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Abstract

We consider the zero-temperature van der Waals interaction between two molecules, each of

which has a zero or near-zero electronic gap between a groundstate and the first excited state,

using a toy model molecule ( equilateral H3) as an example. We show that the van der Waals

energy between two groundstate molecules falls off as D−3 instead of the usual D−6 dependence,

when the molecules are separated by distance D. We show that this is caused by perfect ”spooky”

correlation between the two fluctuating electric dipoles. The phenomenon is related to, but not the

same as, the ”resonant” interaction between an electronically excited and a groundstate molecule

introduced by Eisenschitz and London in 1930. It is also an example of ”type C van der Waals non-

additivity” recently introduced by one of us ( Int. J. Quantum Chem. 114, 1157 (2014)). Our toy

molecule H3 is not stable, but symmetry considerations suggest that a similar vdW phenomenon

may be observable, despite Jahn-Teller effects, in molecules with discrete rotational symmetry and

broken inversion symmetry, such as certain metal atom clusters. The motion of the nuclei will need

to be included for a definitive analysis of such cases, however.

2



It is well known that a pair of molecules ”a” and ”b” in their dimer groundstate experience

an atractive dispersion (van der Waals) interaction at non-overlapping separations D. The

dispersion interaction comes from coupled quantum-fluctuating multipoles. For D much

greater than the molecular sizes, the dipolar D−6 interaction term dominates, and is given

by 2nd order perturbation theory as

E(2) = −
∑

J,K

∣

∣

∣
〈0a0b| e2

D3

(

~Xa. ~Xb − 3
(

D̂. ~Xa

)(

D̂. ~Xb

))

|JaKb〉
∣

∣

∣

2

(EJa −E0a) + (EKb − E0b)
= −C6

abD−6 . (1)

Here |0〉a annd E0a are the many-electron groundstate and energy of molecule a. and

− |e| ~Xa = − |e|
∑

i ~ria is the dipole operator for molecule a, in which the electronic po-

sition operator ~ria of electron number i in molecule a is measured from the centre of charge

of the constitutent nuclei. |Ja〉, EJa are many-electron eigenfunctions and eigenvalues of

molecule a in isolation, and |Kb >, EKb are those of molecule b in islolation. D̂ = ~D/D is a

unit vector pointing between the molecules.

Eq (1) is no longer valid if the separation D is so large that the time τem = D/c for

electromagnetic wave propagation between the molecules exceeds a typical correlation time

τel of the intramolecular dipolar fluctuations.

There is also clearly a problem with Eq (1) if both molecules have degenerate electronic

groundstates so that there exist many-electron states |J〉a and |K〉b such that EJa = E0a

and EKb = E0b. Then, provided that the relevant dipole matrix element in (1) is nonzero,

a discrete term in (1) has a zero denominator leading to a dispersion interaction that does

not fall off as D−6 (i.e. Cab
6 → ∞). Here we will discuss the consequences of this degenerate

situation, starting from the (unrealistic) toy model of the H3 molecule in which the nuclei

are constrained to lie on an equilateral triangle. We will then move on to the possibilities for

observation of similar anomalous vdW interactions between molecules in other constrained

geometries. Finally we will discuss the prospects for observation of such unconventional dis-

persion forces between real cluster molecules where Jahn-Teller physics and nuclear motion

(pseudo-rotation [1],[2]) are probably significant.

In such degenerate situations we show below that there are ”spooky” correlations between

the fluctuating dipoles on the molecules, correlations that do not decay with separation D,

and as a result the dispersion interaction falls off as −D−3 rather than the conventional

−D−6.
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In fact similar unusual van der Waals interactions, falling off with an unconventional

power of separation, have previously been predicted between extended, low-dimensional

nanostructures with a zero HOMO-LUMO gap. Specifically, for two parallel two-dimensional

electron gases separated by distance Z, a sum of D−6 atom-atom contributions predicts a

vdW interaction Z−4 whereas microscopic theory gives Z−5/2 [3]. For parallel undoped

graphene sheets the conventional summed result is E (Z) ∝ −Z−4 whereas microscopic

theory gives E (Z) ∝ −Z−3 or a logarithmically corrected version of this [4][5]. For the

one-dimensional case of two parallel metallic nanotubes at separation Z, the conventional

summed result is E (Z) ∝ −Z−5 whereas more acurate microscopic approaches yield E (Z) ∝
−Z−2 (ln |z|)−3/2 [6],[4],[7][8] in the electromagnetlicaly non-retarded regime. These 2D and

1D nanosystems were argued [4],[9],[10],[11] to exhibit unconvential vdW powers because

of their zero electronic energy gap and their low dimensionality (limiting the influence of

coulomb screening). In a recent work [9], these unconventional dispersion power laws were

attributed to ”type C vdW non-additivity” arising from the de-localization (hopping) of

electrons between nuclear centres, i.e. to number fluctuations on each centre. One then

wonders whether zero-dimensional systems (molecules) could exhibit similarly anomalous

vdW interactions when their groundstates have a zero electronic energy gap: this provides

an additional motivation for the present investigation, beyond the mathematical observation

of a zero denominator in Eq (1).

I. A TOY MODEL OF SPOOKY DIPOLAR INTERACTIONS: EQUILATERAL

H3

To observe the spooky dipolar correlations and −D−3 interaction in the electronic ground-

state of a moleular pair as proposed above, the discussion following Eq (1) suggests that

one needs to find a molecule with two strictly degenerate groundstates that are coupled by

the electric dipole operator Such molecules are not easy to find. The idealized case of a

strictly equilateral H3 molecule is one such case, as we show below. However, a literature

search suggests that the H3 molecule is not stable in its electronic groundstate, and previous

work found that the theoretical H3 conformation of minimum electronic groundstate energy

would be a linear geometry, not a triangle. In general, even where a candidate degenerate

molecule for these effects is stable, one can exepect a Jahn-Teller effect to occur, whereby
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a fully isolated molecule will distort geometrically. We discuss these effects later on in this

paper. For now we artificially hold the protons in the equilateral triangle conformation.

