functional F# are computed using the Lieb’s Legendre trans-
L form formulation of the universal functiont0]
:
|
1.

FM[n]:max{E#W]— f n(r)E”(r)dr}, (13)
TR ot
|
0.3 /:\ whereE#{v#] is the ground-state energy of the Hamiltonian
1 ha -~ ~ . . -

N I T+VE+Z0#(r;). If nis chosen to be the physical density of
r (a.u.) the system, the maximum is reached for the desirednd
F#. In practice, an accurate densityis computed by multi-
reference Cl with single and double excitatigMRCISD)
£41,4Z and the potential to optimiZe“(r) is expanded as

re=l/u

vie (x)
)y LS

FIG. 1. Coulomb interaction X/(dotted curvg erf interaction
(dashed curveand erfgau interactiorgsolid curvg for w=1. In
order to compare the two modified interactions, a scale factor i

applied on the interaction parameter of the erfgau interaction: n , C
—cu with c=3.375(see text It is possible to define a common 4(r) = E crPie?™ + —, (14)
cutoff radiusr,=~1/pu. i=1 r

interaction has already been proposed by Gill and Adamsowhere ¢; are the optimized coefficientgy are some fixed
[28]. In another context, Prendergast al. [36] have also integers(-1 or 2, v are fixed exponents chosen so as to
used a similar form of long-range interaction. For the sake oform an even-tempered basis sg@ypically, y [1073,5
completeness, we finally note that another possible form ofk 10%]), andC is a constant enforces the correct asymptotic
modified electron-electron interaction based on the Yukaw#ehavior forr —c. For the Kohn-Sham casg:=0), C=
potential has also been investigated in the pastz+N-1 whereas for finiter, C=—Z (N andZ are the elec-
[13-16,37,38 tron number and nuclear charge, respectively

Both interactiong11) and (12) enable to define a gener-  The maximization of Eq(13) is carried out with the Sim-
alized adiabatic connectioi89] between the nonlnteractlng plex method43]. For a given potentiaE*[v*] is computed
KS system atu=0 where the interaction vanishe$;°(r)  at MRCISD level using Molpro[44] with modified two-
=0, and the physical system ﬂHOO where the full Cou- electron integralgsee Appendix A Beside the asymptotic
lomb interaction is recovereef, ™ (r)=1/r. behavior forr — o, v#(r) ~ C/r, the behavior of the potential

Notice that, although we have chosen the same notatiogt the nucleus=0, v“(r) ~-Z/r, is also imposed during the
for convenience, the parameterin Eq. (11) is a priori in-  optimization. Large one-electron even-tempered Gaussian
dependent of that of E¢12). Actually, in all the plots of the  pasis sets are used for all systemee Refs[45,26 for more
paper involving the erfgau interaction, we apply a scale facqetailg.
tor to the interaction parameter of the erfgau interactjon:  The standard universal functionland the KS potential
—cu. The constant is chosen so as to have the same Iead-vKS (and thus the KS determinadt) are obtained as a spe-
ing term in the distributional asymptotic expansion of thecja| case foru=0. The complement short-range functional

two interactions whep. — - (see Appendix gwhich leads u_r_£u can then be deduced and the short-range ex-
to the valuec=(1+6y3)2~3.375. This also insures that the 9

leading term in the asymptotic expansion of short-range Har; change and correlation enerng(/j and E are obtained
tree, exchange and correlation energies for lgigés the from Egs.(7) and(8).

same for the two interactions. In Fig. 1, the erf and erfgau

interactions are compared along with the Coulomb interac- IV. PERFORMANCE OF THE APPROXIMATIONS

tion. The scale factor on the parameter of the erfgau interac- FOR THE WAVE FUNCTION CALCULATION

tion enables to define a common “cutoff radius” giving the

range of the interaction and defined by the inverse of the e now investigate the effect of the modification of the
interaction parameter,~1/u. For interelectronic distances electron-electron interaction on the wave function part of the
larger thanr, the two modified interactions reproduce the calculation. For this purpose, we evaluate the efficiency of
long-range Coulomb tail. Notice that short-range interactiongpproximate resolutions of E¢5) as follows.

are better removed with the erfgau interaction.

We finall hat for G ian basi lculati We first construct, for eac, the HamiltonianH# using
e finally note that, for Gaussian basis set calcu at'Ons’an accurate potentia#* and compute accurately its ground-
the evaluation of the two-electron integrals corresponding to

the erf or erfgau interaction requires only simple modifica- state energyE*= <\W|H#|\W> at the MRCISD level. We
tions of standard algorithms for Coulomb integrédee Ap- then compute various approximate ground-state energies,
pendix A). E4=(WE|H#WE), by using approximate Cl-type wave func-
tions W% expanded into linear combinations of all the few
lll. DETAILS ON ACCURATE CALCULATIONS Slater determinants generated from small orbital sp&es
We explain rapidly how the accurate data for atomic sys-The orbitals used are the natural orbitals of the Coulombic
tems presented in this work have been obtained. system calculated at the MRCISD level. The accuracy of the
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0.04 i - i ’
differenceEf ¢~ Efpe, remains large for almost ajk’s. On

the contrary, the error of the calculation where tipeogbitals
0.03 A are includedAE o, quickly falls off whenw is decreased.

- Again, for u=1 for instance, the errakEf,,, given by the

{a.u.) 0.02 few-determinant Cl-type wave functidiﬁr‘fszszp is less than
g 0.005 Hartree.
0.01 o Therefore, the modification of the interaction enables to
15252p increase the accuracy of Cl-type wave function calculations,
0 Lt or equivalently for a fixed target accuracy, decrease the effort

0 1 2 3 4 5 6 of the calculation by reducing the orbital space. The crucial
u (a.u.) . . . .
point for this effect to appear is the reduction of the electron-
FIG. 2. Ground-state energy differencesEs=(W&|F W) electron interaction compared to the Coulomb interaction
and not really the long-range character of the modified inter-

—(\IN‘|I:W|\IN‘> whereW* is an accurate wave function andk are action

approximate wave functions generated from small orbital sp&ces
=1s, S=1s2s and S=1s2s2p along the erf(full curvey and erfgau

