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By splitting the Coulomb interaction into long-range and short-range components, we decompose the energy
of a quantum electronic system into long-range and short-range contributions. We show that the long-range part
of the energy can be efficiently calculated by traditional wave function methods, while the short-range part can
be handled by a density functional. The analysis of this functional with respect to the range of the associated
interaction reveals that, in the limit of a very short-range interaction, the short-range exchange-correlation
energy can be expressed as a simple local functional of the on-top pair density and its first derivatives. This
provides an explanation for the accuracy of the local density approximation(LDA ) for the short-range func-
tional. Moreover, this analysis leads also to new simple approximations for the short-range exchange and
correlation energies improving the LDA.
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I. INTRODUCTION

In the Kohn-Sham(KS) approach[1] of density func-
tional theory (DFT) [2] of inhomogeneous electronic sys-
tems, the central quantity is the unknown exchange-
correlation energy functionalExcfng which encompasses all
the many-body effects. The vast majority of approximations
for this functional are based on the original local density
approximation(LDA ) [2], an approximation that turned out
to be more accurate and reliable than expected and rather
difficult to improve in a systematic way[3].

Actually, it has been realized for a long time, with the
wave-vector analysis ofExcfng by Langreth and Perdew[4],
that the LDA describes accurately(but not exactly in general
[5]) short wavelength density fluctuations, but is inadequate
for long wavelength fluctuations. A dual analysis in real
space of the exchange-correlation energy(see, e.g., Ref.[6])
leads to the same conclusion that the LDA is accurate at
small interelectronic distances but fails at large distances.
This observation lead to the development of the first gradient
corrected functionals[7–12] with the basic objective to cure
the wrong long-range contribution to the exchange-
correlation energy of the LDA.

However, describing accurately the nonlocal correlation
effects arising from the long-range character of the Coulomb
interaction by(semi)local density functional approximations
still seems out of reach. This idea in mind, it is has been
proposed to use a density functional approximation only for
the short-range part of the electronic energy, and treating the
long-range part by more appropriate many-body methods
[13–17]. This approach was somehow inspired from early
calculations of the correlation energy of the uniform electron
gas based on a separate treatment of long-range and short-
range contributions(see, e.g., Refs.[18–20]).

For atoms and molecules, this approach leads to a rigor-
ous method for combining traditionalab initio wave function

calculations with DFT[21,22], and we recall now the for-
malism. The Coulomb electron-electron interaction is de-
composed as

1

r
= vee

m srd + v̄ee
m srd, s1d

wherevee
m srd is a long-range interaction,v̄ee

m srd is the comple-
ment short-range interaction andm is a parameter controlling
the separation. The universal functional[23] Ffng
=minC→nkCuT̂+V̂eeuCl, whereT̂ is the kinetic energy opera-

tor and V̂ee=oi, j1/r ij is the Coulomb interaction operator,
can then be decomposed as

Ffng = Fmfng + F̄mfng, s2d

whereFmfng is the universal functional corresponding to the

long-range interactionV̂ee
m =oi, jvee

m sr ijd

Fmfng = min
C→n

kCuT̂ + V̂ee
m uCl, s3d

and F̄mfng=Ffng−Fmfng is by definition the complement
(short-range) part.

The exact ground-state energy of an electronic system in
the external local nuclei-electron potentialvnesr d can be writ-

ten using this short-range functionalF̄mfng via application of
the variational principle

E = min
n
HFmfng + F̄mfng +E nsr dvnesr ddrJ

= min
C
HkCuT̂ + V̂ee

m uCl + F̄mfnCg +E nCsr dvnesr ddrJ
= kCmuT̂ + V̂ee

m uCml + F̄mfnCmg +E nCmsr dvnesr ddr . s4d

In this equation,Cm is given by the Euler-Lagrange equation*Electronic address: savin@lct.jussieu.fr
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ĤmuCml = EmuCml, s5d

where Ĥm=T̂+V̂ee
m +V̂m. Thus, Cm is the ground-state mul-

tideterminantal wave function of a partially interacting sys-

tem with interactionV̂ee
m and external local potentialV̂m

=oivmsr id where vmsr d=vnesr d+dF̄mfnCmg /dnsr d. By virtue
of the Hohenberg-Kohn theorem[2], vmsr d is the unique po-
tential (up to an additive constant) which insures that the
ground-state density of this fictitious system is identical to
the ground-state density of the physical systemnCm=n.

The short-range functionalF̄mfng is further decomposed
as

F̄mfng = Ūmfng + Ēxc
m fng, s6d

whereŪmfng=1/2eensr 1dnsr 1dv̄ee
m sr12ddr 1dr 2 is the comple-

ment short-range Hartree energy functional andĒxc
m fng is the

unknown complement short-range exchange-correlation en-

ergy functional. Once an approximation is chosen forĒxc
m fng,

the wave functionCm can be computed by solving self-
consistently Eq.(5) using ab initio wave function methods
like configuration interaction(CI) or multiconfigurational
self-consistency field(MCSCF) and the total energy is cal-
culated according to the last line of Eq.(4). Notice also that

it is possible to separate the functionalĒxc
m fng into short-

range exchange and correlation contributions,Ēxc
m fng

=Ēx
mfng+Ēc

mfng, with

Ēx
mfng = kFuV̄ˆ ee

m uFl − Ūmfng s7d

and

Ēc
mfng = F̄mfng − kFuV̄ˆ ee

m uFl, s8d

where F is the KS determinant andV̄
ˆ

ee
m =V̂ee−V̂ee

m is the
complement short-range interaction operator.

A simple approximation forĒxc
m fng is the LDA associated

to the modified interaction[17,24]

Ēxc
m,LDAfng =E nsr d«̄xc

m,unif
„nsr d…dr , s9d

where «̄xc
m,unifsnd is the complement short-range exchange-

correlation energy per particle obtained by difference from
the exchange-correlation energies per particle of the uniform
electron gas with the standard Coulomb interaction,«xc

unifsnd,
and with the long-range interactionvee

m , «xc
m,unifsnd,

«̄xc
m,unifsnd = «xc

unifsnd − «xc
m,unifsnd. s10d

The method has been implemented at an experimental level
into the quantum chemistry package Molpro, allowing a
combination of CI-type wave function and DFT calculations
[21]. Recently, the method has also been efficiently imple-
mented into the quantum chemistry program Dalton, per-
forming the coupling of MCSCF wave function calculations
with DFT [25]. For a reasonable long-range–short-range

separation and using only the LDA forĒxc
m fng, the approach

already yields good results for total energies of atomic and
molecular systems[21,22,25]. The purpose of this paper is to
analyzed in further details the two separate needed approxi-
mations of the method: the wave function calculation of Eq.
(5) and the short-range exchange-correlation functional

Ēxc
m fng. Accurate calculations have been performed on a few

small atomic systems to assess the approximations. Concern-
ing the wave function part, we show that the modification of
the interaction enables to decrease the effort, or alternatively
increase the accuracy, of a CI-type calculation. Concerning
the functional part, we gain more insights into the short-
range functional and explain the performance of the LDA by

studying the behavior ofĒxc
m fng with respect to the interac-

tion parameterm. In particular, we show that, when the in-

teractionv̄ee
m is short ranged enough,Ēxc

m fng can be expressed
as a simple local functional of the on-top pair density and its
first derivatives, explaining the accuracy of(semi)local func-
tional approximations. This analysis also enables us to pro-

pose new approximations forĒxc
m fng which correct the LDA

in the domain ofm where it fails.
The paper is organized as follows. In Sec. II, we give two

possible choices for the long-range interactionvee
m srd. In Sec.

III, technical details concerning the calculations made on
atomic systems are given. In Sec. IV, the impact of the modi-
fication of the interaction on the performance of wave func-
tion calculation is investigated. In Sec. V, we study the be-
havior of the corresponding short-range exchange and
correlation functionals with respect to the interaction param-
eterm. In Sec. VI, we test the obtained exact behaviors and
compared them with the LDA. In Sec. VII, interpolations for
the short-range exchange and correlation functionals with re-
spect tom are proposed and tested. Finally, Sec. VIII draws a
conclusion of this work.

Atomic units (a.u.) will be used throughout this work.