The toy model that then results is very informative for present purposes. We can adjust

the distance between the protons withn a molecule in order to explore regimes of weak and

strong orbital overlap.

A. Minimal-basis, independent-electron model of a single equilateral H3

We first study the simplest possible version capable of electronic dipolar excitations,

namely three independent electrons moving in the Coulomb potential due to the nuclei,

with a basis consisting of only a single s state on each nucleus. Thus a distortion of the

charge cloud on each nucleus is not possible, and the dipolar fluctuations that lead to

the dispersion interaction between two such idealized molecules arise from hopping of the

electrons between the localized s states on the different protons of one molecule. (This

will lead to the the pure ”type-C non-additivity ”phenomenon in dispersion interactions

between such molecules, as proposed in [9]). We first show that this non-interacting three-

electron model for a single H3 molecule has 2 exactly degenerate electronic groundstates

for each allowed spin configuration. For each spin configuration we further show that the

two groundstates are coupled by the dipole moment operator. We will then use a limited

Configuration Interaction (CI) approach to a pair of H3 molecules, leading to the spooky

−D−3 inter-interaction as described in general above. In the following section we will then

show, by symmetry arguments and limited CI calculations, that these conclusions survive

even when electron-electron interactions are re-introduced and a larger basis is used. In a

further Section we confirm these conclusions via a larger CI calculation using the package

MOLPRO.

We label the three protons i = 1, 2, 3 (see Fg 1) . The 6 localized 1-electron s states are

denoted |i ↑〉, |i ↓〉 in Dirac notation. The 1-electron Hamiltonian for a spin-up electron is

of form

H1 electron
↑ =











ε −t −t

−t ε −t

−t −t ε











(2)

where ε is the 1s energy and t is a ”hopping” matrix element of the hamiltonian between
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FIG. 1: Geometry of equilateral H3

any two sites. t is usually positive except possibly when the internuclear distance is chosen

to be extremely small. The matrix element of the position operator ~r is

〈i ↑|~r |j ↑〉 =







(

~Ri + ~Rj

)

α/2. i 6= j

~Ri, i = j
(3)

where ~Ri is the location of the ith proton (see Fig 1 for molecular geometry and labelling).

The neighbor overlap element α in (3) is real and is the same for all neighbor pairs, by

symmetry.

We consider the spin-up case for definiteness. A convenient, normalized, maximally
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symmetric set of 1-electron eigenfunctions of (2) are the three Bloch states

|g ↑〉 =
1

√

3 (1 + 2α)
(|1 ↑〉+ |2 ↑〉+ |3 ↑〉) , εg↑ = ε− 2t

|+ ↑〉 =
1

√

3 (1− α)

(

e−i2π/3 |1 ↑〉+ e−i4π/3 |2 ↑〉+ |3 ↑〉
)

, ε+↑ = ε+ t

|− ↑〉 =
1

√

3 (1− α)
,
(

e+i2π/3 |1 ↑〉+ e+i4π/3 |2 ↑〉+ |3 ↑〉
)

, ε−↑ = ε+ t (4)

where normalization has been ensured by introducing the overlap matrix elements

〈1 ↑ |1 ↑〉 = 1, α = 〈1 ↑ |2 ↑〉

The states |+ ↑〉, |− ↑〉 describe an electron circulating (hopping) clockwise or anti-clockwise

round the triangular molecule, respectively. The three Bloch states are eigenfunctions of

the 1200 rotation operator R̂120, with eigenvalues 1, ei2π/3 and e−i2π/3 respectively. The

+ and − states are related by the time reversal operation T̂ (complex conjugation with

spin not included): |− ↑〉 = T̂ |+ ↑〉 Note that the Hamiltonian commutes with R̂120 and

T̂ , a property which will survive in the more sophisticated interacting models of H3 to be

discussed below. The three Bloch states span the one-body space in the present limited

basis.

The matrix elements of the electron position operator ~r between the Bloch states are,

from (3) and (4)

〈+|~r |−〉 = −1

2
A(ix̂− ŷ) = 〈−|~r |+〉∗ (5)

〈+|~r |+〉 = 〈−|~r |−〉 = 〈g|~r |g〉 = ~0 (6)

provided that ~r is measured from the centroid of the proton triangle. Here A is the distance of

each proton from the centroid of the triangle, so that the proton-proton distance is a =
√
3A.

(See Fig 1)

Two independent, exactly degenerate 3-electron determinantal groundstates |G+〉 and

|G−〉 each with total spin projection +~/2 are made by doubly occupying (↑, ↓) the zero

Bloch state g while occupying either the + or - Bloch state with an ↑ electron:

∣

∣G+
〉

= ĉ†g↑ĉ
†
g↓ĉ

†
+↑ |0〉 ,

∣

∣G−
〉

= ĉ†g↑ĉ
†
g↓ĉ

†
−↑ |0〉 (7)

where the repeated creation operators ĉ, acting on the vacuum |0〉, generate determinantal

states formed from one-electron Bloch orbitals such as φ+↑ (~r) = 〈~r |+ ↑〉, with the correct

Fermionic antisymmetry. See Fig 2
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|+> |- >

|0> |0>

|- >|+>

 >The state |G+> The state |G->

Energy

|+> |- >

|0> |0>

|- >|+>

The state |G->

Energy

FIG. 2: Two degenerate independent-electron grounstates based on clockwise and anticlockwise