(dashed curvesadiabatic connections for He. V. BEHAVIOR OF SHORT-RANGE EXCHANGE
AND CORRELATION FUNCTIONALS WITH RESPECT
approximation for#4 can be assessed by looking at the dif- TO THE INTERACTION PARAMETER

ference betweeifs and E# . .
At =0, the short-range exchange-correlation functional

b e reduces to the standard exchange-correlation functional of
AEE=E&-E~. (15) — ) e
_ . the KS schemef;~=E,, and in the limity — o, the short-
The differencesAE£ are plotted along the erf and erfgau range functional vanishe&” *=0. Near these two limits,

adiabatic connections in Fig. 2 for the He atom with the xe_

orbital spacesS=1s, S=1s2s, andS=1s2s2p. One sees that, (e Study of the behavior d&; and E¢ with respect tou
in the Coulombic limitx— o, the reduction of the orbital constitutes an analysis of the exchange and correlation func-

space leads to important errors in the energy. Whpeis tionals in term of the range of the interaction. Indeed, thebe-

decreased, i.e., when the interaction is reduced, the errof@vior atu—0 tells us how the KS exchange-correlation

due to limited orbital spaces get smaller and smaller. Fofunctional responds when very long-range interactions are

instance, atu=1, using only the single-determinant wave "€moved from it, while the asymptotic expansion for-

function W, leads to an erorAEL of less than gives the exchange-correlation functional associated to very
S’ S

0.005 Hartree. The erfgau interaction generally gives smallefnort-range interactions. To release the text from mathemati-
errors than the erf interaction, except neax0 where the cal details, '_the full derivation of the expansions are given in
nonmonotonicity of the erfgau interaction leads to peculiatn® APpendices.
behaviors[24]. Anyway, we will not use the erfgau interac-
tion in this region of very smalk. A. Exchange functional for small x

The case of the Be atom with the orbital spa&esls2s .
and S=1s2s2p is reported in Fig. 3. Because of the near- N Appendix B, we show that the short-range exchange
degeneracy of theand 2 levels, the inclusion of @ con-  €nergy has the following formal expansion aroynd0
figurations in the wave function is important, quite indepen-

dently of the electron-electron interaction. Indeed, the— 1 <« (-D"a
Y EQL:Ex‘?E —( ) nM2”+1Xffnzyx(rl,rz)rigdrldrz,

Varno N
0.08
ruts (16)
I N whereE, is the usual KS exchange energy,(r,,r,) is the
ARH i exchange contribution to the pair density, amdare coeffi-
(a.u.) 0.04 / cients depending of the interaction chosen and defined after
18282p = Eq. (B2). More specifically, for the erf interaction, this ex-
0020 T pansion writes
0 o[ ----------- 2 4 6 8 = M ,U«g
u (a.u.) Egerf: E,+ /——N + = f f n2,x(rlvr2)r§2dr1dr2+ .
N 3N
FIG. 3. Ground-state energy diﬁerenc&‘s‘:(\lfgh:whlfg) a7

—(‘lff‘|I:W|\If”> whereW* is an accurate wave function and are

approximate wave functions generated from small orbital spaces Where the term linear im comes from the normalization of
=1s2s and S=1s2s2p along the erffull curves and erfgaudashed the exchange holg9]. For the erfgau interaction, the expan-
curves adiabatic connections for Be. sion is
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-0.02
-0.04
g4
(;.u.) 0.06
-0.08
-0.1
0 2 4 6 8 10
° ! u (az.u.) 3 4 u (a.u.)

FIG. 6. Accurate short-range correlation energy of ¢tdck
solid curve along the erf adiabatic connection, local density ap-
proximation(thick long-dashed curygexact asymptotic expansion
— % (Eq. (28)) with the first term(lower solid curvg and with the 07 #— > [EQ.(30)] with the first term(lower solid curvg and with
first two terms(upper solid curvg and asymptotic expansion in the first two termgupper solid curvg and asymptotic expansion in

LDA (Eq. (33)) with the first two termgshort-dashed curyethe LDA [Eq. (34)] with the first term(lower short-dashed curyand
first term in LDA being exact. with the first two termgupper short-dashed curve

FIG. 4. Accurate short-range exchange energy oftHiek solid
curve) along the erf adiabatic connection, local density approxima:
tion (thick long-dashed curye exact asymptotic expansion far

o 28 separation of long-range and short-range interactions than

E erfgau™ Ex — rffnz,x(fl,fz)fizdrldrz’f the erf interaction.
' 45V 7

(18) B. Correlation functional for small u

. ] . o The general expansion of short-range correlation energy
The exchange energy with the erf interaction varies linearlyroundu=0 is derived in Appendix B. It reads

in « near the Kohn-Sham end of the adiabatic connection

(see Fig. 4. On the contrary, the exchange energy with the o 12 (- D"2n+1)a,

erfgau interaction varies very slowly like® which implies Ef=E,- =2, > — 12kl

that the corresponding curve is very flat neax0 (see Fig. Vet ke NIK(2n+ K+ 1)

5). The latter behavior is not unexpected for a good long— F (1)

range/short-range separation. Indeed, with the erfgau interac- X j f <2°—k12> rf’z‘drldrz, (19)
tion, whenu increases neae=0 only very long-range inter- I u=0

action effects are removed from the functional; they ] )

practically do not later the exchange energy of a finite sysWhereE is the usual correlation energy of the KS scheme

tem. With the erf interaction, the long-range—short-rangeaNdnz(r1,r,) is the correlation pair density with interaction

separation is imperfect and thus the short-range part of theee Actually, several terms of this expansion vanish. For the

interaction is also affected nea=0 which is responsible for erf interaction, the expansion writes

the linear behavior of the exchange energy in this case. This

clearly shows that the erfgau interaction realizes a better—, ub jj(rﬁn‘zﬁc(rl,rz)> 2
Ect———— 3 rédrodry+ -

36y aIu’ u=0

E —

c,erf —

(20)

Similarly, the expansion for the erfgau interaction is

_ 10 )
M Fnyo(ry,ro) 4
EX :E——,—Jf<—=— ry.drdr
c,erfgau C 5400\ 7 ¢9,u,5 =0 1241 141 2

+ - (21)

0 1 2 3 4 The correlation energy varies much more slowly than the
#oaas) exchange energy near the KS end of the adiabatic connec-
FIG. 5. Accurate short-range exchange energy oftHiek solid ~ tion. Therefore, the curve of the correlation energy with re-
curve along the erfgau adiabatic connection, local density approxiSPeCt tou is very flat aroungw=0 (see Figs. 6 and)7Again,

mation (thick long-dashed curye exact asymptotic expansion for this is due to the fact that removing very long-range interac-
u— o [Eq.(28)] with the first term(lower solid curve and with the  tions from the functional has no effect in a finite system. It

first two terms(upper solid curvg and asymptotic expansion in Will be seen in Sec. VII that this makes the correlation en-
LDA [Eg. (33)] with the first two termgshort-dashed curyethe  ergy difficult to interpolate near=0 from a knowledge of
first term in LDA being exact. the functional for largeu.
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-0.02
-0.04

M
Ee -0.06

0 2 4 6 8 10
u (a.u.)

