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ABSTRACT
The notion of the nth order local energy, generated by the nth power of the Hamiltonian, has been
introduced. The nth order two-particle coalescence conditions have been derived from the require-
ments that the nth order local energy at the coalescence point is non-singular and equal to the nth
power of the Hamiltonian eigenvalue. The first condition leads to energy-independent constraints.
The second one is state-specific. The analysis has been done using a radial, one-dimensional, model
Hamiltonian. The model is valid in the asymptotic region of r ∼ 0. The coalescence conditions set
the relations between the expansion coefficients of the radial wave function into a power series with
respect to r.
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1. Introduction

Two-particle Hamiltonians, since nearly a century, have
been used as a playground for testing suitability of a
variety ofmethods andmodels to the description of prop-
erties of simple quantum systems. The simplest ones, the
hydrogen-like atom and the spherical harmonic oscilla-
tor not only served as a test of quantum mechanics, but
also as a basis for the development of analytical meth-
ods of solving the Hamiltonian eigenvalue problem and
for the studies on the properties of its spectrum. By a
proper change of coordinates, a two-particle Hamilto-
nian can be expressed as a sum of two Hamiltonians:

CONTACT Jacek Karwowski jka@umk.pl
We dedicate this paper to LutosławWolniewicz, an initiator of rigorous thinking in quantum chemistry.

one for the centre of mass and another one for the rel-
ative motion. Consequently, the resulting two-particle
eigenvalue problem can be separated to two independent
one-particle problems: one describing the free motion of
the centre of mass and the second one, describing the rel-
ative motion of the two particles. In general, an external
potential prevents the separability. An exception is the
parabolic confinement. Two-particle Schrödinger equa-
tions, independent of the form of the interaction poten-
tial, are separable also in parabolic external potentials.
The interaction potential V in the equation describing
the relative motion depends only on the interparticle
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2 J. KARWOWSKI AND A. SAVIN

distance r12 ≡ r. Therefore, the Hamiltonian commutes
with the angular momentum operators and, after the
elimination of the angular part, its eigenvalue problem
transforms to an infinite set of eigenvalue equations

H�νλ(r) = Eνλ �νλ(r) (1)

of one-dimensional radial Hamiltonians

H = − 1
2μ

d2

dr2
+ λ(λ+ 1)

2μ r2
+ V(r), (2)

where λ = 0, 1, 2, . . . is the angular momentum quantum
number and μ is the reduced mass.1 In the case of two
identical fermions the wave function is symmetric (a sin-
glet pair) if λ is even and antisymmetric (triplet) if λ is
odd.

The point r = 0 corresponds to the coalescence of the
two particles. The information about the behaviour of the
exact wave functions at this point is important both for
the understanding of general properties of many-particle
systems and for the construction of variational trial func-
tions. Therefore, the subject attracted much interest –
see, e.g. [1–14] and references therein. Hamiltonian (2)
offers a simple and easy to treat model. Though this
model describes a ‘bare’ pair of particles, under certain
assumptions it can be generalised so that, after some
modifications, it can be also applied to studies on the coa-
lescence conditions in N-particle systems. In particular,
if the distance r between two coalescing particles is much
smaller than the distance to any of the remaining N−2
particles, then one may expect that the influence of these
particles on the properties of the coalescing pair can be
described by a two-particle effective potential, parametri-
cally dependent on the coordinates of the other particles.
After an approximate separation of the centre of mass
of the two particles and a spherical averaging, we end
up with a radial equation describing the pair of parti-
cles in the vicinity of the coalescence point. From here
one can derive constraints on the asymptotic form of
the exact wave functions at the limit of r = 0. The best
knownof these constraints, Kato’s cusp condition [1], can
be derived from the requirement that in the case of two
Coulomb-interacting particles the local energy is non-
singular at r = 0. Higher-order coalescence constraints
have been obtained using someother universal properties
of the exact wave functions in the vicinity of r = 0 [2–5].
In a similar way the effects of the electron–electron coa-
lescence on the electron density can be investigated. The
earliest works on this subject were published already half
a century ago [6], but the links with the structure of the
first-order density matrix and of the natural orbitals have
been discovered very recently [7–9]. A detailed analy-
sis of the wave function coalescence constraints, referred

to as general coalescence conditions for the exact wave
functions, has been given by Kurokawa et al. [10–12].

