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In order to simulate the exact universal density functional, approximations are nowadays constructed
by permitting more flexibility in its ansatz. In view of the difficulty of defining a systematically im-
provable form for it, this paper argues that an alternative way could be considered. It falls within
the class of hybrid functionals with multi-determinant wave functions. The parameter controlling the
hybridization is considered as variable. The invariance of the exact result with respect to changes in
this variable is used to introduce information about the system under consideration, and to correct the
density functional result. The construction considered in this paper accelerates convergence from the
model system to the physical one, in the vicinity of the latter. The method, at the present level of im-
plementation, should be seen as a starting point for further development, and not necessarily as a com-
putationally advantageous tool. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865940]

INTRODUCTION

The celebrated Hohenberg and Kohn paper1 suggested
that there was a systematic way of going beyond the local den-
sity approximation by using a gradient expansion. However, it
turned out quickly that the first correction, the gradient expan-
sion approximation, did not produce an improvement.2 It took
more than a decade to make progress, using generalized gradi-
ent expansions,3 and even more to arrive at hybrid methods.4

Presently, the wide-spread strategy to improve density func-
tionals is to use parameters (as a rule fitted on experimental
data), and validate the newly produced functional by compar-
ing the result with large sets of experimental reference data.
The initial goal of a method providing a systematic improve-
ment has thus been transformed into that of finding a more
flexible ansatz that hopefully approaches the exact functional.

The aim of the present paper is less ambitious, in the
sense that no approximation for the universal density func-
tional is searched. However, it retains a density functional ap-
proximation as a starting point, and tries to improve on it sys-
tematically. Whether such an approach can lead to a practical
method needs yet to be shown.

The approach considered in this paper consists in the fol-
lowing steps:

1. construct a model Hamiltonian, using a hybrid density
functional approximation,

2. calculate the energy of this model system, and its first
derivative with respect to a parameter defining the hy-
bridization,

3. make an estimate of the correction to the density func-
tional approximation using the first derivative.

This sequence can be continued by either using higher
derivatives, or by considering new values of the parameter.
Thus, an improvement is achieved by adding more informa-
tion of the specific system under study, that can be provided
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by the family produced by the variation of the parameter of
the model.

The structure of the paper is the following. First, the
method is described. Next, some simple numerical examples
are given. Finally, other similar approaches are mentioned.

The central result of the paper is given by Eqs. (24)
and (25).

METHOD

Model Hamiltonian from density functional
calculation

In hybrid density functional calculations, the ground state
energy is computed via

E0 = min
9

(〈9|T + Vne + W (µ)|9〉 + Ēhxc[n9, µ]), (1)

where T is the operator for the kinetic energy, Vne is the local
one-particle operator for external potential (for the interaction
between electrons and nuclei), and W is a local two-particle
operator. Ēhxc is an approximation to the universal Hartree-
exchange-correlation functional, calculated from the density
n. The subscript to n indicates that is obtained from the N-
electron wave function 9. Notice the presence of the param-
eter µ. As W depends on it, Ēhxc depends not only on n, but
also on µ.

In the Kohn-Sham method, W = 0. In the present for-
malism, as one considers W 6= 0, the minimizing wave func-
tion 9 gets a multi-determinant character. For practical ap-
plications it will be important to use such forms of W that
do not introduce large errors when only a few determinants
are used. For example, already a weak interaction can switch
on the coupling between nearly degenerate states of the non-
interacting system. In this paper, 9 has, for W 6= 0, multi-
determinant character, although in literature the term “hybrid”
is often used for the approximation in which 9 is described
by a single Slater determinant.
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The stationarity condition with normalization constraint
for 9 gives a Schrödinger equation:

H (µ)9(µ) = E(µ)9(µ). (2)

The eigenfunction 9(µ) is the solution to the minimization
problem, Eq. (1). The Hamilton operator

H (µ) = T + V (µ) + W (µ) (3)

contains a local one-particle operator

V (µ) = Vne +

N∑
i

vhxc(ri, µ), (4)

the local potential vhxc being obtained from a functional
derivative,

vhxc(r, µ) = δĒhxc[n,µ]/δn(r). (5)

In the following, it will be assumed that W → 0 for
µ → 0, and that W → Vee, the electron-electron interaction,
when µ → ∞. A correctly constructed approximation Ēhxc

vanishes when µ → ∞, and in this limit, E0 becomes the
exact ground state energy. Please notice that the model sys-
tem described by the above Hamiltonian also produces ex-
cited states, and that in the limit µ → ∞ these become the
exact excited states.