FIG. 7. Accurate short-range correlation energy of (thdack

solid curve along the erfgau adiabatic connection, local density
approximation(thick long-dashed curygexact asymptotic expan-

sion for u— o [Eq. (30)] with the first term(lower solid curvg and

with the first two termgupper solid curvg and asymptotic expan-
sion in LDA [Eg. (34)] with the first term(lower short-dashed

curve) and with the first two termgupper short-dashed curnve

C. Exchange functional for large u

In Appendix C, we derive the general asymptotic expan-

sion of the short-range exchange energy jior «

EM - 71-20 (2n) '(2n + 2),LL2n+2 J n(ZZQ)(r,r)dr
n=
1
+ O(/.Lz_m+3>, (22)

PHYSICAL REVIEW A70, 062505(2004

Er=- Ty fng(r)zduﬂg fn,,(r)
M o

1205
2
><(ang(r)I .
2n,(r)

xX®

4TG(r))dr 4o (27)

with AO,erf: v/ 2_1A0,erfgau:(1 + 6\“‘33)A0,erfa A2,erf: 3Vm/4 and
Azyerfgau:(l+36\s‘°3)A2,e”~ Note that this last result has already
been demonstrated for the case of the erf interad@h In
particular, for spin-unpolarized systems, E#7) becomes

_§(‘= \ AOfn(r)zdr+ fn()
24u°

2
x(%wﬁr))du---.

(28)

Equation(27) and (28) shows that the first term in the ex-
pansion for largeu of the short-range exchange energy is an
exact local functional of the densitipr, in general, of the
spin-densities Therefore, the local density approximation
becomes exact in this limit. An alternative view of this result
can be achieved in the framework of the wave-vector analy-
sis of the usual KS exchange functional by considering the
short wavelength limif5]. The next term of expansiof28)
involves the gradient of the density n| and the kinetic en-
ergy densityr and is therefore of the meta-GGA type. The
following higher-order terms involve of course more and

Wheren(zn)(r r) are the on-top exchange pair density and itsmore ingredients constructed from higher-order derivatives
spherical-average@vith respect tor,,) derivatives. Simple Of the KS orbitals. Note that instead of considering these
explicit expressions can be given for the first two terms ofspin-dependent quantities one can also directly use the on-

this expansion. Indeed, the on-top exchangepair densit{pp exchange pair density and its derivatives.

writes

Nox(r,r) == 2 n2(r), (23

where the summation is over the two spin statesy, 8 and

n,(r) are the spin-densities; its second-derivative can be ex-

pressed by46]

l|Vn(r(r)|2>

2T, r)———En r)(Vzn (r)—47,(r) + 2 ()

(24)

where 7,(r) are the KS spin kinetic energy densities ex- (|n ~

pressed in term of the KS spin-orbitals,(r) by
NO’

1
T,(r) = 52 |V dis(1)?, (25)
i=1

whereN,, is the number of electrons of spin The Laplacian
in Eq. (24) can be eliminated by integration by parts

f n,(r)V2n,(r)dr = —f | V n,(r)|%dr, (26)

A similar asymptotic expansion can be derived for the
short-range Hartree energy
UH = \Wﬁofn(r)zdr \Wf
M 12w

f |V n(r)[2dr + -
(29

By carefully comparing Eq(27) and(29), one sees that, for
a one-electron systerin,=n, ng=0, 7,=7m=|Vn[*/(8n),
7,=0], the Hartree and exchange energies cancel out order
by order in the expansion with respectgoAs the first term
~2) of the asymptotic expansion of the exchange energy
is a local functional of the density, this cancellation is exactly
maintained in the LDA, i.e., there is no self-interaction error
in LDA for this first term. For the next term of the expansion
(in u™%), the removal of the self-interaction error requires the
consideration of a meta-GGA functional depending explicitly
on|Vn,| andr,.

In the KS scheme, it has been often argued thamijlo-
cal approximate exchange functionals actually mimics near-
degeneracy correlation effegtsee, e.g., Ref47)). Itis clear
from this above discussion that, for short-range exchange
functionals, (semplocal approximations become exact at

which leads for the leading terms of the expansion wpen large x and therefore do not fortuitously mimic near-

— oo of the short-range exchange energy

degeneracy correlation anymore.
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D. Correlation functional for large u for large u is therefore due to the exactness of the exchange
on-top pair-density and the good transferability of its first
erivatives from the uniform electron gas to the finite sys-
em. Actually, it can be remarked that the expansion of LDA
up to the u™ term performs even slightly better than the
—  NmhA 2\r’7TA1 exact expansion to the same order. Similarly, the LDA is
E¢=—% f Ny (r,r)dr + " fnz(r,r)dr +oe already very accurate for=1 while achieving a compa-
H H rable accuracy from the slowly-improving expansi@8) of

(30 the exact exchange energy would require a rather long ex-

wheren, (r,r) andny(r ,r) are the correlation and total pair Pansion.

density, theA, coefficient is given after Eq27) and in ad- For the correlation energy, the LDA of expansic0)
dition Ay =1 andA; erga 28- consists in transferring the on-top density from the uniform

This result show that for large the short-range correla- ©€l€ctron gas to obtain

In Appendix C, we derive the first two terms in the
asymptotic expansion of the short-range correlation energ
for p—oo

—

tion energy becomes an exact local functional of the on-top o \JTAO 1
pair density ny(r,r) [and of the density vian,(r,r) EtDAZ ——2 f n(r)n(r)(go(rs(r)) - §>dr
=n,(r,r)—n(r)n(r)/2 for closed-shell systerhsThis empha- 1]

sizes the importance of this quantity for density functional 2A1\s"7—7

approximations. It is in the same line of thought of a number + 3,3
of previous studie$48-5Q stressing the need of including H
explicitly the on-top pair density in approximate density where rs=3/(47n)*® is the local Wigner-Seitz radius and

J n(rn(r)go(re(r))dr + -+, (34)

functionals. go(ry) is the on-top pair-distribution function of the electron
gas for which Burke, Perdew, and Ernzerhof have proposed
VI. PERFORMANCE OF THE LDA FOR SHORT-RANGE an estimatior{54]

EXCHANGE AND CORRELATION ENERGIES

Golrs) = D[(y+r9¥2+ Ble™™7*'s, (39)
The asymptotic expansions fpr— o enables to analyze
the local density approximation to the short-range exchangé’-‘”th D:_32/(37T?* A:3'2581"8:,163'44’ andy:4.712§. The
correlation functional. We restrict the discussion to spin-8Xpansion(34) is compared with the exact expansi@0)
unpolarized systems. Applying the LDA to the expansion ofUSing an accurate calculationof(r ,r) for the He atom with
the exchange energ2) corresponds to transferring the on- the erf and erfgau interactions in Figs. 6 and 7, respectively.

