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Abstract

We extend our recently published short-range gradient-corrected density functional from the closed-shell to the open-shell case, com-
bine it with long-range coupled-cluster methods (CCSD, CCSD(T)), and apply it to the weakly bound alkali-metal rare-gas dimers
AmRg (Am = Li–Cs; Rg = Ne–Xe). The results are shown to be superior, with medium-size basis sets, to pure DFT and pure cou-
pled-cluster calculations.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Density functional (DFT) and wave-function based
ab initio methods are to some extent complementary.
DFT methods, on the one hand, provide a good descrip-
tion of dynamic correlation at a reasonable cost-value
ratio, but a systematic improvement is currently not feasi-
ble. Ab initio methods, on the other hand, yield a good
description of static correlation and can be systematically
improved to high accuracy, but large one-particle basis sets
are required for the treatment of dynamic correlation.

In order to combine the benefits of both brands of meth-
ods, it has been suggested [1–4] to relieve ab initio methods
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from the description of the interelectronic cusp by splitting
off the short-range (sr) part of the interelectronic Hamilto-
nian

P
i<j1=rij – which is mainly responsible for their heavy

basis-set dependency – and access this part by DFT. Then,
only the long-range (lr) part of the interelectronic interac-
tion has to be covered by an explicitly wavefunction-based
description.

Within this theoretical framework it is necessary to use
specially developed sr density functionals – so as to avoid
double counting of the lr part of electron exchange and
correlation. We have recently shown [5] that a sr

gradient-corrected density functional of the Perdew–
Burke–Ernzerhof (PBE) type [6] delivers excellent results
for the potential curves of rare gas dimers.

In the present paper, we extend this functional, which
was designed to handle closed-shell systems, to the
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open-shell case. We furthermore introduce this functional
into the open-shell coupled-cluster code (RCCSD(T),
UCCSD(T)) [7,8] of the program package MOLPRO [9],
treating single, double and triple excitations with respect
to a restricted Hartree–Fock (RHF) reference. The method
is outlined in Section 2. For demonstrating the accuracy of
our new sr-PBE/lr-CCSD(T) approach, we apply it to the
van der Waals bound alkali-metal rare-gas dimers AmRg
(Am = Li–Cs; Rg = Ne–Xe), cf. Section 3. Concluding
remarks follow in Section 4.

2. Functionals and implementation

The functionals to be described in this section refer to
the following separation of the interelectronic interaction
operator of the Hamiltonian into long- and short-range
parts:

V ee ¼ V lr
ee þ V sr

ee;

V lr
ee ¼

X
i<j

erfðlrijÞ
rij

;

V sr
ee ¼

X
i<j

1� erfðlrijÞ
rij

;

ð1Þ

where erf is the standard error function. The separation of
the energy expression into a long-range part to be treated
by wavefunction-based ab initio methods and a short-range
part to be treated by DFT can readily be done using Levy’s
constrained-search formalism [10]:

E0 ¼ min
q

min
W!q
hWjT þ V ne þ V lr

eejWi þ Esr
0 ½q�

� �

Esr
0 ½q� ¼ min

W!q
hWjT þ V eejWi �min

W!q
hWjT þ V lr

eejWi

¼ U sr
H½q� þ Esr

xc½q�:

ð2Þ

Here, E0 is the ground state energy, Usr
H is the sr Hartree en-

ergy, and Esr
xc defines the functional to be approximated.

Note that Esr
xc½q� is no longer a functional of the electron den-

sity q alone, it also depends on the coupling parameter l. For
l = 0, its definition coincides with that of the usual density
functional, but for l > 0 the dependence on q will change.
For l!1 the pure coupled-cluster limit is attained.