Bloch britals

II. EQUILATERAL H3−H3 INTERACTION

We consider two H3 molecules labelled ”a” and ”b”. For simplicity we restrict attention

to the ”facing directly opposite” geometry where the centroids of the molecules are separated

by the displacement ~D = Dẑ, and the plane of each molecule is parallel to the xy plane,

with the protons aligned. Then the dipolar inter-molecular coupling Hamiltonian (see 1)

simplifies to

δHab = e2D−3 ~Xa. ~Xb, ~Xa =

3
∑

i=1

~ria (8)

where ~Xa is the total position operator for the electrons in molecule a. We evaluate the

energy of the 6-electron, two- molecule system in a limited Configuration Interaction ap-

proach, keping only the two degenerate 3-electron groundstates on each molecule, leading

to a fourfold product-basis set

∣

∣G+
〉

a

∣

∣G+
〉

b
,
∣

∣G+
〉

a

∣

∣G−
〉

b
,
∣

∣G−
〉

a

∣

∣G+
〉

b
,
∣

∣G−
〉

a

∣

∣G−
〉

b
(9)

or more compactly. |++〉 , |+−〉 , |−+〉 , |−−〉 .
The intermolecular coupling matrix elements are
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〈++| δHab |−−〉 =
e2

D3

〈

G+
a G

+
b

∣

∣ ~Xa. ~Xb

∣

∣G−
a G

−
b

〉

=
e2

D3
(〈+|x |−〉a 〈+|x′ |−〉b + 〈+| y |−〉a 〈+| y′ |−〉b)

=
e2

D3

[−1

2
A(ix̂− ŷ)x

−1

2
A(ix̂− ŷ)x

]

+
e2

D3

[−1

2
A(ix̂− ŷ)y

−1

2
A(ix̂− ŷ)y

]

=
e2

4D3

(

−A2
)

+
e2

4D3

(

A2
)

= 0

The vanishing of this matrix element can be understood because the two-molecule states
∣

∣G+
a G

+
b

〉

and
∣

∣G−
a G

−
b

〉

have different eigenvalues of the total (discrete) angular momentum

variable L120 that generates the (discrete) rotation operators 1,R120,R2
120, whereas the scalar

operator ~X1. ~X2 is fully rotationally invariant and so conserves L120.

The diagonal elements are also zero, 〈++| δHab |++〉 = 〈−−| δHab |−−〉 =

〈+−| δHab |+−〉 = 〈−+| δHab |−+〉 but the following cross-term is nonzero

〈+−| δHab |−+〉 =
e2

D3

〈

G+
1 G

−
2

∣

∣ ~X1. ~X2

∣

∣G−G+
2

〉

=
e2

D3
(〈+|x |−〉1 〈−| x′ |+〉2 + 〈+| y |−〉1 〈−| y′ |+〉2)

=
e2

D3

[−1

2
A(ix̂− ŷ)x

−1

2
A(ix̂− ŷ)∗x

]

+
e2

D3

[−1

2
A(ix̂− ŷ)y

−1

2
A(ix̂− ŷ)∗y

]

=
e2

4D3
A2 +

e2

4D3
A2 =

e2A2

2D3
(10)

We measure energies relative the groundstate energy of two independent H3 molecules,

and the CI hamiltonian then becomes extremely simple (with the states ordered as in Eq

(9)):

Ĥab =















0 0 0 0

0 0 µD−3 0

0 µ∗D−3 0 0

0 0 0 0















, µ = e2A2/2 (11)

Two independent bi-molecular states diagonalizing this Hamiltonian are

|Φe〉 =
1√
2
(|+−〉 − |+−〉) , Ee = −e2A2

2D3
(12)

|Φf 〉 =
1√
2
(|+−〉+ |+−〉) , Ef = +

e2A2

2D3

The state |Φe〉 is the groundstate of the H3−H3 system, and its energy −e2A2/ (2D3) falls

off with separation D as D−3, instead of the usual dispersion (vdW) energy, which varies
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as D−6. This, with generalization to interacting electrons and a larger single-electron basis

as discussed below, is a principal result of the present work.

III. UNDERSTANDING THE SPOOKY STATE OF THE EQUILATERAL H3

DIMER AS A PAIR OF FLUCTUATING BUT PERFECTLY CORRELATED

ELECTRIC DIPOLES

The correlated state (12) is more easily understood by re-expressing it in terms of real

1-electron orbitals |up〉, |down〉 with overt dipole moments, orbitals that are less symmetric

than the clockwise and anticlockwise Bloch orbitals |+〉. |−〉 introduced in Eq (4). We make

the (non-unique) choice

|up〉 = 1√
2
(|+〉+ |−〉) , |down〉 = 1√

2i
(|+〉 − |−〉)

The 1-electron charge densities from these two states have dipole moments

± 1

2
|e|A/ (1− α) , (13)

pointing towards and away from nucleus # 3 of the H3 triangle respectively. In the 3-

electron groundstate manifold of H3, the doubly-occupied lowest-lying orbital |g〉 contributes
no electric dipole moment and so we can generate 2 alternative 3-electron groundstates

|Gup〉 ,
∣

∣Gdown
〉

with the same dipole moments as in Eq (13):

|Gup〉 =
1√
2

(∣

∣G+
〉

+
∣

∣G−
〉)

= ĉ†g↑ĉ
†
g↓ĉ

†
up↑ |0〉 (14)

∣

∣Gdown
〉

=
1√
2i

(∣

∣G+
〉

−
∣

∣G−
〉)

= ĉ†g↑ĉ
†
g↓ĉ

†
down↑ |0〉 (15)

∴

∣

∣G±
〉

=
1√
2

(

|Gup〉 ± i
∣

∣Gdown
〉)

(16)

We can use (16) to write the correlated groundstate from (12) in the form

|Φe〉 = i
(

|Gup〉a
∣

∣Gdown
〉

b
−
∣

∣Gdown
〉

a
|Gup〉b

)

(17)

This exbibits |Φe〉 as a state with perfect anticorrelation between the electric dipole moments

on the two H3 molecules.: when one is ”up” the other is ”down”, and vice versa This perfect

correlation does not decay with intermolecular distance D, since the coefficents ±i in the

superposition (17) are D-independent. This means that, although the D−3 decay of the vdW
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interaction here is same as for two fixed dipoles, this is different from that case because the

interaction can be repulsive for fixed dipoles depending on orientation, whereas the present

effect is always attractive in the dimer groundstate. It is a true van der Waals interaction.

It can also be compared with the non-decaying ”spooky” correlations between spins or

between photons in the study of quantum computing situations. The difference here is that

the correlated entities are electric dipoles rather than electron spins or photons.