top exchange pair density and its derivatiﬁé?)(r r) from An accurate calculation of the correlation energy computed
the uniform electron gags1] ’ along the adiabatic connectiofj26,53 and the LDA for

modified interactiong17,24 are also reported. As for the
AZP(r,r) = n(r)n(r)[gZ(n(r)) - 1], (31) exchange energy, the first terms of the LDA expansgi®)

(2n) o nearly coincide with the exact expansion. This expansion
whereg,’,'(n(r)) are the on-top derivatives of the exchange-yith the first two terms gives a very accurate approximation
only pair-distribution function of the uniform electron gas to the exact correlation energy in the region of accuracy of
[52] the full LDA curve (from u~2 to u— o). From these re-

; _ 2 sults, it is clear that the total on-top pair densigyr ,r) have
Ol =1 _g(sm(kprlz) |;Fr312 Cos(kFrﬂ)) , (32)  good transferability from the uniform electron gas to the He
2 Kerio atom. Actually, this goodwhile not exact transferability
with ke=(372n)3. The expansior(28) of the short-range S€ems quite general and has already been pointed out for
exchange energy then writes several atomic and molecular syste[ﬁ§,54,5_5}. ThIS.gIVES
_ s 11 an explalmattmn f(?r t?e sgc::esstpf(:he LD? |r5tri?]t|ng short-
— T T range electron-electron interactioflarge u). On the con-
EQ'LDAz‘Z_MAzOf”(r)Zdr +TM4J n(r)®edr + ---. trary, toward the Kohn-Sham eng=0) of the adiabatic
connection, the LDA transfers spurious long-range correla-
(33 tions from the uniform electron gas and therefore poorly ex-
This last expansion is compared with the exact expansioffapolates the exact correlation energy of the finite system
(28) for the He atom with the erf and erfgau interactions inWhich does not contain these long-range correlation effects.
Figs. 4 and 5, respectively. In these expressions, an accurate
Qensity.of the He atom is usec_i. The LDA for thg mpdified VII. INTERPOLATIONS FOR THE SHORT-RANGE
interactions[17,24 evaluated with the same density is also EXCHANGE AND CORRELATION FUNCTIONALS
reported, as well as an accurate calculation of the exchange
energy along the adiabatic connecti@®6,53 (see Sec. I\ In the previous section, we have shown that the LDA
The LDA expansion33) is exact for the first term and very treats successfully short-range interactions corresponding to
close to the exact expansi@@8) with the first two terms. large interaction parametejs but is inaccurate toward the
Consequently, in the domain of validity of this expansionKS end of the adiabatic connection, i.e., for smallBut for
(for w=2), the LDAis nearly exact. The success of the LDA u=0 a lot of better estimates of the exchange and correlation
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energies are available with density functional approximationghange energy fop— . However, it has been realized in
of the KS scheme which go beyond the LDA such asSec. VI that the LDA works well on a larger domain paf
gradient-corrected functionals. A simple idea for improvingthan the first terms of its asymptotic expansion. In order to
the short-range exchange-correlation energy functional alontake better advantage of the LDA, one can modify it only in
the adiabatic connection is therefore to interpolate betweethe region of smalj by using information from better esti-
an available density functional approximatigbFA) for u mates of the KS exchange energywat 0. We therefore in-

=0 and theu-dependent LDA foru— 0. In the spirit of the  terpolate locally the short-range exchange density along the
usual DFT approximations, this interpolation will be done adiabatic connection by

locally, i.e., for the short-range exchange-correlation energy

~ DFA _ =0, unif ,unif
densitye4(r) related to the global function&%[n] via ei=(e & W) + el (40)

X X

_ wherew(u) is a weight function acting at small only. More
EXn] :f drn(r)eld(r). (36)  precisely,w(x) must be a positive function satisfying(u
=0)=1 so thate?"°=2", having significant values in the
region where the LDA fails and with a fast decay for
A. Rational interpolations — S0 as to recover the correct behavioref*™ for large
) o ) _ ) . For the erf interaction, we found that the local valueuof
A I bility is to int lateZ: long the adia- i i i i
A simple possibility is to interpolate; (r) along the adia-  gelimiting the domain where the LDA is inaccurate is well
batic connection using an estimate &0 and the expan- estimated by 1r/(r) whererr) is the local Wigner-Seitz
sions for largeu (and eventually for small) presented in  (5dius. We therefore takav(w) =erfur) where the

Sec. V. For example, consider the rational approximant fogomplementary error function erfc ensures that the weight
the short-range exchange energy density of the erf interactiognction has significant values only fr<1/r. Eq. (40)

B <DFA thus interpolates betweer™ at =0 and the LDA at large
Sg,er‘le_l_b X+b 21 (37) M-
1 Bt For the erfgau interaction, we can used the same weight

whereblz—l/(sEFA\s’TT) andb,=-4¢P™/(7mn) are chosen to  function except that now the local value afdelimiting the

satisfy the expansion for small [Eq. (17)] and the expan- domain where the LDA must be corrected is estimated by

sion for largeu [Eq. (28)] to leading order. In Eq:37), e2FA  #=C/Ts wherec=(1+6y3)12~3.375 is the scale factor be-

is the exchange energy densityat0 estimated by one of tween the erf and erfgau interactions discussed in Sec. II. We

the usual density functional approximations of the Kstherefore take as weight functiomyga ) =erfours/c).

scheme. Naturally, this interpolation can also be applied to the
For the erfgau interaction, the short-range exchange ershort-range correlation energy

ergy density can also be interpolated betwefH* at 4=0 DFA 1m0 unit "

[no linear term inu, Eq.(18)] and the expansion for large g = (g —eg T W(p) + 20, (41)

[Ed. (28)] according to with the same weight functiow(w).