A sensitive tool for the exploration of the behaviour of
�νλ(r) at r = 0 is the local energy. Let �νλ(r) be a trial
function which for specific values of parameters, and for
r � 1, is equal to �νλ(r). We define the nth order local
energy as

Hn�νλ(r)
�νλ(r)

= E (n)νλ (r). n = 1, 2, 3, . . . (3)

If �νλ(r) = �νλ(r), i.e. it is the exact eigenfunction of
H, then E (n)νλ (r) = Enνλ. In this paper we derive the gen-
eral two-particle coalescence conditions, as the ones of
Kurokawa et al. [10–12], from the properties of the local
energies at r = 0.2 We perform the analysis for a sep-
arable, model in which the radial part of the interac-
tion is described by Hamiltonian (2). The constraints are
derived using the information about the behaviour of the
wave function at r = 0. Therefore, the results are valid for
both discrete and continuous spectra.

For eigenfunctions of Hamiltonian (2) the local ener-
gies of all orders have to be non-singular at the coales-
cence point. This property implies that the wave func-
tion has to compensate r = 0 singularities generated
by the Hamiltonian. The constraints imposed by the
enforcement of this property are, for a given λ, energy-
independent, i.e. they are common to all wave functions
�νλ(r) which belong to the space spanned by the eigen-
functions of the radial Hamiltonian (2). In the case of
Coulomb-interacting particles and n = 1 this constraint
leads to Kato’s cusp condition [1].

If at the coalescence point�νλ(r) behaves as an eigen-
function of H corresponding to the eigenvalue Eνλ then

E (n)νλ (r) |r=0= Enνλ. (4)

This property is, by definition, energy-dependent. There-
fore, the constraints imposed by its enforcement are state-
specific.

In the next section general coalescence conditions are
derived and in Section 3 an example of application is
given. A graphicalmethod of deriving explicit formof the
energy-independent coalescence conditions is presented
in the Appendix. Atomic units are used in this paper.

2. Coalescence constraints

If we assume a Coulomb-like behaviour of V(r) at r = 0,
expand it to a power series about this point, and retain
the first q+ 2 terms of the expansion then we get

V(r) =
q∑

p=−1
αp rp, (5)
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where, in the case of a parabolic confinement,α2 contains
a contribution from the external potential. For Coulom-
bic systems and for r � 1, the term corresponding to
p = −1 is dominant and determines the physical charac-
ter of the potential. If α−1 > 0 then the potential is repul-
sive (describing, for example, the interaction between two
electrons); if α−1 < 0, it can describe an attractive elec-
tron–nucleus interaction. Formally, the potential param-
eters are unrestricted. If α−1 = 0, then the potential loses
its Coulombic character but, nevertheless, the higher-
order coalescence conditions impose wave function con-
straints dependent on αp with p>0 (cf. Section 2.1.2).3
The higher-order terms in Equation (5) improve the ana-
lytic representation of the potential in the vicinity of the
coalescence point, but have no physical meaning for large
values of r. For example, a term αq rq, αq > 0, q ≥ 1,
prevents any kind of dissociation of the two particles.

For r ∼ 0 the radial functions describing the coalesc-
ing pair can be expressed as

�νλ(r) ∼ rλ+1 ψνλ(r), ψνλ(0) �= 0, (6)

where ν refers to the energy eigenvalue and prefactor
rλ+1 compensates the singularity at r → 0 generated by
the centrifugal potential λ(λ+ 1)/r2 [16]. As the nor-
malisation condition we set ψνλ(0) = 1. Since �νλ(r) is
analytic [15] it can be expanded to a power series of r. We
assume thatψνλ(r) has an asymptotic expansion of order
s about r = 0:

ψνλ(r) ∼

s∑
i=0

ci ri (7)

(to simplify notation, indices ν and λ in ci are omit-
ted). For r � 1, Equations (6) and (7), with properly
defined expansion coefficients, give a correct represen-
tation of the eigenfunctions of H at the vicinity of the
coalescence point. Note that �νλ(r) provides an asymp-
totic form of the corresponding eigenfunction but has
no physical meaning outside of the coalescence region.
First, the model is physically meaningful only for small
r. Second, �νλ(r), as defined in Equation (6), is not
square-integrable in the range r ∈ (0,∞).

Our aim is to derive the conditions limiting the values
of the coefficients of expansion (7) from two require-
ments defining the behaviour of E (n)νλ (r) at r = 0. The
first group of these conditions, referred to as the energy-
independent constraints, is a consequence of the require-
ment that E (n)νλ (r) is non-singular at r = 0. The second
group, the energy-dependent constraints, follows from the
condition given by Equation (4). Since we are inter-
ested in the properties of the local energies at r = 0, the
behaviour of thewave functions outside of the asymptotic
region is irrelevant for this discussion.

