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Probabilities to find a chosen number of electrons in flexible domains of space are cal-

culated for highly correlated wave functions. Quantum mechanics can produce higher

probabilities for chemically relevant arrangements of electrons in these regions. How-

ever, the probability to have a given arrangement, e.g., that corresponding to chemical

formulas (bonds or atoms), is low although being often maximal. Like in valence bond

theory, it is useful to consider alternative distributions of the electrons. Exchanges

of electrons should be considered not only between atoms, but also between other

types of regions, like those attributed to lone pairs. It is useful to have definitions

flexible enough to allow the user to find the reference representations he considers

most relevant. We tentatively suggest a tool (the effective number of parties) to help

one make the choice.
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1. INTRODUCTION

Building blocks are often used to understand, and even solve problems. For two centuries,

the atom has been considered the most important building block of molecules. Associating

the words “atomic” and “hypothesis” (as was done in the 19th century to deny their existence)

is – in popular view – ridiculous: we know that atoms exist. However, in quantum chemistry

we perform our calculations using nuclei and electrons: the Coulomb forces exerted by the

nuclei, and the requirement of antisymmetry shape the wave function. Due to these factors,

the electrons do not behave independently from one another, they do not roam freely through

space. This leaves room for searching quantities that correspond to building blocks, in spite

of difficulties that arise when doing it:

1. Quantum calculations cover a wider field. There is room for aspects not covered by

traditional concepts. For example, Lewis wrote that, for him, the three-electron bond

was unthinkable.1

2. The association between quantities derived from quantum calculations and traditional

building blocks is not unique. For example, even a rigorous choice of a definition of

an atom in a molecule remains nothing but one of possible choices ; one may prefer

atoms as defined by Bader,2 or ones from the Hirshfeld family.3

3. Although the attractive forces of the nuclei confine electrons to the vicinity of nuclei,

and the Pauli exclusion principle drives electrons to divide space among themselves,

the separation into building blocks (atoms or electron pairs) is not perfect. Despite

the constraints with confining effect, electrons can escape the regions of space we

associate with the building blocks. Furthermore, the building blocks may not be

uniquely determined.

Let us consider, as an example, the one-dimensional Kronig-Penney model.4 A param-

eter describes barriers separating regions where pairs of electrons are localized. As

electrons do not interact, we may as well consider as well half as many electrons, all

of the same spin. When the barrier is infinite, we are sure to have one electron in its

domain. When the barrier is reduced, electrons start escaping the domain between the

barriers and the probability to find one and only one electron (of given spin) in it is

reduced, but is still significant (around 2/3), due to the Pauli principle. Interestingly,
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another effect can be noticed. The domains are not so clear anymore. In the limit of

zero barrier, the translation of the domain has no effect on the probability to have an

electron in the domain (while it is significant when the barrier is large). The Pauli

principle continues to act, even within delocalization.

4. The choice of the blocks we look at is not obvious. For example, is it not better

to look for ions in an ionic crystal than for atoms? The spatial region defined by

choosing the “best” atom is different from the one defined to find the “best” ion. Thus,

the characterization of “chemically” equivalent quantities (for example, corresponding

charges) differ between the two regions.

In this paper we focus on the last two points above. We can quantify the uncertainty of

electrons to be within a given region of space by calculating probabilities. We can go even

further, and ask about the effect a given number of electrons in one region of space has on

the number of electrons in another region of space. Furthermore, we choose to give sufficient

flexibility to the definitions to allow comparisons between different choices of the building

blocks, for example having a number of electrons in a region corresponding to the neutral

atom, or to one of its ions.

We would like to avoid – as much as possible – effects due to artefacts due to the level of

computation. Although our conclusions could be reached with less elaborate wave functions,

we base our numerical results on quite accurate wave functions (linear combinations of up

to millions of determinants, see details in appendix A).

We would like to stress that certain aspects of our paper are not new. Computing

probabilities in spatial domains can be found already in older papers, like Refs. 5–7. In

the first two papers the domains were deformed to maximize probabilities, in the third

paper, the probabilities were computed for commonly used spatial domains. Probabilities

that can be computed with elaborate wave functions also exist already, see, e.g., Refs. 8–10.

Joint and conditional probabilities were already presented in the context of partitioning.11–13

Comparisons with valence bond calculations exist already in the literature, for example, in

Refs. 8, 10, 14, and 15.

4



Accepted to J. Chem. Phys. 10.1063/5.0091681

2. PROBABILISTIC MEASURES

2.1. The probability to have n electrons present in a spatial region

The number of electrons in a spatial region is a discrete random variable that can take the

values 0, 1, 2, . . . N , and whose average is known as the population. When we select a region

of space, there can be only an integer number (n ∈ [0, N ]) of electrons inside the region.

However, the average number of electrons in a region of space, obtained by integrating the

density over this region, can be a fractional number. Let us discuss these aspects in more

detail for an arbitrary wave function Ψ. A Monte Carlo sampling of the electron positions

according to the 3N -dimensional density |Ψ|2 produces a large set of M configurations (sets

of positions for the N electrons of the system, {r1, r2, . . . rN}; note that we use in this

paper the term “configuration” in the sense of Monte Carlo, and not in the meaning of a

linear combination of Slater determinants). We estimate from the set of configurations the

probability of a chosen number of electrons, n, 0 ≤ n ≤ N to be in a selected region of

space, Ω.