In this work, we extend our previously proposed PBE-
like closed-shell sr density functional [5] to the open-shell
case. The exchange part of the closed-shell functional reads

Esr
x ½q;rq� ¼

Z
d3rqeLDA

x ðl; qÞF xðl; sÞ;

F xðl; sÞ ¼ 1þ j� j
1þ bðlÞs2=j

;

bðlÞ ¼ bPBE

bTð0Þ
bTð~lÞe�ax~l2

s ¼ jrqj
2kF q

;

ð3Þ

where j = 0.840, bPBE = 0.21951 and kF = (3p2q)1/3 are
parameters already included in the standard PBE func-
tional; bTð~lÞ ð~l ¼ l=ð2kF ÞÞ was taken from Ref. [11], and
the exponential term with ax = 19.0 was introduced in Ref.
[5] for damping off the gradient term in the large l limit.

Due to the additivity of the exchange energy, the corre-
sponding open-shell functional can be easily obtained via
the spin–scaling relationship:

Esr
x ½q";q#;rq";rq#� ¼ ðEsr

x ½2q"; 2rq"� þ Esr
x ½2q#; 2rq#�Þ=2;

ð4Þ

where q"/q# are spin-up/down densities.
The correlation part of the closed-shell functional reads

Esr
c ½q;rq� ¼

Z
d3rq½eLDA

c ðl; qÞ þ Hðl; q; tÞ�;

Hðl; q; tÞ ¼ c ln 1þ bðlÞt2

c
1þ At2

1þ At2 þ A2t4

� �� �
;

bðlÞ ¼ bPBE eLDA
c ðl; qÞ

eLDA
c ð0; qÞ

� �ac

;

A ¼ bðlÞ
cðexp ð�eLDA

c ðq; lÞ=cÞ � 1Þ ;

t ¼ jrqj
2ksq

;

ð5Þ

where c = 0.031091, bPBE = 0.066725 and ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4kF =p

p
are

parameters already included in the standard PBE functional
and the l-dependent factor in b(l), with ac = 2.83, was used
in Ref. [5] to damp off the gradient term for large l.

The construction of the open-shell correlation func-
tional is more sophisticated than that of the open-shell
exchange functional, since correlation affects all electrons
and the correlation energy is non-additive for the two
spin-systems. The dependence on the spin polarisation
f = (q" � q#)/q has to be included both into the local-
spin-density (LDA) part of the functional and into the
gradient correction, i.e. eLDA

c ðl; qÞ ! eLDA
c ðl; q; fÞ;Hðl;

q; tÞ ! Hðl; q; f; tÞ. The LDA functional eLDA
c ðl; q; fÞ is

taken from Ref. [12], the gradient correction H(l, q, f, t)
is built according to Ref. [6] by introducing the spin–scal-
ing factor /(f) = [(1 + f)2/3 + (1 � f)2/3]/2. Finally, we get

Esr
c ½q"; q#;rq� ¼

Z
d3rq½eLDA

c ðl; q; fÞ þ Hðl; q; f; tÞ�;

Hðl; q; f; tÞ ¼ c/3 ln 1þ bðlÞt2

c
1þ At2

1þ At2 þ A2t4

� �� �
;

bðlÞ ¼ bPBE eLDA
c ðl; q; fÞ

eLDA
c ð0; q; fÞ

� �ac

;

A ¼ bðlÞ
cðexp ð�eLDA

c ðl; q; fÞ=ðc/3ÞÞ � 1Þ
;

t ¼ jrqj
2/ksq

:

ð6Þ

The value of ac has to be readjusted to ac = 2.78,
because eLDA

c ðl; q; fÞ is based on improved quantum
Monte-Carlo (QMC) calculations and a different fitting
procedure (PW92C instead of VWN80).
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Fig. 2. Approximations for the correlation energy of N (uncontracted
aug-cc-pVQZ basis set, with additional functions for core correlation), as
a function of the coupling parameter l (a.u.): ðEDFT

c ðsrÞþ
ECCSDðTÞ

c ðlrÞÞ=ECCSDðTÞ
c is the ratio of the mixed sr-DFT/lr-CCSD(T)

correlation approximation, with the LDA and our modified PBE-like
functional, to the full CCSD(T) correlation energy.
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Finally, we applied our l-dependent new functionals to
the 4S ground state of the N atom so as to check their per-
formance. To this end we plotted the ratio of the exchange
energy in the combined sr-DFT/lr-HF approach to the HF
reference value, ðEDFT