It is also instructive, for later use, to write the two-molecule CI Hamiltian in the following

basis of electric dipole states

|Gup〉a |Gup〉b , |Gup〉a
∣

∣Gdown
〉

b
,
∣

∣Gdown
〉

a
|Gup〉b ,

∣

∣Gdown
〉

a

∣

∣Gdown
〉

b

giving

H ′
ab =















1
2

µ
D3 0 0 1

2
µ
D3

0 −1
2

µ
D3

1
2

µ
D3 0

0 1
2

µ
D3 −1

2
µ
D3 0

1
2

µ
D3 0 0 1

2
µ
D3















(18)

where µ = e2A2/2. The hamiltonian matrix (18) naturally has the same eigenvalues

0, 0,− µ
D3 ,

µ
D3 as the original matrix (11) that used the +,- basis.

Our analysis above is quite consistent with the treatment of ”quantum electrical dipoles”

given by Allen, Abanov and Requist [12].

IV. MINIMAL-BASIS ANALYSIS OF 3-ELECTRON STATES IN H3 INCLUDING

ON-SITE REPULSION

When the electron-electron interaction is included in the model of a single equilateral

H3, the interacting hamiltonian still has invariance under the 120-degree rotation operator

R120 and also under time reversal T̂ . Therefore, just as for the independent-electron model

above, we expect that there will be a degenerate pair of 3-electron states |G+〉 and |G−〉
that are analogous to non-interacting states defined in Eq (7). In particular they differ

by a time reversal and are eigenfunctions R120 with eigenvalues exp (±i2π/3). (Note that,

since R3
120 = 1, the only possible eigenvalues of R120 are the three complex cube roots of

1). The matrix element
〈

G+
a G

+
b

∣

∣ ~Xa. ~Xb

∣

∣G−
a G

−
b

〉

will therefore still be zero by the symmetry

argument given above, and we expect
〈

G+
a G

−
b

∣

∣ ~Xa. ~Xb

∣

∣G−
a G

+
b

〉

will still be non-zero. The
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question is whether these two degenerate states are still groundstates. We have set up a

9 × 9 spin-restricted Hamiltonian matrix including an on-site repulsion energy U as well

as hopping elements −t. At fixed on-site repulsion U , we find that two time-reversed

degenerate states |G+〉 and |G−〉 remain the groundstates for all positive t except for t = 0

exactly. For t = 0 the three exactly degenerate groundstates have no double occupation of

any proton site. We also verified explicitly that

〈

G+
a G

+
b

∣

∣ ~Xa. ~Xb

∣

∣G−
a G

−
b

〉

= 0,
〈

G+
a G

−
b

∣

∣ ~Xa. ~Xb

∣

∣G−
a G

+
b

〉

6= 0

However, as t decreases towards zero, the gap from the groundstate doublet of each H3 unit,

to the next state, goes towards zero. Thus for small t, corresponding to a uniformly stretched

H3 triangle, our two-state limited CI analysis of the H3−H3 becomes invalid. This means

that when seeking real systems that exhibit the unusual vdW interaction (12), it would be

best to look at (e.g.) clusters of metal atoms that favor hopping of electrons between nuclei,

as suggested by the metallic nature of bulk metals.

A. Larger–basis analysis of interacting 3-electron states in H3

We also used MOLPRO to study the equilateral H3 dimer system with a larger basis and

all the electron-electron interactions, reaching the same qualitative conclusions as above.

This calculation allows static and dynamic distortions of the electron density on each proton

(type-B nonadditive vdW effect [9]), as well as the previously-considered ”Type-C” effects

due to hopping of electrons between the protons. Figure 3 shows the quantity D3∆E versus

H3 − H3 separation D, where ∆E = E (D)− E (∞) is the binding energy of the H3 −H3

dimer. Results are shown for the T1.2 symmetry, which gives the dimer groundstate at

all the D values considered. Two calculations were performed, one with a 1s-only basis

and one with p orbitals in the basis as well. In each case the curve becomes flat at larger

separations, indicating that ∆E ∝ −D−3 as predicted on symmetry grounds by the above

theory.

Interestingly, the D−3 interaction is stronger with the p orbitals included, suggesting

that the dynamic distortions of the charge cloud on each atom (type B effect [9]) are as-

sisting rather than hindering the type-C (inter-atom hopping) polarizability, in the present

geometry.
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FIG. 3: Demonstration that the interaction energy of two H3 molecules falls off as E ≈ −C3D
−3,

both with an s-only basis and with an s+p basis. Electron-electron interactions are retained within

and between molecules in both cases

V. STATIC JAHN-TELLER DISTORTIONS

If the nuclear positions of a single isolated molecule are allowed to relax, the exact elec-

tronic degeneracy proposed here can lead to an energy-lowering Jahn-Teller distortion [13],

causing broken rotational symmetry of the proton configuration in the groundstate. The

electronic eigenstates proposed above will then be replaced by non-degenerate states with a

dipole moment. This completely changes the situation for H3, which in fact is believed to be

unstable in its electronic groundstate, and if it were stable, would Jahn-Teller distort con-

tinuously to a linear configuration. Thus our example of equilateral H3 is just a toy model

requiring an external agent to hold the nuclear positions fixed. However in cases where the
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nuclear framework of a candidate cluster molecule is sufficiently rigid, such distortions will

be small and will introduce only a small energy gap εg Candidate systems for this situation

might include transition or rare earth metal clusters where the observed enhanced rigidity of

the bulk metal (comapred to the simple s-p metals) suggests that directional bonds may pro-

vide the needed structural rigidity, while the hopping t tends to dominate on-site repulsion

U (leading to full metallic behavior in the limit of a large number of atoms). Metal atom

clusters are only one possibility, however, and one could envisage many other possibilities

for stiff structures with the required symmetry properties, based for example on the rigidity

of graphene hexagons.