PΩ(n) =
mΩ(n)

M
, (1)

where mΩ(n) is the number of configurations {r1, r2, . . . rN} for which n of the ri are within

Ω. Another way to describe PΩ(n) is to use the indicator function, 1Ω(n). It is equal to

one, if n of the ri are within Ω, and equal to zero otherwise. Its expectation value gives the

probability

PΩ(n) = E(1Ω(n)) (2)

Note that, as 12 = 1, the variance is easily obtained as

σΩ(n)2 = PΩ(n)− PΩ(n)2 (3)

so that we can estimate the error of PΩ(n) from the variance of the mean, σΩ(n)/
√
M , using

that
√
PΩ(n)− PΩ(n)2 is between 0 and 1/2. This shows that using M of the order of 104

already gives reasonable estimates of the probability, which in our case is not required with

more than two decimals. The results shown in is paper are produced using sets of the order

of 106 Monte Carlo configurations. When not impeding clarity, we omit to indicate explicitly

n or Ω; for example we will write PΩ ≡ PΩ(n), or P (n) ≡ PΩ(n).

5
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We can also obtain the population of the region Ω,

QΩ =
N∑

n=0

nPΩ(n) (4)

It gives the average number of electrons in Ω. The same number would be obtained by

integrating the electron density over the region Ω. To see it, let us start with the definition

of the density,

ρ(r) =

〈
Ψ

∣∣∣∣∣
N∑
i=1

δ(r− ri)

∣∣∣∣∣Ψ
〉

Integrating it over a spatial domain Ω we get the population of Ω:∫
Ω

ρ(r)dr =

〈
Ψ

∣∣∣∣∣
N∑
i=1

∫
Ω

δ(r− ri)dr

∣∣∣∣∣Ψ
〉
.

The operator appearing on the right hand side counts the number of electrons in Ω because

∫
Ω

δ(r− ri)dr =

 1 ri ∈ Ω

0 ri /∈ Ω

By taking the expectation value, we obtain the mean number of electrons in Ω, as in Eq. 4.

Other than in earlier papers (see, e.g., reference 9), we are interested in considering more

than one spatial region. Let us use for the spatial regions the symbols A,B, . . . (instead of

ΩA,ΩB,. . . ). The joint probability of having nA electrons in A and nB electrons in B is

PA∩B(nA, nB) =
mA∩B(nA, nB)

M
(5)

where mA∩B(nA, nB) is the number of configurations for which nA electrons are in A and nB

electrons in B. We can also write

PA∩B(nA, nB) = E(1A(nA)1B(nB)) (6)

Note that PA(nA) can be seen as a marginal,

PA(nA) =
N∑

nB=0

PA∩B(nA, nB). (7)

Of course, PA∩B can be extended to more than two regions, to the probability to have nA

electrons in A, nB electrons in B, nC electrons in C, etc.: PA∩B∩C.... If we have a partitioning

of space, we will denote it by nA|nB|nC . . .

6
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One might naively expect that the probability of nA electrons to be in A and nB electrons

to be in B, PA∩B, is given by PA PB. In general, this is not true, because our random variables

are not necessarily independent. A trivial example for this shows up when B is the part of

space not covered by A, R3\A, and nB = N−n. (One can see it as the situation nA|N−nA.)

In this case, PB = PA and PA∩B = PA 6= PAPB = P 2
A. A way to detect the dependence of

random variables is given by conditional probabilities, the probability of nA electrons to be

in A given that nB electrons are in B,

PA|B =
PA∩B

PB

. (8)

When PA|B = PA the variables are independent. This reminds us that, in general, PA|B 6=

PB|A, although in daily life we easily mix them up. Note that PA|B can be larger or smaller

than PA. For example, for A = R3\B, PA|B(nA = N−nB, nB) = 1, PA|B(nA 6= N−nB, nB) =

0, no matter what PA ∈ (0, 1) is.

3. CHOICE OF THE SPATIAL REGION

3.1. Sharp boundaries

In this paper we choose regions having sharp boundaries: an electron either is, or is not

in Ω. This is close to what is done, for example, in loge theory,11 or in the Quantum Theory

of Atoms and Molecules (QTAIM).2 It would not be difficult to extend the definition of

the region by having fuzzy boundaries (simply by replacing the indicator function by some

other function). This could bring us closer to other ways of analyzing the wave function, for

example in the Mulliken population analysis, or in Valence Bond Theory (where fuzziness

is due to considering atomic orbitals). However, using fuzzy boundaries introduces a sup-

plementary arbitrariness. Furthermore, contrary to intuition, fuzzy boundaries can have an

equalizing effect on the probabilities (see, appendix B). This is opposed to our aim to have

one of the probabilities to be significantly larger than the other ones.

In principle, the regions A and B can overlap. This appears, for example, when produc-

ing maximum probability domains,9 or single electron densities.16 Furthermore, the spatial

regions may not cover all of R3. The latter case reminds of the population analysis first pro-

moted by Davidson.17 He argues that population analysis has a meaning only in a minimal

basis. A part of the density is not recovered this way, thus Roby extended it18 to take into

7
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account the missing contributions by defining two-, and multi-center contributions. Such

extensions are also possible for our type of discussion, but we leave it for further studies.

3.2. Partial optimization of the spatial domain

For the present study, defining the spatial region by maximizing the probability to have

a given number of electrons in it5 seems appropriate.

However, in the present paper we perform only partial optimizations, for three reasons.

First, the points we try to make with our paper can be made also with a partial optimiza-

tion (or just considering symmetry). We try to define regions having a large (even if not

maximum) probability. Next, borders of the regions considered may contain a small number

of configurations, and thus shape optimization needs a more careful treatment. Finally, we

would like our results to be easily reproducible without any important programming effort

(as the optimization of the spatial domain requires). From now on, we qualify as “optimal”

and “best” the region that maximizes the desired probability by varying the parameters

defining the domain. Note that the difference between the partially and the fully optimized

spatial domain are transmitted only to second order to the probabilities.