II. LONG-RANGE–SHORT-RANGE SEPARATION

In a number of previous works[17,21,22,26,27], a split-
ting of the Coulomb interaction based on the error function
has been studied to describe the long-range part of the
electron-electron interaction

vee,erf
m srd =

erfsmrd
r

. s11d

This interaction, referred to as the erf interaction, has also
been used by other authors in DFT for various purposes
[28–35]. In this work, we introduce another interaction
achieving a sharper separation of long-range and short-range
interactions by subtracting a Gaussian function from the erf
interaction

vee,erfgau
m srd =

erfsmrd
r

−
2m

Îp
e−s1/3dm2r2

, s12d

where the coefficient and the exponent of the Gaussian have
been chosen so thatvee,erfgau

m srd and its derivative with respect
to r vanish atr =0. This modified interaction is referred to as
the erfgau interaction. Notice that this partition of Coulomb
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interaction has already been proposed by Gill and Adamson
[28]. In another context, Prendergastet al. [36] have also
used a similar form of long-range interaction. For the sake of
completeness, we finally note that another possible form of
modified electron-electron interaction based on the Yukawa
potential has also been investigated in the past
[13–16,37,38].

Both interactions(11) and (12) enable to define a gener-
alized adiabatic connection[39] between the noninteracting
KS system atm=0 where the interaction vanishesvee

m=0srd
=0, and the physical system atm→` where the full Cou-
lomb interaction is recoveredvee

m→`srd=1/r.
Notice that, although we have chosen the same notation

for convenience, the parameterm in Eq. (11) is a priori in-
dependent of that of Eq.(12). Actually, in all the plots of the
paper involving the erfgau interaction, we apply a scale fac-
tor to the interaction parameter of the erfgau interaction:m
→cm. The constantc is chosen so as to have the same lead-
ing term in the distributional asymptotic expansion of the
two interactions whenm→` (see Appendix C) which leads
to the valuec=s1+6Î3d1/2<3.375. This also insures that the
leading term in the asymptotic expansion of short-range Har-
tree, exchange and correlation energies for largem is the
same for the two interactions. In Fig. 1, the erf and erfgau
interactions are compared along with the Coulomb interac-
tion. The scale factor on the parameter of the erfgau interac-
tion enables to define a common “cutoff radius” giving the
range of the interaction and defined by the inverse of the
interaction parameterrc<1/m. For interelectronic distances
larger thanrc, the two modified interactions reproduce the
long-range Coulomb tail. Notice that short-range interactions
are better removed with the erfgau interaction.

We finally note that, for Gaussian basis set calculations,
the evaluation of the two-electron integrals corresponding to
the erf or erfgau interaction requires only simple modifica-
tions of standard algorithms for Coulomb integrals(see Ap-
pendix A).

III. DETAILS ON ACCURATE CALCULATIONS

We explain rapidly how the accurate data for atomic sys-
tems presented in this work have been obtained.

For each system, accurate potentialsvmsr d needed in Eq.
(5) and corresponding value of the universal long-range
functionalFm are computed using the Lieb’s Legendre trans-
form formulation of the universal functional[40]

Fmfng = max
ṽm
HEmfṽmg −E nsr dṽmsr ddrJ , s13d

whereEmfṽmg is the ground-state energy of the Hamiltonian

T̂+V̂ee
m +oiṽmsr id. If n is chosen to be the physical density of

the system, the maximum is reached for the desiredvm and
Fm. In practice, an accurate densityn is computed by multi-
reference CI with single and double excitations(MRCISD)
[41,42] and the potential to optimizeṽmsrd is expanded as

ṽmsrd = o
i=1

n

cir
piegir

2
+

C

r
, s14d

where ci are the optimized coefficients,pi are some fixed
integers(−1 or 2), gi are fixed exponents chosen so as to
form an even-tempered basis set(typically, gi P f10−3,5
3104g), andC is a constant enforces the correct asymptotic
behavior for r →`. For the Kohn-Sham casesm=0d, C=
−Z+N−1 whereas for finitem, C=−Z (N andZ are the elec-
tron number and nuclear charge, respectively).

The maximization of Eq.(13) is carried out with the Sim-
plex method[43]. For a given potential,Emfṽmg is computed
at MRCISD level using Molpro[44] with modified two-
electron integrals(see Appendix A). Beside the asymptotic
behavior forr →`, vmsrd,C/ r, the behavior of the potential
at the nucleusr =0, vmsrd,−Z/ r, is also imposed during the
optimization. Large one-electron even-tempered Gaussian
basis sets are used for all systems(see Refs.[45,26] for more
details).

The standard universal functionalF and the KS potential
vKS (and thus the KS determinantF) are obtained as a spe-
cial case form=0. The complement short-range functional

F̄m=F−Fm can then be deduced and the short-range ex-

change and correlation energies,Ēx
m and Ēc

m, are obtained
from Eqs.(7) and (8).

IV. PERFORMANCE OF THE APPROXIMATIONS
FOR THE WAVE FUNCTION CALCULATION

We now investigate the effect of the modification of the
electron-electron interaction on the wave function part of the
calculation. For this purpose, we evaluate the efficiency of
approximate resolutions of Eq.(5) as follows.

We first construct, for eachm, the HamiltonianĤm using
an accurate potentialvm and compute accurately its ground-

state energy,Em=kCmuĤmuCml, at the MRCISD level. We
then compute various approximate ground-state energies,

ES
m=kCS

muĤmuCS
ml, by using approximate CI-type wave func-

tions CS
m expanded into linear combinations of all the few

Slater determinants generated from small orbital spacesS.
The orbitals used are the natural orbitals of the Coulombic
system calculated at the MRCISD level. The accuracy of the

FIG. 1. Coulomb interaction 1/r (dotted curve), erf interaction
(dashed curve) and erfgau interaction(solid curve) for m=1. In
order to compare the two modified interactions, a scale factor is
applied on the interaction parameter of the erfgau interaction:m
→cm with c=3.375 (see text). It is possible to define a common
cutoff radiusrc<1/m.
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approximation forCS
m can be assessed by looking at the dif-

ference betweenES
m andEm

DES
m = ES

m − Em. s15d

The differencesDES
m are plotted along the erf and erfgau

adiabatic connections in Fig. 2 for the He atom with the
orbital spacesS=1s, S=1s2s, andS=1s2s2p. One sees that,
in the Coulombic limitm→`, the reduction of the orbital
space leads to important errors in the energy. Whenm is
decreased, i.e., when the interaction is reduced, the errors
due to limited orbital spaces get smaller and smaller. For
instance, atm=1, using only the single-determinant wave
function C1s

m , leads to an errorDE1s
m of less than

0.005 Hartree. The erfgau interaction generally gives smaller
errors than the erf interaction, except nearm=0 where the
nonmonotonicity of the erfgau interaction leads to peculiar
behaviors[24]. Anyway, we will not use the erfgau interac-
tion in this region of very smallm.

The case of the Be atom with the orbital spacesS=1s2s
and S=1s2s2p is reported in Fig. 3. Because of the near-
degeneracy of the 2s and 2p levels, the inclusion of 2p con-
figurations in the wave function is important, quite indepen-
dently of the electron-electron interaction. Indeed, the

differenceE1s2s
m −E1s2s2p

m remains large for almost allm’s. On
the contrary, the error of the calculation where the 2p orbitals
are included,DE1s2s2p

m , quickly falls off whenm is decreased.
Again, for m=1 for instance, the errorDE1s2s2p

m given by the
few-determinant CI-type wave functionC1s2s2p

m is less than
0.005 Hartree.

Therefore, the modification of the interaction enables to
increase the accuracy of CI-type wave function calculations,
or equivalently for a fixed target accuracy, decrease the effort
of the calculation by reducing the orbital space. The crucial
point for this effect to appear is the reduction of the electron-
electron interaction compared to the Coulomb interaction
and not really the long-range character of the modified inter-
action.