For exemplification,

W (µ) =
∑
i<j

erf(µrij )/rij (6)

is used in this paper; rij is the distance between electrons. A
local density approximation (µ-dependent LDA5–7) is used
for the exchange-correlation functional.

Improving the estimate of the exact energy

As the potential V (µ) is known once an approximation
was chosen for Ēhxc (Eqs. (4) and (5)), we can assume that
E(µ), Eq. (2), can be obtained accurately. For example, for
W = 0 (in a Kohn-Sham calculation using some approximate
exchange-correlation potential) it is simply a sum over occu-
pied orbital eigenvalues. As E(µ) is, in general, not equal to
the exact energy, E(∞), a correction

Ē(µ) = E(∞) − E(µ) (7)

is needed. The correction given by the density functional ap-
proximation,

Ē(µ) = E0 − E(µ) (8)

= Ēhxc[n9(µ), µ] −

∫
d3r n(r)vhxc(r, µ), (9)

Ē(µ) is only an estimate of Ē(µ) because Ēhxc used in Eq. (1)
is not exact.

We discuss now how to obtain some information about
the correction, Ē(µ), without using the density functional ap-
proximation Ēhxc for it. We choose to make the correction ac-
curate for large, but finite µ by using the derivative of Ē(µ)

with respect to µ, Ē′(µ). We first notice that the Hellmann-
Feynman theorem permits a relatively cheap accurate deter-
mination of E′(µ) without re-computing 9(µ),

E′(µ) = 〈9(µ)|∂µV (µ) + ∂µW (µ)|9(µ)〉. (10)

Second, we notice that E(µ) + Ē(µ) = E(∞) does not de-
pend on µ, and thus, although Ē(µ) is not known, accurate
information about Ē′(µ) is available through the derivative of
E(µ) with respect to µ, E′(µ),

E′(µ) + Ē′(µ) = 0. (11)

We can gain in accuracy if we possess information about
the behavior of Ē(µ). For example, assume that around a
given µ, we know how the exact correction behaves,

Ē(µ) = cf (µ) + . . . , (12)

where f is a known function, and the constant c is system-
dependent. In particular, we not only know that for W of
Eq. (6), at large µ, Ē(µ) vanishes, but also know the decay
rate with µ (see, e.g., Refs. 5, 8, and 9),

Ē(µ) = cµ−2 + O(µ−3). (13)

We now use the derivative of Ē(µ) with respect to µ,

Ē′(µ) = cf ′(µ) + . . . (14)

to extract the coefficient c = Ē′(µ)/f ′(µ), and obtain10

Ē(µ) =
f (µ)

f ′(µ)
Ē′(µ) + . . . . (15)

For our specific example, W of Eq. (6), at large µ,

Ē′(µ) = −2cµ−3 + O(µ−4) (16)

and

Ē(µ) = −
1

2
µĒ′(µ) + O(µ−3) =

1

2
µE′(µ) + O(µ−3),

(17)
where Eq. (11) has been used for the last equality.

Let us now consider the behavior at largeµwhen approx-
imations are used, Ē(µ → ∞), Eq. (9). For our choice of in-
teraction, Eq. (6), we know that the correction to the electron-
electron interaction term,

〈9(µ → ∞)|Vee − W (µ → ∞)|9(µ → ∞)〉

is proportional to

µ−2〈9(∞)|
∑
i 6=j

δ(|ri − rj |)|9(∞)〉, (18)

i.e., to µ−2, and to the system average of the on-top pair den-
sity of the exact system (see, e.g., Refs. 8 and 9). Let us con-
sider µ-dependent approximations for Ēhxc that model pair-
densities (like LDA). In them, the error originates from using
the system-average of the model pair density, instead of that
of the system under consideration. Thus, Ēhxc is proportional
to µ−2,

Ēhxc ∝ µ−2 + O(µ−3). (19)

Equation (9) also contains vhxc, Eq. (5). The proportionality to
µ−2 remains after taking the functional derivative with respect
to (w.r.t.) the density, in order to produce vhxc. It follows that
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Ē also decays as µ−2, and we can use, for Ē(µ → ∞), the
same expression as for the exact correction, Eq. (17), viz.,

Ē(µ) = −
1

2
µĒ ′(µ) + O(µ−3). (20)

In this expression, too, the derivative has introduced the infor-
mation about the proportionality constant.

