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ABSTRACT
Model Hamiltonians with long-range interaction yield energies are corrected taking into account the universal behavior of the electron–
electron interaction at a short range. Although the intention of this paper is to explore the foundations of using density functionals combined
with range separation, the approximations presented can be used without them, as illustrated by a calculation on harmonium. In the regime,
when the model system approaches the Coulomb system, they allow the calculation of ground states, excited states, and properties, with-
out making use of the Hohenberg–Kohn theorem. Asymptotically, the technique is improvable and allows for error estimates that can
validate the results. Some considerations for correcting the errors of finite basis sets in this spirit are also presented. Being related to the
present understanding of density functional approximations, the results are comparable to those obtained with the latter, as long as these are
accurate.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0028060., s

I. INTRODUCTION
A. Approach
1. A model and its correction

Combining methods is often encountered in electronic struc-
ture calculations. For example, it is present in hybrid methods for
density functional approximations (DFAs) (see, e.g., Ref. 1) or when
extrapolating to the complete basis set limit after coupled cluster
calculations (see, e.g., Ref. 2).

This paper presents a model Hamiltonian. It uses an interaction
between electrons that is not the physical, Coulombic one, but recov-
ers its behavior in the long range, while having no singularity when
the distance between electrons vanishes. A parameter, μ, is used to
characterize the model. In the limit μ = 0, the model corresponds
to a system without interaction between electrons, while as μ →∞,
the Coulombic interaction is reached. For each of the models, i.e.,
for each μ, corrections are constructed by exploiting the analytical
behavior of the solution of the Schrödinger equation for the model
as the Coulombic system is approached. The method uses “range
separation.”

While with Jastrow factors, or in F12-methods (see, e.g.,
Refs. 3 and 4), the wave function is corrected, here a modified Hamil-
tonian is considered to provide reliable eigenvalues, and corrections
are applied to the latter.

2. Universality
A reason for using a range-separated model lies in the pos-

sibility to introduce features that are independent of the specific
system studied (are “universal”). When electrons get close (in the
“short range”), the repulsion between electrons dominates, making
the interaction with the nuclei (specifying the system) irrelevant for
the correction. This motivates the exclusion of the short range from
the model Hamiltonian.

3. Systematic improvement
Often one speaks about “systematic improvement.” However, it

can have different meanings.
1. The lowest level is statistical: repeated applications show that

method A is superior to method B. This meaning is found in
the literature, e.g., as showing that the generalized gradient
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approximations (GGAs) are systematically improving over the
local density approximation (LDA).

2. The next level is nicely summarized in Percus’s (NYU, NY,
USA) statement:5

“Every time I develop a model, I like to know what the next
step could be, even if it is too complicated for me to pursue it.”

It is often used in quantum chemistry, e.g., when saying
that coupled cluster methods are systematically improvable,
as one can enlarge the one-particle basis set or the degree of
excitation from the reference configuration.

3. A higher level produces a bound, as, e.g., for the energy in a
variational method. We know that the error gets smaller after
the improvement, but we do not know how large the error is.

4. An even higher level is provided by a model where error
bounds can be improved. Hackbusch (Max Planck Institute
for Mathematics in the Sciences, Leipzig, Germany) once asked
me6

“Why do you speak about approximations? The word
approximation comes from proximity, you have to know
how far you are from the desired result. This is the mean-
ing we use in mathematics. You should use another word,
for example, model.”

This paper presents an approach going into the direction of
overcoming the first level above, using ideas that originated from
the understanding of density functional approximations.

B. Warnings
1. No mathematical rigor

This paper contains mathematical derivations. However, a
mathematician will not consider the derivations in this paper accept-
able. For those looking for rigor, everything presented in this paper
can be resumed to attempt to correct the error made by a model by
adding a linear combination of functions selected to vanish when the
model becomes exact. The expansion coefficients are determined by
giving some information about the way the model evolves toward
the Coulomb system.

2. Asymptotic improvement
The method presented works in an asymptotic regime (as the

model approaches the Coulomb system, μ→∞).
Fortunately, the numerical results presented here are encourag-

ing in the sense that the method seems to work even when quite far
from the Coulomb system (μ ≈ 1).

3. No single-determinant wave functions
Although single-determinant wave functions are present in

many density functional methods, the method discussed in this
paper is not restricted to single-determinant wave functions, except
when the model corresponds to a non-interacting system (μ = 0).
On the one hand, this makes it more expensive than those frequently
(but not always) present in range-separated applications with DFAs.
On the other hand, it gives the model more flexibility and allows the
correction to be simpler. In the limiting case of the model becoming
exact (μ = ∞), the correction vanishes. Of course, in this limiting
case, the exact Schrödinger equation has to be solved.

The convergence to the N-particle basis set limit is faster when
the singularity in the Hamiltonian is eliminated, making the cal-
culation of the model system faster than for that with Coulomb
interaction.

There was also another source of interest for this kind of treat-
ment: the deception about the treatment of static correlation with
correlation energy density functionals.7 Static correlation is related
to degeneracy, and degeneracy is due to the external potential, and
thus not a universal feature.8 This makes it difficult to have it
described by a universal functional, hence the idea of going beyond
the single Slater determinant treatment (as in the Kohn–Sham
method) and combining density functionals with more elaborate
wave functions. One of the ideas was to use range separation.9

4. Limited treatment of simplified wave
function methods

With the exception of basis set limitations, insufficiencies in
the wave function treatment are not discussed here. Thus, no com-
parison is made with those coming from correcting second-order
perturbation theory only, e.g., Refs. 10 and 11; the random phase
approximation, e.g., Ref. 12, with coupled cluster, e.g., Ref. 10;
multi-configuration self-consistent field calculations, e.g., Ref. 13;
multi-reference configuration interaction, e.g., Ref. 14; projected
Hartree–Fock;15 constrained pairing mean-field theory;16 density
matrix renormalization group;17 fixing the nodes in diffusion Monte
Carlo;18 or using a specialized ansatz for describing the long-range
part with applications such as dispersion interaction.19 Of course,
any method that is pushed far enough to reproduce full configu-
ration interaction to the desired accuracy, such as selective con-
figuration interaction, e.g., Ref. 20, is not excluded by the present
treatment.

5. The external potential as the one-particle potential
It is elementary knowledge that a mean-field Hamiltonian

(such as Hartree–Fock or Kohn–Sham) is a better starting point
for perturbation theory calculations than the bare external potential.
Nevertheless, for the sake of the simplicity of the argumentation, the
latter is used. The effect of relaxing this restriction will be succinctly
addressed.

6. No use of DFAs
This paper does not intend to present methods that correct the

model using a DFA but only to justify them.
A reason for avoiding here to use DFAs is the need for choos-

ing one among an amazing range of possibilities. By what criterion
should the density functional be selected for a perspective paper?
Furthermore, this paper is not a review paper, but only aims to
present a viewpoint, and hopefully opens ways to improve DFAs.

The theoretical foundation of correcting the model used in this
paper with a density functional has been established long ago:21,22

it simply results from the Hohenberg–Kohn theorem. If the exact
density is known, accurate corrections can be even constructed (even
if it is exceedingly difficult; see, e.g., Refs. 23 and 24).

By no means should this paper reduce the importance of using
range separation with DFAs, as proven by many successful appli-
cations,25–31 to cite just a few. A review paper is Ref. 32. The
reasoning below relies heavily on the experience obtained within
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density functional theory (DFT). In addition, a connection to pair
density functional theories (such as Refs. 33–35) should also be
evident.

The applicability of asymptotic considerations not only to
ground states but also to excited states and properties, in general,
gives a further reason not to use the Hohenberg–Kohn theorem in
this paper.

7. Other approaches
This paper does not discuss closely related papers, such as pre-

sented in Refs. 36–38, or relating short-range DFAs with a treatment
using Jastrow factors.18,39–41

Furthermore, uses of range separation to deal with subsystems
(see, e.g., Refs. 42 and 43) are also not treated.

This paper does not describe methods where correlation effects
are included into the construction of a model Hamiltonian. Such
methods exist for a long time and are successful.44–50 They can
be seen as using pseudopotentials for the electron–electron inter-
action, with the intention to directly answer the physical problem
while staying with single-determinant wave functions. However, in
the pseudopotential approach, the difficulty lies in defining a good
model, paying it with no or only a simple correction. In the approach
presented here, the model is to a certain degree arbitrary (and thus
adaptable to requirements of the system studied), all the difficulty
being that of finding the right correction.

8. There are not enough examples in this paper
Using the asymptotic behavior does not tell us how far we can

get with them. Here, we use a single example, harmonium with two
electrons, for which we have an analytic solution for the ground
state. For the models where we do not have analytical solutions, we
can still reduce the problem to a problem in one dimension that can
be accurately solved numerically. Approximations can be followed
step by step.

Of course, this is a poor basis for generalizing the results, being
far below the present standard of testing approximations on large
sets of systems. Other systems treated in a similar fashion can be
found, e.g., in Refs. 51–55.

9. This paper presents a personal viewpoint
Mostly, own papers are cited (in order to complement the argu-

mentation), and many important papers (even some that produced
a breakthrough) are unfortunately not cited. The author begs to be
excused for these omissions.

C. Structure of the paper
First, the model Hamiltonian used in this paper is described

in more detail. Next, the asymptotic treatment is introduced. It
is explained how it can provide corrections for the eigenvalues of
the Schrödinger equation and how properties can be corrected.
Although local approximations (such as those used in DFAs) are not
made here, some connections to them are mentioned. For practi-
cal reasons, it is useful to treat also the case when the models are
not solved exactly due to basis set limitations. Their effect is com-
pared to that of having a long-range interaction operator. In order
to illustrate the method, some numerical results are presented for the

harmonium system with two electrons. This paper ends with some
thoughts about future developments.