2.1. Energy-independent constraints

We set

�
(0)
νλ (r) = rλ+1 ψ

(0)
νλ (r), (8)

where

ψ
(0)
νλ (r) =

s∑
i=0

c(0)i ri, c(0)i = ci, (9)

and ci is defined in Equation (7). Hereafter, superscript
(0) in ci is usually dropped out. According to Equa-
tions (2) and (5)

H rλ+1+i = rλ+1

⎛
⎝Ai ri−2 +

q∑
p=−1

αp rp+i

⎞
⎠ , (10)

where

Ai = − i(2λ+ i + 1)
2μ

. (11)

The combination of Equations (8) and (10) yields

H�(0)νλ (r) = rλ+1

(
c(1)−1
r

+ ψ
(1)
νλ (r)

)
, (12)

where

ψ
(1)
νλ (r) =

s+q∑
i=0

c(1)i ri, (13)

c(1)i =
q∑

p=−1
αp c

(0)
i−p + Ai+2 c

(0)
i+2,

i = −1, 0, 1, . . . , s + q,

with c(0)k = 0, if k < 0, or k > s.

(14)

According to Equations (3), (8) and (12).

E (1)νλ (r) = H�(0)νλ (r)

�
(0)
νλ (r)

=
(
c(1)−1
r

+ ψ
(1)
νλ (r)

)
1

ψ
(0)
νλ (r)

.

(15)
Since limr→0 ψ

(0)
νλ (r) = c(0)0 = 1, and limr→0 ψ

(1)
νλ (r) =

c(1)0 , the first-order local energy is asymptotically, at
r ∼ 0, equal to

Eνλ(1)(r) ∼

r→0
c(1)−1
r

+ c(1)0 , (16)

where, according to Equation (14),

c(1)−1 = α−1 c
(0)
0 + A1 c

(0)
1 ,

c(1)0 = α−1 c
(0)
1 + α0 c

(0)
0 + A2 c

(0)
2 .

(17)
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As it follows from Equation (16), E (1)νλ (0) is finite if c(1)−1 =
0. Therefore, the first-order coalescence constraint reads

c(0)1 = −α−1

A1
c(0)0 . (18)

If c(1)−1 = 0 then

H�(0)νλ (r) = rλ+1 ψ
(1)
νλ (r) ≡ �

(1)
νλ (r), (19)

and the procedure described by Equations (9)–(18) may
be repeated with superscripts (0) and (1) replaced,
respectively, by (1) and (2).

In general, if

c(j)−1 = α−1 c
(j−1)
0 + A1 c

(j−1)
1 = 0,

for j = 1, 2, . . . , n − 1, (20)

where

c(j)i =
q∑

p=−1
αp c

(j−1)
i−p + Ai+2 c

(j−1)
i+2 ,

i = −1, 0, 1, . . . , s + j q,

with c(j−1)
k = 0, if k < 0, or k > s + (j − 1)q,

(21)
then

H�(j−1)
νλ (r) = rλ+1 ψ

(j)
νλ(r) ≡ �

(j)
νλ(r), (22)

and

E (n)νλ (r) ∼

r→0
c(n)−1
r

+ c(n)0 , (23)

where

c(n)−1 = α−1 c
(n−1)
0 + A1 c

(n−1)
1 ,

c(n)0 = α−1 c
(n−1)
1 + α0 c

(n−1)
0 + A2 c

(n−1)
2 .

(24)

From here we have

Theorem 2.1: The nth order local energy E (n)νλ (r) is finite
at r = 0 if c(j)−1 = 0 for j = 0, 1, 2, . . . , n.

Corollary: The coalescence constraints are independent of
the free parameter, α0, in the potential.

Proof: c(1)−1 [Equation (17)] does not depend on α0.
Assume that c(j)−1, j = 1, 2, . . . , n − 1, do not depend on

α0. Then

c(n)−1 = α−1 c
(n−1)
0 + A1 c

(n−1)
1

= α0

[
α−1 c

(n−2)
0 + A1 c

(n−2)
1

]
+ α−1

[
α−1c

(n−2)
1 + (A1 + A2)c

(n−2)
2

]
+ A1

[
α1 c

(n−2)
0 + A3 c

(n−2)
3

]
. (25)

According to Theorem 2.1, α−1 c
(n−2)
0 + A1 c

(n−2)
1 =

c(n−1)
−1 = 0. Therefore, c(n)−1 does not depend on α0. �

Since Eνλ can be included to α0, the Corollary implies
that the coalescence conditions derived from the require-
ment that the nth order local energies are non-singular
at r = 0 are, as expected, independent of the energy
eigenvalues.