V. BEHAVIOR OF SHORT-RANGE EXCHANGE
AND CORRELATION FUNCTIONALS WITH RESPECT

TO THE INTERACTION PARAMETER

At m=0, the short-range exchange-correlation functional
reduces to the standard exchange-correlation functional of

the KS scheme,Ēxc
m=0=Exc, and in the limitm→`, the short-

range functional vanishes,Ēxc
m→`=0. Near these two limits,

the study of the behavior ofĒx
m and Ēc

m with respect tom
constitutes an analysis of the exchange and correlation func-
tionals in term of the range of the interaction. Indeed, thebe-
havior at m→0 tells us how the KS exchange-correlation
functional responds when very long-range interactions are
removed from it, while the asymptotic expansion form→`
gives the exchange-correlation functional associated to very
short-range interactions. To release the text from mathemati-
cal details, the full derivation of the expansions are given in
the Appendices.

A. Exchange functional for small m

In Appendix B, we show that the short-range exchange
energy has the following formal expansion aroundm=0

Ēx
m = Ex −

1
Îp

o
n=0

`
s− 1dnan

n!
m2n+1 3E E n2,xsr 1,r 2dr12

2ndr 1dr 2,

s16d

whereEx is the usual KS exchange energy,n2,xsr 1,r 2d is the
exchange contribution to the pair density, andan are coeffi-
cients depending of the interaction chosen and defined after
Eq. (B2). More specifically, for the erf interaction, this ex-
pansion writes

Ēx,erf
m = Ex +

m

Îp
N +

m3

3Îp
E E n2,xsr 1,r 2dr12

2 dr 1dr 2 + ¯ ,

s17d

where the term linear inm comes from the normalization of
the exchange hole[39]. For the erfgau interaction, the expan-
sion is

FIG. 2. Ground-state energy differencesDES
m=kCS

muĤmuCS
ml

−kCmuĤmuCml whereCm is an accurate wave function andCS
m are

approximate wave functions generated from small orbital spacesS
=1s, S=1s2s andS=1s2s2p along the erf(full curves) and erfgau
(dashed curves) adiabatic connections for He.

FIG. 3. Ground-state energy differencesDES
m=kCS

muĤmuCS
ml

−kCmuĤmuCml whereCm is an accurate wave function andCS
m are

approximate wave functions generated from small orbital spacesS
=1s2s andS=1s2s2p along the erf(full curves) and erfgau(dashed
curves) adiabatic connections for Be.
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Ēx,erfgau
m = Ex −

2m5

45Îp
E E n2,xsr 1,r 2dr12

4 dr 1dr 2 + ¯ .

s18d

The exchange energy with the erf interaction varies linearly
in m near the Kohn-Sham end of the adiabatic connection
(see Fig. 4). On the contrary, the exchange energy with the
erfgau interaction varies very slowly likem5 which implies
that the corresponding curve is very flat nearm=0 (see Fig.
5). The latter behavior is not unexpected for a good long–
range/short-range separation. Indeed, with the erfgau interac-
tion, whenm increases nearm=0 only very long-range inter-
action effects are removed from the functional; they
practically do not later the exchange energy of a finite sys-
tem. With the erf interaction, the long-range–short-range
separation is imperfect and thus the short-range part of the
interaction is also affected nearm=0 which is responsible for
the linear behavior of the exchange energy in this case. This
clearly shows that the erfgau interaction realizes a better

separation of long-range and short-range interactions than
the erf interaction.

B. Correlation functional for small m

The general expansion of short-range correlation energy
aroundm=0 is derived in Appendix B. It reads

Ēc
m = Ec −

1
Îp

o
n=1

`

o
k=1

`
s− 1dns2n + 1dan

n!k!s2n + k + 1d
m2n+k+1

3E E S ]kn2,c
m sr 1,r 2d
]mk D

m=0
r12

2ndr 1dr 2, s19d

whereEc is the usual correlation energy of the KS scheme
andn2,c

m sr 1,r 2d is the correlation pair density with interaction
vee

m . Actually, several terms of this expansion vanish. For the
erf interaction, the expansion writes

Ēc,erf
m = Ec +

m6

36Îp
E E S ]3n2,c

m sr 1,r 2d
]m3 D

m=0
r12

2 dr 1dr 2 + ¯ .

s20d

Similarly, the expansion for the erfgau interaction is

Ēc,erfgau
m = Ec −

m10

5400Îp
E E S ]5n2,c

m sr 1,r 2d
]m5 D

m=0
r12

4 dr 1dr 2

+ ¯ . s21d

The correlation energy varies much more slowly than the
exchange energy near the KS end of the adiabatic connec-
tion. Therefore, the curve of the correlation energy with re-
spect tom is very flat aroundm=0 (see Figs. 6 and 7). Again,
this is due to the fact that removing very long-range interac-
tions from the functional has no effect in a finite system. It
will be seen in Sec. VII that this makes the correlation en-
ergy difficult to interpolate nearm=0 from a knowledge of
the functional for largem.

FIG. 4. Accurate short-range exchange energy of He(thick solid
curve) along the erf adiabatic connection, local density approxima-
tion (thick long-dashed curve), exact asymptotic expansion form
→` (Eq. (28)) with the first term(lower solid curve) and with the
first two terms(upper solid curve), and asymptotic expansion in
LDA (Eq. (33)) with the first two terms(short-dashed curve), the
first term in LDA being exact.

FIG. 5. Accurate short-range exchange energy of He(thick solid
curve) along the erfgau adiabatic connection, local density approxi-
mation (thick long-dashed curve), exact asymptotic expansion for
m→` [Eq. (28)] with the first term(lower solid curve) and with the
first two terms(upper solid curve), and asymptotic expansion in
LDA [Eq. (33)] with the first two terms(short-dashed curve), the
first term in LDA being exact.

FIG. 6. Accurate short-range correlation energy of He(thick
solid curve) along the erf adiabatic connection, local density ap-
proximation(thick long-dashed curve), exact asymptotic expansion
for m→` [Eq. (30)] with the first term(lower solid curve) and with
the first two terms(upper solid curve), and asymptotic expansion in
LDA [Eq. (34)] with the first term(lower short-dashed curve) and
with the first two terms(upper short-dashed curve).
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C. Exchange functional for largem

In Appendix C, we derive the general asymptotic expan-
sion of the short-range exchange energy form→`

Ēx
m = 2Îpo

n=0

m
A2n

s2nd!s2n + 2dm2n+2 E n2,x
s2ndsr ,r ddr

+ OS 1

m2m+3D , s22d

wheren2,x
s2ndsr ,r d are the on-top exchange pair density and its

spherical-averaged(with respect tor 12) derivatives. Simple
explicit expressions can be given for the first two terms of
this expansion. Indeed, the on-top exchangepair density
writes

n2,xsr ,r d = − o
s

ns
2sr d, s23d

where the summation is over the two spin statess=a ,b and
nssr d are the spin-densities; its second-derivative can be ex-
pressed by[46]

n2,x
s2dsr ,r d = −

1

3o
s

nssr dS¹2nssr d − 4tssr d +
1

2

u ¹ nssr du2

nssr d
D ,

s24d

where tssr d are the KS spin kinetic energy densities ex-
pressed in term of the KS spin-orbitalsfissr d by

tssr d =
1

2o
i=1

Ns

u ¹ fissr du2, s25d

whereNs is the number of electrons of spins. The Laplacian
in Eq. (24) can be eliminated by integration by parts

E nssr d¹2nssr ddr = −E u ¹ nssr du2dr , s26d

which leads for the leading terms of the expansion whenm
→` of the short-range exchange energy

Ēx
m = −

ÎpA0

m2 o
s
E nssr d2dr +

ÎpA2

12m4 o
s
E nssr d

3S u ¹ nssr du2

2nssr d
+ 4tssr dDdr + ¯ , s27d

with A0,erf=Îp /2, A0,erfgau=s1+6Î3dA0,erf, A2,erf=3Îp /4 and
A2,erfgau=s1+36Î3dA2,erf. Note that this last result has already
been demonstrated for the case of the erf interaction[29]. In
particular, for spin-unpolarized systems, Eq.(27) becomes

Ēx
m = −

ÎpA0

2m2 E nsr d2dr +
ÎpA2

24m4 E nsr d

3S u ¹ nsr du2

2nsr d
+ 4tsr dDdr + ¯ . s28d

Equation(27) and (28) shows that the first term in the ex-
pansion for largem of the short-range exchange energy is an
exact local functional of the density(or, in general, of the
spin-densities). Therefore, the local density approximation
becomes exact in this limit. An alternative view of this result
can be achieved in the framework of the wave-vector analy-
sis of the usual KS exchange functional by considering the
short wavelength limit[5]. The next term of expansion(28)
involves the gradient of the densityu¹nu and the kinetic en-
ergy densityt and is therefore of the meta-GGA type. The
following higher-order terms involve of course more and
more ingredients constructed from higher-order derivatives
of the KS orbitals. Note that instead of considering these
spin-dependent quantities one can also directly use the on-
top exchange pair density and its derivatives.