II. RANGE SEPARATION
A. Context
1. Ewald approach

In order to describe the electrostatic potential on a crystal lat-
tice, Ewald56 found it useful to partition the Coulomb interaction
between two particles into two parts,

1
r
= erf(μr)

r
+

erfc(μr)
r

, (1)

where r is the distance between particles. A schematic plot is shown
in Fig. 1. For given μ, the first term on the right-hand side of Eq. (1)
follows the Coulomb interaction when r is large (it is long-ranged),
while the second term on the right-hand side is short-ranged. μ has
the dimensions of an inverse distance. When μ = 0, the long-range
part vanishes, while it approaches the Coulomb interaction when
μ = ∞. The long-range part reaches smoothly the Coulomb inter-
action for r ≈ 1/μ and is close to μ between the origin and this
point.

The long-range part in position space is short-ranged in the
momentum space; the Fourier transforms of the terms in Eq. (1) give

4π
k2 =

4π
k2 e

− k2

4μ2 +
4π
k2 (1 − e−

k2

4μ2 ). (2)

From now on, when speaking about long or short ranges, we refer to
the components in position space [Eq. (1)].

The choice of the separation parameter μ is a matter of compro-
mise between the treatments. It is analogous to the choice of basis
sets: although it can be systematically improved, most often, it is
experience that decides its choice.

2. Range separation can be used to simplify
the numerical treatment

In general, the short range is more convenient for calculations
(think of order N calculations). Ewald proposed to stay in position

FIG. 1. Ewald decomposition [Eq. (1)] of the Coulomb interaction (black dotted
curve) into a long-range part, as used in the model (red full curve), and a short-
range part (red dashed curve); a rough approximation to the long-range part (blue
thin full curve) is given by a function that is constant (μ) for distances smaller than
1/μ and is identical to the Coulomb interaction for large μ.
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space when the interaction is short-ranged in it but to switch to
momentum space for the part that is of long-ranged in position space
(and of short-ranged in momentum space).

Another example of using range separation to combine meth-
ods was provided by Nozières and Pines.57 They noticed that the
second-order perturbation theory diverges for the uniform electron
gas when the Coulomb interaction is used, but not when a short-
range interaction is used. They thus proposed to calculate the cor-
relation energy using the second-order perturbation theory only for
the short range while using another method (that has problems at the
short range, the random phase approximation) for the long range.

There are two unpublished papers, written in 1977 by Kohn (at
the time at the University of San Diego, USA) and Hanke (at the
time at the Max Planck Institute for Solid State Physics, Stuttgart,
Germany) where density functionals were used only for describing
the short-range interaction between electrons.

B. Model
1. Model interaction

In the models treated in this paper, the interaction between two
electrons, one in r1 and the other in r2, is given by the long-range
part in Eq. (1),

w(r12,μ) = erf(μr12)
r12

, (3)

where r12 = |r1 − r2|. For N particles, we have the interaction
operator

W(μ) =
N

∑
i<j

w(rij,μ). (4)

2. Model Hamiltonian
The model Hamiltonian is

H(μ) = T + V + W(μ). (5)

Here, T is the kinetic energy operator and V is the one-particle
potential. Note that in density functional theory (DFT), one does
not choose V as the external potential, but adds a correction to it,
such that for all model systems (all μ’s), the density is identical to the
exact one. Thus, in a density functional context, V depends on μ, is
the Kohn–Sham potential for μ = 0, and becomes the external poten-
tial only for μ =∞. This is useful, but there are three reasons for not
doing it in this paper. First, DFT requires the knowledge of the exact
density that we do not have a priori. Second, there is no clear crite-
rion to choose a DFA from the multitude of the existing ones. Third,
below derivatives with respect to μwill be used. Once V(μ) is chosen,
it is possible to use them without much difficulty, but this makes the
formulas less transparent. Thus, in this paper, V is the same for all
models (all μ’s), namely, the external potential.

The Schrödinger equation for the model Hamiltonian is

H(μ)Ψ(μ) = E(μ)Ψ(μ). (6)

When no dependence on μ is explicitly given, the physical
quantities are supposed,

H = H(μ =∞),
E = E(μ =∞),
Ψ = Ψ(μ =∞).

(7)

3. Motivations for the choice of the model system
Kato58 has noticed that the singularity of the Coulomb inter-

action showing up when the distance between electrons vanishes,
r12 → 0, makes the wave function behave in a way independent of
the external potential. This can be understood physically: when two
electrons get close, the repulsion dominates, and the specific features
of the external potential do not matter. This behavior is “univer-
sal.” Constructing a model system that eliminates the singularity
that appears for the Coulomb interaction at the origin improves
the convergence with increasing basis set size (for wave functions
written as linear combinations of Slater determinants). Thus, the
model interaction in Eq. (3) has the double advantage: as in DFT,
it eliminates the need for describing some universal properties for
each of the systems calculated, and it makes the latter calculation
simpler.

Of course, the use of the error function to make the separa-
tion between the ranges [Eq. (3)] is decided by convenience. One can
think of other functions, such as the exponential (as in the Yukawa
interaction)21 or more complex forms (see, e.g., Refs. 59 and 60), to
have a non-singular interaction that reproduces on average the inter-
action between electrons. A reason to use the error function is the
simplicity to implement it as the Fourier transform [Eq. (2)] used
in the calculation of two-electron integrals introduces only Gaus-
sian factors, easy to deal with both in Gaussian and in plane wave
codes.

III. CORRECTING THE MODEL
A. Asymptotic regime
1. Approaching the physical interaction

Our aim is to construct corrections that become exact when the
model system approaches the physical one. There are several paths to
approach it. For example, using our model interaction [Eq. (3)], one
can increase μ. Another way is to construct a Hamiltonian depend-
ing also on another parameter λ that, as in conventional perturbation
theory, reaches the physical system for λ = 1,61–63

H(λ,μ) = H(μ) + λ(H −H(μ)). (8)

For the choice of H(μ) of Eq. (5), the correcting term is
λ(H −H(μ)) = λW̄(μ), where

W̄(μ) =∑
i<j

w̄(rij,μ) (9)

and

w̄(r,μ) = 1/r − w(r,μ) = erfc(μr)
r

. (10)

Note that the two-particle operator in H(λ, μ) can also be written as

w(r,μ) + λ w̄(r,μ) = (1 − λ)w(r,μ) +
λ
r

, (11)

showing that a non-zero λ introduces a weakened Coulomb singu-
larity in the potential, even when w is non-singular. For this reason,
in this paper, although we consider λ ≠ 0 when constructing correc-
tions, we always choose λ = 0 for the model system. However, the
formulas are easy to generalize to λ ≠ 0.
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The Schrödinger equation with H(λ, μ) has eigenvalues E(λ, μ)
and eigenfunctions Ψ(λ, μ). Note that the Coulomb system can be
equally reached either by λ = 1 or by μ =∞,

H(λ = 1,μ) = H(λ,μ =∞) = H,
E(λ = 1,μ) = E(λ,μ =∞) = E,
Ψ(λ = 1,μ) = Ψ(λ,μ =∞) = Ψ,

and that

H(λ = 0,μ) = H(μ),
E(λ = 0,μ) = E(μ),
Ψ(λ = 0,μ) = Ψ(μ).

We use also the notation

Ē(λ,μ) = E − E(λ,μ),
Ē(μ) = E − E(μ)

(12)

for the corrections to the models.

2. The asymptotic behavior of Ψ(μ)
When W is close to the Coulomb interaction (μ → ∞), and

the distance between electrons 1 and 2, r12, is small, the interaction
of the electrons with the external potential loses its importance in
the Schrödinger equation. By changing variables to have an explicit
dependence on r12, we have to consider the following differential
equation:

(−∂2
r12 +

2
r12

∂r12 + w(r12,μ) + λ w̄(r12,μ))Ψ(r12, . . . ,μ) = 0, (13)

which is valid for r12 → 0 and μ → ∞. After changing variables
r12 → μr12, and staying to first order in 1/μ, one obtains as solution
of the differential equation

Ψ(. . . , r12, . . . ; λ,μ)→ cϕ(r12, λ,μ) for μ→∞, r12 → 0, (14)

where

ϕ(r12, λ,μ) = 1 +
λ
2
r12 + (1 − λ)( 1

2
√
πμ

e−μ
2r2

12 +
1
2
r12 erf(μr12)

+
1

4μ2
1
r12

erf(μr12)) for r12 → 0,μ→∞. (15)

c does neither depend on r12 (short-range expansion) nor on the
model parameters (λ, μ) (the model system is close to the Coulomb
system), but on all other coordinates, and the Coulomb system
under consideration (that we have “perturbed”er The details of the
calculation are too lengthy to be presented here, but the technique
used is identical to that of Ref. 64.

By expanding ϕ around r12 = 0, we see how the cusp is
approached,

ϕ(r12, λ,μ) = 1 +
1 − λ√
πμ

+
λ
2
r12 + O(r2

12), for μ→∞. (16)

We note that the Kato behavior, 1 + r12/2, is recovered for λ = 1
and that the cusp disappears at λ = 0, i.e., for the model Hamiltonian
H(μ) [Eq. (5)]. The schematic behavior of ϕ as a function of r12 is
shown in Fig. 2.

FIG. 2. Schematic behavior of the wave function dependence on the inter-particle
distance r12 for small r12 and large μ [Eq. (15)]: λ = 0, red full curve and
λ = 1/2, blue full curve; the tangents at r12 = 0 are shown as dotted lines; λ = 1,
i.e., Coulomb interaction, black dashed line.