The coefficient c(1)−1 is a linear combination of c(0)0 and
c(0)1 [Equation (17)]. Similarly, c(2)−1 is a combination of c(1)0
and c(1)1 , i.e. of c(0)j , with j = 0, 1, 2, 3. As one can deduce

from Equation (21), in order to obtain c(n)−1, one needs c
(0)
j

with j = 0, 1, . . . , 2n − 1. Therefore, the minimum value
of s in Equation (7) is 2n−1. In practical terms, the upper
limit for the highest order coalescence constraint is set by
this condition – the coefficients of high powers of r are ill
defined in the asymptotic region because r � 1 implies
that the high powers of r are very small. Hereafter we set

s = 2n − 1.

Theorem 2.1 with Equations (20) and (21) yields explicit
expressions for the energy-independent coalescence con-
straints:

c(n)−1 =
2n−1∑
i=0

tni ci = 0, (26)

where

t10 = α−1, t11 = A1,

t20 = α1 A1, t21 = α2−1,

t22 = α−1 (A1 + A2), t23 = A1A3,

t30 = α2−1α1 + α−1α2(A1 + A2)+ α3 A1A3,

t31 = α−1α1(2A1 + A2)+ α2 A1A3,

t32 = α3−1 + α1 A1(A2 + A3),

t33 = α2−1(A1 + A2 + A3),

t34 = α−1(A1A3 + A1A4 + A2A4), t35 = A1A3A5, . . . .

A graphical method of deriving tmi coefficients is pre-
sented in the Appendix. From the first-order (n = 1)
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constraint one can get the well-known cusp condition
generated by the Coulomb singularity:

c1 = −α−1

A1
c0 = α−1 μ

λ+ 1
c0. (27)

This condition defines the coefficient of the linear term of
the expansion of the radial function. In the case of two-
electron coalescence it is equivalent to Kato’s cusp condi-
tion [1]. For n = 2 we get, additionally, the second-order
constraint:

− A1 A3 c3 = α1 A1 c0 + α2−1 c1 + α−1 (A1 + A2) c2,
(28)

where c1 can be eliminated using Equation (27). In
energy-independent constraints the odd coefficients,
c1, c3, c5, . . ., can be expressed as linear functions of the
even ones, c0, c2, c4, . . .:

c1 = D(1)0 c0,

c3 = D(2)0 c0 + D(2)2 c2,

c5 = D(3)0 c0 + D(3)2 c2 + D(3)4 c4.

· · · · · · · · · · · ·

(29)

where

D(1)0 = −α−1

A1
, D(2)0 = α3−1

A2
1A3

− α1

A3
,

D(2)2 = −α−1(A1 + A2)

A1A3
, . . . . (30)

In general,

c2i+1 =
i∑

j=0
D(i+1)
2j c2j, i = 0, 1, . . . , n − 1. (31)

The asymptotic expansion of the wave function
[Equation (9)] becomes

ψ
(0)
νλ (r) =

n−1∑
i=0

⎛
⎝c2i + r

i∑
j=0

D(i+1)
2j c2j

⎞
⎠ r2i, (32)

where we set s = 2n−1. Alternatively, we can arrange the
expansion according to the even coefficients:

ψ
(0)
νλ (r) =

n−1∑
i=0

c2i W(2i)(r) r2i, (33)

where

W(2i)(r) = 1 +
n∑

j=i+1
D(j)2i r

2j−1. (34)

The local energy E (n) does not diverge at r = 0, regard-
less of the values of c2j, j = 0, 1, 2, . . . , n − 1, if the

odd expansion coefficients, c2j+1, are defined as in
Equation (31). As a consequence, the terms c2i r2i in the
expansion of the wave function are multiplied by poly-
nomials W(2i)(r), containing only odd powers or r, with
coefficients defined by the Hamiltonian parameters.