A similar asymptotic expansion can be derived for the
short-range Hartree energy

Ūm =
ÎpA0

m2 E nsr d2dr −
ÎpA2

12m4 E u ¹ nsr du2dr + ¯ .

s29d

By carefully comparing Eq.(27) and(29), one sees that, for
a one-electron system[na=n, nb=0, ta=tW= u¹nu2/ s8nd,
tb=0], the Hartree and exchange energies cancel out order
by order in the expansion with respect tom. As the first term
(in m−2) of the asymptotic expansion of the exchange energy
is a local functional of the density, this cancellation is exactly
maintained in the LDA, i.e., there is no self-interaction error
in LDA for this first term. For the next term of the expansion
(in m−4), the removal of the self-interaction error requires the
consideration of a meta-GGA functional depending explicitly
on u¹nsu andts.

In the KS scheme, it has been often argued that(semi)lo-
cal approximate exchange functionals actually mimics near-
degeneracy correlation effects(see, e.g., Ref.[47]). It is clear
from this above discussion that, for short-range exchange
functionals, (semi)local approximations become exact at
large m and therefore do not fortuitously mimic near-
degeneracy correlation anymore.

FIG. 7. Accurate short-range correlation energy of He(thick
solid curve) along the erfgau adiabatic connection, local density
approximation(thick long-dashed curve), exact asymptotic expan-
sion form→` [Eq. (30)] with the first term(lower solid curve) and
with the first two terms(upper solid curve), and asymptotic expan-
sion in LDA [Eq. (34)] with the first term (lower short-dashed
curve) and with the first two terms(upper short-dashed curve).
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D. Correlation functional for large m

In Appendix C, we derive the first two terms in the
asymptotic expansion of the short-range correlation energy
for m→`

Ēc
m =

ÎpA0

m2 E n2,csr ,r ddr +
2ÎpA1

3m3 E n2sr ,r ddr + ¯ ,

s30d

wheren2,csr ,r d andn2sr ,r d are the correlation and total pair
density, theA0 coefficient is given after Eq.(27) and in ad-
dition A1,erf=1 andA1,erfgau=28.

This result show that for largem the short-range correla-
tion energy becomes an exact local functional of the on-top
pair density n2sr ,r d [and of the density vian2,csr ,r d
=n2sr ,r d−nsr dnsr d /2 for closed-shell systems]. This empha-
sizes the importance of this quantity for density functional
approximations. It is in the same line of thought of a number
of previous studies[48–50] stressing the need of including
explicitly the on-top pair density in approximate density
functionals.

VI. PERFORMANCE OF THE LDA FOR SHORT-RANGE
EXCHANGE AND CORRELATION ENERGIES

The asymptotic expansions form→` enables to analyze
the local density approximation to the short-range exchange-
correlation functional. We restrict the discussion to spin-
unpolarized systems. Applying the LDA to the expansion of
the exchange energy(22) corresponds to transferring the on-
top exchange pair density and its derivativesñ2,x

s2ndsr ,r d from
the uniform electron gas[51]

ñ2,x
s2ndsr ,r d < nsr dnsr dfgx,0

s2nd
„nsr d… − 1g, s31d

wheregx,0
s2nd(nsr d) are the on-top derivatives of the exchange-

only pair-distribution function of the uniform electron gas
[52]

gxsr12,nd = 1 −
9

2
SsinskFr12d − kFr12 cosskFr12d

kF
3r12

3 D2

, s32d

with kF=s3p2nd1/3. The expansion(28) of the short-range
exchange energy then writes

Ēx
m,LDA = −

ÎpA0

2m2 E nsr d2dr +
32/3p11/6A2

20m4 E nsr d8/3dr + ¯ .

s33d

This last expansion is compared with the exact expansion
(28) for the He atom with the erf and erfgau interactions in
Figs. 4 and 5, respectively. In these expressions, an accurate
density of the He atom is used. The LDA for the modified
interactions[17,24] evaluated with the same density is also
reported, as well as an accurate calculation of the exchange
energy along the adiabatic connection[26,53] (see Sec. III).
The LDA expansion(33) is exact for the first term and very
close to the exact expansion(28) with the first two terms.
Consequently, in the domain of validity of this expansion
(for m*2), the LDA is nearly exact. The success of the LDA

for largem is therefore due to the exactness of the exchange
on-top pair-density and the good transferability of its first
derivatives from the uniform electron gas to the finite sys-
tem. Actually, it can be remarked that the expansion of LDA
up to them−4 term performs even slightly better than the
exact expansion to the same order. Similarly, the LDA is
already very accurate form*1 while achieving a compa-
rable accuracy from the slowly-improving expansion(28) of
the exact exchange energy would require a rather long ex-
pansion.

For the correlation energy, the LDA of expansion(30)
consists in transferring the on-top density from the uniform
electron gas to obtain

Ēc
m,LDA =

ÎpA0

m2 E nsr dnsr dSg0„rssr d… −
1

2
Ddr

+
2A1

Îp

3m3 E nsr dnsr dg0„rssr d…dr + ¯ , s34d

where rs=3/s4pnd1/3 is the local Wigner-Seitz radius and
g0srsd is the on-top pair-distribution function of the electron
gas for which Burke, Perdew, and Ernzerhof have proposed
an estimation[54]

g0srsd = Dfsg + rsd3/2 + bge−AÎg+rs, s35d

with D=32/s3pd, A=3.2581,b=163.44, andg=4.7125. The
expansion(34) is compared with the exact expansion(30)
using an accurate calculation ofn2sr ,r d for the He atom with
the erf and erfgau interactions in Figs. 6 and 7, respectively.
An accurate calculation of the correlation energy computed
along the adiabatic connection[26,53] and the LDA for
modified interactions[17,24] are also reported. As for the
exchange energy, the first terms of the LDA expansion(34)
nearly coincide with the exact expansion. This expansion
with the first two terms gives a very accurate approximation
to the exact correlation energy in the region of accuracy of
the full LDA curve (from m<2 to m→`). From these re-
sults, it is clear that the total on-top pair densityn2sr ,r d have
good transferability from the uniform electron gas to the He
atom. Actually, this good(while not exact) transferability
seems quite general and has already been pointed out for
several atomic and molecular systems[50,54,55]. This gives
an explanation for the success of the LDA in treating short-
range electron-electron interactions(large m). On the con-
trary, toward the Kohn-Sham endsm=0d of the adiabatic
connection, the LDA transfers spurious long-range correla-
tions from the uniform electron gas and therefore poorly ex-
trapolates the exact correlation energy of the finite system
which does not contain these long-range correlation effects.

VII. INTERPOLATIONS FOR THE SHORT-RANGE
EXCHANGE AND CORRELATION FUNCTIONALS

In the previous section, we have shown that the LDA
treats successfully short-range interactions corresponding to
large interaction parametersm but is inaccurate toward the
KS end of the adiabatic connection, i.e., for smallm. But for
m=0 a lot of better estimates of the exchange and correlation
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energies are available with density functional approximations
of the KS scheme which go beyond the LDA such as
gradient-corrected functionals. A simple idea for improving
the short-range exchange-correlation energy functional along
the adiabatic connection is therefore to interpolate between
an available density functional approximation(DFA) for m
=0 and them-dependent LDA form→`. In the spirit of the
usual DFT approximations, this interpolation will be done
locally, i.e., for the short-range exchange-correlation energy

density«̄xc
m sr d related to the global functionalĒxc

m fng via

Ēxc
m fng =E drnsr d«̄xc

m sr d. s36d

A. Rational interpolations

A simple possibility is to interpolate«̄xc
m sr d along the adia-

batic connection using an estimate atm=0 and the expan-
sions for largem (and eventually for smallm) presented in
Sec. V. For example, consider the rational approximant for
the short-range exchange energy density of the erf interaction

«̄x,erf
m <

«x
DFA

1 + b1m + b2m2 , s37d

whereb1=−1/s«x
DFAÎpd andb2=−4«x

DFA/ spnd are chosen to
satisfy the expansion for smallm [Eq. (17)] and the expan-
sion for largem [Eq. (28)] to leading order. In Eq.(37), «x

DFA

is the exchange energy density atm=0 estimated by one of
the usual density functional approximations of the KS
scheme.