SDFA
o ~—X
€y erfgau 1 +02,U«2, (39 C. Other interpolations
with CZ:_%EFA/[(1+6\@)W]_ Finally, we mention the approximation for the short-range

In the same spirit, the short-range correlation densitfXchange energy proposed by likura, Tsuneda, Yanai, and

along the adiabatic connection can be approximated by  Hirao [30] based on a modification of the short-range LDA
exchange functiondll7,24. The spin-unpolarized version of

_ gDFA their approximation for the erf interaction is
M~
&~ 20 (39
1+ dllu’ + d21u’ DEA 8 — 1
. — . _SAl =

with  dy o= ‘ng,erf\‘“ mNG(re)/ (3ec), y er=2ec/ (N[ Go(rs) Exet~8&x |1 3A( N erf( 2A>
-1/2]) for_ the erf interaction, and d; eqgau
= _5&jg,erfgauvwngo(rs)/(380)1 0y erfgai= A2 ertl (1 + 6v3) for +(2A - 4A3)e'1’(4A2) -3A+ 4A3)] J (42
the erfgau interaction. Agaim>™ is the correlation energy

density atu=0 given by an available density functional ap- B _ IPATDFA EPPINT
proximation of the KS scheme. The rational approximantVhereA=u/(2k), k=ye, /SXDFAkF and kg=(37°n)"*. The
(39) therefore interpolates betweef™ at =0 and the ex- @Pproximation reduces tee,”" at u=0 and has an

pansion of the LDA for large: with the first two termgEq. ~ aSymptotic expansion fop— o incorporating the correct
(34)]. leading term[cf. Eq. (28)]. Therefore, Eq(42) provides an

interpolation between a density functional approximation at
w=0, e2™ and the correct limit ag.— . The same ap-
proximation can also be derived for the erfgau interaction

The interpolation formulag37) and(38) only make use of using the LDA exchange functional associated to this inter-
the first term of the asymptotic expansion of the LDA ex-action[24]; it reads

B. Weighted interpolations
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FIG. 8. Accurate short-range exchange energy of (selid FIG. 10. Accurate fshort_-range cor_relation energy of(lslelid_
curve along the erf adiabatic connection, local density approxima-CUTve along the erf adiabatic connection, local density approxima-
tion (long-dashed curyeand three interpolations between the PBE fion (long-dashed curyeand two interpolations between the PBE
value atu=0 and the LDA atu— o using a rational approximant Valué atu=0 and the LDA afu— = using a rational approximant
[Eq. (37), short-dashed curyea weighted approximari€q. (40), [Eq. (39), short-dashed curyeand a weighted approximatfEg.
dotted curvé and the approximation of likurat al. [Eq. (42),  (41), dotted curvg
dashed-dotted curyeThe last two curves are nearly superimposed.

the PBE functional56] as the density functional approxima-
o8~ (1 e tion at =0 both for exchange and correlatiosf™ =P BE
lergar™~&x | 1- §A(”T erf(zA) +(2A - 4A3)e 14 andeg "=ec
Figures 8 and 9 represent the short-range exchange energy
1 ) of the He atom along the erf and erfgau adiabatic connec-

8 —
- 3A+4A3) + §A(\7T erf( tions, respectively. An accurate calculation is compared to

2B | .
the LDA and to the three interpolations of Secs. VII A,
1 em3 o148 3 VII B, and VII C. One sees that the rational approximants
+(2B-168%¢ 68 + 168 )] (43) give an overall reasonable estimate of the exchange energy

- along both adiabatic connections but are actually less accu-

whereB=A/\3. _ _ rate that the LDA in the region of intermedigte As already

Notice that in the interpolations of Secs. VIIA_VII C the noticed, this reflects the fact that the LDA works well on a
eégpange and correlation energy densitieaaD, &, and  |arger range ofu that the first terms of its expansion far
g , can be estimated by any of the available exchange-, . The weighted interpolations make better use of the
correlation functionals of the Kohn-Sham scheme. In this_paA and constitutes an improvement over it for alk. Fi-
sense, formulag37) to (43) provide extensions of these nally, the approximation of likurat al. is nearly identical to
exchange-correlation functionals over the erf and erfgayhe weighted interpolation for both the erf and erfgau inter-
adiabatic connections. actions.

Similar curves for the short-range correlation energy of
) i the He atom with the erf and erfgau interactions are shown in

We now test the interpolations formule&7) to (43) ona  Figs. 10 and 11. and As for the exchange energy, the rational
few atomic systems. In all the results presented here, we Usgproximants constitute an overall correction to the LDA but

not in a systematic way since the LDA still performs better

D. Results

0

~0.02
~0.04
Ef
-0.06|
(a.u.) 7
1
_0.08| s
1
-0}/
0 1 2 3 4
K (@) 0 2 4 6 8 10

u (a.u.)
FIG. 9. Accurate short-range exchange energy of (s@id

curve) along the erfgau adiabatic connection, local density approxi- FIG. 11. Accurate short-range correlation energy of (delid
mation (long-dashed curyeand three interpolations between the curve) along the erfgau adiabatic connection, local density approxi-
PBE value atu=0 and the LDA atu— 0 using a rational approx- mation (long-dashed curyeand two interpolations between the
imant[Eq. (38), short-dashed curyea weighted approximan&g. PBE value atu=0 and the LDA atu— o using a rational approx-
(40), dotted curvgand the approximation of likurat al. [Eq. (43), imant [Eq. (39), short-dashed curyeand a weighted approximant
dashed-dotted curyeThe last two curves are nearly superimposed.[Eq. (41), dotted curvg
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0 2 4 6 8 10 0 5 10 15 20 25 30
g (a.u.) u (a.u.)
FIG. 12. Accurate short-range correlation energy of (Belid FIG. 14. Accurate short-range correlation energy ofNsolid

curve) along the erf adiabatic connection, local density approxima-curve) along the erf adiabatic connection, local density approxima-
tion (long-dashed curyeand two interpolations between the PBE tion (long-dashed curyeand two interpolations between the PBE
value atu=0 and the LDA atu— o0 using a rational approximant value atu=0 and the LDA atu—  using arational approximant
[Eq. (39), short-dashed curyeand a weighted approximarfEq. [Eq. (39), short-dashed curyeand a weighted approximatfEg.
(41), dotted curvg (41), dotted curvg

for intermediateu. On the contrary, the weighted interpola- idly decreased whem is increased, i.e., when long-range
tions always improve the LDA. As one can expect, consid-interactions are removed from the functional.

ering exchange and correlation together further improves the
results at smalk.