To commence exloration of the effects of the Jahn-Teller phenomenon, we therefore now

investigate the simplest model with a static distortion, namely isosceles H3 with frozen

nuclear positions. We will show that spooky vdW correlations can still occur in a significant

subasymptotic regime of separations provided that the distortion-induced energy gap εg is

small enough.

VI. TRIANGULAR H3 WITH A WEAK ISOSCELES DISTORTION

We consider an isosceles triangle of protons with base b and height h. with protons at

positions ~R1 = −bx̂/2 − hŷ/3, R2 = +bx̂/2 − hŷ/3, ~R3 =
2
3
hŷ. (measured relative to the

centre of charge O of the protons, at height h/3 above the base. See Fig.4) Initially we work

again in the independent-electron model, with 3 electrons moving between the stationary

protons.

The reduction of the hopping matrix elements involving the more distant atom #3 leads

to a one-electron hamiltonian in the minimal localised atomic basis |1〉, |2〉, |3〉, centered on

the protons, as follows

Ĥ = ε+











0 −t −t′

−t 0 −t′

−t′ −t′ −∆











(19)

where t′ is the hopping element to/from the apex, atom #3 (see fig. 4) and ∆ is the addi-

tional energy of an electron on proton 3 as a result of orbtal compression in the groundstate.

Here for an acute isosceles triangle we expect ∆ < 0 and 0 < t′ < t so that δ ≡ t′ − t < 0

14



FIG. 4: Geometry of isosceles H3

For an obtuse isosceles triangle, ∆ > 0 and δ > 0. The eigenvalues of (19) are

ε(1) = ε+
1

2
∆− 1

2
t− 1

2

√

(t+∆)2 + 8(t′)2 (20)

ε(2) = ε+
1

2
∆− 1

2
t+

1

2

√

(t +∆)2 + 8(t′)2

ε(3) = ε+ t (21)

In the equilateral limit we have ∆ = 0, t′ = t and we recover ε(1) = ε − 2t, ε(2) = ε + t,

ε(3) = ε + t as found earlier for the equilateral case. For an acute isosceles triangle

(apical angle θ3 < 900,
∣

∣

∣

~R3 − ~R1

∣

∣

∣
>
∣

∣

∣

~R2 − ~R1

∣

∣

∣
) state (1) is the one-electron ground orbital

and ε(3) > ε(2) > ε(1). If the isoscles triangle is only slightly distorted from an equilateral

triangle then ∆ and δ ≡ t′ − t are both small. In this region we can Taylor-expand (21)

15



giving an energy gap

εgap ≡ ε(3) − ε(2) = −5

6
∆− 4

3
δ +O

(

∆2, δ2,∆δ
)

> 0 (22)

This will be the gap between the ground and first excited orbital for independent electrons

in an acute isosceles H3, molecule. The lowest three-electron states have the ε(1) orbital

doubly ocupied, and for the acute triangle case the groundstate has the ε(2) orbital singly

occupied. Equally, for an obtuse isosceles H3 molecule the groundstate involves ε(3) rather

than ε(2), and then (22) is negative, and the gap.is εg = ε(2) − ε(3) ≈ 5
6
∆+ 4

3
δ > 0.

The normalized one-electron eigenfunctions of (19) are, with respect to s orbitals on the

three protons as basis,

∣

∣v(1)
〉

=
√

N1

(

−1

2

ε(2) +∆− ε

t′
,−1

2

ε(2) +∆− ε

t′
, 1

)

∣

∣v(2)
〉

=
√

N2

(

−1

2

ε(1) +∆− ε

t′
,−1

2

ε(1) +∆− ε

t′
, 1

)

∣

∣v(3)
〉

=
√

N3(−1, 1, 0) (23)

where the normalizing factors Ni depend on the direct overlaps α23 = α13, α12. From (23)

we find that the one-electron states have large dipole moment vectors ~d for arbitrarily small

isosceles distortions, even though the energy gap (22) is arbitrarily small. Specifically

~d1 ≡ − |e|
〈

v(1)
∣

∣~r
∣

∣v(1)
〉

= η1ĥ ~d2 ≡ − |e|
〈

v(2)
∣

∣~r
∣

∣v(2)
〉

= η2ĥ,

~d3 ≡ − |e|
〈

v(3)
∣

∣~r
∣

∣v(3)
〉

= η3ĥ, ~d23 ≡ − |e|
〈

v(2)
∣

∣~r
∣

∣v(3)
〉

= η23b̂ (24)

where b̂ is a unit vector pointing from proton 1 to proton 2 along the base of the isosceles

triangle, and ĥ is a unit vector perpendicular to b̂ and directed towads the apex (proton 3):

see Fig. 4 For independent electrons the coefficients take the nonzero values

η1 =
− |e|N1

3

(

−1

2

(

ε(2) +∆− ε

t′

)2

(1 + α) + 2− 1

2

ε(2) +∆− ε

t′
α23

)

h

η2 =
− |e|N2

3

(

−1

2

(

ε(1) +∆− ε

t′

)2

(1 + α) + 2− 1

2

ε(2) +∆− ε

t′
α23

)

h

η3 =
− |e| 2N3 (1− α)

3
h

η23 = − |e|
√

N2N3

(

−1

2

ε(1) +∆− ε

t′
+

1

2
α23

)

b
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where the {αij} are overlap matrix elements between neigboring atomic s functions, and the
{√

Ni

}

are normalizing factors for eigenfunctions
∣

∣ν(i)
〉

.