2.1.1. Pure Coulomb potential
In the pure Coulomb case, i.e. if αp = 0 for p �= −1,
Equation (21) simplifies to

c(j)i = α−1 c
(j−1)
i+1 + Ai+2 c

(j−1)
i+2 . (35)

Then,

c(n)−1 = α−1 c
(n−1)
0 + A1 c

(n−1)
1

= α−1

[
α−1 c

(n−2)
1 + A2 c

(n−2)
2

]
+ A1

[
α−1 c

(n−2)
2 + A3 c

(n−2)
3

]
= α2−1 c

(n−2)
1 + α−1 (A1 + A2) c

(n−2)
2 + A1A3 c

(n−2)
3

= · · · · · · · · ·

=
j∑

p=0
α
n−j
−1 A(j)

p c(n−j)
j+p−1 = · · ·

=
n∑

p=0
α
n−p
−1 A(n)

p cn+p−1, (36)

where A(j)
p is a

( j
p
)
-term combination of p-fold products

of Ai. In particular, A(n)
0 = 1, A(n)

1 = ∑n
i=1 Ai, A(n)

n =∏n
i=1 A2i−1,A(3)

2 = A1A3 + A1A4 + A2A4,A(4)
2 = A(3)

2
+ A5(A1 + A2 + A3), A(4)

3 = A1A3A5 + A1A3A6 + A1
A4A6 + A2A4A6, . . . . A graphical method of the evalu-
ation ofA(n)

p is given in the Appendix.
For n = 4 the constraints for the pure Coulomb

potential read

c(1)−1 = α−1 c0 + A1 c1 = 0,

c(2)−1 = α2−1 c1 + α−1(A1 + A2) c2 + A1A3 c3 = 0,

c(3)−1 = α3−1 c2 + α2−1(A1 + A2 + A3) c3
+ α−1(A1A3 + A2A4 + A1A4) c4
+ A1A3A5 c5 = 0,

c(4)−1 = α4−1 c3 + α3−1(A1 + A2 + A3 + A4) c4

+ α2−1(A1A3 + A2A4 + A1A4

+ A1A5 + A3A5 + A2A5) c5
+ α−1(A1A3A5 + A1A3A6 + A1A4A6

+ A2A4A6) c6 + A1A3A5A7 c7 = 0.

(37)



6 J. KARWOWSKI AND A. SAVIN

2.1.2. Potentials non-singular at r = 0
Though potential (5) with α−1 = 0 has no singular-
ity at r = 0, it also generates singularities of higher-
order local energies and coalescence constraints similar
to the ones obtained for the singular potential. As it
follows from Equation (24), if α−1 = 0 then c(n)1 = 0.
The remaining odd coefficients do not vanish. According
to Equation (21), c(1)1 = α1 c0 + A2 c3. As it was shown
above, c(1)1 = 0. Therefore, A3 c3 = −α1 c0, i.e. c3 �= 0
unless α1 = 0. If α−1 = α1 = 0, then c1 = c3 = 0, but
A5 c5 = −α3 c0, and so on. Using Equation (21) one can
prove by induction

Theorem 2.2: If α2p−1 = 0 for p = 0, 1, 2, . . . ,m, then
c(0)2p+1 = 0 for p = 0, 1, 2, . . . ,m.

Corollary: If V(r) contains only even powers of r, then

ψ(0)(r) =
n−1∑
i=0

c(0)2i r2i. (38)

2.2. Energy-dependent coalescence constraints

The coalescence constraints considered so far depend on
the angular momentum of the coalescing pair but do
not depend on the energy eigenvalue. The constraints,
expressed as linear relations between coefficients ci of
the asymptotic expansions of the radial functions, are
the same for all eigenfunctions of H. Therefore, they
have to be fulfilled also by the linear combinations of the
eigenfunctions.

We assume that the energy-independent constraints
are fulfilled. Consequently, the local energies of all orders
from 1 to n are non-singular at r = 0. The energy-
dependent constraints result from the application of con-
dition (4). It is convenient to include α0 – the free param-
eter in the potential – to the eigenvalue. We define

H̃ = H − α0, ε = Eνλ − α0, (39)

and

Ẽ (n)νλ (r) = H̃n�νλ(r)
�νλ(r)

= (H − α0)
n�νλ(r)

�νλ(r)

=
n∑
j=0

(−1)n−j
(
n
j

)
α
n−j
0 E (j)νλ(r), (40)

where, to simplify notation, indices ν and λ in ε are omit-
ted.4 We assume that E (j)νλ(0) = Ejνλ for j = 1, 2, . . . , n.
Then, according to Equations (4) and (40),

Ẽ (n)νλ (r) |r=0= (Eνλ − α0)
n = εn. (41)

Therefore, formally, the replacement of H by H̃ and
E (n)(0) by Ẽ (n)(0) is equivalent to setting α0 = 0 in

Equation (5). Consequently, according to Equations (23)
and (24), we can formulate

Theorem 2.3: The nth order energy-dependent con-
straints are expressed as

εj = c(j)0 = α−1 c
(j−1)
1 + A2 c

(j−1)
2 , j = 1, 2, . . . , n.