We now discuss the Be atom. The short-range exchange
energy along the adiabatic connections looks very similar to In a quantum electronic system, the long-range—short-
that of the He atom and will not be shown. The short-ranggange separation of the Coulomb interaction enables to rig-
correlation energy for which the LDA has more difficulties orously decompose the total energy into long-range and
than for the He case is represented in Figs. 12 and 13 for thghort-range components which can be calculated by different
erf and erfgau interactions. One can see that both the rationalethods. In particular, a density functional approximation
approximant and the weighted interpolation improve thecan be used for the short-range part of the energy, while the
LDA along the whole adiabatic connection. long-range contribution can be treated by traditional wave

The He and Be atoms are simple cases where a gradierfunction methods. In this work, we have considered two pos-
corrected functional like PBE give a very accurate correlasible long-range—short-range separation of the Coulomb in-
tion energy. On the contrary, the fteatom constitutes a teraction: the erf and erfgau modified interactions. The erf-
much more difficult system fo¢semilocal functionals be- gau interaction achieves a better separation than the erf
cause of the presence of strong near-degeneracy correlatibreraction. We have shown that the use of these modified
effects due to the proximity of thes2and 2 levels. The interactions facilitates wave function calculations. We have
short-range correlation energy of this system is reported ilso studied the short-range part of the exchange-correlation
Figs. 14 and 15 for the erf and erfgau interactions. The PBEunctional with respect to the range of the associated inter-
functional of the KS schemgu=0) strongly underestimates action, and shown that, in the limit of a very short-range
the correlation energy. One sees that with the rational aphteraction, the exchange contribution to this functional can
proximants or the weighted interpolations, the error is rapPe expressed as a local functional of the density and is there-

VIIl. CONCLUSION

0 2 4 6 8 10 0 5 10 15 20 25 30
u (a.u.) u (a.u.)
FIG. 13. Accurate short-range correlation energy of (Belid FIG. 15. Accurate short-range correlation energy ofNeolid

curve) along the erfgau adiabatic connection, local density approxi-curve) along the erfgau adiabatic connection, local density approxi-
mation (long-dashed curyeand two interpolations between the mation (long-dashed curyeand two interpolations between the
PBE value afw=0 and the LDA atu— o using a rational approx- PBE value aju=0 and the LDA atw— < using a rational approx-
imant [Eq. (39), short-dashed curyeand a weighted approximant imant[Eq. (39), short-dashed curyeand a weighted approximant
[Eq. (41), dotted curvg [Eq.*, dotted curvg
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fore exact in the LDA. In the same limit, the correlation called transfer relatiof57] to the integralgeQuvdr,2)|f0]
contribution can be expressed as a local functional of thevith e=maxa,b)...a+b andf=maxc,d)...c+d.

on-top pair density which is generally accurate in the LDA.  For the Coulomb interactiom.dr;,)=1/rq, these inte-
However, when the interaction becomes more and morgrals can be written as

long-ranged, the LDA is inaccurate. It is nevertheless pos- L

sible to improve the LDA description of the short-range _ _t2,(P - 0)2
exchange-correlation functional by making use of the avail- [eQL/ry7lf0] = fo dtPy(e "™, (A4)
able gradient-corrected functional of the Kohn-Sham scheme

in the limit of the full Coulomb interaction. We have indeed With p={»/({+7) andP(t) are the Rys polynomials of or-
proposed two kind of interpolations for the short-rangedern=e+e, +e,+f,+f +f,in t?

exchange-correlation functional along the erf or erfgau adia- 12 32
_ol P p
Pn(t) =2 ) <askco|

312
batic connection which improve the LDA. In order to extend —) 11 (e fxot)
n

the interaction range well treated by functional approxima-

tions in a more systematic way, we are currently investigat- X1} (e fy D1L(e, 1), (A5)
ing gradient corrections for the short-range exchange-
correlation functional. wherel; (A=x,y,z) are 2D integrals obeying the recurrence
relation
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APPENDIX A: MODIFIED TWO-ELECTRON INTEGRALS -1), (A6)

In this appendix, we give details of the evaluation of thewith the starting valuel{(0,0=1. Equation(A4) can be
two-electron integrals over Gaussian basis sets for the modevaluated exactly by the Rys quadrature
fied erf and erfgau interactions. The modified integrals have
been implemented into the Seward progrdm] available in AP L2 p\*¥% p
the Molpro package[44] and using the Rys quadrature [e0(1/r;5if0] =2 x) et )\,
schemg[58]. For other implementations of two-electron in-
tegrals with modified interactions, see Refs. 28, 36, and 59. X15(ey, fy )15 (€ F2ta)Wa, (A7)
The general form of four-center two-electron integrals is

3/2"Rys
) PIRMEN )
a=1

wheret, and w,=exg{-t>p(P-Q)?} are the roots and the

weights of Rys polynomials angk,s>n/2.
[ablvedri,)|cd] :f f drydro¢(ry, £a,a,A) p(r 1,4p,b,B) The modified integrals for the erf interaction
[eQerf(ury,)/r15f0] can simply be computed with the same
Xvedl12) (I, €,C)p(r ,{q,d, D), scheme by applying the following simple modification ev-

(A1) erywhere[17,21: 1/p—1/p+1/u?. Thus, with respect to
) ) _ ) the Coulomb case, in E¢A6) the recurrence coefficients are
wherevdr1,) is the electron-electron interaction agds is modified, and in Eq(A7) the prefactor, the weights, and
an unnormalized primitive Cartesian Gaussian basis functioghe rootst,, depending omp, are modified.
To calculate the integrals for the erfgau interaction, addi-
tional integrals of type[e(C exp(-arZ,)|f0] are needed.
(A2) These integrals can be computed like an one-point Rys
o. Quadrature with roott,= Va2l (p+a?), weight w,=exg
—tﬁp(P—Q)z} and a modified prefactor depending gn

B(r,£,n,R) = (x=R)™(y - Ry)ny(Z— Rz)nze—g(r - R)Z.

Actually, it is only required to explicitly compute the int
grals of the type

[edC exp(- ar?,)|f0] = C(1 -t2)%? p\*(p)*?
[eQvedran)|fO] = KABKCDJ f dr 1 dr 5(xy = A)*(yy 12 & KasiCD I "
=AYz~ A P el (g X L& fota)ly(ey, fy,ta)l (€, Fota) Wa,

’ (A8)
- Cx)fx()/2 - Cy)fY(ZZ - CZ)fZe‘W(rz -Q°,

(A3)

where (=0+0, n={ctla P=(LA+0B) (Lt dy), Q
=(LCHLD) (Lt Ly, kap=exp~[Lalp/ (Lat &) I(A-B)%}
and kep=exp—[ZLql (L+Lg](C-B)2. The general inte- In this appendix, we study the erf and erfgau adiabatic
grals[ablvedrio)|cb] are then obtained by applying the so- connections near the KS system, i.e., for small interaction

APPENDIX B: ADIABATIC CONNECTION
NEAR THE KS SYSTEM
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parametefu. The fictitious system along these connections is — 1
described by the Hamiltoniaftf. Eq. (5)] EC=Ec- > f f N5 (M1, r2vedrigdradr,,  (B5)
He=> —V2+ > vlry) + 2 o(ry), (B1)  WhereE; is the usual correlation energy of the KS scheme.
i i<j The expansion off for small 4 can be obtained by first

wherev’ is the long-range erf or erfgau interaction artdis ~ Studying the derivative o; with respect tqu which by the
the external local potential associated to the short-range HaHellmann-Feynman theorem writes

tree, exchange and correlation energy functionat$r) s i)