x ðsrÞ þ EHF
x ðlrÞÞ=EHF

x , cf. Fig. 1, and
the ratio of the correlation energy in the combined
sr-DFT/lr-CCSD(T) approach to the CCSD(T) energy cal-
culated with large basis set, ðEDFT

c ðsrÞ þ ECCSDðTÞ
c

ðlrÞÞ=ECCSDðTÞ
c , cf. Fig. 2. Ideally, the ratio should in both

cases be equal to 1, independent of l. In practice, we
encounter the well-documented deficiencies of the standard
LDA and PBE functionals at the pure DFT limit (l! 0).
In particular, standard LDA underestimates (the magni-
tude of) the exchange energy by �10% and overestimates
correlation by a factor of more than 2. These errors are
gradually reduced by mixing in exact exchange/correlation
with increasing l, for 0.1 < l < 10 a.u.. The starting point
is much better with standard PBE at l = 0, and our
PBE-like short-range functionals allow to essentially retain
this accuracy over the whole range of l values, with devia-
tions of < 1% for exchange and < 6% for correlation.

The above short-range spin density functionals have
been implemented into the program package MOLPRO
[9]. In the first step, the orbitals are optimised by minimis-
ing for the high-spin single-determinant spin-restricted
wavefunction W the energy expression:

E0¼min
W
fhWjT þV neþV lr

eejWiþUsr
H½q½W��þEsr

xc½q½W�;f½W��g;

ð7Þ

where q[W] and f[W] are the electron density and spin
polarisation corresponding to W. This amounts to a hy-
brid-type restricted Kohn–Sham (RKS) calculation with
the sr density functional Esr

xc½q� and lr exact exchange. In
practice, a RHF calculation is performed, with the stan-
dard electron repulsion integrals (ERI) replaced by their
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Fig. 1. Approximations for the exchange energy of N (aug-cc-pVQZ basis
set), as a function of the coupling parameter l (a.u.):
ðEDFT

x ðsrÞ þ EHF
x ðlrÞÞ=EHF

x is the ratio of the mixed sr-DFT/lr-HF
exchange approximation, with the LDA and our modified PBE-like
functional, to the full HF exchange energy.
lr counterparts, and with the sr Coulomb operator and
the sr exchange–correlation potential derived from Esr

xc

added. In the second step, the still missing lr correlation ef-
fects are taken into account by performing a coupled-clus-
ter calculation with single, double and perturbative triple
excitations of the restricted or unrestricted type
(RCCSD(T), UCCSD(T)) [7,8], for the first term on the
right-hand side of Eq. (7). Thereby, only lr ERIs are used,
and the influence of sr Coulomb and exchange/correlation
is included by means of the relevant sr functionals/poten-
tials determined in the first step.

3. Results and discussion

The calculation of van der Waals interactions poses a
great challenge both to density functional and to ab initio
methods. Current density functional approximations often
provide quite unreliable results for these systems, especially
for the dispersion interaction of non-overlapping entities,
whereas ab initio methods like coupled-cluster theory are
capable of yielding very accurate results but require large
basis sets to reach the correct limit.

In order to systematically study the new spin density
functional we applied it to alkali-metal rare-gas dimers;
for this purpose we determined bond lengths Re, dissocia-
tion energies De and harmonic wavenumbers xe for each
alkali-metal rare-gas dimer AmRg (Am = Li–Cs; Rg =
Ne–Xe) by calculating seven counterpoise corrected [13]
energy points equally spaced with distances of 0.1 Å
around the minimum of the potential curve and approxi-
mating them with a function of the form