(42)

In particular,

ε = α−1 c1 + A2 c2 = −α
2
−1
A1

c0 + A2 c2, (43)

ε2 = α−1 c
(1)
1 + A2 c

(1)
2

= (α−1α1 + α2 A2) c0 + α1 A2 c1 + α2−1 c2
+ α−1 (A2 + A3) c3 + A2 A4 c4,

ε3 = α−1 c
(2)
1 + A2 c

(2)
2 =

6∑
i=0

fi ci,

· · · · · · · · · , (44)

where fi are linear combinations of products of the poten-
tial parameters αp, p = −1, 1, 2, 3, 4 and Ap, p = 2, 3, 4,
5, 6. Using relation (43), one can replace the eigenvalue
parameter ε in the energy-dependent constraints (42) by
c2.

2.3. The lowest-order constraints

For the reader’s convenience, several first coefficients of
the expansion of ψ(0)νλ are given:

c0 = 1,

A1 c1 = −α−1 c0,

A2 c2 = ε − α−1 c1,

A1 A3 c3 = −α1 A1 c0 − α2−1 c1 − α−1 (A1 + A2) c2,

A2 A4 c4 = ε2 − (α−1α1 + α2 A2) c0 − α1 A2 c1

− α2−1 c2 − α−1 (A2 + A3) c3,

A1 A3 A5 c5 = − [α2−1α1 + α−1α2 (A1 + A2)

+α3 A1 A3] c0
− [α−1α1 (2A1 + A2)+ α2 A1 A3] c1

− [
α3−1 + α1 A1 (A2 + A3)

]
c2

− α2−1 (A1 + A2 + A3) c3
− α−1 (A1 A3 + A1 A4 + A2 A4) c4.

(45)
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3. Example

We consider two Coulomb-interacting particles in a
parabolic confinement, i.e. we set α−1 �= 0, α2 �= 0 and
αi = 0 if i �= −1, 2. The radial Schrödinger Equation (1)
reads[

− 1
2μ

d2

dr2
+ λ(λ+ 1)

2μ r2
+ α−1

r
+ α2 r2

]
�ελ(r)

= ε �ελ(r), (46)

where subscript ν has been replaced by the corre-
sponding energy ε. In the case of two electrons (μ =
1/2, α−1 = 1) the interaction is repulsive. In the case
of two μ = 1/2 particles with opposite charges (elec-
tron–positron pair) α−1 = −1 – the interaction is attrac-
tive. The spectrum of the confined system (α2 > 0) in
both cases is purely discrete. In the unconfined systems
(α2 = 0) the positive energy spectrum is continuous and
the continuum spreads from 0 to ∞. In the case of elec-
tron–positron pair discrete states with ε < 0 also appear.
As it results from Equation (46), the transformation r →
−r is equivalent to the replacement of α−1 by −α−1.
Under this transformation the wave function changes
accordingly, but the eigenvalues remain the same. Note
that the last statement is valid only if the same eigenvalue
exists in both repulsive and attractive cases. In particular,
if α2 = 0 then it is valid for continuous spectra. Other-
wise, if α2 > 0, it is valid only for quasi-exact solutions
of Equation (46) [17].

According to Equation (45) the coefficients in the
asymptotic expansion (7) are equal to

A1 c1 = −α−1,

A1A2 c2 = α2−1 + ε A1,

A1A2A3 c3 = −α−1
[
α2−1 + ε(A1 + A2)

]
,

A1A2A3A4 c4 = α2−1
[
α2−1 + ε(A1 + A2 + A3)

]
+ ε2 A1A3 − α2 A1A2A3,

A1A2A3A4A5 c5 = −α3−1
[
α2−1 + ε(A1+A2+A3+A4)

]
+ α−1 ε

2 (A1A3 + A2A4 + A1A4)

+ α−1 α2 A2A3 (A1 + A4) ,

· · · · · · · · · .
(47)

It is convenient to split expansion (7) to twoparts: the first
one (Fα−1) one describing the interaction of unconfined
particles and the second one (	α2), describing the effect
of confinement:

ψελ(r) = Fα−1(r)+	α2(r), (48)

where in F and 	 subscripts ε and λ have been omitted.
Using Equations (21) and (45) for s = 7, α−1 = 1, and

λ = 0, i.e. for two electrons in a 1S state, we get

F1(r) = 1 + r
2

+
(
1
2

− ε

)
r2

6
+
(
1
8

− ε

)
r3

18

+
[(

1
20

− ε

)
1
144

+ ε2

120

]
r4

+
[(

1
40

− ε

)
1

2160
+ 23 ε2

10800

]
r5

+
[(

1
70

−ε
)

1
51840

+ ε2

720

(
7
45

− ε
7

)]
r6

+
[(

1
112

−ε
)

1
1814400

+ 11 ε2

37800

(
1
24

− ε
7

)]
r7

+ O
(
r8
)
, (49)

and

	α2(r) = α2

20

(
r4 + 11

30
r5 + 61 − 130 ε

1260
r6

+59 − 498 ε
17640

r7
)

+ O
(
r8
)
. (50)

The expression forα−1 = −1 can be obtained by the sub-
stitution r → −r. The parabolic confinement does not
affect c1, c2 and c3. Therefore, up to the cubic term, the
asymptotic expansion (7) of ψελ is the same whether or
not there is a parabolic confinement.

In Figure 1 the wave functions of the first three
1S states of harmonium (ε = 2230, 4134, 6074mH) and
of the confined positronium (ε = 612, 2805, 4892mH)
with α2 = 1/4, for r<1.5 bohr, represented by solid
lines, are compared with the results given by expan-
sion (48) including only the free-particle term F1 (dashed
lines) and also the confinement contribution	α2 (dash-
dotted lines). Surprisingly, the free-particle wave func-
tions corresponding to the continuous spectra are nearly
the same as the wave functions of the bound states of the
confined systems, also for relatively large r.5 A contribu-
tion due to the confinement appears starting at c4, but for
both c4 and c5, it is an energy-independent constant term.

The convergence pattern of expansion (48) is shown
in Figure 2, where differences between the exact ground
state wave function of harmonium and the expan-
sion (48) with the number of terms varying from 2 to 8
are plotted versus r. Line 1 corresponds to the two-term
expansion, i.e. to Kato’s cusp condition. Line 7 corre-
sponds to the 8-term expansion including powers of r
from 0 to 7. The dashed lines refer to the unconfined pair
of electrons (with term	α2 neglected).
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Figure 1. Solid lines: the exact wave functionsψε,0(r) of the first three 1S states of harmonium (left panel) and of the confined positron-
ium (right panel), versus r. Dashed lines – first eight expansion terms representing continuous spectrumwave functions of theunconfined
systems [Equation (49)]; dash-doted lines – the same, but including also the effect of confinement [Equation (50)]. The confinement
parameter α2 = 1/4; labels 1, 2, 3, refer to the consecutive states.

Figure 2. Differences between the exact ground state wave function of harmonium and the expansion given by Equation (48) for α2 =
1/4. Labels 1, 2, . . . , 7 are equal to s, the highest power of r included in the expansion. Results for the unconfined pair of electrons for
s = 1, 2, 3 are the same as for the confined pair. The effect of ignoring confinement is indicated by dashed lines which correspond to
s = 4, 5, 6, 7 and	α2 = 0.

4. Final remarks

We introduced the notion of the local energy of the nth
order (3) and derived conditions which prevent the local
energy of an arbitrary order to diverge at the coalescence
point, referred to as the energy-independent coalescence
constraints. The wave function neither has to describe a

bound state nor be a Hamiltonian eigenfunction. Only
its asymptotic expansion at r = 0 has to exist. By using
the energy-independent coalescence constraints we can
express the wave function in the vicinity of r = 0 as a lin-
ear combination of even powers of r with each term of
this combination modified by a polynomial composed of
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the odd powers with coefficients fixed by the coalescence
constraints [Equations (32) and (33)].

From the requirement that the nth order local energy
at r = 0 is proportional to the nth power of the eigen-
value, we derived the energy-dependent constraints ful-
filled by the even coefficients of the expansion of the
wave function. The coefficients c2i, i = 1, 2, . . ., can be
expressed as the ith order polynomials of the eigenvalue
or, alternatively, of c2. The complete set of the coales-
cence constraints is equivalent to the general coalescence
conditions of Kurokawa et al. [10–12].