=vper) +8UH[n]/ on(r) +E{n]/ on(r) +EZ[n]/ on(r). The be- _:__ffn2c(rlnr2) Zdr,dr,,  (B6)
havior for u— 0 of all quantities associated to this fictitious

system can be derived from the Maclaurin series of the longand assuming fong o(r,r,) the f0||OW|ng expansion around
range interactions, u=0

1 K
vedl12) = ~E( )_a”“ o, (B2) Me(ra,ry) = s (M> W, (B7)

'7Tn 0 k=1 k| (9/.Lk

w=0
where a, er=1/(2n+1) for the erf interaction an@nergau  since for the KS systems(r,r,)=0. Therefore, inserting

=1/(2n+1)-1/3" (=0 for n<1 by constructionfor the er- g4 (B7) and the derivative of EqB2) into Eq. (B6), and
fgau interaction. assuming the commutativity of summation and integration,

1. Short-range Hartree energy foru—0 leads to
Equation(B2) leads immediately to the expansion of the aE E S (-D"(2n+ Da, ok
short-range Hartree energy I Jrs & nikl
— 1
U#ZEJJn(rl)n(rZ);ge(HZ)drler ff(an C(rl’r2)> rijdr,dr,,  (B8)
=0
—U- i—E (- Dna”,u?“*l where the terrm=0 can be dropped sinag (r4,r,) inte-
Ve N grates to zero. After integration we obtain the expansion of

the short-range correlation energy
Nn(r)n(ro)rodr ,dr,, B3
JJ ( ( 2) 12 ! 2 ( ) EM: E E ( 1)”(2n+1)an 2n+k+1
C
whereU is the standard KS Hartree energy. To obtain Eq. Virnetiey NIK(2n+k+ 1)

(B3), the integral and summation signs have been inter- FKn (rl r)
changed. This is reasonable for a finite system wiheyés ff ( e b ) r20dr ,dr .
4=0

always bounded since in this case the se(B2) is uni-
formly convergent and can thus be integrated term by termactually, several terms of this expansion vanish as it will be

(B9)

2. Short-range exchange energy fou—0 seen below.
The expansion for— 0 of the short-range exchange en- )
ergy of Eq.(7) is 4. Ground-state wave function for u—0

_ 1 Using the expansion of the interactioff, [Eq. (B2)] and
E;‘(‘:—ffn2,x(r11r2)U_ge(r12)dr1dr2 taking the functional derivatives of the expansions of the
2 short-range Hartree, exchange and correlation enefgigs

(B3), (B4), and(B9)] to obtain the expansion of the potential

E( 1'a, wuantt v*, we arrive at the following formal expansion for the
Vo ! Hamiltonian of the fictitious system:
Xffnzyx(rl,rz)rfgdrldrz, (B4) fe = HK +E 2n+1) w2y (2n+1)M2n+1
n=0 n=0

whereE, is the standard KS exchange energy apgr,r,)
is the exchange contribution to the pair density. + 2 E U(2n+1k P (B10)

. 1k=1
3. Short-range correlation energy for u—0 "

The short-range correlation energy of E8) can be writ- I this equationHys is the KS Hamiltoniany ;" refers to
ten with the correlation contribution to the pair density the coefficients of expansiaiB2), v(2”+l) refers to the Har-
N5 (ry,r,) with interactionvg, as tree and exchange contributions to the coefficients of the

(2n+1)
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(2n+1K) refers to the correlation contri-

expansion ob* andv

bution. The two superscripts "% reflect the fact that
the terms in the expansion of the correlation enefgy.
(B9)] come from two sources: the interactiof), and the pair
density nf.. The ground-state wave functiow* of this

Hamiltonian can also be expanded with respectto

Wr=d+ > Wk
k=1

(B11)

where® is the KS determinant. We now show that several

terms in the expansion oF* actually vanish.

For the erf mteractlom(l) andv . are constantfcf. Egs.
(B2), (B3), and (B4)], and consequently =0 for all k
=1, thusWM'=0. As there is no term im? in Eq. (B10), we
also haver@=0. It implies in turn that in Eq(B7) the terms
k=2 vanish, and thus by E¢B9) v*""¥=0 for k=2 and
all n=1. In particular,v®?=0 220 which leads to the
expansion of the Ham|lton|an

I:|erf—HKS+(v +Uh))M +(U(5)+U(5>)/.L +Ua3) 64

(B12)

PHYSICAL REVIEW A 70, 062505(2004)

vi(r)=1/r—vk(r) for the erf and erfgau interactions,

erfo(ur)
Ugeerf(r) = r s (Cl)
erfc(,ur) 21““ ~ -
;geerfgalfr) =+ Te (13 ur ) (CZ)

r

Let f:R*— R be a test functioti.e., of bounded support and
infinitely differentiablg and consider the following integral:

=ff(r)v_g’“e(r)dr. (o))
f can be expanded into its Maclaurin series
- <“>( 0
f(r) = E r"+Ry(r), (C4
where the Lagrange remaindef,(r) is
™ o)
Ri(r) = men (CH)

We therefore have the following expansion for the wavewith 0< #<1. Inserting the first term of the right-hand side

function:
Wi =D+ SO + 5P 4 Sp©) 4 (B13)

Therefore, the termk=1,2,4 inEgs.(B7) and(B9) vanish
for for the erf interaction.

For the erfgau interactiom,.,=v,, =0, and consequently
vi=0=0 and v?¥=0 for aII k=1, thus WO=y®
e Sp@=0, It |mpl|es in turn that in Eq(B7) the terms
k<4 vanish, and thus by E¢B9) v?"¥=0 for k<4 and

all n=1. In partlcular 5= v&z)—v“)— GhH=p®
@a_ §D

_ (62)_ (63)_ 64_ (7.0 _ (*?2 (‘23)_ &1
- =Uc c Ve c
—0 WhICh leads to the expansion of the Hamlltonlan

D (3

UC Ue =v

- L 5 4 5,54 (1D 4 (DY,54 (1O
Hitgau= Hics*+ (0g2 + o) + (060 + o)+ (02

of expansion(C4) into Eq.(C3) gives the first contribution to
integral |

m
(0
1= © f r"vE{r)dr, (C6)
where the last integral can be easily evaluated
4\“”7—7
f r”v_f;(r)dr = 47Tf r”*zv_’e’“e(r)dr = (I’IT)/LWAH,
(C7)

with A, ¢=I'((n+3)/2) for the erf interaction and\, egay
=T'((n+3)/2)+3M32(n+2)T((n+3)/2) for the erfgau inter-
action. Thus, Eq(C6) becomes

+UE19X))M9+U((:5,5)ILL10+ e (814)
_ . o Af™(0)
We therefore have the following expansion for the wave =4y E A“—+2 (C8)
function: o nl(n+2)u"
Whigar= @+ pPW O + "W 4 g0 4 1090 4 The second contribution tb coming from the remainder
(B15) writes

Therefore, the termk=1,2,3,4,6,8 inEqs.(B7) and (B9)
vanish for the erfgau interaction.