Equation (15) is valid for singlet electron pairs. For triplet pairs,
an analogous treatment is possible, cf. Ref. 64. Triplet pairs con-
tribute to higher order in μ than considered in the theoretical part of
this paper. Furthermore, as the only numerical example is a system
of two electrons in a singlet state, triplet pairs are not discussed.

3. Determining the system-specific prefactor
Additional information is needed about the constant c that

shows up in Eq. (14). As ϕ is valid only for the small r12 and behaves
like 1 + r12/2 for large r12, normalization cannot help.65 We will not
need c as such because expectation values over short-range opera-
tors will be used below. However, we will need a constant a that is
equal to c2, integrated over all variables except r12, multiplied byN(N
− 1)/2, the number of electron pairs (as they are indistinguishable).
Let us thus write one of the operators as

W(λ,μ) =∑
i<j

w(∣ri − rj∣, λ,μ). (17)

They should be non-negligible only in the region where approxima-
tion (14) is valid. We use Eq. (14) and write

⟨Ψ(λ,μ)∣W(λ,μ)∣Ψ(λ,μ)⟩ ≈ aϖ(λ,μ,w), (18)

where

ϖ(λ,μ,w) = ∫
∞

0
dr12 4π r2

12 ϕ(r12, λ,μ)2
w(r12, λ,μ). (19)

For example, for large enough μ, one can choose ϖ for w(r, λ,μ)
= w̄(r,μ) [Eq. (10)], independent of λ, or w(r, λ,μ) = (1 − λ)
∂μw(r,μ),

∂μw(r,μ) =
2√
π
e−μ

2r2

. (20)

For these operators, ϖ, the integral in Eq. (19) can be obtained
analytically to order μ−3,

ϖ(λ,μ, w̄) = π
⎛
⎜
⎝

1
μ2 +

4
3
√
π (1 + 2(

√
2 − 1)(1 − λ))
μ3

⎞
⎟
⎠

+ [1.532 49 − 1.279 57λ + 0.336 137λ2

μ4 ] +⋯, (21)
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ϖ(λ,μ,∂μw) = 2π (1 − λ)
⎛
⎜
⎝

1
μ3 +

2
√
π (1 + (

√
2 − 1)(1 − λ))
μ4

⎞
⎟
⎠

+ [(1 − λ)(4.168 87 − 2.196 15λ + 0.383 474λ2)
μ5 ]+⋯.

(22)

In the equations above, the terms in square brackets are uncertain
as there may be contributions to order μ−4 coming for higher-order
corrections to the differential equation used to obtain ϕ.

The operators w̄(r,μ) and (1− λ)∂μw(r, μ) were chosen because

∂λE(λ,μ) = ⟨Ψ(λ,μ)∣∂λH(λ,μ)∣Ψ(λ,μ)⟩
= ⟨Ψ(λ,μ)∣W̄(μ)∣Ψ(λ,μ)⟩, (23)

∂μE(λ,μ) = ⟨Ψ(λ,μ)∣∂μH(λ,μ)∣Ψ(λ,μ)⟩
= ⟨Ψ(λ,μ)∣(1 − λ)∂μW(μ)∣Ψ(λ,μ)⟩. (24)

To obtain a, we use Eq. (18) and equate the expectation values of W
in the model system (or, equivalently, the energy derivatives above)
with the asymptotic estimates using ϖ [Eqs. (21) or (22)],

∂λE(λ,μ) ≈ aϖ(λ,μ, w̄), (25)

∂μE(λ,μ) ≈ (1 − λ)aϖ(λ,μ,∂μw). (26)

Obtaining a requires a supplementary computational effort
beyond the model calculation: the expectation values in Eq. (23)
or (24) are needed. Using derivatives is still relatively cheap as the
model wave function can be used. The additional information pro-
vided by them is known to work for correcting models (see, e.g.,
Ref. 66).

B. Constructing corrections
1. Adiabatic connection and first-order correction

Equalities such as

E = E(λ0,μ0) + ∫
1

λ0

dλ∂λE(λ,μ0) (27)

= E(λ0,μ0) + ∫
∞

μ0

dμ∂μE(λ0,μ) (28)

are known under the name of adiabatic connections. It seems that
they were first used in quantum mechanics in the differential form
by Güttinger, a student of Pauli.67,68

Of course, even if we have solved the Schrödinger equation at
(λ0, μ0), we do not have information about E(λ > λ0, μ > μ0) needed
in the equations above: the formulas seem useless. However, for
μ→∞, the integrands appearing on the right-hand side of Eqs. (27)
and (28) can be expressed using Eqs. (25) and (26),

E ≈ E(λ = 0,μ0) + a∫
1

0
dλϖ(λ,μ0, w̄) (29)

≈ E(λ = 0,μ0) + a∫
∞

μ0

dμϖ(λ = 0,μ,∂μw). (30)

The integrals over ϖ given in Eq. (29) or (30) can be obtained
analytically to order μ−3. The path of integration should not matter,
and the two integrals in Eqs. (29) and (30) are indeed identical to the
order considered,

∫
1

0
dλϖ(λ,μ0, w̄(μ0)) = ∫

∞

μ0

dμϖ(λ = 0,μ,∂μw)

= π(μ−2
0 + κ μ−3

0 ) +⋯, (31)

where κ = 4
√

2/(3
√
π). Let us mention that the existence of the term

in μ−2 can be derived from simple scaling considerations, while that
in μ−3 shows up when studying how the cusp condition for the wave
function is approached when μ→∞.64

For a, we use Eqs. (25) or (26) for a given value of λ and μ, e.g.,
λ = 0 and μ = μ0, as it asymptotically does not depend on λ or μ. If
we use Eq. (25), we get (at λ = 0)

E ≈ E(μ) +
μ + κ

μ + κ(2 − 1/
√

2)
∂λE(λ,μ)∣λ=0, (32)

while with Eq. (26), we obtain

E ≈ E(μ) +
μ + κ

2μ + 3κ
μE′(μ). (33)

When a function depends on a single variable, we use primes to
denote the derivatives.

We can study what happens when we ignore the term that takes
into account how the cusp in the wave function is approached with
increasing μ, i.e., set κ to 0 in the formulas above. Equations (23) and
(32) give the conventional first-order perturbation expression,

E ≈ E(μ) + ∂λE(λ,μ)∣λ=0 = ⟨Ψ(μ)∣H∣Ψ(μ)⟩. (34)

Equation (33) gives

E ≈ E(μ) +
1
2
μE′(μ). (35)

We see that in the limit μ = 0, there is no correction with
approximation (35), or (33), so that approximation (34), or (32), is
expected to give better results.

To underline the difference between the conventional first-
order perturbation theory [Eq. (34)] and that of Eq. (32), let us
add and subtract ∂λE(λ, μ)|λ=0 on the right-hand side of the latter
and use Eq. (34). We get a term not present in standard first-order
perturbation theory (34),

E ≈ ⟨Ψ(μ)∣H∣Ψ(μ)⟩ − (1 − 1/
√

2)κ
μ + (2 − 1/

√
2)κ

∂λE(λ,μ)∣λ=0. (36)

Note that the same additional information is needed to correct
E(μ) both here, and in conventional perturbation theory, namely,
∂λE(λ,μ)∣λ=0 = ⟨Ψ(μ)∣W̄(μ)∣Ψ(μ)⟩.
2. The next step

Let us summarize how we have obtained the approximations in
Eqs. (32) and (33). We approximated E by

E ≈ E(λ,μ) + a1 χ1(λ,μ), (37)

where χ1(λ, μ) was chosen using the asymptotic behavior, cf.
Eq. (31). For Eqs. (34) and (35), we used instead μ−2. The constant
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a1 = aπ was chosen by reproducing the derivative of the energy with
respect to either λ (at λ = 0) or with respect to μ, cf. Eqs. (25) and
(26). We take the derivative of Eq. (37) with respect to μ at some μ0.
In order to simplify the notation, we drop here the subscript 0. For
it, we recall that the energy of the Coulomb system does not depend
on μ and get

0 ≈ E′(μ) + a1 χ′1(μ). (38)

This gives a1 ≈ −E′(μ)/χ1
′(μ) that is substituted back in Eq. (37). If

we choose χ1(μ) = μ−2, we obtain Eq. (35), while with χ1(μ) = μ−2

+ κμ−3, cf. Eq. (31), we obtain Eq. (33).
Let us generalize it by writing an asymptotic series [see, e.g.,

Eq. (1.5.2) in Ref. 69] for Ē [Eq. (12)],

Ē(λ,μ) ≈ S(λ,μ,K) =
K

∑
k=1

ak χk(λ,μ). (39)

We have χk that vanishes as μ → ∞ as Ē(μ) vanishes in this limit.
Furthermore, we choose the χk such that

χk+1(λ,μ)/χk(λ,μ)→ 0 forμ→∞ (40)

and assume that AK , a positive constant, can be found such that the
truncation error

∣Ē(λ,μ) − S(λ,μ,K)∣ ≤ AK ∣χK+1(λ,μ)∣ forμ ≥ μK . (41)

By Eq. (39), for sufficiently large μ, the truncation error is smaller
for S(λ, μ, K + 1) than for S(λ, μ, K). Note, however, that for a
given, small enough μ, the error can increase when going from K to
K + 1. To give a simple example, approximating (1 + x)−1 by (x−1

− x−2) has a smaller absolute error than x−1 for x > 1, but the
opposite applies for x < 1.