From the one-body states
∣

∣ν(i)
〉

we construct two low-lying determinantal states |B〉 , |S〉
of three independent electrons in the isoscleles H3 triangle, each with two electron spins up

(↑) and one down (↓) giving total spin angular momentum +~/2:

|B〉 = c†1↑c
†
1↓
c†2↑ |0〉 , |S〉 = c†1↑c

†
1↓
c†3↑ |0〉

These states are separated by a small gap εgap given by Eq (22). For the acute isosceles

triangle, the state |B〉 with an electric dipole moment pointing towards the base (”B”) of

the triangle is the groundstate, while the state |S〉 with a dipole pointing to the apex or

summit (”S”) is the groundstate for the obtuse case. The dipole matrix elements for a single

molecule are

~dB ≡ − |e| 〈B|~r1 + ~r2 + ~r3 |B〉 = 2~d1 + ~d2 = −
∣

∣

∣

~dB

∣

∣

∣
ĥ,

~dS = − |e| 〈U |~r1 + ~r2 + ~r3 |U〉 = 2~d1 + ~d3 =
∣

∣

∣

~dS

∣

∣

∣
ĥ

~dBS ≡ − |e| 〈B|~r1 + ~r2 + ~r3 |S〉 = ~dSB =
∣

∣

∣

~dUD

∣

∣

∣
b̂ (25)

The vector directions (parallel to ĥ or b̂) of these matrix elements stem from the mirror

symmetry of the isosceles triangle, and remain valid when we introduce the electron-electron

interaction, thereby going beyond our initial neglect of electron-electron interactions inside

the H3 triangle.

A. Two parallel facing isosceles H3 units, H3a and H3b

For small enough gap εg we need only keep, as our two-molecule product basis, the

groundstate and lowest 3 excited noninteracting states of the H3−H3 complex, namely

|S〉a |S〉b , |S〉a |B〉b , |B〉a |S〉b , |B〉a |B〉b in that order. In this basis the bi-molecular

hamiltonian matrix (relative to two isolated groundstate molecules), including the dipole

interaction δH = e2Xa.Xb/D
3 between the molecules, is

Hab =















2εg + cD−3 0 0 gD−3

0 εg + βD−3 fD−3 0

0 fD−3 εg + βD−3 0

gD−3 0 0 aD−3















(26)
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where

a =
∣

∣

∣

~dB

∣

∣

∣

2

> 0, β = ~dB.~dS < 0, c =
∣

∣

∣

~dS

∣

∣

∣

2

> 0, f = g =
∣

∣

∣

~dSB

∣

∣

∣

2

> 0 (27)

The hamiltonian (26) is very similar to that for the equilateral case in the broken-symmetry

”up” ”down” 1-electron basis: see Eq (18). The zeros in the matrix (26) come from matrix

elements such as

〈BaBa| ~Ra. ~Rb |BaSb〉 = ~dB.~dBS =
∣

∣

∣

~dB

∣

∣

∣

∣

∣

∣

~dBS

∣

∣

∣
ĥ.b̂ = 0

This zero arises mathematically from the orthogonality of the unit vectors b̂ and ĥ and is

mandated physically by the mirror symmetry of the isosceles molecule. This symmetry sur-

vives when our original neglect of the intramolecular electron-electron interaction is relaxed.

The form of Eq (26) is therefore valid even with inclusion of electron-electron interactions

within each H3 molecule, though the coefficients a, β, c, ..., g will be determined by the dipo-

lar matrix elements ~d with e-e interactions included. As for the equilateral case, however,

we expect that if the on-site e-e repulsion U is too strong compared with the hopping ampli-

tude t, the states |B〉 and |S〉 may no longer be well-separated energetically from the next

excited state of the H3.molecule, invalidating the present analysis.

It is easily shown that in the limits ∆ → 0, t′ → t, corresponding to the equilateral limit

of isosceles triangles, (26) reduces to (18).

The eigen-energies of the interacting isosceles H3-H3 system (measured from the ground-

state of two isolated H3 units), from diagonalization of (26), are as follows:

EIV =
1

2D3

(

c+ a+ 2εgD
3 +

√

(c− a + 2εgD3)2 + 4g2
)

(28)

EIII =
1

2D3

(

c+ a+ 2εgD
3 −

√

(c− a+ 2εgD3)2 + 4g2
)

(29)

EII = εg +
β + f

D3
(30)

EI = εg +
β − f

D3
(31)
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B. Asymptotic regime of isosceles H3- H3 interaction: conventional fixed dipolar,

vdW and (excited) resonant interactions

Since the (frozen) isosceles distortion away from an equilateral configuration has intro-

duced an energy gap εg and a large permanent electric dipole ~dB in the H3 groundstate, one

might initially expect that the groundstate H3−H3 interaction would be a sum of a con-

ventional attractive vdW interaction varying as D−6, plus a fixed-dipolar interaction that

varies as D−3and that can be attractive or repulsive. This is indeed the case in the truly

asymptotic regime defined by

D > Dmax ≡
(

∣

∣

∣

~dmax

∣

∣

∣

2

/εg

)1/3

where
∣

∣

∣

~dmax

∣

∣

∣
is the greatest of the dipole matrix magnitudes from (25). In this regime we

can Taylor-expand the eigenenergies (28), (29) giving the following energies, EIII , EI , EII ,

EIV ordered from lowest to highest:

EIII = aD−3 − g2

2εg
D−6 +O

(

D−8
)

(32)

This state III is the groundstate of the H3-H3 dimer and exhibits a conventional attractive

D−6 vdW interaction plus a repulsive D−3 interaction between the fixed molecular dipoles

(repulsive because we have assumed that the two parallel-facing H3 molecules have the same

alignment so that a > 0). The next-lowest energies are

EI = εg +
b− f

D3
, EII = εg +

b+ f

D3
. (33)

Since β < 0 and f > 0 (see (27)), state I with energy EI is the first excited state of

the H3 dimer. Its energy is just below εg, corresponding to its origin as a superposition

of two product states in each of which just one of the molecules is excited. This is the

attractive ”resonant interaction” introduced already by Eisenschitz and London in 1930

[14]. Such resonant excited states depend on the two gaps having the same nonzero value

εg, and the coupled state is related to the concept of excitons in condensed matter systems.