P4
i¼�1aiRi by

means of a least-squares-fit. In the case of the second and
third row elements these results were obtained in all-elec-
tron calculations using correlation consistent polarised
valence triple zeta (cc-pVTZ) basis sets for Li and Na
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[14] and augmented cc-pVTZ (aug-cc-pVTZ) basis sets for
Ne and Ar [15–18]. In the case of the heavier elements we
employed small-core relativistic effective core potentials
(RECPs) [19,20] in connection with the associated aug-cc-
pVTZ basis sets for Kr and Xe, and the spdf part of the
associated basis sets for K, Rb and Cs, respectively. We
will refer to these basis sets as basis A. For the Rg atoms,
we correlated the valence shell in the lr-CCSD(T) calcula-
tions; for the Am atoms, we also included outer-core corre-
lation. If experimental results were available [21–29], we
compared these with our theoretically predicted values.
For the Li and Na compounds, where correlation consis-
tent basis sets up to quintuple zeta quality are available
[14–18,30], we also compared to basis set extrapolated
CCSD(T) values. We calculated these values from the
(aug-)cc-pV5Z Hartree–Fock energies and from extrapola-
tions of the (aug-)cc-pVXZ (X = 4,5) correlation energies
to the complete basis set limit (CBS[45]) according to
Ec = ECBS + aX�3 [31]. The resulting theoretical reference
values agree very well with experiment. The mean absolute
deviations (MADs) between the experimental data and the
basis set extrapolated values are 0.025 Å for Re and
3.4 cm�1 for De.

In order to link the values of the coupling parameter l
to the densities of the systems under consideration, we used
the relation l = 2/Re for the Rg dimers in our previous
work [5]. For the alkali-metal rare-gas dimers, the situation
is more complicated, since these systems comprise quite dif-
ferent densities and length scales. The atomic radii of the
alkali atoms are much larger than those of the Rg atoms.
Table 1
Bond lengths Re (Å) of the AmRg dimers from standard DFT calculations with
CCSD(T) calculations and standard CCSD(T) calculations with basis A, and

Basis A

PBE PBE/CCSD PBE/CCSD(T) L

LiNe 4.389 5.314 5.310 5
LiAr 4.845 4.890 4.870 4
LiKr 4.679 4.791 4.764 4
LiXe 4.680 4.868 4.831 4
NaNe 4.399 5.475 5.470 5
NaAr 4.900 5.020 4.998 5
NaKr 4.753 4.914 4.885 4
NaXe 4.832 5.004 4.965 4
KNe 4.547 5.986 5.967 6
KAr 5.096 5.377 5.322 5
KKr 4.954 5.188 5.137 5
KXe 5.123 5.281 5.217 5
RbNe 4.636 6.212 6.192 6
RbAr 5.189 5.498 5.447 5
RbKr 5.042 5.269 5.207 5
RbXe 5.239 5.368 5.294 5
CsNe 4.667 6.502 6.461 6
CsAr 5.237 5.659 5.591 5
CsKr 5.103 5.367 5.282 5
CsXe 5.336 5.469 5.371 5

MAD 0.318/0.233 0.037/0.050 0.038/0.069 0

Experimental data are taken from Refs. [22–29], errors in the last digits (if know
respect to complete basis set extrapolated values and experimental data are gi
Moreover, we have a substantial contribution to the bind-
ing energy from the alkali-metal cores, i.e., from entities
which are much smaller again than the Am valence shells.
In order to cope with this situation, we found it reasonable
to work with a system-averaged l value. Such a value has
been determined by Ángyán and co-workers in sr-DFT/lr-
HF calculations for the members of the G2 test set [32] and
been applied in sr-DFT/lr-MP2 calculations for van der
Waals molecules [33,34]. For the present work, we adopted
his l value of 0.5. We demonstrate below that the sensitiv-
ity of the results on the chosen l value is not overly large.