If we had Ē(λ,μ), we could determine

ak = lim
μ→∞
(Ē(λ,μ) − S(λ,μ, k − 1))/χk(λ,μ) (42)

by applying Eq. (40). As we do not know Ē(λ,μ), we follow in this
paper the generalization of the Taylor series,70 i.e., we define the ak
by neglecting the terms beyond K and fix the ak such that the first K
derivatives of Ē(λ,μ) are equal to those of S(λ, μ, K).

A few remarks about this approach are as follows:
(i) The derivatives of Ē(λ,μ) are accessible as they are minus

those of E(λ, μ), as can be seen by taking the derivatives with
respect to λ or μ in Eq. (12). By changing the model, we
have to change the correction in such a way that the physical
energy, E, is unchanged.

(ii) There is a similitude with the conventional perturbation the-
ory where the basis functions are λk, and the coefficients are,
up to a factor 1/k!, the derivatives with respect to λ in λ = 0.

(iii) There is a further analogy with the conventional perturbation
theory: information around the expansion point (here, λ, μ,
and there, λ = 0) is used to get information for a system at
another point (here, μ =∞, and there, λ = 1).

(iv) We see that this approach is nothing but an extrapolation
procedure that can be extended by using information in a
number of points [the value of the function, here E(λ, μ), and
possibly its derivatives].51 As first derivatives are relatively
easy to obtain, one can also use the energies for different

models, and their first derivatives, and reduce by a factor of
two the number of models used.
When derivatives do not exist, we can still use this proce-
dure, for example, when we approach the Coulomb interac-
tion by a model that does not continuously change with μ [in
contrast to that used here, Eq. (3)]. Such a model appears, for
example, when we expand 1/r12 in a finite basis.
The generalized Taylor expansion is a particular case: the
function and the derivatives are taken in a single point.
The numerical integration of the adiabatic connection for-
mula [Eq. (27) or (28)] is another particular case that uses
the first derivative of E(λ, μ) in a set of points along the
integration path.

3. Higher-order estimates
In order to improve on the approximations already given, con-

sider the case K = 2. Let it first be χ1(μ) = μ−2, χ2(μ) = μ−3. It satisfies
condition (40). Let us ignore for the moment the knowledge of the
cusp-related relationship between a2 and a1, a2/a1 = κ, cf. Eq. (31).
We obtain an approximation for E from Eq. (39), also taking the
derivatives with respect to μ, E(μ), E′(μ), E′′(μ), a system of three
equations with three unknowns: E, a1, a2. After solving it, we get

E ≈ E(μ) + μE′(μ) +
1
6
μ2E′′(μ). (43)

However, as we know the relationship, we can make progress
by choosing χ1(μ) = μ−2 + κμ−3 and χ2(μ) = μ−4. By requesting the
first two derivatives with respect to μ to satisfy approximation (39),
we obtain

E ≈ E(μ) +
7 μ + 4κ
8 μ + 6κ

μE′(μ) +
2 μ + κ

16 μ + 12κ
μ2E′′(μ). (44)

Similar considerations can be applied to the expectation value
of the Hamiltonian. The term added to the expectation value of H in
Eq. (36) originates from a times

− ϖ(λ = 0,μ, w̄(r12,μ)) + ∫
1

0
dλϖλ,μ, w̄(r12,μ)∝ μ−3, (45)

which can be considered as a basis function. Its prefactor α can be
determined by taking the derivative of

E = ⟨Ψ(μ)∣H∣Ψ(μ)⟩ + αμ−3 +⋯ (46)

with respect to μ, yielding

E ≈ ⟨Ψ(μ)∣H∣Ψ(μ)⟩ +
1
3
μ
d
dμ
⟨Ψ(μ)∣H∣Ψ(μ)⟩, (47)

which also contains a second-order correction, as we need the
change in the wave function with μ.

As adding basis functions to the expansion [Eq. (39)] is
expected to improve asymptotically the approximation, we can use
the absolute value of the difference between the estimates of the E
in two successive approximations, such as Eqs. (44) and (33), as an
error indicator for large μ.

Equations such as Eq. (32) or (33) appear from the asymp-
totic conditions. For sufficiently large μ, fits such as Eq. (47) or (43)
should yield the same result. If this is not the case, we have an indi-
cator that the asymptotic regime was left. For example, as we know
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the relationship between the coefficients of μ−2 and that of μ−3, cf.
Eq. (31), a3 = κa2, we see that the added term when passing from
K = 1 to K = 2 is smaller than the first correction, as long as
μ > κ ≈ 1.06. It gives us a first estimate of the range of validity of
the asymptotic approximation.

4. Asymptotic lower bounds
An asymptotic lower bound can be constructed using the

asymptotic behavior of the wave function. We start with a trivial
lower bound

E = ⟨Ψ∣H∣Ψ(λ,μ)⟩
⟨Ψ∣Ψ(λ,μ)⟩

= E(μ) +
⟨Ψ∣W̄(λ,μ)∣Ψ(λ,μ)⟩
⟨Ψ∣Ψ(λ,μ)⟩

≥ E(μ) + ⟨Ψ∣W̄(λ,μ)∣Ψ(λ,μ)⟩. (48)

To obtain the equalities, we used that, for all λ and μ, also for the
Coulomb system, Ψ(λ, μ) is an eigenfunction of H(λ, μ) and that
H = H(λ,μ) + W̄(λ,μ). For the inequality, we assumed that Ψ(λ, μ)
is normalized to one, for all λ and μ, and that the same sign has been
chosen for Ψ(λ, μ) and Ψ. (We could choose absolute values to avoid
this choice.) Asymptotically, we use cϕ [Eq. (14)] to compute

⟨Ψ∣W̄(μ)∣Ψ(μ)⟩→ a∫
∞

0
du 4πu2 ϕ(u, λ = 1,μ =∞)

× w̄(u,μ)ϕ(u, λ,μ) +⋯. (49)

The integral appearing on the right-hand side can be evaluated
analytically to order μ−3 to yield an expression for the lower bound
to the exact energy,

E≤ ≈ E(λ,μ) + aπ (μ−2 + μ−3 4
3
√
π
(1 + (

√
2 − 1)(1 − λ))). (50)

In particular, for λ = 0, we obtain Eq. (31), which was used to
obtain the approximations in Eqs. (32) and (33). These first-order
expressions are asymptotically lower bounds, while the common
first-order expression ⟨Ψ(μ)|H|Ψ(μ)⟩ is an upper bound to E. This
gives us further error estimates that become asymptotically error
bounds.

C. Varia
1. Excited states and properties

It is worth underscoring that the considerations above are also
valid for excited states as never was it assumed that E(μ) is the
ground state energy.

Furthermore, properties can be treated the same way. This can
be done by modifying the Hamiltonian H → H + αA, where A is the
operator of interest, and approaching (within the model) ∂αE(α) at
α = 0.

One can also compute A(μ) = ⟨Ψ(μ)|A|Ψ(μ)⟩. Remarking that
the perturbation starts with μ−2, one concludes that A(μ → ∞) is
approached by A(μ) at most by terms in μ−2. We can thus obtain a
formula similar to that leading to Eq. (35),

A(μ =∞) ≈ A(μ) +
1
2
μA′(μ). (51)

2. Choosing the model and size-consistency
All the considerations above are based upon the asymptotic

regime. One can perform tests and check for the stability of the
results. However, one does not know a priori when this is reached. If
μ is chosen too small, the asymptotic approximation can fail. If μ is
chosen too large, the cost of the calculation can become unjustified.
One may compare this situation with that of choosing the right basis
set: one wants it small, but not too small.

Checking for stability or for reaching the asymptotic regime
requires a new calculation. One would like to choose the parameter
on the safe side without doing one.

One can impose some supplementary condition, and this can
be very useful (see, e.g., Refs. 30 and 71).

The value of μ achieving the best compromise between cost and
accuracy certainly depends on the system. One can understand it by
looking at the expression of the interaction [Eq. (3)] where μ appears
only multiplying r12. The range separation parameter μ can be seen
as a scaling parameter. Let us consider that in a diffuse system, we are
satisfied with μdiffuse and, in a compact system, we expect that μcompact
> μdiffuse has a similar effect as μ has the dimensions of an inverse dis-
tance. The different parts of the system may be different atoms but
also regions within an atom. For example, the density is significantly
larger in the core than in the valence region. (In practice, this may
not be very severe: the regions of high density are the core regions
of the atoms, and for most applications, these are not important, as
being replaced by pseudopotentials or giving contributions that are
small in differences.)

Even if a prescription is found for choosing μ in a given sys-
tem, there is a remaining problem. If we decided for an optimal
value for system A, μopt(A), and another one for system B, μopt(B),
this would not be a prescription for the system made of the two
at infinite separation A . . .B. So, although all the approximations
presented above guarantees size-consistency because E(μ), E′(μ), . . .
are assumed to be accurate and thus size-consistent, the optimal
value for μ is not prescribed. Let us assume μopt(A ) > μopt(B): if
we choose μopt(A ), the effort is too important for the sub-system
B, and if we choose μopt(B), the accuracy is not sufficient for the
sub-system A.

A way to get around this problem is used in DFAs: one makes
a local ansatz as it allows one to decompose expressions into contri-
butions from the spatial regions of the subsystems, ΩA and ΩB,

∫
R3
dr f (r) = ∫

ΩA

dr f (r) + ∫
ΩB

dr f (r). (52)

In this paper, for the sake of simplicity, no local ansatz is made. A
dependence on the position r1 can be introduced into Eq. (14) by
not integrating over r1, c→ c(r1).