In order to analyze the error of Ēhxc when µ → ∞ we
decompose it into a Hartree, an exchange and a correlation
part. In this regime, the approximation probes the on-top pair
density of the model, cf. Eq. (18). The Hartree part is evi-
dently given by the density. At coalescence, the reduced first-
order density matrix becomes equal to the density, and thus,
for a closed shell, the exchange part of the pair density is also
determined by the density. For a closed shell, the only error
shows up in the correlation part of the pair density.5,9, 11 For
open shells, however, the exchange component is not deter-
mined by the density alone, but by the spin-components of
the density. This is why density functional approximations
rely not on the density alone, but also on spin-density. It is
well-known, however, that the dependence on spin-density,
introduces new problems related to size-consistency (see, e.g.,
Refs. 6, 12, and 13). One thus has the dilemma of either se-
riously losing numerical accuracy, or size-consistency. In the
present paper, spin-density is not used, in order to favor size-
consistency. For describing the correlation part of Ēhxc errors
are present. In LDA, it is modeled using the correlation hole
of the uniform electron gas. This is a good approximation, but
only an approximation as it becomes evident, e.g., for one-
electron systems.

We can try to introduce some correct information about
the system obtained from the energy derivative, as in Eq. (17),
to replace the false one contained in the model system used in
the density functional approximation. First, we consider ex-
panding both Ē and Ē in some (complete) basis,

Ē(µ) =
∑

i

c̄iχi(µ), (21)

Ē(µ) =
∑

i

c̄iχi(µ). (22)

We now identify the basis function, χ j, that is responsible for
the behavior we are interested in (at large µ). As we can con-
sider that we can obtain its coefficient c̄j accurately, we re-
place the approximate coefficient in the expression of Ē by an
accurate estimate of one of the coefficients, c̄j ,

Ē(µ) ≈ Ē(µ) + (c̄j − c̄j )χj (µ). (23)

To determine the coefficients, we use the derivatives, Eq. (15),
and write

Ē(µ) ≈ Ē(µ) +
χj (µ)

χ ′
j (µ)

(Ē′(µ) − Ē
′(µ)). (24)

When choosing W as in Eq. (6), and making the approxima-
tion valid for large µ, by Eqs. (17) and (20),

Ē(µ) ≈ Ē(µ) −
1

2
µ(Ē′(µ) − Ē

′(µ)). (25)

The same equation could be produced by requesting that the
approximation deviates minimally from the density functional

approximation, in a least-squares sense, with the constraint
that the derivative of the approximation with respect to µ cor-
responds to the exact one.

Please notice that in the present construction, density
functional approximations were used to construct model sys-
tems. The consistency between the correction to the energy
and the potential present in density functional theory is not
needed. Thus, the present approach can be applied to ground
state, and to excited states, as well.

The derivative is an additional information from which
we can infer from E in a given point µ the behavior in the
vicinity of it. This procedure can be continued with higher
derivatives, or in a computationally more convenient way, re-
peated for different µ points, in order to improve the accu-
racy in a systematic way. However, in the present paper, only
the first correction, using only E′(µ) in a single point will be
presented.

NUMERICAL RESULTS

In this section, the approximation of Eq. (25) is tested
for some two-electron systems. We know that this approxi-
mation becomes exact for large µ. The computations explore
the behavior outside this regime. Its importance is related to
the ansatz made for W : as long as W is weak, the computa-
tional effort is expected to be small.

In order not to bias the results, relatively large atomic
basis sets were used (cc-pV5Z14). Furthermore, the wave
function 9(µ) was computed with a full configuration inter-
action calculation (range-separated configuration interaction
program of the MOLPRO code15–24). All the plots show the er-
ror done by approximating Ē(µ) by using Eq. (25), instead
of E(∞) − E(µ), for different values of µ. By construction,
the errors vanish at large µ. As the correction is based on an
expansion at large µ, one will not expect it to work for µ

smaller than ≈1. As evident from Eq. (25), no correction to
the density functional expression is present at µ = 0.

The first example is that of the hydrogen molecule at the
equilibrium distance (Fig. 1). It shows exactly the features ex-
pected. We can see in Fig. 1 that the approximation has a qual-
ity comparable to that short-range LDA, known to work well
for larger values of µ.