Similar physics is important for understanding intramolecular transport of photon energy

in chromophores[15]. State II has a similar physical origin but has a higher energy than EI

and can give repulsion rather than attraction.
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The highest-lying moleular dimer state from (26), labelled IV , has an energy close to

twice the gap energy,

EIV = 2εg +O
(

D−3
)

(34)

C. Subasymptotic regime of spooky D−3 vdW interaction between isosceles H3

molecules

We will now show that if the gap εg is sufficiently small, there is a significant sub-

asymptotic spatial regime where the interaction is always attractive and varies as D−3, just

as for the equilateral case treated above. The relevent regime is

A < D < D1 ≡
(

|dmin|2 /εg
)1/3

(35)

where |dmin| is the least magnitude of the dipolar matrix elements (25) and A is the spatial

size of each molecule. In this regime the energies (31) - (28) can be written, with the lowest

listed first and the highest listed last:

EI ≈ εg +
β − f

D3
bimolecular groundstate, spooky attractive vdW (36)

EII ≈ εg +
β + f

D3
excited bimolecular state (37)

EIII ≈
1

2D3

(

a+ c−
√

(a− c)2 + 4g2
)

excited bimolecular state (38)

EIV ≈ 2εg +
1

2D3

(

a+ c+

√

(a− c)2 + 4g2
)

> 0 highest bimolecular state (39)

In this regime the terms proportional to εg are small compared with other terms in

(36), (37) and (39) . By comparing (36) with (33) one learns that the spooky correlated

state arises as the small-gap limit of the attractive resonant interaction, but it is now the

bimolecular groundstate, and not an excited state as in the ususal resonant interaction.

This subasymptotic regime does not exist for most molecules because, for example with

a gap εg ≈1 eV and a dipole moment
(

1Å
)

(|e|) the outer limit of the subasymptotic spatial

regime from (35) is at D1 ≈ 2.5 Å which lies in the overlap region of electronic clouds where

the present approach is not valid. However with a gap of εg =0.01 eV and the same dipole

moment we find D1 ≈ 12 Å.which leaves a viable sub-asymptotic region. Larger dipole

moments and smaller gaps will extend D1 to larger values.
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VII. OTHER MOLECULES LIKELY TO HAVE ELECTRONIC DEGENERACY

SIMILAR TO H3

In the working above, the important features of a molecule leading to an anomalous

D−3 vdW interaction with another such molecule in the dimer groundstate, were that an

individual molecule has two degerate electronic groundstates that are coupled by the dipole

operator. To achieve this in a similar manner to the equilateral H3 molecule studied

above, we propose that one should consider molecules with the following features

(i) Discrete N -fold rotational symmetry (and an odd number of electrons) leading to two

degenerate Bloch-type many-electron states Ψ+,Ψ− = Ψ∗
+ for each spin configuration, states

that are a time-reversed pair (complex conjugates), each of which is an eigenfunction of the

rotation operator R̂3600/N .

(ii) Sufficiently large ratio t/U of the hopping amplitude t to on-site electronic repulsion

U to ensure that the two symmetry-mandated degenerate states are well-separated from

higher states, validating our very-small-basis CI treatment.

(iii) An odd N value, N = 2n+1, = 1, 2, 3, ...This is needed because for the even case,

N = 2n, one can show that the relevant matrix element of the dipole operator is zero. To

prove this, note that for the spooky effect we need a degenerate time-reversed pair of many-

electron states Ψ1

(

~ξ
)

≡
〈

~ξ
∣

∣

∣
|+〉, Ψ2

(

~ξ
)

=
〈

~ξ
∣

∣

∣
|−〉 = Ψ∗

1

(

~ξ
)

that are both eigenstates of

the rotation operator R̂360/(2n) = R̂180/n. Here for an M-electron molecule we have denoted

~ξ = (~r1, ~r2, ..., ~rM) = (x1, y1, z1 : x2, y2, z2 : ....xM , yM , zM)

Since for even-order rotational symmetry Ψ1 and Ψ2 are eigenstates of R̂180/n, they are also

eigenstates of
(

R̂180/n

)n

= R̂180:

R̂180Ψ1 = θ1Ψ1, R̂180Ψ2 = θ∗1Ψ2 (40)

Further since two 1800 rotations produce no net effect we have
(

R̂180

)2

= Î and so in (40)

we have θ21 = 1 =⇒ θ1 = 1 or −1

However the 1800 rotation operator R̂180 is in fact the spatial coordinate inversion oper-

ator in the plane perpendicular to the rotational symmetry axis:

R̂180Ψ
(

~ξ
)

≡ Ψ
(

~ξ ′
)
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where for an M-electron molecule

~ξ ′ = (−x1,−y1, z1 : −x2,−y2, z2 : ....− xM ,−yM , zM)

Then the matrix element of the molecular dipole operator between the two time-reversed

states is

〈−| ~d |+〉 = − |e|
∫

Ψ∗
2

(

~ξ
)

(~r1 + ~r2 + ... + ~rM)Ψ1

(

~ξ
)

d3Mξ

= − |e|
∫

(

Ψ1

(

~ξ
))2

(~r1 + ~r2 + ...+ ~rM) d3Mξ

To obtain our spooky inter-molecule correlation for parallel-facing dimer geometry, we

need each molecule to exhibit non-zero cartesian components of the dipole matrix element

〈−| ~d |+〉 in the xy plane perpendicular to the rotational symmetry (z) axis. These compo-

nents form a perpendicular dipole matrix element 〈−| ~d⊥ |+〉

〈−| ~d⊥ |+〉 ≡ dxx̂+ dyŷ = − |e|
∫

(

Ψ1

(

~ξ
))2

(~r1⊥ + ~r2⊥ + ...+ ~rM⊥) d
3Mξ (41)

But
(

Ψ1

(

~ξ
))2

=
(

θ−1
1 Ψ1

(

~ξ ′
))2

= θ−2
1

(

Ψ1

(

~ξ ′
))2

= 1
(

Ψ1

(

~ξ ′
))2

. Thus Ψ2
1 is even under

the inversion ~ξ → ~ξ ′of ~ri⊥ (xi and yi) coordinates, so that the integrand of (41) is odd and

the integral vanishes.