For the erfgau interaction, the short-range exchange en-
ergy density can also be interpolated between«x

DFA at m=0
[no linear term inm, Eq. (18)] and the expansion for largem
[Eq. (28)] according to

«̄x,erfgau
m <

«x
DFA

1 + c2m2 , s38d

with c2=−4«x
DFA/ fs1+6Î3dpng.

In the same spirit, the short-range correlation density
along the adiabatic connection can be approximated by

«̄c
m <

«c
DFA

1 + d1m + d2m2 , s39d

with d1,erf=−2d2,erf
2 Îpng0srsd / s3«cd, d2,erf=2«c/ (pnfg0srsd

−1/2g) for the erf interaction, and d1,erfgau

=−56d2,erfgau
2 Îpng0srsd / s3«cd, d2,erfgau=d2,erf/ s1+6Î3d for

the erfgau interaction. Again,«c
DFA is the correlation energy

density atm=0 given by an available density functional ap-
proximation of the KS scheme. The rational approximant
(39) therefore interpolates between«c

DFA at m=0 and the ex-
pansion of the LDA for largem with the first two terms[Eq.
(34)].

B. Weighted interpolations

The interpolation formulas(37) and(38) only make use of
the first term of the asymptotic expansion of the LDA ex-

change energy form→`. However, it has been realized in
Sec. VI that the LDA works well on a larger domain ofm
than the first terms of its asymptotic expansion. In order to
take better advantage of the LDA, one can modify it only in
the region of smallm by using information from better esti-
mates of the KS exchange energy atm=0. We therefore in-
terpolate locally the short-range exchange density along the
adiabatic connection by

«̄x
m < s«x

DFA − «̄x
m=0,unifdwsmd + «̄x

m,unif, s40d

wherewsmd is a weight function acting at smallm only. More
precisely,wsmd must be a positive function satisfyingwsm
=0d=1 so that«̄x

m=0=«x
DFA, having significant values in the

region where the LDA fails and with a fast decay form
→` so as to recover the correct behavior of«̄x

m,unif for large
m. For the erf interaction, we found that the local value ofm
delimiting the domain where the LDA is inaccurate is well
estimated by 1/rssr d where rssr d is the local Wigner-Seitz
radius. We therefore takewerfsmd=erfcsmrsd where the
complementary error function erfc ensures that the weight
function has significant values only form,1/rs. Eq. (40)
thus interpolates between«x

DFA at m=0 and the LDA at large
m.

For the erfgau interaction, we can used the same weight
function except that now the local value ofm delimiting the
domain where the LDA must be corrected is estimated by
m=c/ rs wherec=s1+6Î3d1/2<3.375 is the scale factor be-
tween the erf and erfgau interactions discussed in Sec. II. We
therefore take as weight functionwerfgausmd=erfcsmrs/cd.

Naturally, this interpolation can also be applied to the
short-range correlation energy

«̄c
m < s«c

DFA − «̄c
m=0,unifdwsmd + «̄c

m,unif, s41d

with the same weight functionwsmd.

C. Other interpolations

Finally, we mention the approximation for the short-range
exchange energy proposed by Iikura, Tsuneda, Yanai, and
Hirao [30] based on a modification of the short-range LDA
exchange functional[17,24]. The spin-unpolarized version of
their approximation for the erf interaction is

«̄x,erf
m < «x

DFAF1 −
8

3
AXÎp erfS 1

2A
D

+ s2A − 4A3de−1/s4A2d − 3A + 4A3CG , s42d

whereA=m / s2kd, k=Î«x
LDA /«x

DFAkF and kF=s3p2nd1/3. The
approximation reduces to«x

DFA at m=0 and has an
asymptotic expansion form→` incorporating the correct
leading term[cf. Eq. (28)]. Therefore, Eq.(42) provides an
interpolation between a density functional approximation at
m=0, «x

DFA, and the correct limit asm→`. The same ap-
proximation can also be derived for the erfgau interaction
using the LDA exchange functional associated to this inter-
action [24]; it reads
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«̄x,erfgau
m < «x

DFAF1 −
8

3
AXÎp erfS 1

2A
D + s2A − 4A3de−1/s4A2d

− 3A + 4A3C +
8

3
AXÎp erfS 1

2B
D

+ s2B − 16B3de−1/s4B2d − 6B + 16B3CG , s43d

whereB=A/Î3.
Notice that in the interpolations of Secs. VII A–VII C the

exchange and correlation energy densities atm=0, «x
DFA and

«c
DFA, can be estimated by any of the available exchange-

correlation functionals of the Kohn-Sham scheme. In this
sense, formulas(37) to (43) provide extensions of these
exchange-correlation functionals over the erf and erfgau
adiabatic connections.

D. Results

We now test the interpolations formulas(37) to (43) on a
few atomic systems. In all the results presented here, we use

the PBE functional[56] as the density functional approxima-
tion at m=0 both for exchange and correlation:«x

DFA=«x
PBE

and«c
DFA=«c

PBE.
Figures 8 and 9 represent the short-range exchange energy

of the He atom along the erf and erfgau adiabatic connec-
tions, respectively. An accurate calculation is compared to
the LDA and to the three interpolations of Secs. VII A,
VII B, and VII C. One sees that the rational approximants
give an overall reasonable estimate of the exchange energy
along both adiabatic connections but are actually less accu-
rate that the LDA in the region of intermediatem. As already
noticed, this reflects the fact that the LDA works well on a
larger range ofm that the first terms of its expansion form
→`. The weighted interpolations make better use of the
LDA and constitutes an improvement over it for allm’s. Fi-
nally, the approximation of Iikuraet al. is nearly identical to
the weighted interpolation for both the erf and erfgau inter-
actions.

Similar curves for the short-range correlation energy of
the He atom with the erf and erfgau interactions are shown in
Figs. 10 and 11. and As for the exchange energy, the rational
approximants constitute an overall correction to the LDA but
not in a systematic way since the LDA still performs better

FIG. 8. Accurate short-range exchange energy of He(solid
curve) along the erf adiabatic connection, local density approxima-
tion (long-dashed curve) and three interpolations between the PBE
value atm=0 and the LDA atm→` using a rational approximant
[Eq. (37), short-dashed curve], a weighted approximant[Eq. (40),
dotted curve] and the approximation of Iikuraet al. [Eq. (42),
dashed-dotted curve]. The last two curves are nearly superimposed.

FIG. 9. Accurate short-range exchange energy of He(solid
curve) along the erfgau adiabatic connection, local density approxi-
mation (long-dashed curve) and three interpolations between the
PBE value atm=0 and the LDA atm→` using a rational approx-
imant [Eq. (38), short-dashed curve], a weighted approximant[Eq.
(40), dotted curve] and the approximation of Iikuraet al. [Eq. (43),
dashed-dotted curve]. The last two curves are nearly superimposed.

FIG. 10. Accurate short-range correlation energy of He(solid
curve) along the erf adiabatic connection, local density approxima-
tion (long-dashed curve) and two interpolations between the PBE
value atm=0 and the LDA atm→` using a rational approximant
[Eq. (39), short-dashed curve] and a weighted approximant[Eq.
(41), dotted curve].

FIG. 11. Accurate short-range correlation energy of He(solid
curve) along the erfgau adiabatic connection, local density approxi-
mation (long-dashed curve) and two interpolations between the
PBE value atm=0 and the LDA atm→` using a rational approx-
imant [Eq. (39), short-dashed curve] and a weighted approximant
[Eq. (41), dotted curve].

LONG-RANGE–SHORT-RANGE SEPARATION OF THE… PHYSICAL REVIEW A 70, 062505(2004)

062505-9



for intermediatem. On the contrary, the weighted interpola-
tions always improve the LDA. As one can expect, consid-
ering exchange and correlation together further improves the
results at smallm.