However, when the hydrogen molecule is stretched, the
broken symmetry solution and spin-density has to be intro-
duced in LDA to describe the potential energy curve at LDA
level. We see in Fig. 2 that keeping a correct (zero) spin-
density, the LDA error is relatively large when the distance
between the hydrogen nuclei increases. In this case, the ap-
proximation of Eq. (25) provides improved results. In the limit
of dissociation, the error would be twice that obtained for hy-
drogen atoms, as size-consistency is respected.

The next example treats an excited state of the hydrogen
molecule, E,F 16+

g . It corresponds to the resonance structure
H+ . . .H− ↔ H− . . .H+. In this case, LDA is not expected to
work, because electrons are brought together by correlation,
while a transfer of the pair function from the ground state of
the uniform electron gas keeps the electrons apart (see Fig. 3).
Furthermore, symmetry breaking cannot help in its standard
implementation. However, when using Eq. (25) the quality is
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FIG. 1. Error of the approximation, Eq. (25), as a function of the param-
eter of the model Hamiltonian (µ) for the hydrogen molecule, in its ground
state, at the equilibrium distance (full curve), and error of the LDA functional
(dashed curve). The horizontal dotted lines show the limits of “chemical ac-
curacy” (±1 kcal/mol).

comparable to that seen previously, as long as µ is not too
small.

Finally, let us discuss a problem, known to show up for
the forms of W (µ), where µ appears as multiplied by the dis-
tance between electrons,µr12.26 In such an ansatz one expects
a scaling of the error: the error observed for a given µ for
the more diffuse system shows up at a larger µ for a com-
pact system (because, on average, r12 is reduced). This can
be illustrated by the behavior of the approximation for the He
atom (that can be seen as the hydrogen molecule at zero inter-
nuclear separation), Fig 4. One can see that the shape of the
curve in Fig. 4 is similar to that of the hydrogen molecule at
the equilibrium distance. The point where the large-µ approx-
imation becomes critical is marked by oscillations. For He,
they show up at a larger value of µ than for H2, and they are
more important (also for µ = 0, the Kohn-Sham system, the
LDA errors are larger). The curve for the hydrogen molecule
and that for the helium atom can be made to be almost super-
imposed by using a scaling factor of ≈2 for one of them.

FIG. 2. Same as Fig. 1, but the bond is now stretched to three times the
equilibrium distance.

FIG. 3. Same as Fig. 1, but the hydrogen molecule is now in the E,F 16+
g

excited state, around the outer minimum of the potential energy curve,
4.2 bohrs.25

As for the hydrogen molecule, the method does not bring
any correction over the density functional approximation at µ
= 0. However, one may notice an improvement over the LDA
for small values of µ, also for He.

SUMMARY AND COMPARISONS

It is proposed to consider density functionals as mod-
els for producing model energies, E(µ), Eq. (2). To obtain
E(µ), the potential produced by the density functional is used,
not the functional itself. To obtain the energy of the physi-
cal system, a correction is needed. It is proposed to correct
the approximate density functional expression by considering
changes in the model obtained by changing µ, introducing
this way system-dependent information (see the constant c in
Eq. (12)). In particular, one can use the derivative of the model
energy with respect to µ, as in Eq. (15). The same procedure
can be applied also for approximations, and the wrong be-
havior of the approximation (in the regime considered) can
be eliminated (Eq. (24), or Eq. (25)). It is a first step in

FIG. 4. Same as Fig. 1, but now for the helium atom.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.157.90.89 On: Mon, 24 Feb 2014 18:23:03



18A509-5 Andreas Savin J. Chem. Phys. 140, 18A509 (2014)

correcting approximate density functionals, by introducing
more information from model systems.

The approximation introduced in this paper does not re-
quire the use of spin-density, and is not restricted to ground
states.

In order to produce numerical examples, a Hamiltonian
containing long-range interaction (erf(µr12)/r12) was used.
The correction introduced becomes exact as this interaction
approaches the physical one, 1/r12.

In the regime where the approximation becomes exact,
one could as well use Eq. (17) (as in Ref. 10). The advan-
tage of Eq. (25) is that, in contrast to Eq. (17), a correction
is active even for small µ. However, for the important limit
µ = 0, there is no improvement over the density functional
approximation.

Of course, this approach can be extended to density func-
tionals that work better than LDA. One can thus expect im-
proving the quality of the approximation when the interaction
is weak.

Finally, it should be mentioned that the form of H(µ)
used in this paper is not the only one of interest. For
example, one could consider model Hamiltonians of the
form T (µ) + V (µ) + Vee where T(µ) is a non-local one-
particle operator. It has be shown that it can lead to good
approximations.27–31
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