For the spatial regions Ω, we consider simple geometrical shapes that we optimize. As

a first example, let us consider the atomic cores. Although they can be polarized by the

molecular environment, we find that they are close to spheres centered on the nuclei. We

adjust the radius to maximize the probability of ncore electrons to be in the sphere (ncore is

the number of electrons commonly assumed to be in the core, e.g., two for C and for F).

As the common image of atoms is spherical, let us first try to construct spheres around

nuclei such that the probability of finding n electrons is maximal. Let us take, as an example,

the XeF2 molecule (see, Fig. 1, panel bottom right). The dots show 104 configurations

(each of 72 electron positions). The sphere in the center maximizes the probability to find

54 electrons around the Xe nucleus. It has a radius of ≈ 3.1 bohr. The other sphere,

with a radius of ≈ 2.0 bohr, maximizes the probability to find 9 electrons around one

of the F nuclei. It is clear that the spheres significantly overlap (the Xe-F distance is

≈ 1.4 bohr smaller than the sum of the radii of the spheres). Furthermore, as one can

see in Fig. 1, a non-negligible number of electron positions around a given atom are not

taken in consideration for computing the probability. This can be explained in the following

8
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FIG. 1. On the left, schematic representation of the geometrical shapes used for the separation

of the domains. 2α is the aperture of the cone, and ±z are the positions of the planes separating

the domains, and the dashed curves are the rotation axes. On the right side of the figure, three-

dimensional representations of the domains are displayed, together with ∼ 104 Monte Carlo samples

in XeF2.

way. As the radius of the sphere around nucleus A increases from 0, the probability to

have n > 0 electrons also increases. Beyond a certain value of the radius, PA(n) continues

to increase by including electrons that by there positions would normally be attributed to

9



Accepted to J. Chem. Phys. 10.1063/5.0091681

another atom, although – for a flexible shape – it would be possible to extend without doing

it by deforming the sphere. For n < N , after a certain radius, the PA(n) starts decreasing,

as PA(n+ 1), PA(n+ 2), . . . PA(N) increase. In particular, PA(N) = 1 for an infinite radius.

As the probabilities sum to one for a certain radius, the sphere stops increasing leaving out

a number of electron positions that would have been included allowing deformations of the

sphere. In the most accurate calculations of the domains maximizing the probability to find

a pair of electrons describing bonds,19 it has been often found that they have shapes of cones

with the apex on nuclei. Of course, the core regions must be excluded. A schematic drawing

is shown in Fig. 1, top left panel. We construct such regions by varying the aperture (2α) to

maximize the probability to find the chosen numbers of electrons in it. When the aperture

is π, we have planes perpendicular to the rotation axis. We found it convenient to displace

the position of such planes, in particular when trying to define “atoms”, e.g. in the XeF2

molecule. In fact, this corresponds to using weighted Voronoi cells. For example, in XeF2,

oriented along the z-axis with the Xe atom at the origin, we find the value of z for which the

probability of having n = 54 electrons between the two planes ±z is maximal (see Fig. 1,

middle panels). Note that by using cones or planes, we have space-filling regions, and the

problem of leaving out configurations (present for spheres) does not show up (see Fig. 1,

panels top and middle right).

3.3. Ambiguity in the choice of the spatial region

The choice for a region depends on the object of study. For example, in an ionic crystal,

we may be more interested in finding ions than in finding atoms. For some methods, one

can explicitly formulate the requirement. For finding maximum probability domains5 the

user specifies the number of electrons attributed to it.20 This is the path we choose in this

paper. For other methods, it shows up in the result. For example, in ionic crystals, the

QTAIM “atoms” are closer to ions, see, e.g., refs. 21 and 22.)

10
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4. FLUCTUATIONS

4.1. Ehrenfest urn model

In order to have a reference case, let us consider the Ehrenfest urn model (constructed

to describe the fluctuations at thermal equilibrium).23 N balls (electrons for us) are in

distributed in two urns (spatial domains for us), A and B. One ball is randomly picked from

any of the urns (naturally, more likely with the urn with more balls) and put in the other

urn. As time evolves, the number of balls in the urns stabilizes to a distribution24, that –

for even N – has maximum at N/2 equal to 2−NN !/[(N/2)!]2; the number of balls in an urn

follows a binomial distribution. The ratio between the probability to have N/2 balls in the

urn and that to have N/2± 1 is 1 + 2/N . For example, for N = 4 (two electron pairs), we

would have PΩ(n = 2) = 0.375 and PΩ(n = 1) = PΩ(n = 3) = 0.25. As N increases, not

only P (N/2) decreases, but P (N/2 + 1) and P (N/2− 1) get closer to it. For example, if we

consider N = 14 (two F atoms, valence shells), P (7) ≈ 0.21 and P (6) ≈ 0.19.

The Ehrenfest model can be extended to more than two urns,25 leading to a multinomial

distribution under assumptions similar to those made for two urns (see, e.g., ref. 26). Let

us consider, for example, the case of having six balls in three urns. The probability to have

exactly two balls in one of the urns is 80/243 ≈ 0.33. That of having two balls in each of

the urns is lower, 30/243 ≈ 0.12.

4.2. Orbital nodal structure and localization: two particles in a box

Let us start with a simple analytic example. We consider two non-interacting particles

in a one-dimensional box: 0 ≤ x ≤ 1. The eigenfunctions are

φk(x) =
√

2 sin(k π x), with k = 1, 2, . . . . (9)

We occupy φ1 with one electron and put the other electron on φk, and construct Slater

determinants using φ1, and φk. A different spin is important only when both electrons are

in φ1. Otherwise, it does not matter: there is no interaction in our model. We ask about

the probability to have one electron in one half of the box, and the other electron in the

11
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other half of the box. For all odd k it is equal to 1/2. For even k, it is given by

1

2
+

8

π2

(
k

k2 − 1

)2

It is no surprise that for k = 1 we obtain the urn result: the particles are independent.