We now discuss the Be atom. The short-range exchange
energy along the adiabatic connections looks very similar to
that of the He atom and will not be shown. The short-range
correlation energy for which the LDA has more difficulties
than for the He case is represented in Figs. 12 and 13 for the
erf and erfgau interactions. One can see that both the rational
approximant and the weighted interpolation improve the
LDA along the whole adiabatic connection.

The He and Be atoms are simple cases where a gradient-
corrected functional like PBE give a very accurate correla-
tion energy. On the contrary, the Ne6+ atom constitutes a
much more difficult system for(semi)local functionals be-
cause of the presence of strong near-degeneracy correlation
effects due to the proximity of the 2s and 2p levels. The
short-range correlation energy of this system is reported in
Figs. 14 and 15 for the erf and erfgau interactions. The PBE
functional of the KS schemesm=0d strongly underestimates
the correlation energy. One sees that with the rational ap-
proximants or the weighted interpolations, the error is rap-

idly decreased whenm is increased, i.e., when long-range
interactions are removed from the functional.

VIII. CONCLUSION

In a quantum electronic system, the long-range–short-
range separation of the Coulomb interaction enables to rig-
orously decompose the total energy into long-range and
short-range components which can be calculated by different
methods. In particular, a density functional approximation
can be used for the short-range part of the energy, while the
long-range contribution can be treated by traditional wave
function methods. In this work, we have considered two pos-
sible long-range–short-range separation of the Coulomb in-
teraction: the erf and erfgau modified interactions. The erf-
gau interaction achieves a better separation than the erf
interaction. We have shown that the use of these modified
interactions facilitates wave function calculations. We have
also studied the short-range part of the exchange-correlation
functional with respect to the range of the associated inter-
action, and shown that, in the limit of a very short-range
interaction, the exchange contribution to this functional can
be expressed as a local functional of the density and is there-

FIG. 12. Accurate short-range correlation energy of Be(solid
curve) along the erf adiabatic connection, local density approxima-
tion (long-dashed curve) and two interpolations between the PBE
value atm=0 and the LDA atm→` using a rational approximant
[Eq. (39), short-dashed curve] and a weighted approximant[Eq.
(41), dotted curve].

FIG. 13. Accurate short-range correlation energy of Be(solid
curve) along the erfgau adiabatic connection, local density approxi-
mation (long-dashed curve) and two interpolations between the
PBE value atm=0 and the LDA atm→` using a rational approx-
imant [Eq. (39), short-dashed curve] and a weighted approximant
[Eq. (41), dotted curve].

FIG. 14. Accurate short-range correlation energy of Ne6+ (solid
curve) along the erf adiabatic connection, local density approxima-
tion (long-dashed curve) and two interpolations between the PBE
value atm=0 and the LDA atm→` using arational approximant
[Eq. (39), short-dashed curve] and a weighted approximant[Eq.
(41), dotted curve].

FIG. 15. Accurate short-range correlation energy of Ne6+ (solid
curve) along the erfgau adiabatic connection, local density approxi-
mation (long-dashed curve) and two interpolations between the
PBE value atm=0 and the LDA atm→` using a rational approx-
imant [Eq. (39), short-dashed curve] and a weighted approximant
[Eq. 41, dotted curve].
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fore exact in the LDA. In the same limit, the correlation
contribution can be expressed as a local functional of the
on-top pair density which is generally accurate in the LDA.
However, when the interaction becomes more and more
long-ranged, the LDA is inaccurate. It is nevertheless pos-
sible to improve the LDA description of the short-range
exchange-correlation functional by making use of the avail-
able gradient-corrected functional of the Kohn-Sham scheme
in the limit of the full Coulomb interaction. We have indeed
proposed two kind of interpolations for the short-range
exchange-correlation functional along the erf or erfgau adia-
batic connection which improve the LDA. In order to extend
the interaction range well treated by functional approxima-
tions in a more systematic way, we are currently investigat-
ing gradient corrections for the short-range exchange-
correlation functional.
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APPENDIX A: MODIFIED TWO-ELECTRON INTEGRALS

In this appendix, we give details of the evaluation of the
two-electron integrals over Gaussian basis sets for the modi-
fied erf and erfgau interactions. The modified integrals have
been implemented into the Seward program[57] available in
the Molpro package[44] and using the Rys quadrature
scheme[58]. For other implementations of two-electron in-
tegrals with modified interactions, see Refs. 28, 36, and 59.

The general form of four-center two-electron integrals is

fabuveesr12ducdg =E E dr 1dr 2fsr 1,za,a,Adfsr 1,zb,b,Bd

3veesr12dfsr 2,zc,c,Cdfsr 2,zd,d,Dd,

sA1d

whereveesr12d is the electron-electron interaction andf is is
an unnormalized primitive Cartesian Gaussian basis function

fsr ,z,n,Rd = sx − Rxdnxsy − Rydnysz− Rzdnze−zsr − Rd2.

sA2d

Actually, it is only required to explicitly compute the inte-
grals of the type

fe0uveesr12duf0g = kABkCDE E dr 1dr 2sx1 − Axdexsy1

− Aydeysz1 − Azdeze−zsr 1 − Pd2veesr12dsx2

− Cxd fxsy2 − Cyd fysz2 − Czd fze−hsr 2 − Qd2,

sA3d

where z=za+zb, h=zc+zd, P=szaA +zbBd / sza+zbd, Q
=szcC+zdDd / szc+zdd, kAB=exph−fzazb/ sza+zbdgsA −Bd2j
and kCD=exph−fzczd/ szc+zddgsC−Bd2j. The general inte-
grals fabuveesr12ducbg are then obtained by applying the so-

called transfer relation[57] to the integralsfe0uveesr12duf0g
with e=maxsa,bd . . .a+b and f =maxsc,dd . . .c+d.

For the Coulomb interactionveesr12d=1/r12, these inte-
grals can be written as

fe0u1/r12uf0g =E
0

1

dtPnstde−t2rsP − Qd2, sA4d

with r=zh / sz+hd and Pnstd are the Rys polynomials of or-
der n=ex+ey+ez+ fx+ fy+ fz in t2

Pnstd = 2S r

p
D1/2

kABkCDSr

z
D3/2S r

h
D3/2

Ix8sex, fx,td

3Iy8sey, fy,tdIz8sez, fz,td, sA5d

whereIl8 sl=x,y,zd are 2D integrals obeying the recurrence
relation

Il8sel + 1,fld = SsPl − Ald +
rt2

z
sQl − PldDIl8sel, fld

+
el

2z
S1 −

rt2

z
DIl8sel − 1,fld +

flrt2

2zh
Il8sel, fl

− 1d, sA6d

with the starting valueIl8s0,0d=1. Equation(A4) can be
evaluated exactly by the Rys quadrature

fe0u1/r12uf0g = 2S r

p
D1/2

kABkCDSr

z
D3/2S r

h
D3/2

o
a=1

nRys

Ix8sex, fx,tad

3Iy8sey, fy,tadIz8sez, fz,tadwa, sA7d

where ta and wa=exph−ta
2rsP−Qd2j are the roots and the

weights of Rys polynomials andnRys.n/2.
The modified integrals for the erf interaction

fe0uerfsmr12d / r12uf0g can simply be computed with the same
scheme by applying the following simple modification ev-
erywhere[17,21]: 1 /r→1/r+1/m2. Thus, with respect to
the Coulomb case, in Eq.(A6) the recurrence coefficients are
modified, and in Eq.(A7) the prefactor, the weightswa and
the rootsta, depending onr, are modified.