Let us first compare our best results with the mixed
method at l = 0.5 (sr-PBE/lr-CCSD(T)) with the pure
PBE and pure CCSD(T) limits, calculated with basis A.
The bond lengths Re, dissociation energies De and har-
monic wavenumbers xe are listed in Tables 1–3 (first, third
and fifth column) and compared to the theoretical and
experimental reference data (sixth and seventh column).
It is seen that the sr-PBE/lr-CCSD(T) results are accurate
to �0.07 Å for Re, �5 cm�1 for De, and 1 cm�1 for xe,
when compared to experiment; the maximum deviations
are 0.18 Å for Re (NaNe) and 24 cm�1 for De (NaXe – note
that the experimental uncertainty is quite large for this
molecule). When compared to the theoretical reference
data, the situation is even more favourable, with MADs
of �0.04 Å for Re, �2 cm�1 for De, and <1 cm�1 for xe.
The maximum deviations for Re (�0.1 Å) are dominated
by the very weakly bound Ne compounds; for De, the larg-
est errors arise for the Xe compounds, i.e., the molecules
with the largest absolute De values (�7 cm�1 for NaXe,
PBE functional, mixed sr-PBE/lr-CCSD, sr-PBE/lr-CCSD(T), sr-LDA/lr-
from basis set extrapolated standard CCSD(T) calculations

CBS[45] Experimental

DA/CCSD(T) CCSD(T) CCSD(T)

.344 5.608 5.226

.899 5.104 4.896 4.893 (8) [22]

.789 4.988 4.807 4.78 (3) [23]

.861 5.030 4.844 4.80 (2) [23]

.499 5.839 5.366 5.29 (5) [24]

.024 5.291 5.005 5.01 (1) [25]

.907 5.153 4.914 4.918 (4) [26]

.992 5.200 4.965 4.95 (4) [27]

.010 6.319

.366 5.615 5.404 (5) [28]

.162 5.425 5.24 [29]

.247 5.467 5.25 [29]

.224 6.553

.482 5.784

.235 5.541 5.29 [29]

.325 5.700

.514 6.863

.633 5.954 5.50 [29]

.315 5.666 5.44 [29]

.409 5.700 5.47 [29]

.043/0.060 0.274/0.267

n) are quoted in parentheses. In each case, mean absolute deviations with
ven in the form . . ./. . ..



Table 2
Dissociation energies De (cm�1) of the AmRg dimers from standard DFT calculations with PBE functional, mixed sr-PBE/lr-CCSD, sr-PBE/lr-CCSD(T),
sr-LDA/lr-CCSD(T) calculations and standard CCSD(T) calculations with basis A, and from basis set extrapolated standard CCSD(T) calculations

Basis A CBS[45] Experimental

PBE PBE/CCSD PBE/CCSD(T) LDA/CCSD(T) CCSD(T) CCSD(T)

LiNe 35.8 5.9 6.0 5.8 4.0 7.4
LiAr 34.3 38.7 40.3 39.1 28.0 41.1 42.15 (20)
LiKr 50.1 64.1 67.6 65.8 48.8 67.2 68 (8)
LiXe 59.9 88.3 94.8 91.8 73.6 100.9 102 (2)
NaNe 38.9 5.8 5.8 5.7 3.8 7.1 8.1 (9)
NaAr 37.3 38.1 39.7 38.6 27.0 40.5 41.6 (2)
NaKr 55.3 63.3 66.9 65.1 47.5 66.9 68.4 (5)
NaXe 64.0 86.5 93.0 90.1 71.4 99.6 117 (15)
KNe 53.9 5.5 5.6 5.5 3.7
KAr 48.9 39.2 41.7 40.4 28.2 40.1 (6)
KKr 74.3 67.9 73.5 71.5 51.1 71
KXe 80.7 92.5 102.0 98.7 76.7 111
RbNe 55.3 4.9 5.0 4.9 3.3
RbAr 51.6 35.9 38.6 37.3 25.5
RbKr 78.7 65.2 71.3 69.3 48.1 73
RbXe 83.7 89.3 99.5 96.3 76.7
CsNe 65.1 4.5 4.7 4.5 3.1
CsAr 60.1 36.2 39.6 38.2 26.0 45
CsKr 91.4 68.1 75.9 73.6 50.5 74
CsXe 94.5 93.2 106.0 102.2 76.7 110