The probability is maximal (0.86) when k = 2: the two electrons are now separated to a

higher degree. If the spins of the electrons were parallel, we would say this is due to the

Pauli principle. However, this holds also for antiparallel spins; we can attribute it to the

orthogonality of the orbitals. For odd k 6= 1, this principle works, too, but in each of the

half-boxes: it does not help separating the electrons each into a half-box.

This can be seen by orbital localization, by considering the equivalent orbitals27 (φ1 ±

φk)/
√

2 instead of φ1 and φk. For odd k, the orbitals do not localize into one of the halves of

the boxes as the linear combination does not change the symmetry. For even k, the degree

of localization decreases with increasing k, see Fig. 2.

The observation that for odd k there is no orthogonalization (Pauli principle) effect on

the probability of having one electron in the left part of the box, and one in the right part

of the box – and there is no orbital localization in the half-boxes – does not mean that, with

a proper choice of the region, the probability to have one and only one electron cannot be

made larger than for Ehrenfest urns. For k = 3, the probability to have one electron in the

interval is 0.89 in the maximum probability domain, x ∈ (0.32, 0.68). The price to pay for it,

is that the other electron is – with the same probability – in spatially disjoint regions. This

quantum effect has no analogy in classical descriptions, but could be relevant, for example,

in the description of time-dependent processes, such as chemical reactions.28

4.3. Electron pairs: CH4, HCCH, F2, XeF2

In order to get our bearings, let us first consider a simple example, that of the CH4

molecule. We define the core region, by choosing Ω to be a sphere maximizing the probability

of n = 2 electrons to be inside it, see Fig. 3. For a radius of 0.54 bohr, Pcore(n) = 0.78, while

Pcore(n± 1) = 0.1.

We define the valence space by excluding the sphere attributed to the core. We divide

the valence space into four Voronoi cells. A Voronoi cell is the collection of points closest to

one of the H nuclei, as shown in Fig. 4. We associate such a region to a CH bond, and find

12
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FIG. 2. Localized (equivalent27) orbitals for two independent particles in a one-dimensional box, in

a state where the canonical orbitals φ1 and φk are occupied; for k = 2 (top panel), k = 3 (middle

panel), and k = 4 (bottom panel).

the probability of having two electrons in it to be PCH(n = 2) = 0.55. This value is lower

13
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FIG. 3. The probabilities of n = 0, 1, . . . , 4 electrons to be present in a sphere of radius r around

the C nucleus in CH4.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

n

P

CH in CH4

Ω: Voronoi\core

FIG. 4. Probability to find n electrons in the region attributed to the CH bond in CH4. The region

is shown in the top right corner of the plot, the (excluded) C core region being also shown, in red.

than that obtained for two electrons in the core. At the same time, the probabilities to have

one more electron in this region (or to have one less) is around 0.2, and thus higher than for

the core. PCH(n = 2), it is significantly higher than given by the multiple urn model (0.31

for eight balls in four urns). The fluctuations are thus smaller for the electronic system,

than in the urns; we see it as a signature of the Pauli exclusion principle. Nevertheless,

14
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fluctuations are present even in these (CH) bonds where the pairs of electrons are assumed

to be well-localized: the probability to have two and only two electrons in the CH domain is

large, but significantly different from one: the probability to have 1 or 3 electrons is smaller

(0.4), but not negligible.

Let us now consider another CH bond, that in acetylene, HCCH. A conical region is

generated for each of the CH, while the remaining part corresponds to the CC bond (the

spherical core regions being excluded, as shown in Fig. 1. The probabilities obtained for the

CH region are very close to those indicated for CH4, see Fig. 5, top.

7 Other examples of electron pairs (bonds or lone pairs) are the F−F bond or a lone pair in

F2, see Fig. 6, or one of the banana bonds in HCCH. Fig. 5). In these cases PΩ(n = 2) = 0.4

that is lower than seen for the CH bond, but still larger than in the multiple urn model.

Of course, the probability to have n 6= 2 in this region is increased when compared to CH4.

P (2 ± 1) is still around 0.2. Now, the probability to have two electrons in the region is

comparable to that of having 2± 1 electrons in it.

Let us now look at the triple bond in HCCH, and the group of three lone pairs in F2.

After a shift of the central value (2 for one pair, 6 for three pairs), we find roughly the

same distribution of probabilities as for the pairs of electrons just presented (see Figs. 5

and 6). The fluctuations are significant. The sum of the probabilities to have n − 1 and

n+ 1 electrons in the CC region is slightly higher than that of having n = 6 electrons in it.

4.4. Atoms: F, Xe

We can define also spatial regions for atoms. In the F2 molecule there is not much to

discuss: we divide the molecule by a plane perpendicular to the line passing through the two

F nuclei, at half distance from each of these. As we discuss atoms, let us now also include

the cores. The probability to have 9 electrons on each F atom is around 0.6, higher than in

the two urn model (see Fig. 7).

Let us now consider another molecule, XeF2. We now move two planes symmetrically

around the Xe nucleus, separating the Xe atom from the F atoms. The probability of

having n = 54 electrons within these planes is maximal (PXe = 0.35) for zXe = 2.72 bohr,

see Fig. 8.29 Even more pronounced than in HCCH, we have PΩ(n) < PΩ(n−1)+PΩ(n+1):

it is less likely to find a number of electrons equal to that expected for the Xe atom (54) than
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Ω: α=2.04

Ω: α=2.04

Ω: α=2.04

FIG. 5. Probability to find n electrons in the region attributed to the CH bond (top panel), the

triple bond (middle panel), and the banana bond in HCCH.
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FIG. 6. Probability to find n electrons in the region attributed to the F-F bond (top panel), the

three lone pairs on one of the atoms (middle panel), and a single lone pair in F2.