One can choose to define local range separation parameters
based on using the density in r1 = r2, e.g., Ref. 72, complemented
by its gradient in this point, e.g., Refs. 49 and 73, or the local kinetic
energy, e.g., Fig. 3.6, p. 134 in Ref. 74. This improves the results (see,
e.g., Ref. 75). However, the two-electron integrals are more compli-
cated if the interaction is made to depend not only on the distance
between electrons but also on their positions. There are techniques
to deal with this problem in an efficient way (see, e.g., Ref. 76).
However, this requires extra programing and testing.

Size-consistency issues are complicated in approximations
because even in forms like that in Eq. (52), we have to deal with
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ensembles in the case of degeneracies. This is true for densities8,77,78

and for the methods where only the short-range part of the pair den-
sity is needed [cf. Eq. (19) in Ref. 8]. However, in general, dealing
with pair densities is more complicated. To give a simple example,
consider the pair density,

P2(r, r′) = ⟨Ψ∣
N

∑
i≠j
δ(ri − r)δ(rj − r′)∣Ψ⟩. (53)

Its normalization (obtained by integrating it over r and r′) is
N(N − 1) because

∫
R3
dr∫

R3
dr′δ(ri − r)δ(rj − r′) = 1 (54)

and is thus not extensive. Nevertheless, this is not the case when
one computes the expectation value of the short-range operators, for
example, the system average of P2 is

P2,aver = ⟨Ψ∣
N

∑
i≠j
δ(ri − rj)∣Ψ⟩

= ∫
R3
dr∫

R3
dr′ P2(r, r′)δ(r − r′)

= ∫
R3
dr P2(r, r). (55)

It can be decomposed into contributions from the spatial regions of
the subsystems, ΩA and ΩB, as in Eq. (52), with f (r) = P2(r, r).

For a detailed discussion, closely related to these issues, see
Ref. 79.

3. Connections to DFAs
The basic philosophy of constructing DFAs is related to that

presented here (see, e.g., Refs. 80–84). One starts with the adiabatic
connection [Eq. (27) or (28)].85–89 In the next step, a model is chosen
for aϕ2(r12, λ, μ), as in Eq. (25) or (26) (however chosen to depend on
the position r1). This produces local (or semi-local) approximations,
i.e., depending on r1. For example, in the local density approxima-
tion, one implicitly transfers aϕ2 from the uniform electron gas with
a density equal to that of the system of interest in point r1.

To generate the models, one can use exact properties of density
functionals (see, e.g., Ref. 90). One also makes an ansatz, with param-
eters that are obtained from calculations or from experimental data.
This parameterization can bring in new properties, desirable or not.
On the one hand, such a procedure might introduce favorable fea-
tures beyond those covered by the universal short-range ϕ [Eq. (14)].
On the other hand, it may transfer unwanted properties, e.g., that the
long-range behavior is different in the system from which the trans-
fers are made, e.g., in the uniform electron gas and in the system
where it is used, e.g., a molecular system (for an analytic treatment,
see, e.g., Refs. 91–93). For example, the exchange energy starts both
for an atom and the uniform electron gas with a term linear in μ.
However, the next term is cubic for the former and quadratic for the
latter.

In order to connect with DFAs, a simplified method is men-
tioned here. In it, only a is assumed to depend on r1, and the
universal short-range behavior of ϕ is used. One can relate a to
the exact system-averaged on-top pair density of the system, P2,aver
[Eq. (55)].64 In analogy to the local density approximation, the on-
top pair density is not calculated but approximated by that of the

uniform electron gas having the same density as that of the system of
interest in r1, ρ(r1). The integration over r1 is performed next to yield
an approximation for the “system-averaged on-top pair density” that
is used to evaluate a,

a ≈ ∫
R3
dr1aUEG(ρ(r1)). (56)

Numerical calculations for P2(r, r) in uniform electron gas exist,
even for models such that the one used here (cf. Ref. 64).

4. Correcting approximations obtained by transfer
When approximations are constructed by transfer from some

accurately treated training system, e.g., the uniform electron gas, also
asymptotic properties are inherited. Consider that we have some
approximation in this category that allows a cheap estimate of the
correction, Ē(μ) ≈ Ē(μ). If we apply the asymptotic considerations
to it, we obtain estimates for the corrections, as above. For example,
we obtain the difference between an equation similar to Eq. (35) and
Eq. (35),

Ē(μ) ≈ Ē(μ) +
1
2
μ(E′(μ) − E′(μ)). (57)

This line is not pursued in this paper. The results obtained with this
kind of approximation can be found in Ref. 94.

5. Changing the one-particle potential
As already mentioned, using the bare external potential for V

is not expected to work well. As an alternative, one can explore the
external potential of DFT that ensures that the density obtained for
the model is equal to the exact one. Such calculations23,95 are rigor-
ous and can provide guidelines but are too expensive in practice. A
simplified form is used in the numerical part of this paper in order
to explore the effect of changing the external potential.

6. Models for associating basis set cutoff to long-range
operators

Many programs do not take full advantage of model interac-
tions such as the one used in this paper. However, programs use
basis sets, and there is an analogy between using these and the
range separation.20,96 To characterize these, one needs to replace μ
by parameters characterizing the range of functions and the dis-
cretization within this range. What makes a rigorous proof more
difficult is that basis sets (e.g., Gaussian ones) are optimized to be
small and are thus more difficult to characterize. Even if a range is
defined for a basis (such as by a minimal and maximal exponent, a
cutoff in a plane wave basis), the discretization in this range has to
be controlled. Instead, we will discuss now ways to roughly charac-
terize a basis set using range separation. Better (and cheaper) ways
are certainly possible.

Let us first discuss an ideal construction and compare the
expectation value of H in the full basis set, ⟨Ψ(μ)|H|Ψ(μ)⟩, with
that obtained with a wave function ΨB optimized in a reduced
basis set B, ⟨ΨB(μ)|H|ΨB(μ)⟩. For the non-interacting system, usu-
ally even “small” basis sets are good enough. This remains true as
long as the interaction is weak. However, we are interested in apply-
ing asymptotic corrections, and we have to continue to stronger
interactions. As this happens, ⟨ΨB(μ)|H|ΨB(μ)⟩ is expected to be
above ⟨Ψ(μ)|H|Ψ(μ)⟩. Thus, the correction needed to obtain E,
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FIG. 3. Finding the value of the range separation parameter μ that corrects for
basis set limitations. The correction to the expectation value of the model Hamil-
tonian H(μ0) in a reduced basis set is more important than that in the full basis.
It corresponds to the correction to the expectation value of the model Hamiltonian
H(μB) in the full basis set calculation for a different model defined by μB < μ0.

E −⟨ΨB(μ)|H|ΨB(μ)⟩, is more important than that needed to correct
⟨Ψ(μ)|H|Ψ(μ)⟩; cf. Fig. 3. We note that for a given model, defined by
μ0, we can find a μB such that the corrections are the same,

E − ⟨ΨB(μ0)∣H∣ΨB(μ0)⟩ = E − ⟨Ψ(μB)∣H∣Ψ(μB)⟩. (58)

If the calculation in the reduced basis set was performed at μ0, the
correction should be that obtained for μB ≤ μ0 in the full basis set.
In short, in order to correct ⟨ΨB(μ0)|H|ΨB(μ0)⟩, the correction at μB
should be used, not that at μ0.

The dependence of μB on μ0 is schematically shown in Fig. 4.
Note that as μ0 →∞, μB approaches a finite value: even the lowest
energy expectation value obtained in the basis B for the Hamiltonian
with Coulomb interaction, minΨB ⟨ΨB∣H∣ΨB⟩, has to be corrected.

Basis sets (such as Gaussian) have different quality in different
regions of space: their ability to describe the interaction varies from
one part of the system to another. This suggests to use local cor-
rections of the basis set deficiency; cf. Eq. (52). Although this is not
presented in this paper, it can be found in the literature.20

Basis set correction solves two problems in range separation.
First, it solves the problem of choosing an optimal value for the
range-separation parameter. One can choose the parameter μ large

FIG. 4. The model parameter μB to be used for the correction of
⟨ΨB(μ0)|H|ΨB(μ0)⟩. The horizontal dotted line corresponds to the value obtained
in the reduced basis set B with the Coulomb potential and corrects only for the
basis set error.

and even stay with the Coulomb interaction, and the basis set intro-
duces automatically a change in the model parameter to μB. Sec-
ond, locality is introduced through the use of a local basis set, and
no adjustment of the two-electron integrals is needed; only in the
corrections, locality has to be taken care of.

The prescription defining μB as above (Fig. 3) is not useful in
practice as it uses the expectation value of H in the full basis. To
better understand the origin of the difference between the calcula-
tions in the full and in the reduced basis set, let us first introduce the
projector on the basis set,

PB = ∑
i,j∈B
∣Φi⟩(S−1)i,j⟨Φj∣, (59)

where Φi are the N-particle basis functions and S−1 is the inverse of
the matrix of their overlap. We note that in a given basis set, expec-
tation values obtained with the operator PBW(μ)PB are the same
as those obtained with W(μ). Of course, this is also true for other
operators, such as W̄ or W′(μ).

Note that PBWPB acting on a basis function produces a linear
combination of the basis functions. It does not describe the strong
increase in the interaction when two electrons approach; it is unable
to describe the singularity of the Coulomb potential. In the reduced
basis set, the electrons do not interact via the Coulomb potential.