In the coalescence region the Coulomb wave func-
tions corresponding to the discrete spectrum of particles
confined in a parabolic potential are nearly the same as
the wave functions of the unconfined particles with the
same energies, but belonging to the continuous part of
the spectrum. This effect depends on the strength of con-
finement. The wave function of harmonium behaves as
the wave function of two electrons for small r and as
the wave function of the harmonic oscillator for large r.
The range of r where the harmonic oscillator behaviour
dominates extends with increasing α2. For a moderate
confinement (as e.g. α2 = 1/4), differences between the
wave functions with confinement effects included and
neglected only become noticeable for r>1.

Notes

1. It is convenient to use the radial Hamiltonian in the self-
conjugate form which does not contain the first-order
derivative.

2. Equation (3) is meaningful if Hn�(r) exists, i.e. if � is
(2n)-fold differentiable in its domain. As shown by Four-
nais et al. [15], if the other electron coordinates do not
coincide, then in a neighbourhood of the coalescence point
Coulombic wave functions are analytic, i.e. they are differ-
entiable an arbitrary number of times.

3. See also an early study on the coalescence conditions for
non-Coulombic potentials by Silanes et al. [14].

4. Note that a shift in the energy scale does not affect the
eigenfunctions.

5. Explicit expressions for the continuous spectrum wave
functions can be found, e.g. in the monograph by Bethe
and Salpeter [18]. The expansion given by Equation (48)
with 	α2(r) = 0 is the same as the one obtained from the
expansion of the exact eigenfunctions.
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Figure A1. Graphical representations of Equations (A1) – panel (1), (A2) – panel (2), and (A3) – panel (3). Arcs corresponding to α0 are
not shown since they do not contribute to the constraints.

Figure A2. Graphical representation of Equation (A4).

c(n−1)
j together with arcs linking these vertices are referred to
as segments. Segments representing equations

c(n)−1 = α−1 c
(n−1)
0 + A1 c

(n−1)
1 , (A1)

c(n−1)
0 = α−1 c

(n−2)
1 + A2 c

(n−2)
2 , (A2)

c(n−1)
1 = α1 c

(n−2)
0 + α−1 c

(n−2)
2 + A3 c

(n−2)
3 , (A3)

i.e. Equation (21) for i = −1, 0, 1, are shown, respectively, in
panels (1), (2), (3) of Figure A1. Equation

c(2)−1 = α−1 c
(1)
0 + A1 c

(1)
1 = α1 A1 c0 + α2−1 c1

+ α−1 (A1 + A2) c2 + A1 A3 c3. (A4)

is represented in Figure A2 – the graph has been obtained by
connecting three segments of Figure A1 (for n = 2) into one
diagram.

In general, expression (26) for c(n)−1 is equal to the sum of
products of the arc indices and the coefficients c(n)i , taken over
all paths leading from c(n)−1 to all vertices of the selected level
in the graph (in one level there are vertices corresponding to a
given order of the local energy). Vertices of adjacent levels are
linked by arcs – if c(j)a = · · · + h c(j−1)

b + · · · , then vertices c(j)a
and c(j−1)

b are linked by an arc and the arc index is equal h. By
the construction, only paths going down from the uppermost
vertex are allowed.

The uppermost part (the first five rows) of the most general
graph (all αp �= 0) is shown in Figure A3. Contributions from
α−1 and from Aj are present in all orders. Contributions from
α1 start from the second order. From the third order up, we
have also contributions from α2 and α3. In the next order con-
tributions from α4 and α5 appear. And so on – each next order
activates two more terms of the expansion of V(r).

The graph corresponding to the pure Coulomb potential,
i.e. to the case of αp = 0 if p �= −1, is given in Figure A4. It
is isomorphic with the Pascal triangle. There are

( j
p
)
paths one

can reach node c(n−j)
j+p−1 starting from node c(n)−1. With each path

we associate a product of all arc indices Ai taken along this
path. The coefficientA(j)

p introduced in Equation (36) is equal
to the sum of these products extended over all

( j
p
)
paths. For

example, nodes c(n)−1 and c(n−4)
6 are linked by

(4
3
) = 4 paths and

A(j)
p = A1A3A5 + A1A3A6 + A1A4A6 + A2A4A6.
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Figure A3. The first five rows of graphical representation of Equation (26). Arcs corresponding to α0 are not shown since they do not
contribute to the constraints (see Theorem 2.1).
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Figure A4. Graph for the case of the pure Coulomb potential (αp = 0 if p �= −1).
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