17



Accepted to J. Chem. Phys. 10.1063/5.0091681

Ω: α=π /2

FIG. 7. Probabilities for the F atom in F2.

to find a different one. Of course, we used just planes, and did not fully optimize the spatial

regions to maximize P (n = 54), but we do not expect a qualitative change. Further below,

we argue that this might be related to the difficulty of recovering the historical chemical

concepts.

4.5. Populations

In all cases, we find that the regions Ω maximizing the probability to have n electrons in

it also have a population QΩ, Eq. (4), close to n – to an accuracy comparable to that we used

in obtaining the probabilities. This can be explained by the symmetry of the distributions

observed.

One may wonder if it would not be better to optimize the regions to have the desired

average number of electrons, and forget about fluctuations. Finding a region that satisfies

the QΩ = n does not seem advisable. First, this would not detect the presence of resonant

ionic structures having on average the same number of electrons as the covalent structure.

Second, there are infinitely many partitions of space that give exactly the same average.

For example, in CH4, we can rotate the Voronoi polyhedra that divide the space among H

atoms, and still obtain the same average number of electrons in it.

The population, QΩ, Eq. (4), is only the average number of electrons in a spatial domain.

We have to associate some uncertainty to it. We could try the standard deviation, σΩ,
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Ω(z=2.72)

Ω(z=2.72)

FIG. 8. Probability to have n electrons in the region attributed to the Xe atom (top panel), and

the F atom (bottom panel) in XeF2.

Eq. (3). When discussing Gaussian distributions, one often indicates 2σ as a margin of error.

One can instead state that the probability to get a result inside this confidence interval is

higher than ≈ 0.95. The latter characterization can be used also for other probabilistic

distributions. So, let us return to our probability distributions. From the expression of σ,

Eq. (3), we see that it reaches its maximum, 0.5, only for PΩ = 0.5. So, in general, σ < 0.5,

and 2σ < 1. As the population QΩ is very often close to the number of electrons for which

we have considered the probability, nΩ – that is always an integer – there is only one integer

in the interval (QΩ − 2σ,QΩ + 2σ). Thus, in general, this extension of the allowed range of

values does not increase the probability of having electrons beyond P (n). As we have seen,

even for the clear-cut core/valence separation P (n) reaches only 0.8. So, in order to be on
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the safe side (of having a probability larger than 0.95), to accept in our picture at least the

transfer of at least one electron between spatial regions.

4.6. Joint probabilities

We can extend the previous discussion to multiple regions. Let us come back to the

CH4 molecule. The numbers given for CH4 correspond to the probability to have two elec-

trons in one CH bond region, no matter how the electrons are distributed in the other

regions. The joint probability to have two electrons in each of the CH regions is lower

(0.20). This distribution, 2|2|2|2 is the most probable distribution of electrons over the four

regions. However, exchange of one electron between two regions can occur in many ways

(1|3|2|2, 3|1|2|2, 1|2|3|2, . . . ). Summing up all the probabilities related to all these distribu-

tion yields a value more than twice as large (0.44). However, the value obtained for 2|2|2|2

is five times larger than the probability of obtaining two balls in each of four urns.

This low joint probability of the most probable distribution of electrons is no exception.

For example, in HCCH, the partition 2|6|2 is the most probable (P = 0.2). However, the

partitions where one electron is transferred between the two regions (like 1|7|2, 3|5|2) have a

probability of 0.3. For the F2 molecule, the valence partition 6|2|6 yields a joint probability

of only 0.1, while those with one electron transferred (like 7|1|6, 5|3|6, or 5|2|7) produce 0.3.

In this case the transfer between lone pair regions on different atoms that is more important

here than, e.g., between the CH regions in HCCH: the lone pair regions have a common

border in our partition. In fact the probability of 5|2|7 and that of 7|2|5 is smaller than that

of 6|2|6, but also around 0.1.

The probability to have two electrons in each of the valence electron pairs (for example,

two in each of the CH bond regions, and two in each of the banana bond regions in HCCH)

would be even lower. This lowers the probability of having a Lewis-type structure. Further-

more, were we to take into account the probability of electrons to move between the core

and valence region, the probabilities would further drop. For example, that of having one

of the six electrons of the region attributed to the CC triple bond being in one of the two C

core regions, 2|5|2, is 0.06.
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4.7. Conditional probabilities

One way to understand the low values for joint probabilities is by starting to assume that

the probability to have nA electrons in A and nB in B are independent of each other,

0 < PA(nA)PB(nB) < PA(nA) or PB(nB) < 1. (10)

However, in general, independence cannot be assumed. For example, when an electronega-

tive element, say, F takes a charge, it takes it from somewhere. We have a probability that

is was being taken from some other spatial domain. So we ask: What is the probability to

have nA in region A (say, 54-1 electrons in the Xe region of XeF2), given that there are nB

in region B (say, 9 in one of the F regions)? If the fluctuations were due to independent

events, it would be easy to answer, because PA|B = PA.

FIG. 9. The conditional probability PA|B of having nA electrons in region A given that there are

nB electrons in region B, for CH4; A and B correspond to two different CH bond regions. The

horizontal semi-transparent blue planes show PA(nA).

Let us start with the simple case when regions A and B correspond to CH bond regions

in CH4, see Fig. 9. Let us consider nA = 2 and nB = 2, the chemically assumed values.