In order to compare the non-local interaction generated by
PBWPB with the model interactionw(μ) [Eq. (3)], let us first obtain
a local interaction potential, wloc. There are many ways of doing it.
Here, we will use one close in spirit to Slater’s local potential. To have
⟨ΨB(μ)|W loc(μ)|ΨB(μ)⟩ equal to ⟨ΨB(μ)∣PBWPB∣ΨB(μ)⟩ before we
integrate over the distance between electrons, we write

⟨ΨB(μ)∣δ(∣r1 − r2∣ − u)wloc(∣r1 − r2∣,μ)∣ΨB(μ)⟩
= ⟨ΨB(μ)∣δ(∣r1 − r2∣ − u)PBWPB∣ΨB(μ)⟩. (60)

For the sake of simplicity, the formula is given for the system with
two electrons but can be generalized to more electrons. As we have
expanded ΨB in a basis,

ΨB(μ) =∑
k
bk(μ)Φk, (61)

and wloc depends only on the distance between electrons over which
we do not integrate, we obtain, in the matrix form,

wloc(u,μ) = B†(μ)D(u)W(μ)B(μ)
B†(μ)D(u)C(μ)

. (62)

Here, B is the vector of coefficients bk [Eq. (61)], D(u) is the matrix
with elements ⟨Φi|δ(|ri − rj| − u)|Φj⟩, and W(μ) is the matrix with
elements ⟨Φi|w(|ri − rj|, μ)|Φj⟩. To choose μB, we find a model
potential [Eq. (3)] that resembles wloc from

w(r12 = 0,μB) = wloc(r12 = 0,μ), (63)

as sketched in Fig. 5. Its behavior is dictated by the functions present
in the projection operator. We see that wloc is finite at the origin and
decays rapidly at large distances (where the localized basis set does
not reach). The latter shortcoming is not so important in practice as
the pair density vanishes anyhow in that region.
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FIG. 5. Interaction potentials as a
function of the inter-particle distance.
Coulomb potential: black dotted curve.
Model potential w [Eq. (3)]: red dashed
curve. Localized potential w loc [Eq. (62)]
generated from the Coulomb potential
projected onto a finite basis, satisfying
Eq. (63): blue full curve.

For the asymptotic corrections, we further need the coefficient
a, which we can generate as in Eq. (18), and assuming from the
similarity of the operators that we can use ΨB(μ) ≈ Ψ(μB),

⟨ΨB(μ)∣W̄(μB)∣ΨB(μ)⟩ ≈ ⟨Ψ(μB)∣W̄(μB)∣Ψ(μB)⟩
≈ aϖ(λ = 0,μB, w̄(r12, λ = 0,μB))). (64)

This requires the knowledge of ⟨ΨB(μ)∣W̄(μB)∣ΨB(μ)⟩. If we wish
to avoid calculating this new integral, we can exploit the freedom of
choosing the operator W for determining a [Eqs. (18) and (19)] and
choose a different μ for Ψ and for W,

⟨ΨB(μ)∣W̄(μ)∣ΨB(μ)⟩ ≈ a∫
∞

0
dr12 4π r2

12 ϕ(r12, λ = 0,μB)2

× w̄(r12, λ = 0,μ). (65)

With this expression, ⟨ΨB(μ)∣W̄(μ)∣ΨB(μ)⟩ is needed, a quantity
already used for obtaining the ⟨ΨB(μ)|H|ΨB(μ)⟩.

IV. NUMERICAL RESULTS
A. Producing numerical results
1. System: Harmonium

Numerical results will only be presented for harmonium. Its
Hamiltonian has the external one-particle potential

v(r) = 1
2
ω2r2. (66)

For ω = 1/2 and a pair of electrons (N = 2), the non-interacting
(μ = 0) exact wave function is given by a product of harmonic
oscillator eigenfunctions,

ψ(r) = (ω/π)3/4e−
1
2 ωr

2

. (67)

For the Coulomb interaction, the exact ground state wave function
is also known (see, e.g., Refs. 97 and 98),

Ψ(r1, r2,μ =∞) = ψ(r1)ψ(r2)(1 +
1
2
∣r1 − r2∣) (68)

times the singlet spin function. The exact energy is known, E(μ =∞)
= 2. For analyzing energy differences, one might think of the

ionization potential. However, for our method where V is the exter-
nal potential, the one-electron system is treated exactly. Thus, the
errors in the ionization potential equal those of the total energy.
However, the errors can be different in the ground and the excited
state. The excited states can be obtained accurately.99,100 One excited
state is treated here, the first of the same symmetry as the ground
state, E(μ =∞) = 2.940 116 9 . . ..101

To treat the case of μ ∈ (0,∞), we use a basis set, inspired by the
Hylleraas ansatz,101,102

Ψ(r1, r2) = ψ(r1)ψ(r2)∑
i,j,k

cijks
itjuk, (69)

where s = r1 + r2, t = r2 − r1, and, as above, u = |r1 − r2|. The powers
i, j, k used are the same nine as used by Hylleraas in his treatment of
the helium atom.102 We note that this basis is able to reproduce the
limiting cases, μ = 0 and μ =∞. A comparison with a calculation on
a grid (in the style of Ref. 60) shows that the error with this basis set
is maximally of 0.1 mhartree for all μ. In order to study a basis set’s
effect, a reduced basis set was also used, obtained by eliminating the
terms having odd powers in u. The retention of even powers of u
allows the description of angular correlation, as u2 = r2

1 + r2
2 −2r1 ⋅ r2.

However, omitting the even powers of r = r12 produces an energy
error of ≈7 mhartree for μ =∞, even if the error is lower by an order
of magnitude than that produced by ignoring the interaction (at
μ = 0). In order to underline the importance of the term linear in
u, let us mention that retaining only the terms i = j = 0, k = 0 and
1 in Eq. (69) is capable of reproducing the energy with an error of
maximally 1 mhartree for all μ.

The calculations were done with Mathematica,103 except for the
μ-dependent local density approximation, μ-LDA,22,104 energies that
were produced with Molpro.105

Mathematica103 was also used for the formal derivations in this
paper.

2. Obtaining energy derivatives
In order to obtain the derivatives, the quantities (the energy

or the property) were calculated on a grid of values of μ, between
0 bohr−1 and 3 bohrs−1. The data were interpolated, and the deriva-
tives of the interpolant were used. Explicit formulas can be used, but
this was not needed because efficiency was not of concern for the
simple case of harmonium.
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3. Description of the plots
Numerical calculations are made to explore how simple the

model can be made when using asymptotic corrections, i.e., how
small the parameter μ can be made, and still retaining chemical
accuracy (≈1 kcal/mol). To this end, many plots show the error
made by the model (corrected or not). A white background indi-
cates the domain of chemical accuracy, while a gray background is
used outside it.

Note that in these calculations, μ = 0 corresponds to the bare
external potential [Eq. (66)]. Thus, E(μ) is 0.5 hartree below the exact
energy, while ⟨Ψ(μ = 0)|H|Ψ(μ = 0)⟩ is ≈0.06 hartree above it and
≈0.03 hartree above the Hartree–Fock energy. As these errors are
very large, the domain of the plot is chosen to include the domain
of the error made in variational calculation in the reduced basis
excluding the odd powers of u in the ansatz (69).

4. Smallest acceptable μ

By making the corrections asymptotically correct, we expect the
errors to become smaller than chemical accuracy for all μ larger than
some value that we designate as the “smallest acceptable μ” (SAμ).

As we know from the second-order perturbation theory, with
weak interactions, only near-degenerate states contribute signifi-
cantly to the energy (see, e.g., Fig. 9 of Ref. 22). Furthermore, the
lower the μ is, the better the features of long-range interaction can
be exploited numerically; it is desirable to have small SAμ’s.

B. Discussion of the results
1. First-order corrections

We start by looking at the model energies, E(μ) (Fig. 6). As the
W(μ) is weaker than the Coulomb interaction, E(μ) < E for all finite
μ. The values of E(μ) are very low, and chemical accuracy is not yet
reached for the largest value of μ of the domain shown in the figure.
Figure 6 shows also the effect of the first-order corrections, obtained
by using not only E(μ) but also a derivative of it with respect to either
λ [Eq. (32)] or μ [Eq. (35) or (33)].

As stated above, ⟨Ψ(μ)|H|Ψ(μ)⟩, obtained from the knowledge
of ∂λE(λ, μ) at λ = 0, yields unacceptably high errors when μ is small.
However, already for a μ larger than ≈1.5 bohr−1, chemical accuracy
is reached.

A result, very close to the preceding (if not slightly better, as
having not too large errors, down to almost 0.5 bohr−1) is obtained
using E′(μ) and taking into consideration the existence of a μ−2

term [Eq. (35)]. While the previous correction uses the expectation
value of W̄(μ), the latter one uses that of W′(μ). When taking into
account the existence of the cusp, the same information can be used
to include terms to order μ−3 [Eq. (33)]. Asymptotically, the val-
ues get better, as they should. However, we note a deterioration at
smaller μ when we do not expect the asymptotic regime to work. In
the example treated, it remains a lower bound for all μ.

The SAμ is lowered when the asymptotic considerations are
applied to perturbations in λ [Eq. (32)], which is also an asymptotic
lower bound. It approaches the correct value faster than the other
approximations, This is better than the traditional upper bound
(obtained with the expectation value of H) for large μ. However, at
small μ, the lower bound property is lost and becomes even worse
than the upper bound for μ ≈ 0, not shown in the figure.

2. Second-order and first-order error estimates
To estimate the error, we can use the upper and asymptotic

lower bounds in Fig. 6. Let us now use E′′(μ). First, we consider
the coefficient of μ−3 as a parameter to fit, instead of being given
by the asymptotically valid relationship. A comparison of the two
approximations [Eqs. (43) and (33)] is shown in Fig. 7.

Another possibility is to use E′′(μ) to correct Eq. (33) by adding
a term in μ−4 [Eq. (44)]. This approximation lowers the SAμ to
≈0.5 bohr−1.

To be on the safer side, the difference to the first-order approx-
imation (going to μ−3) can be used to estimate asymptotically the
error (see Fig. 7).