To calculate the integrals for the erfgau interaction, addi-
tional integrals of typefe0uC exps−ar12

2 duf0g are needed.
These integrals can be computed like an one-point Rys
quadrature with root ta=Îa2/ sr+a2d, weight wa=exph
−ta

2rsP−Qd2j and a modified prefactor depending onta

fe0uC exps− ar12
2 duf0g = Cs1 − ta

2d3/2kABkCDSr

z
D3/2S r

h
D3/2

3 Ix8sex, fx,tadIy8sey, fy,tadIz8sez, fz,tadwa.

sA8d

APPENDIX B: ADIABATIC CONNECTION
NEAR THE KS SYSTEM

In this appendix, we study the erf and erfgau adiabatic
connections near the KS system, i.e., for small interaction
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parameterm. The fictitious system along these connections is
described by the Hamiltonian[cf. Eq. (5)]

Ĥm = o
i

− 1

2
¹i

2 + o
i, j

vee
m sr ijd + o

i
vmsr id, sB1d

wherevee
m is the long-range erf or erfgau interaction andvm is

the external local potential associated to the short-range Har-
tree, exchange and correlation energy functionalsvmsr d
=vnesr d+dŪmfng /dnsr d+Ēx

mfng /dnsr d+Ēc
mfng /dnsr d. The be-

havior for m→0 of all quantities associated to this fictitious
system can be derived from the Maclaurin series of the long-
range interactionvee

m

vee
m sr12d =

2
Îp

o
n=0

`
s− 1dnan

n!
r12

2nm2n+1, sB2d

where an,erf=1/s2n+1d for the erf interaction andan,erfgau

=1/s2n+1d−1/3n (=0 for nø1 by construction) for the er-
fgau interaction.

1. Short-range Hartree energy form\0

Equation(B2) leads immediately to the expansion of the
short-range Hartree energy

Ūm =
1

2
E E nsr 1dnsr 2dv̄ee

m sr12ddr 1dr 2

= U −
1

Îp
o
n=0

`
s− 1dnan

n!
m2n+1

3E E nsr 1dnsr 2dr12
2ndr 1dr 2, sB3d

whereU is the standard KS Hartree energy. To obtain Eq.
(B3), the integral and summation signs have been inter-
changed. This is reasonable for a finite system wherer12 is
always bounded since in this case the series(B2) is uni-
formly convergent and can thus be integrated term by term.

2. Short-range exchange energy form\0

The expansion form→0 of the short-range exchange en-
ergy of Eq.(7) is

Ēx
m =

1

2
E E n2,xsr 1,r 2dv̄ee

m sr12ddr 1dr 2

= Ex −
1

Îp
o
n=0

`
s− 1dnan

n!
m2n+1

3E E n2,xsr 1,r 2dr12
2ndr 1dr 2, sB4d

whereEx is the standard KS exchange energy andn2,xsr 1,r 2d
is the exchange contribution to the pair density.

3. Short-range correlation energy form\0

The short-range correlation energy of Eq.(8) can be writ-
ten with the correlation contribution to the pair density
n2,c

m sr 1,r 2d with interactionvee
m as

Ēc
m = Ec −

1

2
E E n2,c

m sr 1,r 2dvee
m sr12ddr 1dr 2, sB5d

whereEc is the usual correlation energy of the KS scheme.

The expansion ofĒc
m for small m can be obtained by first

studying the derivative ofĒc
m with respect tom which by the

Hellmann-Feynman theorem writes

]Ēc
m

]m
= −

1

2
E E n2,c

m sr 1,r 2d
]vee

m sr12d
]m

dr 1dr 2, sB6d

and assuming forn2,c
m sr 1,r 2d the following expansion around

m=0

n2,c
m sr 1,r 2d = o

k=1

`
1

k!
S ]kn2,c

m sr 1,r 2d
]mk D

m=0
mk, sB7d

since for the KS systemn2,c
m=0sr 1,r 2d=0. Therefore, inserting

Eq. (B7) and the derivative of Eq.(B2) into Eq. (B6), and
assuming the commutativity of summation and integration,
leads to

]Ēc
m

]m
= −

1
Îp

o
n=0

`

o
k=1

`
s− 1dns2n + 1dan

n!k!
m2n+k

3E E S ]kn2,c
m sr 1,r 2d
]mk D

m=0
r12

2ndr 1dr 2, sB8d

where the termn=0 can be dropped sincen2,c
m sr 1,r 2d inte-

grates to zero. After integration we obtain the expansion of
the short-range correlation energy

Ēc
m = Ec −

1
Îp

o
n=1

`

o
k=1

`
s− 1dns2n + 1dan

n!k!s2n + k + 1d
m2n+k+1

3E E S ]kn2,c
m sr 1,r 2d
]mk D

m=0
r12

2ndr 1dr 2. sB9d

Actually, several terms of this expansion vanish as it will be
seen below.

4. Ground-state wave function form\0

Using the expansion of the interactionvee
m [Eq. (B2)] and

taking the functional derivatives of the expansions of the
short-range Hartree, exchange and correlation energies[Eqs.
(B3), (B4), and(B9)] to obtain the expansion of the potential
vm, we arrive at the following formal expansion for the
Hamiltonian of the fictitious system:

Ĥm = ĤKS+ o
n=0

`

vee
s2n+1dm2n+1 + o

n=0

`

vhx
s2n+1dm2n+1

+ o
n=1

`

o
k=1

`

vc
s2n+1,kdm2n+1+k. sB10d

In this equation,ĤKS is the KS Hamiltonian,vee
s2n+1d refers to

the coefficients of expansion(B2), vhx
s2n+1d refers to the Har-

tree and exchange contributions to the coefficients of the
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expansion ofvm andvc
s2n+1,kd refers to the correlation contri-

bution. The two superscripts invc
s2n+1,kd reflect the fact that

the terms in the expansion of the correlation energy[Eq.
(B9)] come from two sources: the interactionvee

m and the pair
density n2,c

m . The ground-state wave functionCm of this
Hamiltonian can also be expanded with respect tom

Cm = F + o
k=1

`

Cskdmk, sB11d

whereF is the KS determinant. We now show that several
terms in the expansion ofCm actually vanish.

For the erf interaction,vee
s1d andvhx

s1d are constants[cf. Eqs.
(B2), (B3), and (B4)], and consequentlyvc

s1,kd=0 for all k
ù1, thusCs1d=0. As there is no term inm2 in Eq. (B10), we
also haveCs2d=0. It implies in turn that in Eq.(B7) the terms
kø2 vanish, and thus by Eq.(B9) vc

s2n+1,kd=0 for kø2 and
all nù1. In particular,vc

s3,1d=vc
s3,2d=0 which leads to the

expansion of the Hamiltonian

Ĥerf
m = ĤKS+ svee

s3d + vhx
s3ddm3 + svee

s5d + vhx
s5ddm5 + vc

s3,3dm6 + ¯ .

sB12d

We therefore have the following expansion for the wave
function:

Cerf
m = F + m3Cs3d + m5Cs5d + m6Cs6d + ¯ . sB13d

Therefore, the termsk=1,2,4 inEqs.(B7) and (B9) vanish
for for the erf interaction.

For the erfgau interaction,vee
s1d=vee

s3d=0, and consequently
vhx

s1d=vhx
s3d=0 and vc

s3,kd=0 for all kù1, thus Cs1d=Cs2d

=Cs3d=Cs4d=0. It implies in turn that in Eq.(B7) the terms
kø4 vanish, and thus by Eq.(B9) vc

s2n+1,kd=0 for kø4 and
all nù1. In particular, vc

s5,1d=vc
s5,2d=vc

s5,3d=vc
s5,4d=vc

s6,1d

=vc
s6,2d=vc

s6,3d=vc
s6,4d=vc

s7,1d=vc
s7,2d=vc

s7,3d=vc
s8,1d=vc

s8,2d=vc
s9,1d

=0 which leads to the expansion of the Hamiltonian

Ĥerfgau
m = ĤKS+ svee

s5d + vhx
s5ddm5 + svee

s7d + vhx
s7ddm5 + svee

s9d

+ vhx
s9ddm9 + vc

s5,5dm10 + ¯ . sB14d

We therefore have the following expansion for the wave
function:

Cerfgau
m = F + m5Cs5d + m7Cs7d + m9Cs9d + m10Cs10d + ¯ .

sB15d

Therefore, the termsk=1,2,3,4,6,8 inEqs.(B7) and (B9)
vanish for the erfgau interaction.

APPENDIX C: ADIABATIC CONNECTION
NEAR THE PHYSICAL SYSTEM

In this appendix, we study the erf and erfgau adiabatic
connections near the physical system, i.e., for large interac-
tion parameterm.