The probability to have the chemically assumed value in B increases that of having the

chemically assumed value in A (compared to independent events). Furthermore, having

nB + 1 also increases the probability to have nA − 1 in the neighbouring region. Evidently,

this holds for nB − 1 and nA + 1. However, a simultaneous increase or decrease of the
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FIG. 10. The conditional probability PA|B of having nA electrons in region A given that there

are nB electrons in region B, for HCCH (top: A=CH, B=CC, middle A,B are two different CH

regions, bottom: A,B are two different banana bonds. The horizontal semi-transparent blue planes

show PA(nA).
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FIG. 11. The conditional probability PA|B of having nA electrons in region A given that there are

nB electrons in region B, for F2 (top: A is the group of 3 lone pairs, and B is the bond, bottom:

A,B are two different lone pairs on the same atom. The horizontal semi-transparent blue planes

show PA(nA).

number of electrons in neighbouring regions is less favorable than for independent particles.

PA|B(nA + 1, nB + 1) < PA(nA + 1) and PA|B(nA − 1, nB − 1) < PA(nA − 1). A similar

pattern is seen, e.g., in HCCH when A is the CH region, and B the CC region (see Fig. 10,

top panel), or in F2 when when A is the region of the three lone pairs, and B that of the

bonding region. We suspect these trends to be quite common.

A further pattern is present when looking at distant pairs, like the two CH bonds in

HCCH (Fig. 10, middle panel). We see practically no reciprocal influence.
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An intermediate pattern shows up, when looking how one banana bond influences the

other (Fig. 10, lower panel), or how lone pairs on the same atom interact (in F2, Fig. 11, lower

panel): PA|B(nA = 2, nB = 2) ≈ PA(nA = 2). However, PA|B(nA = 1, nB = 3) > PA(nA = 1)

and PA|B(nA = 3, nB = 1) > PA(nA = 3). This increased electron transfer between two

electron regions only reminds of ionic structures, but it is not: it happens on the same atom

(in F2), or within the triple bond (in HCCH).

FIG. 12. Conditional probability in XeF2, for finding nA = 7, 8, . . . , 11 electrons in the F atom

regions, given that there are nB = 51, 52, . . . , 55 electrons in the Xe atom region (top panel), or

Xe+ ion region (bottom panel).

Finally, let us look at XeF2 (see Fig. 12, upper panel). We consider the atomic regions,

Xe and F and notice also a significant increase in cases that do not fit at all in the “standard”
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cases discussed above. For example, for nB− 1 = 53 we have an increase on nA + 1, but also

on nA. Furthermore, we notice an significant increase for nB − 2 on nA + 1.

As the transfer of electrons occurs between atoms, it is more easy to describe it by “ionic

structures” that get more weight than what one would expect by simple “urn-like” fluctuation.

This leads us to ask whether it would be not convenient to use ions as a reference, and not

atoms.

5. CHOOSING THE SIGNIFICANT REGION

5.1. Alternatives

Fig. 13 shows how probabilities evolve when changing the positions of the planes perpen-

dicular to the z-axis, and symmetrically placed with respect to the origin (the position of the

Xe nucleus, the F nuclei being at z = ±3.74 bohr). We see that there is indeed a maximum

in the probability of having n = 54 electrons in a region around the Xe nucleus, but the

probability to have n = 53 and even n = 52 is larger. The effect is even more pronounced if

we look at the region around one of the F nuclei. The probability to have n = 10 is clearly

more pronounced than that of having n = 9.

A similar feature is present when looking at the F2 molecule, Fig. 14. The probability

to have one electron in the region described by cones between the two nuclei can be made

larger than that of having two. Correspondingly, the probability of having seven electrons

in the region attributed to three lone pairs on an atom is also getting larger than the best

we can get for having six.30 This is in contrast to what we have seen for the core-valence

separation (shown for CH4, Fig. 3) where the expected values were also the optimal ones.

As we have the signature of ionic structures, let us compare the evolution of the probabil-

ities of having different numbers of electrons in a region, as we change the region is changed.

From our data we find that we can have more ways to distribute electrons between regions

than one would normally assume in valence bond calculations, that try to keep to minimal,

significant distributions. In order to make comparisons with valence bond calculations let

us restrict ourselves to a given set of integers, showing up in some reference valence bond

calculation, I and consider

wΩ(n) =
PΩ(n)∑
k∈I PΩ(k)

, n ∈ I (11)
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FIG. 13. Probability to have n electrons between two planes at ±z, in XeF2. The Xe nucleus is at

z = 0, the F nucleus at z ≈ 3.74. The curves marked −|n|− (top panel) show the probability to

have n electrons in the region containing the Xe nucleus, the curves marked n|− |− (bottom panel)

show the probability to have n electrons in a region containing one of the F nuclei.

Of course, wΩ changes with Ω. Let us consider XeF2, and displace the planes that

separate the region around the Xe nucleus (placed at the origin) from the F nuclei (placed

at z = ±3.74 bohr), see Fig. 15. We consider I = {52, 53, 54}. Let us choose, to start with

a region between −z and z chosen to maximize P (n = 52). As the planes get further away

from Xe nucleus, the weight of P (n = 52) decreases, to let P (n = 53) increase. As z further

increases, P (n = 53) arrives to a maximum. Continuing to increase z, the contribution of

P (n = 53) declines and lets P (n = 54) increase. We can look, for the same process, at the

probabilities for the region around a F atom (I = 9, 10).

Instead of looking at the ratios w for P (n), we can look at the ratio of the joint probabil-
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FIG. 14. F2 molecule, probability for the regions corresponding to the FF bond (top), and the

three lone pairs (bottom); full lines are for having 1, 2, or 3 electrons in the bond region, or 6, 7, 8

for the region of three lone pairs. The dashed lines correspond to specific partitions.