The terms to order μ−4 in Eq. (21) can be used in an exploratory
way, without using E′′(μ), although they are not believed to be exact.
The errors are practically zero for all μ, down to almost 0.5 bohr−1

(see Fig. 7). There is yet no explanation for this good behavior.
One can also consider Eq. (47) using ∂μ⟨Ψ(μ)|H|Ψ(μ)⟩, also of

second order. For values of μ down to 1 bohr−1, the errors are neg-
ligible for the present discussion (see Fig. 8). It can also be used
to estimate the asymptotic errors of the first-order approximation
[Eq. (36)]. Note, however, that for smaller values of μ, the error esti-
mate reaches zero (before exploding for even smaller values of μ).

FIG. 6. Energy errors with first-order
methods. Model energy, not corrected
[Eq. (6)]: gray full curve. Expectation
value of H with the model eigenfunc-
tion: black short-dashed curve. Model
corrected to order μ−2 [Eq. (35)]: red
short-dashed curve. Model corrected to
order μ−3 [Eq. (33)]: red long-dashed
curve. Model corrected to order λ, tak-
ing into account terms to μ−3 [Eq. (32)]:
black long-dashed curve.
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FIG. 7. Energy errors at second order. First-order correction, asymptotically correct
to order μ−3 [Eq. (33)]: red long-dashed curve. Also as a reference, first-order
correction, asymptotically correct to order μ−3 but keeping the uncertain term in
μ−4 showing up in Eq. (21): black full curve. Second-order correction, with fitted
coefficient of μ−3 term [Eq. (43)]: red full curve. The difference to the first-order
value, correct to μ−3, leads to an error estimate, shown by a pink filling. Second-
order correction, with fitted coefficient of μ−4 term [Eq. (44)]: green full curve. The
difference to the first-order value, correct to μ−3, leads to an error estimate, shown
by a dark green filling.

It happens because the asymptotic regime has been left and the
lower bound property was lost. However, the present example seems
to indicate that the asymptotic lower bound expression [Eq. (32)]
still gives a better energy lower than the upper bound expression
[Eq. (34)] for a large range of μ (and when the errors are within
chemical accuracy).

3. Excited state
We now consider an excited state, the first excited 1Sg . It was

chosen for two reasons: First, it is considered to have two dominant
configurations, 1s3s and 2p2, cf. Ref. 101. Second, it has the same
symmetry as the ground state. Occasionally, one finds in the litera-
ture that the Hohenberg–Kohn theorem can be used for the lowest
state in each symmetry. This example shows that one can apply the
asymptotic expressions also to states of the same symmetry. The
curves shown in Fig. 9 are obtained with the same methods as for the
ground state (Fig. 6). The general features resemble those noticed for
the ground state and will not be repeated here.

4. Properties
For illustrating the application to properties, let us consider a

measure of the size of system, the expectation value

⟨Ψ(μ)∣r2
1 + r2

2∣Ψ(μ)⟩ = ∫
R3
dr ρ(r,μ)r2. (70)

In (exact) density functional theory, it would be exact as the density
is considered exact for all models (μ). However, for approximations,
this is not the case. For the model considered here, where V is the
bare potential, the system is significantly more compact for small μ
than for large μ.

We note (see Fig. 10) that the first-order asymptotic correc-
tion improves the quality of the result for all μ > 0 and yields errors
smaller by at least an order of magnitude for μ down to ≈1 bohr−1.

5. Effect of changing the one-particle potential
As it is common knowledge that a mean-field one-particle

potential is better than the bare potential, we explore it by a prescrip-
tion that requires the knowledge of the exact density. The purpose of
this exercise is to find out how importantly the change in V affects
the asymptotic conditions. Of course, no general conclusion can be
drawn from a single example.

There are several ways to replace V by a mean-field approxi-
mation, one of them being the density functional (Kohn–Sham106)
prescription to keep the density equal to the exact one for all mod-
els. A convenient way to reach it is to use the Legendre transform
(see, e.g., Refs. 107 and 108)

v(μ) = arg max
v
(min

Φ
⟨Φ∣T + V + W(μ)∣Φ⟩

− ∫
R3
dr ρ(r,μ =∞) v(r)), (71)

the usual Kohn–Sham potential corresponding to μ = 0.
In the present exploration of v, we use a restricted maxi-

mization: we maximize not over v but over those of harmonium
[Eq. (66)]. Instead of taking ω = 1/2, we consider now ω a param-
eter that can be optimized at each μ to bring the density of the model
system close to the exact one, in the sense of Eq. (71).

Figure 11 shows the errors of the expectation values of H, cor-
rected or not, as a function of μ. The optimization of the potential
leads to a significant improvement at small μ. At μ = 0, although v
was only partially optimized, the expectation value of H is close to
the Hartree–Fock one. As the expectation value obtained with the
Kohn–Sham determinant is above the latter, we see that we must

FIG. 8. Energy errors at second order.
Expectation value of H with the model
eigenfunction: black short-dashed curve.
Model corrected to order λ, taking
into account terms to μ−3 [Eq. (32)]:
black long-dashed curve. Second-order
correction, using ∂μ⟨Ψ(μ)|H|Ψ(μ)⟩
[Eq. (47)]: green full curve. The differ-
ence to first order leads to an error
estimate, shown by a light green filling.
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FIG. 9. Energy errors for the first excited
1Sg state. Model energy, not corrected
[Eq. (6)]: gray full curve. Expectation
value of H with the model eigenfunc-
tion: black short-dashed curve. Model
corrected to order μ−2 [Eq. (35)]: red
short-dashed curve. Model corrected to
order μ−3 [Eq. (33)]: red long-dashed
curve. Model corrected to order λ, tak-
ing into account terms to μ−3 [Eq. (36)]:
black long-dashed curve.

be very close to the Kohn–Sham solution. The error is nevertheless
important: the correlation energy is missing.

Let us now consider what happens when the errors reach chem-
ical accuracy. The values obtained with or without optimization of
the one-particle potential v are very close. In order to rationalize this
surprising result, one may argue that as long as one is in the domain
where the universal character dominates, the nature of the exter-
nal potential does not play an important role. However, recall that
the point where the switching between the regimes occurs depends
on the system: the value of μ for which the one-particle potential
becomes important is larger in a dense system.

6. Comparison with a DFA
Let us now make a single comparison with a DFA. We choose

the μ-dependent local density approximation, μ-LDA. It corrects the
models to obtain the exact energy of the uniform electron gas for all
μ (while the usual LDA does it only for μ = 0). It is considered to
be a good approximation for large μ. For example, one of the exten-
sions to the Perdew–Burke–Ernzerhof (PBE) method to include the
dependence on μ requires that it behaves like μ-LDA for large μ.10

We see in Fig. 12 that μ-LDA is indeed a good approximation for
large μ. We also see that it works well in the same range as the
asymptotic methods discussed in this paper.

7. Using the uniform electron gas to explore
the validity of the asymptotic approximation

We now turn to the question whether using the uniform elec-
tron gas in a local approximation [Eq. (56)] can give us an easy-to-
use estimator of validity of the asymptotic approximation.

In Fig. 13, we compare some accurate values of the system-
averaged on-top pair density, P2,aver [Eq. (55)], known with differ-
ent methods. The exact value for Coulomb interaction is obtained
exactly, 1/(16π + 10π3/2). The uniform electron gas values used are
from a model that is supposed to be accurate for short-range, the
Overhauser model.64

We see that as μ increases, the calculation with the large basis set
yields significantly lower values for P2,aver than those obtained with a
basis set not containing terms in odd powers in the inter-electronic
distance. Using the electron gas expression is interesting because the
density provides values that have little sensitivity to the basis set. In
Fig. 13, the reduced basis set was used, but on the scale of the plot,
the difference between basis sets would hardly be seen. Figure 13
shows that the transfer from the uniform electron gas provides better
results. Asymptotically, we know64

P2,aver(μ) = (1 +
2√
πμ
)P2,aver(μ =∞) (72)

FIG. 10. Expectation value of r2. Pro-
vided by the model, blue curve. Cor-
rected to order μ−2, red curve. The value
for the system with Coulomb interaction
is shown by a horizontal dotted line. The
inset reduces the range of the plot, to
better show the quality of the correction.
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FIG. 11. The effect on optimizing the external potential (ω) of the model on energy errors. The expectation value of H with Ψ(μ) with the bare potential (ω = 1/2): black dashed
curve. The expectation value of H with Ψ(μ) with ω optimized for each μ: black full curve. The expectation value of H with Ψ(μ) with second-order correction [Eq. (47)] and
the bare potential (ω = 1/2): red dashed curve. The expectation value of H with Ψ(μ) with ω with second-order correction [Eq. (47)] and ω optimized for each μ: red full curve.
The inset shows the same curves in a reduced range, namely that of most plots in this paper.

for all systems. When we use the uniform electron gas estimate for
P2,aver(μ = ∞), we get a curve that diverges at μ = 0. It crosses the
curve obtained using a basis set for the system of interest that is finite
at μ = 0. We see that this happens at μ ≈ 0.5 that is the SAμ for the
better of our approximations.

If we want to avoid calculations of P2,aver(μ) for our system, we
could compute the cheaper (and less basis-set sensitive)

P2,aver(μ = 0) = 1
2 ∫R3

dr (ρ(r)2 − ρα(r)2 − ρβ(r)2)

= ∫
R3
dr ρα(r)ρβ(r), (73)

where the connection between the on-top pair density and spin-
components of the density has been used (Ref. 109; for the relation-
ship to DFT, see Refs. 110 and 111). The values of μ for which the
uniform electron gas evaluated Eq. (72) gives a higher value should
not be considered reliable. This estimate can be seen as an a priori
estimate (that can be made before the expensive calculation is
performed). However, it is too optimistic, and the SAμ is too low.