1. Short-range interaction for m\`

We start by deriving a distributional asymptotic expansion
for large m of the short-range electron-electron interaction

v̄ee
m srd=1/r −vee

m srd for the erf and erfgau interactions,

v̄ee,erf
m srd =

erfcsmrd
r

, sC1d

v̄ee,erfgau
m srd =

erfcsmrd
r

+
2m

Îp
e−s1/3dm2r2

. sC2d

Let f :R+→R be a test function(i.e., of bounded support and
infinitely differentiable) and consider the following integral:

I =E fsrdv̄ee
m srddr . sC3d

f can be expanded into its Maclaurin series

fsrd = o
n=0

m
f snds0d

n!
rn + Rmsrd, sC4d

where the Lagrange remainderRmsrd is

Rmsrd =
f sm+1dsurd
sm+ 1d!

rm+1, sC5d

with 0øuø1. Inserting the first term of the right-hand side
of expansion(C4) into Eq.(C3) gives the first contribution to
integral I

I1 = o
n=0

m
f snds0d

n!
E rnv̄ee

m srddr , sC6d

where the last integral can be easily evaluated

E rnv̄ee
m srddr = 4pE rn+2v̄ee

m srddr =
4Îp

sn + 2dmn+2An,

sC7d

with An,erf=G(sn+3d /2) for the erf interaction andAn,erfgau

=G(sn+3d /2)+3sn+3d/2sn+2dG(sn+3d /2) for the erfgau inter-
action. Thus, Eq.(C6) becomes

I1 = 4Îpo
n=0

m
Anf snds0d

n!sn + 2dmn+2 . sC8d

The second contribution toI coming from the remainder
writes

I2 =E f sm+1dsurd
sm+ 1d!

rm+1v̄ee
m srddr . sC9d

We shall assume in addition that, for anym, the sm+1dth
derivative of f is bounded, i.e.,uf sm+1dsrduøMm, then

uI2u ø
Mm

sm+ 1d! E rm+1v̄ee
m srddr =

4ÎpMmAm+1

sm+ 1d!sm+ 3dmm+3 ,

sC10d

meaning thatI2=Os1/mm+3d. Finally, using the definition of
thenth derivative of the three-dimensional Dirac delta distri-
bution dsndsr d,
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E fsrddsndsr ddr = s− 1dnf snds0d, sC11d

we obtain the following distributional asymptotic expansion
of v̄ee

m srd whenm→`:

v̄ee
m srd = 4Îpo

n=0

m
s− 1dnAn

n!sn + 2dmn+2dsndsr d + OS 1

mm+3D .

sC12d

Note that if we apply a scale factor to the interaction param-
eter of the erfgau interactionm→cm such that c
= ÎsAn,erfgau/An,erfd=s1+6Î3d1/2<3.375, then the asymptotic
expansions of the erf and erfgau interactions are the same to
leading order. This provides a criteria for comparison of the
two interactions.

Following the same procedure on the derivative of the
modified interaction with respect tom which writes

]v̄ee,erf
m srd
]m

= −
2

Îp
e−m2r2

, sC13d

for the erf interaction, and

]v̄ee,erfgau
m srd

]m
= −

2
Îp

e−m2r2
+

2
Îp

e−s1/3dm2r2
−

4m2r2

3Îp
e−s1/3dm2r2

,

sC14d

for the erfgau interaction, leads to a similar asymptotic ex-
pansion

]v̄ee
m srd
]m

= − 4Îpo
n=0

m
s− 1dnAn

n!mn+3 dsndsr d + OS 1

mm+4D ,

sC15d

which is just the derivative of expansion(C12). In the fol-
lowing, we will apply Eqs.(C12) and (C15) assuming that
the corresponding test functionfsrd related to the pair den-
sity satisfies all the required assumptions which are reason-
able for finite systems.

2. Short-range Hartree energy form\`

Introducing the trivial variable transformationr 2→ r 12
and the spherical average of the densitynsr 12d

ñsr12d =
1

4p
E nsr 12ddVr 12

, sC16d

the short-range Hartree energy writes

Ūm =
1

2
E E nsr 1dñsr12dv̄ee

m sr12ddr 1dr 12. sC17d

Using then the distributional asymptotic expansion whenm
→` of the short-range interaction[Eq. (C12)] and noting
that ñsr12d can be expanded as an even series ofr12 around
r12=0, we obtain the asymptotic series of the short-range
Hartree energy

Ūm = 2Îpo
n=0

m
A2n

s2nd!s2n + 2dm2n+2

3E nsr dns2ndsr ddr + OS 1

m2m+3D , sC18d

where the notationns2ndsr d=f]2nñsr12d /]r12
2ngr12=0 has been

used for the density and its spherical-averaged derivatives.

3. Short-range exchange energy form\`

Similarly, the short-range exchange energy can be written
as

Ēx
m =

1

2
E E ñ2,xsr 1,r12dv̄ee

m sr12ddr 1dr 12, sC19d

where ñ2,xsr 1,r12d is the spherical-average exchange pair
density which can be expanded like the density as an even
series ofr12 around r12=0 (“no cusp for exchange”). We
therefore obtain the asymptotic series of the short-range ex-
change energy

Ēx
m = 2Îpo

n=0

m
A2n

s2nd!s2n + 2dm2n+2

3E n2,x
s2ndsr ,r ddr + OS 1

m2m+3D , sC20d

with the on-top exchange pair density and its spherical-
averaged derivativesn2,x

s2ndsr ,r d=f]2nñ2,xsr ,r12d /]r12
2ngr12=0.

4. Short-range correlation energy form\`

The asymptotic expansion of the short-range correlation
energy whenm→` can formally be found by considering its
derivative[cf. Eq. (B6)]

]Ēc
m

]m
=

1

2
E E ñ2,c

m sr 1,r12d
]v̄ee

m sr12d
]m

dr 1dr 12, sC21d

whereñ2,c
m sr 1,r12d is the spherical average ofn2,c

m sr 1,r 2d, in-
serting the asymptotic expansion ofñ2,c

m sr 1,r12d and the dis-
tributional asymptotic expansion of]v̄ee

m /]m [Eq. (C15)] and
re-integrating with respect tom. Actually, considering only
the first term of the asymptotic expansion of the correlation
pair density, i.e.,ñ2,c

m sr 1,r12d= ñ2,csr 1,r12d+¯, is sufficient to
find the first term of the asymptotic expansion of the corre-
lation energy. Similarly to the exchange energy, the leading
term of the short-range correlation energy for largem is con-
sequently given by the on-top correlation pair density
n2,csr ,r d

Ēc
m =

ÎpA0

m2 E n2,csr ,r ddr + ¯ . sC22d

Notice that, for the erf interaction, this result has already
been derived[26].

Using Eqs.(C18), (C20), and (C22), the external local

potentialvmsr d=vnesr d+dŪm /dnsr d+dĒxc
m /dnsr d has the fol-

lowing behavior for largem:
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vmsr d = vnesr d +
ÎpA0

m2

d

dnsr d E n2sr 8,r 8ddr 8 + ¯ ,

sC23d

wheren2sr ,r d is the total on-top pair density. Asvee
m has a

similar expansion form→` beginning with m−2 [see Eq.
(C12)]

vee
m srd =

1

r
−

2ÎpA0

m2 dsr d + ¯ , sC24d

the behavior for largem of the modified HamiltonianĤm

=T̂+oi, jvee
m sr ijd+oivmsr id is of the form

Ĥm = Ĥ +
1

m2Ĥs2d + ¯ . sC25d

The corresponding wave functionCm and consequently the
correlation pair densityñ2,c

m sr 1,r12d has a similar asymptotic
expansion

n2,c
m sr 1,r12d = n2,csr 1,r12d +

1

m2n2,c
s2dsr 1,r12d + ¯ .

sC26d

The absence of term in 1/m in the last expansion implies that
the first two terms in the asymptotic expansion of]Ēc

m /]m
can be determined by considering onlyn2,csr 1,r12d. We find

]Ēc
m

]m
= −

2ÎpA0

m3 E n2,csr ,r ddr −
2ÎpA1

m4 E n2,c8 sr ,r ddr + ¯ ,

sC27d

where n2,c8 sr ,r d is the spherical-averaged derivative of the
on-top correlation pair density which, according to the
electron-electron cusp condition[60], is equal to the total
on-top pair density:n2,c8 sr ,r d=n2sr ,r d. Therefore, for largem
the short-range correlation energy has the exact behavior

Ēc
m =

ÎpA0

m2 E n2,csr ,r ddr +
2ÎpA1

3m3 E n2sr ,r ddr + ¯ .

sC28d
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