.

ities corresponding to partitions, e.g., n1|nXe|n2 that of having n1 electrons in one F region,

nXe in the region around Xe, and n2 around the other F nucleus. We see (in Fig. 15) that

the two types of ratios do not differ much in spite of PA∩B being lower than P (A).

We find, that for a certain value of z our 49, 406 determinant wave function produces

ratios of probabilities (wΩ) that are pretty close to the weights obtained in valence bond

calculations.31 The value of z where this happens is slightly larger than that that we would

have attributed to Xe+. This indicates that what we call a Xe atom, is, in fact, closer to

a Xe+ ion. So let us better consider the probabilities (see Fig. 16) for the domain that

maximizes the probability of having 53 electrons around the Xe nucleus (as in Fig. 13). At
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FIG. 15. Ratio of probabilities as changing with the position of the planes defining the regions

in the XeF2 molecule; for Ω between −z and z, around the Xe atom. PΩ(n)/
∑

i PΩ(ni), ni = 52

(blue), 53 (green), 54 (red), full curves. The dashed curves, show the relative contributions of the

probabilities for the partitions 10|52|10 (blue), 9|53|10 together with 10|53|9 (green), and 9|54|9

(red). The vertical dot-dashed lines indicate the values of z for which P (n = 53) and P (n = 54) are

maximal. The horizontal dot-dashed lines show weights obtained in valence bond calculations.31

the same time, this means that we should consider having in the region around the F nucleus

either 9 or 10 electrons, F ↔ F–.

5.2. Effective number of parties

We are now confronted with the existence of alternative descriptions. In fact, already

Lewis saw the need for it, and used the term tautomerism.32 Choosing one of the spatial

region is in detriment for another. For the example above, the optimal region for Xe is

not the best for Xe+. The P (53) and P (54) are different in the two regions. There is an

arbitrariness in the choice of the region: One person may find it convenient to choose the

Xe one, another person the Xe+ one. Of course, we can optimize regions by weighting their

importance. The choice of these weights has also a certain degree of arbitrariness. In some

cases, chemical intuition can decide about having equal weights, e.g., F and F–, as equivalent

to the choice of Xe+, see Fig. 16.

Another possibility is to choose the region that minimizes the number of alternative struc-

tures. In the study of political systems, the concept of “effective number of parties” exists:
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Ω(z=2.26)

Ω(z=2.26)

FIG. 16. Probability to find n electrons in the region attributed to the Xe+ ion (top panel), and to

F– ↔ F (bottom panel) in XeF2.

if a party is weakly represented in a parliament, it weighs less. Laakso and Taagepera33 use

for it

N =
1∑
nP2

n

(12)

where Pn is the fractional number of seats occupied by a party, and N is the total number of

parties present in the parliament. N → 1 if one party dominates, and N = N if all parties

have an equal number of seats. Of course, this definition can be used for other types, by

replacing Pn by probabilities. Let us try to use this definition in the case of XeF2.

1. Let us use the probabilities of n1|nXe|n2 (to have nXe electrons in the Xe atom region,

n1 in that of one of the F atoms, and n2 in that of the other F atom). If we use the

partition to maximize to probability to have a Xe atom, we get N = 8, dominated by
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F|Xe|F, F–|Xe+|F and F|Xe+|F–, F+|Xe–|F and F|Xe–|F+, and F–|Xe2+|F–, F–|Xe|F+

and F+|Xe|F–. If we use the partition to maximize to probability to have a Xe+ ion,

we get N = 6, dominated by F–|Xe2+|F–, F–|Xe+|F and F|Xe+|F–, F|Xe|F, F–|Xe|F+

and F+|Xe|F–. This eliminated the partitions requiring Xe–: and thus reduced the

number of descriptors needed.

2. It may be more reasonable to group together the chemically equivalent descriptions,

e.g., F–|Xe+|F and F|Xe+|F–. This way, N is reduced, because we count such pairs

only once. Also, the importance is modified, for example, for n1 6= n2 instead of

having P (n1, nXe, n2) = P (n2, nXe, n1) we consider both possibilities together, and

have P (n1, nXe, n2) + P (n2, nXe, n1). In general, grouping equivalent partitions favors

cases where many equivalent distributions exist over cases where the partitions are

unique unique ones (for example, e.g. twelve partitions 1|2|2|3, 1|2|3|2, . . . over 2|2|2|2

for the CH bonds in CH4). A possible limitation of such a procedure is seen when

we consider perturbations of the system (chemical reactions): equivalence disappears,

grouping is abandoned, and abrupt changes can appear.

For our example, XeF2, the distinction between the two variants above is irrelevant; with,

or without grouping, the same partitions are selected.

6. CONCLUSIONS

In 1933, Lewis called his approach analytical:1 deducing from a large body of experimental

material some simple laws consistent with the known phenomena. He contrasted it with the

approach of the mathematical physicist who uses postulates to synthesize a molecule. He

recognized its power of producing quantitative results (in contrast to the analytical method

that produces only qualitative results). However, he feared that the inaccuracy of a single

postulate might completely invalidate the results while the “results of the analytical method

can never be far wrong, resting as they do upon so numerous experimental supports”. After

one century, the postulates of quantum mechanics not only remained valid, they also allowed

to go beyond what had been experimentally known. However, our minds still aspire for

simple laws, in spite of computations becoming more convenient. This paper tries to extract

some simple information from quite accurate computations without trying to explore the
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origins of the effects observed: we now that they lie in the Schrödinger equation and the

Pauli principle.