8. Basis set errors
Let us now try to correct basis set errors with range separation.

We compare the results obtained with the reliable basis set described
above with one where the terms containing odd powers of the dis-
tance between electrons are absent. In Fig. 14, one can see that the
expectation value ⟨ΨB(μ)|H|ΨB(μ)⟩ has errors well beyond chemi-
cal accuracy, although it is correlated in the sense that it is able to
describe radial and angular correlation. Simply applying the asymp-
totic lower bound formula [Eq. (36)] works well, but it approxi-
mates the Coulomb system in the reduced basis, ⟨ΨB|H|ΨB⟩, not in
the full basis. One may argue that the result is better because the
error of the lower bound provided by the asymptotic approxima-
tion [Eq. (36)] is still above the exact result and thus better than the
upper bound. However, chemical accuracy is reached only for a very
narrow domain of μ, which is difficult to establish.

Let us now correct the basis set errors using μB. First, we
correct ⟨ΨB|H|ΨB⟩ with the “ideal” μB, obtained by using the full
basis expectation values of H, as in Eq. (58) or Fig. 3. The correc-
tion is calculated at this μB, using the full basis wave function, viz.,

FIG. 12. Energy errors with μ-LDA: red
long-dashed curve. To be compared to
first-order approximations, (i) asymptot-
ically correct to order μ−3 [Eq. (36)],
black short-dashed curve and (ii) asymp-
totically correct to order μ−3 but keeping
the μ−4 term in Eq. (21), black full curve.
The inset shows the same curves in a
reduced range, namely that of most plots
in this paper.
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FIG. 13. On-top pair density system
average as a function of μ. Full basis:
black full curve. Reduced basis (no terms
in odd powers of r12): red full curve.
Based upon uniform electron gas calcu-
lations: blue dashed curve. Their values
at μ = ∞ are indicated by horizontal
lines of the same color. Using solely the
large μ behavior of the uniform electron
gas: blue dotted-dashed curve (diverg-
ing at the origin). Dotted lines mark the
point where the asymptotic extrapolation
of the uniform electron gas is equal to
the value of the on-top pair density of
the non-interacting system, P2,aver (μ = 0)
[Eq. (73)].

FIG. 14. Energy errors in a reduced basis set calculation. The expectation value of the physical Hamiltonian in the reduced basis, ⟨ΨB(μ)|H|ΨB(μ)⟩: green full curve. All
corrections are first-order in λ [Eq. (36)]. As a reference, the result in the full basis set: black long-dashed curve. The following uses all ⟨ΨB(μ)|H|ΨB(μ)⟩ but differs in the
corrections. Using the expectation value of ⟨Ψ(μ)∣W̄(μB)∣Ψ(μ)⟩ to obtain the correction: blue curves; using the “ideal” μB [Eq. (58)], Fig. 3: thick dashed curve; using μB
determined from w loc(u = 0) [Eq. (63)]: thin dashed curve; using ⟨ΨB(μ)∣W̄(μB)∣ΨB(μ)⟩: red dotted-dashed curve; using ⟨ΨB(μ)∣W̄(μ)∣ΨB(μ)⟩: red full curve.

⟨Ψ(μ)∣W̄(μB)∣Ψ(μ)⟩. We see that the error does not vanish asymp-
totically. This is because, for the reduced basis we use, μB is limited
to a value of <1 bohr−1. We cannot get an improvement larger
than that the asymptotic correction gives for this value. Next, let us
successively

(i) change μB by that given by the prescription in Eq. (63) but
still requesting full basis information,

(ii) use ⟨ΨB(μ)∣W̄(μB)∣ΨB(μ)⟩ with Eq. (64), which works only
in the reduced basis set at μ but requires the evaluation of a
new integral, and

(iii) use ⟨ΨB(μ)∣W̄(μ)∣ΨB(μ)⟩ with Eq. (65), which uses only the
existing information.

The different variants discussed above give all results that are within
chemical accuracy for μ > 1.

These results suggest that once the basis set is good enough
to make the asymptotic correction active, it can easily be corrected
within reasonable accuracy.

V. CONCLUSIONS AND PERSPECTIVES
A. Formal results

In the formal part of this paper, it was shown that it is pos-
sible to build models that approach the physical, Coulomb system

by choosing a family of operators that do not show a singularity as
the distance between electrons reduces to zero [Eq. (3)]. It is called
range separation as the long range is treated by the model, and the
corrections have to deal with the missing part.

Here, the corrections are obtained by considering the solu-
tion of the Schrödinger equation as the distance between electrons
reduces to zero [Eq. (13)] and not as nowadays frequently done by
using density functionals. However, the method presented here can
be seen as justifying density functional approximations. This short-
range behavior is universal (independent of the external poten-
tial, i.e., that of the interaction between nuclei and electrons). In
this paper, this is supplemented by system-specific information: the
derivatives of the model energies with respect to parameters that
describe the exact system are approached, a form of perturbation
theory. The first order is easily accessible as it does not need new
wave functions. Alternatively, several models (values of μ) could be
used to generate equations that can be solved to obtain E.

A maybe simpler way to describe the present approach is to
realize that a model system can be corrected with an expansion in
a basis set [Eq. (39)]. The basis set functions are chosen according
to the way the model approaches the Coulomb system. The expan-
sion coefficients are determined (in this paper) by using informa-
tion from the model system, namely, how its energy evolves with
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model parameters (the derivatives of the energy). One can see it as
an adjustment of the evolution of the model toward the asymptotic
(universal) behavior.

The proposed expressions for approximating E are given in
Eqs. (32), (33), (35), (36), (43), (44), and (47). For properties, similar
expressions can be found [Eq. (51)].

The corrections improve asymptotically ground state energies,
excited state energies, and properties. In this regime, they can be
systematically improved, in the sense that with more computational
effort (more derivatives), the results get better, and the errors can be
estimated. At the same time, an estimation to test if the asymptotic
regime is reached is possible.

Size-consistency can be satisfied because the formulas are linear
in the model energies and their derivatives, when the model is solved
accurately.

The question arises about what happens when the models are
not solved accurately. A typical limitation is the use of a finite basis
set. Basis set errors can be modeled by associating a model interac-
tion to the effective interaction potential. By using this trick, the basis
set calculation can be associated with different model calculations,
and the correction applied is that of the latter.

B. Formal perspectives
There are several formal steps that could be pursued. In this

paper, only the information from the terms up to μ−3 was used.
Knowledge about higher-order terms exists and can be applied
(for triplet electron pairs64 or also for singlet electron pairs, in the
spirit of Refs. 112 and 113). This knowledge could get a firmer
basis by a mathematical treatment as is done for the Coulomb
interaction.114–116

The expansions considered are asymptotic expansions: the
results can be made to work better as we approach the physical sys-
tem, but they do not necessarily get better as we get further away
from it. This regime is reached in different systems for different val-
ues of the expansion parameter, and local forms are useful to treat
such cases. Although not described in this paper, the methods pre-
sented are easily generalized to local forms, such as in DFAs; cf.
Eqs. (52) and (56).

It is not evident how to reach the non-interacting system. A
possible path might be to use basis functions χi [Eq. (39)] that do
not diverge at μ = 0.51 They can satisfy the known behavior for
μ → 0 (see, e.g., Ref. 93). Density functional approximations may
be a source of inspiration.94

In this paper, the bare external potential is used. Exploring ways
to improve on it was largely used in DFAs and can also be pursued
in the present context.

The numerical technique used in this paper for obtaining the
energy derivatives (beyond the first) was essentially a finite differ-
ence method. Explicit formulas should be developed for higher-
order corrections.

The interaction used in this paper is convenient, but certainly
not the best. It is not necessary that the models approach in a contin-
uous way the Coulomb system; the derivatives used in this paper can
be replaced by a series of models.51 It is worth exploring the tensor
product decomposition in this context.

One does not have to connect the model system with the
Coulomb system by modeling the interaction. It is possible to use
non-local one-body operators; see, e.g., Refs. 66 and 117–119.

Asymptotic expansions and their extensions are an active field
of mathematics (see, e.g., Ref. 120). Without doubt, the methods
presented here can be improved.

C. Conclusions from numerical explorations
Numerical calculations are needed to explore when the asymp-

totic regime is reached and how far one has to go with the expan-
sion. This paper presents results for the harmonium. Its pur-
pose is to illustrate the methods proposed, not to assess their
quality.

The corrections improve the model results significantly not
only for the ground state but also for excited states and properties;
cf. Figs. 6, 9, and 10. It seems that although the expansion param-
eter used is 1/μ, the asymptotic regime is valid for values close and
even below μ = 1; cf. Figs. 7 and 8. The formulas lead asymptoti-
cally to lower bounds, which are at least as good as the usual upper
bound, the expectation value of H, with practically no additional
computational effort.

Taking into account the simplicity of the model intended to
deal with the basis set correction, one must remark that it works
astonishingly well; cf. Fig. 14.

It was surprising that the use of the bare potential was not
critical, once that the corrections were activated. One might risk
attributing it to the universality of the correction.

Applying the model to the uniform electron gas shows that—as
long as the errors are within chemical accuracy—the density func-
tional and asymptotic correction give similar results; cf. Fig. 12. In
addition, the uniform electron gas can provide a (crude) check if the
asymptotic regime is reached; cf. Fig. 13.

As conclusions drawn for a single system are not sufficient, they
should be treated with circumspection, although results in the liter-
ature are in line with the present results for harmonium. Many more
calculations are needed to strengthen them.
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