MAD 21.9/18.9 5.0/8.9 2.2/4.7 3.6/5.9 15.8/22.4

Experimental data are taken from Refs. [22–29], errors in the last digits (if known) are quoted in parentheses. In each case, mean absolute deviations with
respect to complete basis set extrapolated values and experimental data are given in the form . . ./. . ..
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which is significantly smaller than the corresponding devi-
ation from experiment). Note that the sr-PBE/lr-CCSD(T)
results are not just an interpolation between the results of
Table 3
Harmonic wavenumbers xe (cm�1) of the AmRg dimers from standard DF
CCSD(T), sr-LDA/lr-CCSD(T) calculations and standard CCSD(T) calcula
calculations

Basis A

PBE PBE/CCSD PBE/CCSD(T) L

LiNe 19.5 8.9 9.0
LiAr 17.8 21.0 21.4 2
LiKr 21.1 25.2 25.8 2
LiXe 22.3 28.1 28.9 2
NaNe 17.5 6.0 6.0
NaAr 11.6 12.8 13.1 1
NaKr 13.9 14.6 14.9 1
NaXe 14.3 15.8 16.3 1
KNe 22.5 4.2 4.5
KAr 13.4 8.8 8.9
KKr 12.1 10.9 11.3 1
KXe 11.8 11.6 12.1 1
RbNe 13.5 4.2 4.1
RbAr 10.0 7.7 8.0
RbKr 9.6 8.2 8.5
RbXe 8.8 8.5 8.9
CsNe 13.9 3.0 3.6
CsAr 9.9 6.9 7.2
CsKr 8.9 7.0 7.3
CsXe 7.9 7.1 7.5

MAD 5.3/3.1 1.0/1.3 0.6/1.0

Experimental data are taken from Refs. [22–29]. In each case, mean absolu
experimental data are given in the form . . ./. . ..
the limiting methods: whereas the Re values of the mixed
method are mostly intermediate between the PBE and
CCSD(T) limits, the De values of the mixed method are
T calculations with PBE functional, mixed sr-PBE/lr-CCSD, sr-PBE/lr-
tions with basis A, and from basis set extrapolated standard CCSD(T)

CBS[45] Experimental

DA/CCSD(T) CCSD(T) CCSD(T)

8.8 7.2 10.2
1.1 17.8 21.8 21.7
5.5 22.0 25.8
8.4 25.6 29.9
5.9 4.7 6.8
2.9 10.6 13.4 13.3
4.7 12.4 15.1 14.9
6.1 14.1 17.2 19.7
4.1 3.8
8.5 8.4 10.0
1.1 9.5
1.9 10.6
4.2 3.1
7.9 6.6
8.4 7.1
8.8 7.4
2.9 2.8
7.1 5.9
7.2 6.2
7.3 6.6

0.8/1.3 3.2/3.3

te deviations with respect to complete basis set extrapolated values and
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very often larger than both the PBE and CCSD(T) ones.
Thereby, the mixed method clearly outperforms both the
pure PBE method and the pure CCSD(T) method. The for-
mer leads to MAD values with respect to the experimental
(theoretical) reference data of �0.23 (0.32) Å for Re and
�19 (22) cm�1 for De; although these deviations are much
smaller than one would have anticipated (much smaller
anyway than the LDA ones, cf. below), one should be
aware of the fact that the error of the De results is quite
unsystematic – the Ne compounds are overbound by fac-
tors of 4–5, while the Xe compounds are underbound by
up to 40%. The pure CCSD(T) calculation gives MADs
with respect to the experimental (theoretical) reference data
of �0.27 (0.27) Å for Re and �22 (16) cm�1 for De. Due to
the limited size of the basis sets, these deviations are not
better than those obtained with pure PBE, but the
CCSD(T) deviations are much more systematic than the
PBE ones.