As the core of quantum mechanics is probabilistic, we try to provide probabilistic mea-

sures. We define the space into regions, and compute the probability to have a given number

of electrons in it.

We note that the probabilities are low: already the probability to have core-valence

separation in CH4 is only of 0.8. Considering an arrangement as in a Lewis structure (for

example, having two electron pairs in each of the CH bonds) is so low (0.2) that it is more

likely to have electrons not distributed according the Lewis structure. A simple explanation

for it is that there are many ways for an electron to quit its pair. We would like to stress

that this is not contradicting the Pauli principle, because we consider electrons in a region of

space, not in an infinitesimal volume element. Not always can we see it as a contribution of

ionic structures: such effects show up also between lone pairs on the same atom, or multiple

bonds.

Quantum mechanical effects enhance some of the probabilities, and reduce others. How-

ever, such changes are normally around 0.1-0.2. Such enhancements can be quantified by

comparing with models (such as the Ehrenfest urn model), or by considering conditional

probabilities.

We try to defend the idea that there is a need to giving the user some freedom in the

definitions allowing to adapt the tool to the purpose of the analysis (for example to choose

if it is better to refer to atoms or to ions). Not all interpretative methods give it. The

probabilistic nature provides several interpretations, and depending on what we ask this

may be simple or complicated. We tentatively suggest - without exploring it systematically

- an Occam’s razor approach inspired from political analyses: the effective number of parties,

the parties corresponding to the different distributions of electrons over the spatial regions.

We choose among the partitions that are having the minimal number of representative

distributions.

This paper could have had the title: “Concepts in search for observations”. It is not

clear to us how relevant our remarks are for chemists. However, these effects are present,

and it might be worth looking for them. To conclude, let us mention an aspect that we

could treat with our approach (but have only mentioned in passing in this paper). One may

have regions of space where electrons are localized, producing spatially disconnected regions
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between which electrons are delocalized.
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Appendix A: Technical details

TABLE I. Energies (a.u) of the Hartree-Fock and CI wave functions used to generate the configura-

tions. Ndet is the number of determinants, and exFCI is an estimate of the full CI energy obtained

by extrapolation of the CIPSI energies. The percentage of correlation energy are computed with

respect to the exFCI energy.

FHF– KrF2 XeF2 F2 HCCH CH4

Ndet 1083789 554150 49406 260758 38038 728533

Frozen MOs 1–2 1–11 1–20 1–2 1–2 1

Active MOs 3–89 12–137 21–321 3–80 3–91 2–73

HF -199.586 -2950.704 -7430.097 -198.765 -76.851 -40.213

exFCI -200.161 -2951.587 -7431.468 -199.311 -77.186 -40.430

CI -200.138 -2951.486 -7431.322 -199.289 -77.148 -40.427

% Correlation 96% 89% 89% 96% 87% 98%

For all the systems presented, we generated a correlated wave function with a frozen-

core configuration interaction using a perturbative selection made iteratively (CIPSI) in the

full valence CI space. For CIPSI calculations, we used natural orbitals of a preliminary

CIPSI calculation made with the Hartree-Fock orbitals to generate a more compact CI

expansion. For XeF2, the Universal Gaussian Basis Set (UGBS) was used,34 and for all other

compounds we used the def2-TZVPD basis set.35 The CIPSI calculations were performed

with the Quantum Package software36 and the QMC calculations were made without any

modification of the wave function with QMC=Chem.37 The energies of the generated wave

functions are given in table I.

Appendix B: Smooth boundaries for two particles in a box

Let us consider two same-spin fermions in a box of length L = 1. The eigenfunctions

corresponding to the lowest energies are

φ1(x) =
√

2 sin(πx) (B1)

φ2(x) =
√

2 sin(2πx) (B2)
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FIG. 17. Probability of having one electron in dominantly in the left half of the box (and an-

other electron dominantly in the right half of the box) as a function of the smoothing (using the

smoothstep function Sk, Eq. (B3)). The dotted line is connecting the points to guide the eye.

yielding for the two particle wave function:

Φ(x1, x2) = φ1(x1)φ2(x2)− φ1(x2)φ2(x1)

We can compute analytically the probability to have one and only one electron in the left

(or right) half of the box:

Pleft(1) = Pright(1) =
1

2
+

32

9π2
≈ 0.86, with sharp cutoff.

Let us now smooth out the indicator function, i.e., use a function that does not define

the region by a step function, but by a smoothed step function. Here we use the smoothstep

function,

Sk(x) = xk+1

k∑
j=0

(k + j)!

k! j!

(2k + 1)!

(k − j)! (k + j + 1)!
(−x)j (B3)

In the limit k →∞, it becomes the step function at x = 1/2, while S0 = x. The expression

for the probability to have one and only one particle in one of these “fuzzy half-boxes”:

Pleft(1) = Pright(1) = 〈Φ|Sk(x1) (1− Sk(x2)) + (1− Sk(x1))Sk(x2)|Φ〉 (B4)

Fig. 17 shows the change of the probability with the change of the smoothness parameter.

(Note that the points in Fig. 17 show Pleft as a function of 1/k: the values at the left of the

graph correspond to a strong cutoff.) The highest value of the probability is reached for the
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sharpest cutoffs, decaying toward

Pleft(1) = Pright(1) =
1

2
+

512

81π4
≈ 0.56, with S0(x)

Thus, replacing the indicator function by a smoothstep function has an equalizing effect on

the probabilities. The probability to have any of the “ionic” structures, i.e., two electrons in

one half of the box, and no electrons in the other is given by

1

2
− 32

9π2

for the sharp separation. This value increases as the indicator function is smoothed out,

giving more weight to the minority distribution as the k increases.
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