APPENDIX C: ADIABATIC CONNECTION
NEAR THE PHYSICAL SYSTEM

In this appendix, we study the erf and erfgau adiabatic
connections near the physical system, i.e., for large interac-

tion parameteju.

1. Short-range interaction for p— o

fm™D(gr)

m+ 177
(m+ 1! r™oi(r)dr.

l2= (C9

We shall assume in addition that, for any the (m+1)th
derivative off is bounded, i.e.[f™3(r)|<M,, then

M A
(m+1)!(m+3)u™?’
(C10

'er"l?e‘e(r)dr:

=
12 (m+ 1)!

meaning thal,=0(1/x™3). Finally, using the definition of

We start by deriving a distributional asymptotic expansionthe nth derivative of the three-dimensional Dirac delta distri-
for large u of the short-range electron-electron interactionbution 6™ (r),
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f(r) o™ (r)dr = (- D"F™(0), (C1y) u=2
f ' ”nzo <2n>'<2n » 2
we obtain the following distributional asymptotic expansion 1
of vE(r) when u— o: xf n(r)n@(r)dr + O( 2m+3> (C18
m
TR = 4TS, (= 1)"A, 5 )+O( 1 ) where the notatic_)m(zn)(r?=[62”ﬁ(r_12)/(9r12]r12:o has been
o nl(n+2)u™ used for the density and its spherical-averaged derivatives.

(C12) 3. Short-range exchange energy foj— o«

Note that if we apply a scale factor to the interaction param-  Similarly, the short-range exchange energy can be written
eter of the erfgau interactionu—cu such thatc as

= (Anertgad Aner) =(1+6Y 3)1/2~ 3,375, then the asymptotic .
expansions of the erf and erfgau interactions are the same to P f f~
leading order. This provides a criteria for comparison of the E Mo T12)ved 1201 12 (€19
two interactions.

Following the same procedure on the derivative of theVNeré fzx(r1,rip) is the spherical-average exchange pair

modified interaction with respect t@ which writes density which can be expanded like the density as an even
series ofry, aroundr,,=0 (“no cusp for exchange’ We
Wheerlr) 2 22 13 therefore obtain the asymptotic series of the short-range ex-
u B \,r; ' change energy
m
for the erf interaction, and Et= 2\;;2 Agn —
_, o 2n)l@2n+2)u"
aveeerfgatfr) —_ 2 Ze ~uPr? + i —(1/3 %2 4’“ r’ (1/3),u2r2 1
I v r 3\77 f 2(r,r)dr +O< 2m+3> (C20
(C19

with the on-top exchange pair density and its spherical-

for the erfgau interaction, leads to a similar asymptotic ex- averaged derivatives! (2n e r)= [ﬁz"ﬁz () rlz)/ﬂflz]rlz_o

pansion

m

aUleAe(r) —_ 4\““’7—72 (-1
I

I n=0

4. Short-range correlation energy for yp— «

1
n+3 5 () + O< m+4>’ The asymptotic expansion of the short-range correlation
energy whernu— < can formally be found by considering its
(C15  derivative[cf. Eq. (B6)]

which is just the derivative of expansi@e12. In the fol- aE,L ee(rlz)
N5 (ry,ro)

lowing, we will apply Eqgs.(C12) and(C15 assuming that
the corresponding test functidir) related to the pair den-
sity satisfies all the required assumptions which are reasofgherefi fl,flz) is the spherical average o (r,r5), in-
able for finite systems. serting the asymptotic expansion i (rq,r,) and the dis-

tributional asymptotic expansion ¢6%./ du [Eq. (C15)] and

dr.dri,, (C21

2. Short-range Hartree energy for u— o re-integrating with respect tp. Actually, considering only
Introducing the trivial variable transformation,—r 45 thg first t.erm. of~t£1e asympiti)tlc expansion .Of the.c.orrelatlon
and the spherical average of the density;,) pair density, .6 c(11,112) =My o(r, 115+ is sufficient to

find the first term of the asymptotic expansion of the corre-

_ 1 lation energy. Similarly to the exchange energy, the leading
n(ryp) = i n(ri2)dQ, ,, (C16)  term of the short-range correlation energy for laggis con-
sequently given by the on-top correlation pair density
the short-range Hartree energy writes Ny c(r,r)
—
_ 1 o |
U=2 f f N(r)R(r o) 0lry)dr dry.  (C17) EF= ”TZAO f Ny o(r,r)dr + -+ (C22)

Using then the distributional asymptotic expansion when Notice that, for the erf interaction, this result has already
— of the short-range interactiofEq. (C12)] and noting  been derived26].

thatTi(r;,) can be expanded as an even series,gfaround Using Egs.(C18), (C20, and (C22), the external local
r1»=0, we obtain the asymptotic series of the short-ranggotentialv*(r)=v,d(r)+U*/dn(r)+ SEL./ on(r) has the fol-
Hartree energy lowing behavior for largeu:
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VrA, &
p? on(r)

1
vH(r) =vpdr) + ny(r',r)dr’ + -+, NG o(ry,r1p) =Npory,ro) + ?n(zz,g(flarlz) oo

(C23 (C26)
The absence of term in 1/in the last expansion implies that

whereny(r,r) is the total on-top pair density. As, has a ) ) . .
the first two terms in the asymptotic expansiond&;/du

similar expansion foru— o beginning with u™2 [see Eq.

(C12] can be determined by considering omly.(r,,r;,). We find
_— — —
— JEE 2VmAg f 2V A, J ,
1 2y e _ 27N - e
=TSR e coa e e ) MeetOET T ] nednndre
g (c27
the behavior for largg. of the modified HamiltoniarH*  wherenj (r,r) is the spherical-averaged derivative of the
=T+Zijuidri) +Zjv#(r;) is of the form on-top correlation pair density which, according to the

electron-electron cusp conditidi0], is equal to the total
on-top pair densityn, (r,r)=ny(r,r). Therefore, for large:

A~ A 1A
= —H? 4 ...
HE=H+—5HS+ - (€29 the short-range correlation energy has the exact behavior

o

—

The corresponding wave functioh* and consequently the Eg: VW’?‘) f N, (r,r)dr + 2V7T’3°‘1 f ny(r,r)dr + -+
correlation pair densityi5 (r1,r;,) has a similar asymptotic K ' 3u

expansion (C28
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