The conclusion is then that we will not obtain a spooky −D−3 vdW interaction for

a system with even (2n-fold) rotation symmetry, because the implied inversion symmetry

makes the needed dipolar coupling vanish. Rather we should look only for molecules with

odd rotational symmetry (3-fold, 5-fold,... )

A similar argument based on rotational symmetry shows that (for even or odd N) the

dipole moment in either of the two degenerate states is also zero: 〈+| ~d⊥ |+〉 = 〈−| ~d⊥ |−〉.= ~0.

: this was the other matrix element needed to ensure that the correlation problem for more

general molecules is isomorphic to the H3 problem treated above.

Thus to obtain a D−3 vdW interaction in a similar fashion to that obtained for a pair

of H3 molecules above, we need to search for molecules that have discrete odd rotational

symmetry. Regular (2n+1)-gons satisfy this when n = 1, 2, 3, ...... So do a large number of

cluster structures: for two examples see Fig 5. Of course, this combination of properties

may not be the only way to achieve spooky vdW interactions, but it does suggest one class

of molecules to explore.
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Equilateral bipyramid 
Regular pentagon 

FIG. 5: Two geometries conducive to spooky vdW forces

Furthermore, our numerical studies of equilateral H3 showed that the hopping of electrons

between sites needs to dominate over on-site coulomb repulsion in order for the two-fold de-

generate groundstates states to be well separated from the first exicted state, as required for

the validity of our limited-CI analysis of the inter-molecular interaction. These requirements

suggest that clusters of metal atoms might be suitable candidates.

As an example of the importance of breaking inversion symmetry via an odd rotational

symmetry, we also studied the square H4 molecule, which has discrete (900) rotational sym-

metry and therefore has inversion symmetry, unlike equilateral H3. We found no anomalous

D−3 vdW interaction between two H4 molecules, though an always-attractive D−5 vdW

interaction may be possible via spooky coupled quadrupolar fluctuations. This work will be

described elsewhere.
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VIII. EFFECTS OF NUCLEAR MOTION - METAL ATOM CLUSTERS.

The Jahn-Teller-distorted state of our target molecules should have a permanent electric

dipole, if the geometrical distortion is static, and indeed many quantum chemical calcula-

tions have predicted large static dipole moments for small metal-atom clusters (see [16] for

example). Experimentally these large dipoles are not seen, even at cryogenic temperatures

where presumably thermal motions of the nuclei are less relevant.[17]. This puzzle has at-

tracted considerable recent attention and the current explanations involve nuclear motion

(pseudo-rotation) whereby a small change in the distortion can produce a very different,

sometimes opposite, dipole. Recent work within the Born-Oppenheimer approximation

has suggested that the shapes of these clusters vary quite strongly over time [1] at room

temperature with both pseudorotation and shape-inversion present, while at 20K only the

pseudorotation is present. At low temperatures these nuclear motions would be quantal, and

when electronic degeneracies exist the motions may be anharmonic because of the conical

intersection physics. Indeed a proper treatment will require a description of the coupled vi-

bronic motions of the electrons and nuclei, and in this regime one may speak of the dymamic

Jahn-teller effect ([2]). We tentatively suggest that the presence of a second such molecular

cluster within the sub-asymptotic regime (see (35)) can significantly affect these vibronic

phenomena, leading to a coupling of the vibrational as well as the electronic motions of both

molecules. If, during the course of these coupled motions at fixed intermolecular separation

D, the instantaneous electronic gap εg satisfies the subasymptotic criterion (35) with sig-

nificant probability, then one expects to see an anomalous D−3 vdW interaction similar to

that discussed above for the sub-asymptotic regime of isosceles H3.

IX. SUMMARY AND DISCUSSION

We first studied an idealized system consisting of two interacting equilateral H3 molecules

separated by distance D, each molecule having frozen nuclear positions. We showed that this

toy model exhibits ”spooky”corelations between the fluctuating molecular electric dipole

moments. These correlations do not decay with increasing intermolecular separation D,

leading to a van der Waals interaction energy falling off as −D−3 (see Eq (12). rather than

the conventional −D−6. This interaction occurs in the groundstate of the molecular dimer,
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and can be regarded as the zero-gap limit of the so-called ”resonant interaction”, although

the latter occurs only in an excited state when each molecule has a finite gap. This physics is

only possible where each molecule has degenerate groundstates coupled by the electric dipole

operator. We suggested that a class of molecules worth exploring for the existence of such a

spooky vdW interaction are those with an odd number of electrons, with discrete (2n+ 1)-

fold rotational symmetry about an axis in its ideal maximally symmetric configuration, and

that therefore break inversion symmetry in that configuration. Equilateral H3 satisfies these

criteria.

H3 is unfortunately unstable, but there exist odd-N clusters of metal atoms and other

more rigid structures (e.g. [18]) with equilateral (three-fold, 1200) or five-fold, or seven-

fold.... rotational symmetry etc., and broken inversion symmetry. For two examples of

such structures see Fig 5. These may be more stable against geometric (Jahn-Teller) dis-

tortions than H̄3, and so may exhibit dipole-allowed transistions between nearly- degenerate

groundstates. Thus they may be candidates for a D−3 dispersion interaction, at least at

sub-asymptotic separations (see the criterion of Eq (35) for the sub-asymptotic regime).

Furthernore, clusters of metal atoms are promising because they tend to have large hopping

amplitude t between neighboring atoms, as evidenced by their ability to form highly con-

ductive solids upon aggregation. These small cluster systems will tend to Jahn-Teller distort

to produce large fixed dipoles, but such dipoles are not seen in experiments on metal atom

clusters. The likely explanation lies in small nuclear motions that induce large fluctuating

dipoles (”pdeudo-rotation”). We suggest that for dimers of these clusters, our novel vdW

attraction would be mediated by coupled vibronic motions of both electrons and nuclei on

both of the interacting molecules. If the molecules pass near the high-symmetry, elec-

tronically degenerate states sufficienly often during these combined motions, an appreciable

weight of D−3 vdW interaction should be observable. The analysis in [12] and in the recent

work of Requist, Tandetzky and Gross [19] may be useful in analyzing this situation.
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