Improving the basis set quality changes the situation. We
enlarged basis A to approximately quadruple zeta quality as
follows. For Li and Na, we used the cc-pVQZ basis sets; for
K, we added a g function with an exponent of 0.172200, and
for Rb and Cs we used the full spdfg basis sets of Ref. [20].
The Rg atoms were calculated with the aug-cc-pVQZ basis
sets of Refs. [15–19]. With the resulting basis B, the CCSD(T)
results become superior to the PBE ones. While the MADs of
the PBE results remain virtually unchanged, the MADs with
respect to experiment (or with respect to CBS[45]-CCSD(T))
of the CCSD(T) results are reduced to�0.15 (0.14) Å for Re

and �14 (8) cm�1 for De. In comparison, the MADs of the
mixed sr-PBE/lr-CCSD(T) results are given by �0.10
(0.07) Å for Re and�6 (5) cm�1 for De. This means that com-
pared to the triple zeta results Re deteriorates by 0.03 Å,
whereas the quality of De remains essentially unchanged
(the change is 1 (3) cm�1). Admittedly, the basis set depen-
dence of De looks better than it actually is, because either
the results obtained with smaller and larger basis set, respec-
tively, can be found on different sides of the experimental
value or the differences between two such results have not
the same sign for all molecules. Nevertheless, the sr-PBE/
lr-CCSD(T) method surpasses the pure borderline cases also
for the extended basis set. The large basis set dependence of
the pure CCSD(T) results does not come as a surprise, since it
is well known that the dispersion energy is very slowly con-
vergent with respect to the basis set size. In particular, high
angular momentum polarisation functions are required.
Consequently, the CCSD(T) values obtained with the smal-
ler basis sets are still quite far from the basis set limit. The
basis set dependence of the sr-PBE/lr-CCSD(T) method is
smaller, since not only intraatomic but also part of the inter-
atomic interaction is described by sr DFT. Note that the
results with the mixed method refer to shorter bond lengths
(and larger correlation energies) than those with pure
CCSD(T), which partially counteracts the favourable influ-
ence of the small basis set dependency of DFT.

Of course, a judicious choice of the coupling parameter
l is important: l should not be too small in order not to
lose too much accuracy with respect to CCSD(T); on the
other hand, l should not be too large in order to keep
the basis set dependency reasonably small. However, it
turns out that our results are not very sensitive with respect
to a variation of l; sr-PBE/lr-CCSD(T) calculations with a
coupling parameter of l = 0.4 (which is about half-way
between l = 0.5 and the l values used for the rare gas
dimers in Ref. [5]) show MADs of �0.12 (0.07) Å for Re

and �7 (3) cm�1 for De.
In order to study how a reduction of the theoretical level

will affect the results, we performed sr-PBE/lr-CCSD and
sr-LDA/lr-CCSD(T) (see Tables 1–3 second and fourth col-
umn) as well as pure LDA and CCSD calculations (not
shown in the table). As expected, triple excitations are very
important for standard CCSD(T) calculations – their omis-
sion worsens the MAD values by �0.2 Å for Re and
�10 cm�1 for De. By contrast, the effect of triple excitations
on the sr-DFT/lr-ab initio calculations is significantly smal-
ler, namely < 0.02 Å for Re and 3–4 cm�1 for De. This is due
to the fact that triple excitations from spatially close orbi-
tals are taken over by DFT. But also the substitution of
the PBE functional with the LDA functional only slightly
affects the results of the sr-DFT/lr-ab initio calculations –
the Re MAD changes by <0.01 Å and the De MAD by
�1 cm�1 only – which is even more remarkable, since pure
LDA – with MADs of �1.25 Å for Re and �250 cm�1 for
De – is much worse than pure PBE.

4. Conclusions

The PBE-like short-range density functional, which was
introduced in a previous paper for use in long-range ab ini-
tio coupled-cluster calculations, has been extended from
closed-shell to open-shell cases. In line with previous results
for the rare gas dimers, a systematic study for alkali-metal
rare-gas dimers shows that with medium-size basis sets of
triple (and even quadruple) zeta quality the mixed short-
range PBE/long-range CCSD(T) method yields results
superior not only to those of the standard PBE method
but also to those of the standard CCSD(T) method.
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